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A B S T R A C T

The development and evaluation of In-Vehicle Information Systems (IVISs) is strongly based on insights from qualitative studies conducted in artificial contexts
(e.g., driving simulators or lab experiments). However, the growing complexity of the systems and the uncertainty about the context in which they are used,
create a need to augment qualitative data with quantitative data, collected during real-world driving. In contrast to many digital companies that are already
successfully using data-driven methods, Original Equipment Manufacturers (OEMs) are not yet succeeding in releasing the potentials such methods offer. We
aim to understand what prevents automotive OEMs from applying data-driven methods, what needs practitioners formulate, and how collecting and analyzing
usage data from vehicles can enhance UX activities. We adopted a Multiphase Mixed Methods approach comprising two interview studies with more than 15
UX practitioners and two action research studies conducted with two different OEMs. From the four studies, we synthesize the needs of UX designers, extract
limitations within the domain that hinder the application of data-driven methods, elaborate on unleveraged potentials, and formulate recommendations to improve
the usage of vehicle data. We conclude that, in addition to modernizing the legal, technical, and organizational infrastructure, UX and Data Science must be
brought closer together by reducing silo mentality and increasing interdisciplinary collaboration. New tools and methods need to be developed and UX experts
must be empowered to make data-based evidence an integral part of the UX design process.
1. Introduction

The influence of digital products on our everyday life is contin-
uously growing. Smartphones, tablets, and other smart devices are
ever-present, and become smarter, more personalized, and more capa-
ble from generation to generation. This is due not only to technological
progress but also to the way digital products are developed and how
the customer experience of a product is designed. The main goal of
today’s digital product development process is to create a good User
Experience (UX) such that the product satisfies the user’s expectations.
User-centered Design (UCD) is an iterative multi-disciplinary design
approach in which designers involve users in each phase of the process.
Integrating users and their needs throughout the design process is
considered essential to create a product with good usefulness and
usability (Mao et al., 2005). However, the continuous involvement of
users and the need for experienced designers makes UCD an expensive
but crucial task. Considering the ever-growing system complexity and
the increasing expectations toward digital products, a traditional solely
qualitative UX approach is no longer sufficient to fulfill customer’s
needs. Therefore, digital domains including web or app development
enhance their UX design processes by integrating data-driven methods.
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Those methods are based on big data to gain fast and objective user
feedback. Modern websites, for example, can track every click of every
user, resulting in large amounts of data that enables UX experts to
gain additional insights into the users’ behavior and interests. Having
insights about where people click, how long they interact with the
system, and what they eventually buy, enables companies to tailor their
services to meet customers’ needs.

The changes in the design process of digital products also affect the
development of today’s cars. Software-based systems play an increas-
ingly important role and enable most of the innovations in modern
cars (Broy, 2006; Burkacky et al., 2018). Whereas cars were originally
purely mechanical products, influenced by the digital transformation,
simple infotainment devices found their way into cars, resulting in
the highly complex systems we experience today (Harvey and Stan-
ton, 2016). With the increasing impact of digital solutions, in-car
UX is highly dependent on the user’s experience with those digital
systems since, apart from the driving task, they are the main interaction
method. Modern IVISs are feature-rich, highly connected digital sys-
tems that offer a large variety of applications ranging from car-specific
settings to entertainment options like music streaming or television.
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Fig. 1. Illustration of the contributions of this paper.

This evolution leads to the fact that IVISs are not only compared to
the systems offered by other car manufacturers but also to smartphones,
websites, and other digital solutions. Therefore, it is increasingly impor-
tant and difficult to provide customers with a user interface that meets
their needs (Harvey and Stanton, 2016). Digital companies recognized
early that data-driven methods and big data analytics can have great
value for their UX design process. In contrast, automotive OEMs are
currently unable to fully exploit the possibilities and potentials of those
methods (Ebel et al., 2020a) for the Product Development (PD) life
cycle. This is due to organizational, legal, or technical restrictions.
However, especially for the development of IVISs, data-driven methods
yield great potential to enhance the understanding of the complex
interaction between the car, the driver, and the driving environment.
Whereas OEMs are aware of the potentials that data-driven methods
offer to improve a product’s UX, previous work shows that they struggle
to apply them to the development of IVISs. We are interested in the
specific needs UX experts formulate toward data-driven methods, what
potential use cases exist, why they are not yet leveraged, and how this
can be tackled. As of now, no work addresses the general limitations of
data logging, data processing, and data integration in the automotive
UX development process. Previous work expresses individual, but only
rough assumptions for the reasons why OEMs are not able to fully
exploit the potentials of data usage in the (UX) product development.

1.1. Contribution of this paper

As the design of IVISs is complex, it requires a multidimensional
approach to evaluate the topic studied in this work. Therefore, we
examine the problem at hand from different perspectives by synthe-
sizing results from four individual studies. This approach leads to
various contributions. First, we present the current state-of-the-art of
data utilization in the automotive UX design process of IVISs. We give
an overview of the role data-driven methods play in the automotive
sector, differentiate between different types of data that can be utilized,
and compare the current state-of-the-art to digital domains. Second,
based on the individual studies on which this work is based and the
comparison to digital domains, we present the main limitations of
the automotive sector concerning the usage of data-driven approaches.
Additionally, specific needs UX experts have toward such systems are
presented to gain a deeper knowledge of what is needed to make the UX
design process more evidence-based and user-centered. Furthermore,
potential fields of application in which the benefits of the usage of
data-driven methods are not (yet) leveraged are presented. Based on
2

the knowledge gained and the evaluation of the current shortcomings,
we suggest actions and formulate recommendations on how to better
integrate data-driven methods in the UX design process.

This paper is intended to provide OEMs and researchers with guid-
ance on what actions need to be taken to more effectively incorporate
data-driven methods into the UX design process to develop in a user-
centric manner. It also provides unexplored and interdisciplinary areas
of research that are of interest to the academic community. Therefore,
we provide recommendations on what peculiarities from the UX per-
spective need to be taken into account when building an automotive
data logging and analysis framework. To do so, we elaborate on the
technical infrastructure and identified limitations, the current way of
working, and how current, mostly qualitative, methods can be triangu-
lated with data-driven methods. By combining the knowledge regarding
the limitations that apply to the automotive domain, the UX experts’
needs, the methods they use, as well as the triangulation potentials, we
aim to bring data-driven methods and UX activities closer together to
unleash untapped potential (see Fig. 1).

2. Background and related work

In this chapter the main concepts connected to UX and data-driven
approaches in the automotive and other digital domains are discussed.
Additionally, we elaborate on the data that can be used to support
automotive UX activities.

2.1. UX and its role in the automotive industry

Although the term UX originates from the usability concept, the
scope of UX goes far beyond the notion of usability. UX is used as an
umbrella term that considers the entire person’s interaction with the
product and includes the thoughts, feelings, and perceptions that result
from that interaction (Albert and Tullis, 2013). ISO 9241-210 defines
UX as ‘‘a person’s perceptions and responses that result from the use or antic-
ipated use of a product, system, or service’’. In academia, it is commonly
agreed that UX, being a holistic and subjective concept (Roto et al.,
2009), exceeds the mere solving of usability problems or the creation
of pleasant UIs. Whereas usability aspects contribute to the overall UX,
they are not suitable to measure UX. Measures including success rates
or the time on task yield insights on how users interact with a product
but not how the interaction (Roto et al., 2011) is perceived. The user’s
internal state, the system’s characteristics in use, and the context of
interaction contribute and influence the perceived UX (Hassenzahl and
Tractinsky, 2006). Such a comprehensive and diverse understanding
of UX leads to challenges in the practical implementation (Väänänen
et al., 2008), with some being of particular relevance for the design
process of IVISs. For instance, the dual-task environment leads to the
fact that interactions with IVISs are highly context-sensitive and are
therefore dependent on the driving scenario and other environmental
conditions (Harvey et al., 2010). Thus, besides the physical interface
and the interaction design, designers must also address the influence
of the driving situation (Löcken et al., 2017). This context-dependency
increases the complexity of the design task (Fastrez and Haué, 2008).
Moreover, each IVIS itself is part of an overarching construct consisting
of a multitude of subsystems and sensors that are often highly complex
software systems in themselves. Therefore, the flawless and continuous
communication between those systems plays a vital role with regard to
in-car UX and users’ perception of IVIS.

Today, the importance of UX is widely recognized by product
developers and a good UX is the primary goal of most product devel-
opment processes. Since this paper is oriented toward the industrial
design process in the automotive area, we are focused on the practical
implementation of UX principles, particularly on tools and methods
used by UX practitioners. From this viewpoint, User Experience Design
(UXD) is no different from user-centered design UCD (Roto et al., 2011).
However, if UX is a ‘‘tangible’’ outcome, then UCD is the method to
create a better UXD. Thus, the roots of UXD can be found in the
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principles of UCD (ISO 13407:1999; revised by ISO 9241-210). UCD is
based on three principles: (1) early focus on users and tasks; (2) empir-
ical measurements using quantifiable and measurable usability criteria;
(3) iterative design. Nevertheless, UX adds to the UCD concept the
challenge to assess subjective UX factors such as aesthetics, perception,
trust, and others. Other challenges of UXD are connected to selecting
feasible methods and tools to measure, validate, and satisfy the UX
factors, and the support of the UCD practice within the organization.
A more specific peculiarity of UX is its cumulative nature (Roto et al.,
2011), which builds from anticipated, momentary, and episodic UX,
and aggregates to the overall UX of the product. This finding suggests
that UX evaluation activities need to be repeated during the product life
cycle to capture something similar to an overall UX score (Law et al.,
2009). This is of particular interest for the automotive domain con-
sidering the long product lifecycle (Broy, 2006), the various customer
touchpoints, and the widespread and diverse user base (Heimgärtner
et al., 2017).

2.2. UX in the product development life cycle

This section gives a brief overview of the industrial application of
the UX concept to demonstrate how UX activities are involved in the
product development life cycle.

The product design and development process can be described by
six consequent steps: (1) Strategy and Research, (2) Product Definition,
(3) Ideas Generation, (4) Prototyping and Testing, (5) Implementation,
followed by an iterative (6) Evaluation Process for further product
improvements (see Fig. 2). These steps can be directly associated with
the pre-design, design, and post-design phases introduced by Nielsen
(1992). At the same time, UX as a practice includes three main steps:
(1) Envision UX, (2) Design UX, and (3) Evaluate UX (Roto et al., 2011).
Connected to the product development phases (see Fig. 2), these three
major UX steps can be assigned as pre-design, design, and post-design
phases. Each of these PD phases incorporates multiple UX activities that
need to be considered to deliver a good UX design.

In the following, we elaborate on the design phases according
to Nielsen (1992) in more detail: Pre-design is the phase where re-
quirement and feature elicitation happens after funding is available
and before design begins. The pre-design phase comprises two main
steps, Strategy and Research and Product Definition. The former aims
to understand the target user population. Various studies are conducted
to achieve a specific understanding of the user groups and user needs, to
define use cases, and to understand in which context users are perform-
ing certain tasks. During Product Definition the technical requirements
are derived, features are defined and usability goals are set to clarify
the design process.

During the design phase, the focus lies on design implementation
and an effective connection between hardware, software, UI, informa-
tion flow, and other design elements. This phase ranges from the first
sketches and wireframes that are generated during Idea Generation,
over the first prototypes built in the Prototyping and Testing step to
a usable Implementation of the system. Each step contains specific
evaluation tasks that need to suit the maturity of the design in the
respective step. Simultaneously, designing a ‘‘smart’’ product with dig-
ital features, like IVISs, requires encompassing the following design
constructs: physical design, communication design, contextual design,
and integration design. The comprehension of interrelations between
all four design constructs is important to provide a quality design to the
end-user. Physical design can be described as the design of a product
and its features. Communication design is responsible for the interac-
tion model with the user, including the Human-Machine Interaction
(HMI) design. The contextual design aims to consider the dynamic
environmental effect on product or system performance. Finally, the
integration design is responsible for the seamless incorporation of the
3

product or system into a higher-level system or product. To provide a
seamless and meaningful interaction for the user, the designers must
combine the individual design constructs into a coherent concept.

The post-design phase also referred to as the follow-up phase, is
especially important for a system’s redesign process. A good under-
standing of how customers use and accept the system, what impact the
system has on the in-car UX, the safety, and other metrics is essential
to derive suggestions for improvements that can be implemented in a
re-design. Additionally, with the product being released, the initially
set goals for usability can be evaluated using field data and unintended
usage patterns can be identified.

2.3. Comparison of automotive and digital domains

In the automotive domain, a lot of research is done regarding the
analysis of naturalistic driving data and the interaction with driver
assistance systems (Dingus et al., 2006; Fridman et al., 2019; Risteska
et al., 2018). However, the development of methods that utilize fine-
grained interaction data to directly derive usability and UX measures
for IVISs themselves seems to be more prevalent in digital domains.
Outside of the automotive domain, the analysis of user interaction data
already plays a vital role in the UX design process. In app or web
development, data-driven methods using implicit data are widely es-
tablished. Already in 2006, Agichtein et al. (2006) analyzed 12 million
user interactions in a web search engine to derive an implicit feedback
model. Another approach presented by Atterer et al. (2006) utilizes
implicit data, collected from user interaction on websites, to perform
usability tests and evaluate how users behave while browsing websites.
In contrast to Agichtein et al. (2006) who track multiple different
metrics, Atterer et al. (2006) present an approach that measures the
overall UX of a web page but is solely based on mouse tracking.
Another approach is presented by Deka et al. (2017) allowing designers
to collect detailed interaction data for any Android app without any
need for integration or access to the source code. Their method allows
the collection of performance metrics (e.g., time on task, completion
rate) and visualizes user flows to quickly identify specific problems.
Another method that aims to explore and understand clickstream data
is presented by Liu et al. (2017). The authors identified four different
granularity levels in clickstream data and present an approach that
aims to ease the analysts’ work to make sense of usage patterns and
sequences.

Compared to the evaluation methods mentioned above, automotive-
related evaluation methods do not yet make use of automatically
collected implicit user behavior data in such detail. Since the driving
context is considered an important factor in evaluating in-car user be-
havior, a lot of research focuses on driving event recognition (Orlovska
et al., 2020a; Liang et al., 2016). Aiming to contribute to driver
behavior understanding, researchers, utilizing indirect signals, propose
prediction models on driver workload estimation (Xing et al., 2018; van
Leeuwen et al., 2016; Murphey et al., 2018), driver distraction (Kanaan
et al., 2019) and driver behavior (Yao et al., 2019; Miyajima and
Takeda, 2016). Although these aspects contribute to a better driver
behavior understanding, the proposed methods do not leverage the
added potential introduced by detailed interaction data. This is mainly
due to the fact that interaction data from the IVISs is mostly still
unavailable, while the same interaction data in areas such as mobile
apps or web development are well developed, providing insights into
the interaction with digital products (Deka et al., 2016, 2017; West
et al., 2009; Wulczyn and Taraborelli, 2017).

2.4. Data in the UX design process

Every study that focuses on UX evaluation involves participants who
interact with the system under test to derive insights regarding the
usage and the interaction. However, there are two types of data that
can be collected (qualitative and quantitative data) and two different

approaches how the data is collected (implicit feedback vs. explicit
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Fig. 2. The UX design phases and associated UX activities.
feedback). In the following, the authors will elaborate on the differ-
ences between those characteristics to derive a clear definition of what
kind of data will be covered in this work.

Qualitative Data vs. Quantitative Data. Qualitative research
methods focus on the quality of things and are used to explain, describe,
and identify the root cause of user behavior (Creswell, 2013; Merriam,
2009). Deniz and Lincoln (2017) describe qualitative research methods
as an approach to interpret phenomena in their natural environment
based on the meaning that a particular user or group of users reveals
to them. Therefore, qualitative methods usually focus on gathering sub-
jective impressions of the system at different product use stages. Since
qualitative research focuses on explaining why certain behaviors or
phenomena occur, human factors such as user perception or satisfaction
are of primary interest in qualitative research (Orlovska et al., 2019a).
Quantitative research, in contrast, focuses on measurements to test
hypotheses, determine and quantify an outcome, detect correlations
and generalize results (Deniz and Lincoln, 2017). The ability to control
experiments in quantitative research enables researchers to produce
reliable and reproducible results. Quantitative data is any quantifiable
information that can be used for statistical analysis. The difference be-
tween qualitative and quantitative data can be broken down to the type
of questions they can answer: Whereas quantitative approaches aim
to answer questions like ‘‘How many?’’ and ‘‘How much?’’ qualitative
approaches aim to answer the ‘‘Why?’’ question.

Explicit Data vs. Implicit Data. Another way of categorizing the
data used in the product development process is to distinguish how the
data is collected. There are two different types of feedback used to eval-
uate user behavior, explicit and implicit feedback. Explicit feedback is
collected intentionally, for example, through surveys, focus groups, or
interviews. In contrast, implicit feedback is not provided intentionally
but gathered during the interaction with a product through observation
or logging by, for example, sensors and telemetry. This work only
focuses on implicit feedback collected from vehicle actuators, sensors,
vehicle apps, or in-vehicle software systems. Therefore, the explicit
quantitative feedback generated by extensive user surveys, or by using
an automated data collection method, such as web surveys, will not be
considered in this work.

Lab Data vs. Naturalistic Data vs. Natural Data. In addition to
the above distinctions, further characteristics need to be considered
when describing automotive data. Since the perceived UX is highly
dependent on the context, i.e. the driving situation, it is necessary
4

to introduce subcategories, describing the environment in which the
data is collected. Lab data is data that is collected during controlled
experiments in an artificial environment. For most lab experiments,
which aim to collect implicit user interaction data, a small number of
participants are recruited and instructed to perform dedicated tasks in
a driving simulator environment. The fidelity of the driving simulator
can range from a simple seating buck without any context simulation to
a moving-base high-fidelity driving simulator. Due to the experimental
setting, the implicit data, collected during the experiment, can easily be
enhanced by qualitative and explicit data (e.g. by performing follow-
up interviews). However, great time and resource investments are
necessary and the number of participants is strictly limited by the
available budget.

Whereas lab data is collected in an artificial environment, natu-
ralistic driving studies aim to create an unobtrusive data collection.
Naturalistic data is gathered during real-world driving ‘‘in a natural
driving context and under various driving conditions’’ (Orlovska et al.,
2020a). However, only data from a defined group of participants over a
certain amount of time is evaluated. This is mostly because such studies
often require additional instrumentation in the vehicle. Naturalistic
driving studies are often conducted if the data that can be collected
from the production vehicles is not sufficient, and more detailed user
feedback is needed to evaluate the research objective. Additionally,
for some measurements, such as personal or physiological data, driver
consent needs to be collected, further narrowing down the number
of participants. Despite the naturalistic driving study’s main focus on
implicit and quantitative data collection, follow-up interviews, aiming
to triangulate quantitative insights with qualitative ones, can be part
of naturalistic driving studies.

In contrast to naturalistic data, natural data describes data that is
collected from real-world customers, without a specifically designed
test environment or a defined group of participants. Natural user data
collection does not require any additional vehicle instrumentation,
using only existing and available means of the original production
vehicle. This, in theory, enables data to be collected from every car
in the fleet of an OEM. Nevertheless, even if it might technically be
possible to log the required natural data from any vehicle, the prior
consent of the respective driver is still a prerequisite due to the data
protection regulations.

In summary, each type of data has certain advantages and disadvan-
tages. Whereas quantitative data can be used to quantify the existence
of a problem, qualitative data can be used to discuss the causes of the

problem. Explicit data allows the extraction of detailed information,
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but its collection is limited to small amounts of data and is relatively
expensive. Implicit data can be collected automatically in large quan-
tities, which opens up many application areas. However, conclusions
from implicit data are always limited when it comes to understanding
the relationship between user behavior and user experience. As of now,
the evaluation of IVISs is mostly based on explicit data. If implicit
quantitative data is used, it is mostly generated during lab experiments
or user studies, focusing on one specific research question.

Whereas the automotive industry is aware of the potentials of
implicit quantitative data that can be collected automatically in real-
time, these possibilities, especially when combined with the already
existing and very well-developed qualitative feedback channels, are not
yet leveraged to any great extent.

3. Study design

Despite the known potentials of implicit natural and naturalistic
user interaction data for improving the UX of a product, previous work
shows that these potentials are not (yet) leveraged in the development
of automotive IVISs. We are interested in how the data sources are
currently used, why the potentials are not leveraged and how this
could be tackled. Therefore, we aim to answer the following research
questions:

RQ1: What are the main limitations that prevent data-driven methods
from being applied?

RQ2: What are the needs of UX experts with regard to the usage
of data-driven methods in the automotive UX development life
cycle?

RQ3: How can a more effective utilization of implicit vehicle data
enhance UX activities?

RQ4: What measures can improve the integration of data-driven meth-
ods into the UX design process?

Fig. 3 shows how the individual research questions are related to
ach other and how we will answer them in the following sections.
irst, we answer RQ1 and RQ2 and how they influence each other.
rom the generated knowledge we then answer RQ3 before presenting
pecific measures related to RQ4.

.1. Research methodology

The overall design comprises four studies, two of them being inter-
iew studies with professionals and two being practical investigations
n vehicle data availability for user-related studies. In addition to the
esults of the interview studies that directly contribute to the overall
esearch objective, we also analyzed two ongoing studies currently
eing conducted in two large OEMs. To do so, we applied the Action
esearch Methodology (Avison et al., 1999; Sjoberg et al., 2007).
he main objective of the action research methodology is to combine
cademic knowledge with current practical challenges (Greenwood,
998). While providing practical value to the client organization by in-
roducing new methods or technologies, action research simultaneously
ims to generate theoretical knowledge based on the deep and first-
and understanding the researchers obtain in their interaction with
he client organization (Sjoberg et al., 2007). The practical value of
tudy 1 and Study 3 lies in the data collection, data processing, and
ata analysis methods that are introduced to the two OEMs during the
ourse of the respective studies. The theoretical knowledge is based
n the experiences we gained during the studies regarding limita-
ions, needs, and potentials of data-driven methods in UX development.
hese experiences were documented during the study in the form
f researcher identity memos (Maxwell, 2012). Therefore, the action
esearch approach builds a model of co-production between researchers
nd practitioners, being highly suited to evaluate the problems ad-
ressed in this work. In its entirety, the overall study aims to explore
5

nd explain the automotive domain’s specificity regarding data-driven
approaches in UX design activities. The following gives an overview of
the individual studies and their contribution to this work.1

Study 1: This study consists of the design, practical implementation,
nd subsequent data analysis of a naturalistic driving study. The study
s based on data recorded from 132 vehicles over seven months. Thus,
n the course of the design and implementation of the respective natu-
alistic driving study, the purpose of Study 1 is to observe and analyze
he main restrictions regarding data collection and to investigate how
he processes of vehicle data collection, processing, and storage are
rganized in practice. This study helps to identify and analyze several
ritical limitations regarding vehicle data utilization for user-related
tudies. Thus, based on the practical assessment of two Advanced
river Assistance System (ADAS) functions, this study contributes to

he in-depth understanding of underlying issues regarding vehicle data
vailability in one of the Swedish leading OEMs. The study design is
recisely described in Orlovska et al. (2020a).
Study 2: The second study is an interview study, conducted with

he developers who designed and implemented the ADAS functions that
ere evaluated in Study 1. In this study, semi-structured interviews
ith the ADAS development and verification team were conducted to
etermine what data, and data-driven methods in particular, are cur-
ently used in ADAS development. All interviews were audio-recorded,
ranscribed, and coded separately by two independent researchers us-
ng the qualitative data analysis software NVivo 12.2 To create a
ommon understanding of the coding procedure and determine coher-
nce and reliability among the coders, both researchers reviewed the
odes after coding the first transcripts. After coming to a consensus,
ll remaining interviews were coded separately by the researchers.
he interview data analysis uncovered how the data-driven evalua-
ion process is organized and what kind of data and methods are
sed throughout the development, verification, and follow-up phases.
everal critical issues were identified and mapped within different
evelopment stages. A detailed description of the study can be found
n Orlovska et al. (2020c). The information obtained in this study
llows to discuss the effectiveness of data utilization for one partic-
lar function and suggests improvements to the current data-driven
pproach.
Study 3: In Study 3 we elaborate on the current state-of-the-art of

nteraction data utilization in the automotive UX design process. We re-
lect on the needs practitioners formulate toward data-driven solutions,
n the concerns they share, and on the potentials they anticipate. To put
he results into perspective, we conducted semi-structured interviews
ith UX professionals from the automotive domain (8 participants) and
igital domains such as app or web development (6 participants). The
nterviews were audio-recorded, transcribed, and anonymized before
hey were coded in a mixture of a priori and emergent coding using
TLAS.ti.3 The identified codes were structured into five categories.
he relation of these categories is described in a thematic coding
odel. This study provides insights into the current role of implicit

eedback through natural user interaction data, the peculiarities of
he automotive domain, and the value data-driven analysis can have
or automotive UX development. Additionally, the study leads to a
eeper understanding of automotive-related limitations and builds the
oundation for further investigation on how those limitations might
e overcome. The study design and outcome are precisely described
n Ebel et al. (2020a).
Study 4: This study is a currently ongoing practical case study,

ased on natural data retrieved from production vehicles of a large
erman OEM. In this study, a framework for analyzing user behavior

1 A detailed overview consisting of the characteristics of all four studies is
rovided here: https://doi.org/10.6084/m9.figshare.15156783.v1.

2 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-
oftware/about/nvivo.

3
 https://atlasti.com/.

https://doi.org/10.6084/m9.figshare.15156783.v1
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/about/nvivo
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/about/nvivo
https://atlasti.com/
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Fig. 3. Schematic overview.
based on natural event sequence data and driving data is developed
and implemented. By combining driving data and user interaction data
from the HMI, the authors aim to evaluate the bidirectional dependen-
cies between driving behavior and interaction with IVISs. First results
and an overview of the telematics architecture are provided by Ebel
et al. (2021). Similar to Study 1, the action research methodology is
adopted and applied. Based on observation, evaluation, and critical
analysis of existing methods and current practices within the OEM, we
extracted valuable information regarding the current applications and
limitations of data-driven approaches in the automotive driver behavior
assessment.

The data collection in all corresponding studies was carried out
with the signed agreement of participants. The acquisition, process-
ing, and storage of the collected data were made in accordance with
the European General Data Protection Regulation (GDPR), meaning
that the confidentiality of data storage and anonymity of participants’
identifiers were strictly followed.

3.2. Integration and triangulation of study results

In this research we adopted a Multiphase Mixed Methods approach
(Creswell, 2013) and modified it to fit the research purpose (see Fig. 4)
of this work.

Study 1 and Study 2 were both performed in cooperation with
a large Swedish OEM and form the two distinct interactive phases
of Study A, using an Explanatory Sequential Mixed Methods design
(Creswell, 2013). The Explanatory Sequential Mixed Methods design
has two distinct phases, where the action research approach precedes
the qualitative interview study. In Study 1, the design implementation
for collecting and analyzing quantitative data in a naturalistic driving
study revealed several restrictions and peculiarities regarding the com-
pany’s data-related processes. These findings were then investigated in
greater detail in a qualitative interview study with company profession-
als (Study 2). This study aims to explore and understand the OEM’s
limitations toward the usage of data-driven methods. The triangulation
of the two studies enriches the action research outcome with practition-
ers’ insights and explanations and helps to better understand the root
causes of the practical limitations.

In contrast, Study 3 and Study 4 were performed using the Ex-
ploratory Sequential Mixed Methods design (Creswell, 2013). According
to this design approach, the interview study (Study 3) first explores
the professionals’ needs, challenges, and concerns, which are then used
to derive insights toward the practical implementation of data-driven
methods for user behavior assessment. The consecutive quantitative
case study (Study 4), aims to integrate data-driven methods and tools
into the UX design process of an OEM. The methods should meet the
needs of the UX experts and leverage the potentials identified in the
preceding interview study.

Despite the parallel design of the Explanatory Sequential Mixed
Methods approach (Study A) and the Exploratory Sequential Mixed
Methods approach (Study B), all four studies are used to complement,
enhance, and validate each other’s results. For example, whereas Study
2 reveals very detailed insights, its main limitation is that it was
conducted based on the professionals’ input from only one OEM, which
6

prevents the results from being extrapolated to the whole automotive
area. Thus, Study 3, which compares different automotive and non-
automotive companies’ perspectives, is used to validate the results of
Study 2. Simultaneously, since Study 3 does not delve as deeply into
the technical details, it can be used to identify whether the limitations
of Study 3 also apply to other OEMs or digital companies in general. Ad-
ditionally, although Study 1 and Study 4 provide very detailed insights
from working with the respective OEMs, they approach the research
objective from different perspectives. Study 1 deals with the execution
of a naturalistic driving study and the subsequent data analysis, and
Study 4 deals with the collection, processing, and analysis of natural
data.

In the first step of the data triangulation, it is necessary to determine
which insights can be provided by which study. Whereas the interview
studies focus more on the problems and requirements of practitioners
working directly with design artifacts (UX designers, software develop-
ers), the action research approaches shed more light on the specifics
from a data science or data engineering perspective and additionally
introduce insights from discussions with legal and management.

To compare and integrate the results of all studies, the generated
data was put into the same form. For the interview studies, the authors
reviewed the coded raw data and extracted all limitations, needs,
and potentials mentioned by the participants. Individual statements
relating to similar points were grouped under a common theme. The
same procedure was applied to the data extracted from the researcher
identity memos, being the results of the action research methodology.
To integrate the results of the individual studies, a series of workshops
was organized. During the first workshop, both first authors created
a mapping between the different themes to identify which points are
validated or enhanced by another study. In a second workshop, the first
three authors discussed the outcome of the first workshop and decided
on the most relevant points for the UX design process. As a result of
this work, a common understanding of the state-of-the-art data-driven
methods in the automotive UX area was derived.

Thus, the Multiphase Mixed Methods design extends the scope of
former investigations’ scope by using different mixed methods com-
ponents. While addressing the same objectives from different perspec-
tives, the chosen study design forms a comprehensive understanding of
user interaction data development and the constraints specific to the
automotive area.

3.3. Threats to validity

Being a joint work combining different studies, the threats to the
validity of the individual studies apply to this study as well. How-
ever, a differentiation between the different types of studies has to
be made. With Study 2 (Orlovska et al., 2020c) and Study 3 (Ebel
et al., 2020a) being qualitative user studies, Maxwell’s five threats to
validity (Maxwell, 2012) apply. Maxwell (2012) elaborates on the flaws
that can occur during study execution and data collection, and on the
threat of deliberately or accidentally manipulating the collected data to
fit a certain theory. To eliminate those threats, a study must be designed
such that no ‘‘alternative hypotheses’’ can be derived (Lewis, 2009).
The individual threats and how we address them are listed below:

Descriptive validity concerns the threat of inaccurate and incom-

plete documentation. We have addressed this threat by recording and
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Fig. 4. The multiphase mixed methods approach.
transcribing all interviews. Furthermore, we annotated the transcripts
with timestamps such that the original conversation is easily accessible
during analysis.

Interpretation validity refers to the threat of capturing the observa-
tion as intended by the interviewees. To preclude this threat, we used
non-directional and open-ended questions. Additionally, the transcripts
were coded independently by two authors of the respective works, and
statements that could be interpreted in different ways were discussed
to interpret them as intended by the interviewees

The threats of theory validity and researcher bias refer to researchers
forcing the data to fit a specific theory or being biased toward the
participants or a potentially desired outcome. To mitigate this threat,
both studies were constructed as exploratory studies, intending to
reflect the current state-of-the-art in practice. Furthermore, the coding
and reviewing concepts that were applied are also intended to reduce
the impact of the researcher bias.

The threat of Reactivity occurs when the interviewees are influenced
by the presence of the interviewer. Considering the chosen study setup,
it is hardly possible to mitigate this threat. However, by paying atten-
tion to not influencing the participants and not leading the interviews
in a certain direction, we tried to eliminate this threat as far as possible.

Another threat that applies in particular to the action research
methodology, and therefore to Study 1 and Study 4, is a potential lack
of objectivity and researcher bias. Petersen et al. (2014) argue that the
best way to reduce this bias is to involve multiple researchers and to
collaborate with different practitioner groups. By involving researchers
from different research institutes, all collaborating with different OEMs,
we try to mitigate this threat as much as possible.

A final threat that applies to all four individual studies is the threat
of selection bias (Collier and Mahoney, 1996). All the information in this
paper is derived by working with, or talking to, UX and Data Science
experts from a selected set of OEMs. For this reason, the statements
cannot be generalized for all automotive OEMs, since the maturity in
which data-driven methods are used in the UX development lifecycle
7

varies between OEMs.
4. Study results

To answer the research questions, multiple peculiarities of the au-
tomotive domain, may they be of legal, technical, or organizational
nature need to be taken into consideration. The methodology de-
scribed in Section 3.2 allows investigating the given objective from
different perspectives. Thus, we are able to make differentiated state-
ments about the current limitations, desires, and potentials toward
data-driven methods in the automotive UX design process.

The results from interview studies 2 and 3 reveal that the usage
of data-driven methods varies depending on the OEM, but also within
the different phases of the respective product development process.
However, since most automotive OEMs share similarities in their orga-
nizational structure and their development processes, it can be assumed
that the derived artifacts also exist in other OEMs. Still, the extent to
which these findings can be applied may vary between OEMs.

In the following section, we will discuss the limitations that prevent
data-driven methods from being applied and the needs of UX experts
concerning vehicle data utilization. The results are drawn from the
presented studies and the superscripts ((S1,S2,S3,S4)) annotated to the
section headers indicate the studies on which the particular statement
is based. Afterward, potentials on how the utilization of implicit data
can enhance UX activities are presented, and recommendations on how
to better integrate data-driven methods into the UX design process are
given.

4.1. RQ1: Limitations that prevent data-driven methods from being applied

In the following, we present general limitations in the automotive
software development and their consequences for the application of
data-driven methods in the UX design and in the product development
life cycle.

Automotive software platforms are not designed to support the
growing needs of data logging.(S1,S2,S3) Most automotive software
platforms are not (yet) developed sufficiently to satisfy the dynamically
changing needs regarding data availability introduced by the quick de-

velopment of data-driven methods. Because of the high costs connected
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to the development of a new automotive platform and software archi-
tecture, most traditional automotive OEMs choose to gradually extend
their legacy platforms. Thus, currently available data retrieval sys-
tems are developed as intermediate solutions. This introduces several
shortcomings concerning the needs formulated for data-driven support.
According to published research, no OEM has a logging system designed
specifically for analyzing usage data, allowing detailed metrics to be
derived from user interactions. However, being aware that a lot of
progress remains unpublished, only assumptions can be made about the
logging infrastructure of some OEMs.

Consequence: The majority of available data is extracted from CAN
and FLEX RAY buses and relates to system performance data. However,
the logging of user interaction data is not yet as developed. Signals
generated within the specific units, such as the infotainment unit, are
still limited. Thus, the data UX practitioners currently have access to
is limited in terms of detail, quality and consistency and therefore is
poorly suitable for state-of-the-art data-driven evaluations.

The product life cycle is long.(S1,S2,S3) The product life cycle in
the automotive domain is long compared to digital products or other
consumer products (e.g., smartphones) (Broy, 2006). The opportunities
to make any changes to the hardware or hardware-related signals after
a car is released are limited due to the stage-gate concept adoption. This
delays the introduction of new digital technologies in vehicles that are
already on the market. New technologies can, therefore, often only be
introduced in the next generation of cars. An interviewee from Study 2
adds that they ‘‘[...] specified [the data] a couple of years before the first
vehicle went to production’’ and further argues that it is very difficult to
answer any new research question that occurs afterward, as this may
require data that was not part of what was defined in the very early
stages.

Consequence: The long product development life cycle and the low
flexibility to changes contradict the fast-changing needs regarding UX
design. Newly introduced data points, needed for either the devel-
opment of new applications or UX analysis, are often provided with
significant delay. This leads to a slower development when it comes to
digital technologies compared to other digital domains.

Data is distributed over different subsystems.(S1,S2,S4) A car is a
complex product, consisting of a multitude of systems, subsystems, and
functions exchanging data to enable communication (Vogelsang, 2020).
Often UX practitioners are in need of data generated by subsystems
such as, for example, the infotainment system, the body and comfort
systems, or the powertrain system to triangulate driver-system behavior
relevant for the overall UX. One participant (Study 3) describes that
the system complexity makes it hard to answer questions, that in
themselves are not very complex: ‘‘We wanted to measure how many
times someone opened the window. That’s a really difficult problem since
you have to go through all the physical wiring and switches, so we are
not certain on how to get that information’’. This example illustrates
that central databases and shared documentations that describe and
organize the signals needed to design, develop and evaluate IVISs are
missing.

Consequence: Due to a missing process that collects, evaluates, and
orchestrates all available datapoints, UX experts often do not have
access to potentially relevant data or its description. Moreover, current
databases often contain duplications of signals created due to the
parallel development of IVISs. These signals are often poorly described
and knowledge about the interdependences between different signals
is not available. This can lead to incorrect assumptions being made,
affecting the validity of the data and the systems utilizing the data.

Access to components of suppliers is limited.(S1,S4) The car con-
sists of a multitude of software and hardware systems that are often
developed independently by external suppliers (Broy, 2006). These
systems are often handled as black boxes with no access or ability to
change the codebase.

Consequence: The outsourced software development introduces in-
vehicle solutions locked for changes, making it difficult for the trans-
8

parent flow and documentation of signals in databases. As a result, data
scientists and UX experts have difficulties deriving and introducing new
user-related signals from already implemented legacy systems. This
prevents data-driven methods from delivering reliable results.

Strict data protection regulations and the associated internal
processes limit data collection and utilization.(S1,S2,S3,S4) The ad-
vances made with regard to automotive software, smart applications,
and data-driven solutions also introduce new challenges to security
and privacy. Person-related data especially, and the large amount of
data processed in the cloud need to be handled without violating the
data protection regulations of the respective countries. According to
a comparative analysis conducted by Voss and Houser (2019), the
United States and the European Union define and understand personal
data differently. The protected personally identifiable information in the
United States contains less information than the similar concept of
personal data in Europe. For example, some pseudonymized information
may be considered impersonal in the United States, while according
to the European GDPR, the same information would be considered as
sensitive. In China, there was no privacy protection law until recently.
Today, China works on building a data privacy system through legal
adoption and transformation of both EU and US laws (Pernot-Leplay,
2020).

Consequence: The strict regulations, especially in Europe, hinder the
logging and processing of personal data. This applies to applications
that are based on the use of person-related data as well as to evaluations
that need to be carried out on person-related data. Additionally, often a
complex legal process must be carried out to make a recommendation
within the OEMs as to whether certain data points are considered
personal data or not. One of the UX experts interviewed in Study 3 adds
that ‘‘[...] when it comes to sensitive data, you have completely different
security requirements. This means that you have to go through different
audits which often critically impact the time schedule’’. While this process
is indispensable and the UX experts are aware of it, they complain that
it is too time-consuming, non-transparent, and also delays the processes
and evaluations of non-personal data. Furthermore, the strict data
protection regulations and insufficient processes within OEMs make
it difficult to obtain data from customers in the field. A participant
in Study 2 states: ‘‘we are only able to do this [meaning data-driven
evaluations], in a fairly easy way if we have access to company cars [...]
because it would be very tricky to log such data from [real] users’’. As a
result, qualitative data collection still serves as the main resource in
user-related studies.

Hardware, software, and UX development activities are poorly
aligned.(S1,S2,S3,S4) Physical and digital parts of in-vehicle systems are
often developed in parallel. Whereas the hardware of a subsystem does
not change after Start of Production (SOP), software applications that
build upon those subsystems are continuously developed and new UX
evaluation needs constantly arise. These new applications often require
new data points that were not considered at the beginning of the
system development. Another common issue is a late specification and
missing requirements from the UX side to provide data that should
serve evaluation demands.

Consequence: The poor coordination within development teams in
the early stages of PD results in data requirements not being passed
on promptly. This often results in the unavailability of data points
requested at later stages of product development and a slow pace of
user- and context-related data development.

The possibility to make major Over-The-Air (OTA) updates is
missing.(S4) The car has always been a technical product, and a change
of requirements, physical interfaces, or functionalities after the car
release was neither needed nor intended. However, in today’s web
development, practices such as A/B testing or Canary releases are
state-of-the-art and considered indispensable for user-centered develop-
ment (Kohavi et al., 2013; Xu et al., 2015). However, these procedures
require the ability to perform centralized distant updates to test new
designs dynamically, fix identified bugs and calculate UX measures in

real-time. Verified design ideas or fixes can be deployed to production
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instantly. Some new competitors in the automotive domain have al-
ready implemented solutions (Giaimo et al., 2020; Tesla, 2021) that are
available in production vehicles. However, despite actively developing
such systems, most of the traditional OEMs are not (yet) able to make
major software changes via OTA updates. Besides, the high demands
toward functional safety additionally increase the difficulties associated
with online user testing. To handle the complexity of in-vehicle systems
and ensure the current performance, the released vehicle is usually
locked for any changes. All further design modifications are shifted to
the next car generation. In comparison, web applications practice A/B
testing of design ideas on real users, and their software allows them to
run centralized distant updates to fix any identified bugs.

Consequence: IVIS updates remain inflexible and cannot be easily
and dynamically changed based on customer feedback throughout the
product life cycle.

Considering the above list, it is noticeable that most of the limita-
tions are due to specifics of the current automotive product develop-
ment processes. Current practices in the automotive area, regulations
that apply, priorities that are set, methods that are used, and the
general vision concerning the UX development of digital products affect
how in-car solutions such as IVISs are developed today. Currently, ve-
hicle performance development is often prioritized over user-centered
development, since this is directly connected to driver safety and the
OEM’s reputation. UX design comes as an important but secondary
task. Therefore, the developed solutions for data management are more
focused on satisfying vehicle performance verification requirements
than the data requirements introduced from the UX development side.
This often leads to restrictions during the design of studies that are
based on implicit data. Due to missing or low-quality data, study
designs often need to be altered, resulting in study designs that do not
fully fit the initial research purpose. Furthermore, not all limitations
can be attributed to technical feasibility. Many OEMs are still lacking
the strategic planning for data development of user-related and con-
textual data. For example, user interaction data like clickstream data,
is commonly used in the daily business of digital companies but is still
not used in many advanced automotive companies (Ebel et al., 2020a).

4.2. RQ2: Needs of UX experts with regard to vehicle data utilization

In this section, we present the needs of UX practitioners linked to
implicit data utilization. Whereas some of the needs can be directly
connected to the already presented limitations, some needs describe
explicit demands detached from current shortcomings.

Detailed quantitative user behavior insights.(S1,S2,S3,S4) In addi-
tion to the currently mostly qualitative research, automotive UX experts
need detailed user behavior data collected from multiple different
sources to get a detailed picture of how people interact with IVISs.
One interviewee (Study 2) emphasizes this by stating: ‘‘[w]hat we
lack knowledge about is how the real customer uses the function. That
is what we must be better at’’. The data collected should be detailed
enough to answer questions about specific usage patterns and usability
metrics in addition to questions about the frequency and context of
use. Furthermore, the combination of different data sources plays an
important role. For example, the UX experts want to correlate the
interaction data with context variables that allow insights regarding the
driving situation.

Data transparency.(S1,S2,S3,S4) In both interview studies and prac-
tical studies, one of the main needs expressed by the UX experts is the
need for transparency in the data collection and processing activities. In
Study 3 a participant describes a general problem being that ‘‘[t]here is
a very strong silo mentality in companies in the acquisition of information,
but also in its distribution. The respondent further elaborates that this
leads to valuable data remaining unused. This coincides with the fact
that in all studies the need for data documentation that includes all
datapoints from all data sources that are available within the company
9

is expressed. Furthermore, detailed signal documentation, technical and p
legal requirements giving insights about how the data is collected,
processed, anonymized, and for which purposes it is supposed to be
used are required. The participants argue that this is necessary to
ensure that each datapoint is used to its full potential.

Continuous user feedback.(S1,S3,S4) To enable a more user-centric
way of software development, the UX experts express the need to
continuously collect, analyze, and incorporate user feedback in the de-
velopment process of IVISs. They argue that the instant and continuous
feedback provided by methods such as A/B testing is needed to make
data-driven and evidence-based design decisions rather than decisions
based on the gut feelings of individuals or outdated market research
results. One Interviewee from Study 3 states: ‘‘I would say that the best
way would be to make sure that we can do A/B comparisons directly in the
cars, like other companies and online businesses do it. The customer doesn’t
really know that they have been updated with new functions and we can
figure out which functions are best by trying different versions in different
cars from different customers. So real-time evaluation with real customers
of different types of function’’.

Triangulation of qualitative and quantitative data.(S1,S2,S3) Tra-
itionally, UX research in the automotive domain is more qualitative
han quantitative and UX researchers mostly use only qualitative ap-
roaches. However, both qualitative and quantitative data can enhance
he UX activities, since different data types contribute to a differ-
nt type of knowledge regarding UX understanding (Orlovska et al.,
019a). One participant in Study 3, for example, expressed the need
o enhance personas with quantitative evidence. This would enable
hem to map the qualitative insights of personas, about who the target
ustomer is, with quantitative insights on how this group of customers
nteracts with the system. The general need for triangulation is further
nderlined by other automotive UX experts stating that quantitative
ata might be the right choice to locate a problem but qualitative
ethods are still needed to further understand the problem (Orlovska

t al., 2019a). One UX expert (Study 3) states that ‘‘[w]ith quantitative
ata, we have a starting point, a trigger that tells us, let’s look into this. But
he quantitative data alone doesn’t provide the answer to why something is
appening’’. This therefore emphasizes that qualitative and quantitative
ata need to be effectively combined to achieve more detailed user
nsights.
Personalized or pseudonymized data.(S1,S3,S4) Personalized or

seudonymized data is extremely important when it comes to the devel-
pment of intelligent in-car applications or the in-depth analysis of how
ifferent user groups interact with the system. Since a vehicle is often
shared product, personalized or pseudonymized data is needed to

eparate distinct behavioral models for further analysis (Orlovska et al.,
019b). The same logic applies to developing personalized services and
nterfaces where the design is highly dependent on personalized driver
eactions to proposed solutions.
Tool and knowledge support.(S3) Although automotive UX experts

re aware that data-driven approaches can support their advances
oward user-centered design, they often struggle to work with quanti-
ative data and machine learning approaches (Yang et al., 2018). This
s due to the lack of available methods, tools, and competence. Since
he main task of UX experts is to deal with the design and evaluation
f IVIS, there is a need for tools and methods that support them in
nalyzing the large amount of data that is generated by modern cars.
herefore methods that automatically visualize data insights, calculate
sability metrics, or evaluate designs based on interaction data, are
eeded. One interviewee explains that it would be helpful ‘‘[...] if
e could create models from user data, for example, one could directly
ntegrate a user model into a sketch tool. Then, when creating a design
t is directly evaluated against a user model’’. However, with regard to
utomated analyses and models, the UX practitioners state that such
ethods should also provide an explanation module such that scores

r proposed decisions can be put in perspective.
Data visualizations.(S3) Data-driven evaluation methods aim to
rovide UX experts with additional information such that they can
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make the best possible decisions to optimize the UX. To be able to do
so, the UX experts express the need for intuitive data representation.
They state that due to a large amount of data and a high number
of different features, the data needs to be presented in an easy to
understand and intuitive way. Additionally, the experts argue that the
information needs to be directly accessible without further processing.
The need for fast data access is emphasized by one participant (Study
3) describing that ‘‘[...] it’s not ideal if we always have to go to another
epartment and say ’can you prepare this for us?’ and then they say ’yes,
ou’ll have it in a week’, which of course isn’t the point. It would of course
e good to validate our hypotheses quickly ourselves’’.. Whereas traditional
sability metrics such as average time on task or completion rates are
asy to interpret, more sophisticated, for example, machine learning-
ased methods, should offer an explanation component. One of the
nterviewees argues that whereas it might be interesting to retrieve a
esign score for a prototype screen, the real value would be generated if
statement could be made about which factors of the design influenced

he score in particular. Current evaluations after a product release take
oo long, which means they are not really of interest anymore once they
re communicated to the UX experts.

.3. RQ3: How can the utilization of implicit data enhance UX activities?

Having introduced the limitations that prevent data-driven ap-
roaches from being applied and the explicit needs UX experts formu-
ate toward the utilization of implicit data, the question on how implicit
ata can be used to enhance qualitative UX activities is answered in the
ollowing.
Data-driven personas. The goal of the pre-design phase is to under-

tand the target user population and derive a clear product definition.
urrently, most of the UX activities in the pre-design phase are based
n qualitative and explicit data. In the strategy and research step, the
ask of understanding the target group and identifying the user needs is
ostly based on market research and customer surveys. One common

pproach to understanding who the customer is, is the persona tech-
ique (Cooper, 1999). Cooper (1999) defines a persona as an archetypal
ser, representing an underlying customer or user group. Personas
re used to group similar users into a superordinate group to help
ecision-makers understand the customer needs (Salminen et al., 2019).
ersonas are typically manually created using qualitative approaches
uch as ethnographic field studies and interviews (Brickey et al., 2012).
herefore, manual persona generation is costly, the collected data is not
irectly related to the user’s behavior (McGinn and Kotamraju, 2008),
nd personas tend to expire as soon as customer behavior evolves and
hanges (Zhang et al., 2016). Data-driven personas based on different
inds of customer data (Zhang et al., 2016; Jung et al., 2017; An
t al., 2018) do not only tackle the shortcomings of qualitative persona
eneration but aim to connect abstract personas to real-world interac-
ion data. Therefore, data-driven personas are also suited to enhance
he strategy and research phase in the automotive area. Implicit data
etrieved during car usage can be used to generate insights on the
riving preferences of different customer groups and the preference
uch groups have toward features such as automated driving functions,
omfort, or entertainment functions. While data-driven personas might
ot replace the currently used personas, we argue that the triangulation
f both is a promising application to create a more detailed picture of
he customers. Whereas implicit data retrieved from simulator studies
r naturalistic driving studies can also be used to build data-driven
ersonas, natural data has the advantage that it contains data from the
hole user base and is collected continuously. It is, therefore, possible

o dynamically adapt personas when changes in customer behavior take
lace.
Context-dependent evaluations. Since the driver’s user experience

s strongly influenced by the current driving and traffic situation (Har-
ey and Stanton, 2016), the designers need to understand the context
10

f use in which the interactions occur. In the pre-design phase, no fully s
unctional or physical prototypes exist that can be used for such eval-
ation purposes. However, by analyzing either naturalistic or natural
ata from the already existing system, it is possible to derive meta-
nformation about the driving context, and even take into consideration
he differences across markets, such as road infrastructure, traffic,
nd driving culture (Orlovska et al., 2020b). Aggregate data can, for
xample, give insights regarding the length of trips, the number of trips
er day, the time at which the customers use their cars, or the routes
hey take. This information can be triangulated with the results from
eneral market research to create a more detailed picture of how, and
n which context, the current product is used. In the post-design phase,
mplicit data also has the potential to support the context assessment
or driving-related functions such as automated driving to understand
n what context functions are activated or deactivated and how take-
ver requests are handled. This improves the post-design evaluation
ctivities for such functions since unintended or unexpected user be-
avior can be identified, and severity assessments of system misuse can
e conducted. So far, data-driven methods for driving context moni-
oring have not been fully developed. The most feasible way to assess
riving context today is by combining telematics data with external
atabases, traffic, weather applications, social media services, or by
ollecting the data from an in-vehicle camera, which is usually used in
ualitative studies. However, the analysis of such data is very time- and
esource-consuming and additionally raises privacy concerns. Multiple
tudies (Chaovalit et al., 2013; Daptardar et al., 2015; Bose et al., 2018;
itrovic, 2005; Leakkaw and Panichpapiboon, 2018; Ly et al., 2013)

ndicate the great potential of implicit data for automated driving event
ecognition in real-time. The automated process of context analysis
ased on implicit data will help UX practitioners conduct context-aware
valuations and better understand driver choices.
Evidence-based feature elicitation. In addition to the potentials

ata-driven methods offered regarding the UX activities in the strategy
nd research phase, the authors also see great potential when it comes
o the product definition process. The feature and requirement elici-
ation in the automotive domain is currently mostly based on general
arket research and decisions are often made based on the gut feeling

f decision-makers (Ebel et al., 2020a). One interviewee (Study 3)
rgues that ‘‘[w]e shouldn’t just carry things over for the sake of carrying
hings over, we should evaluate if those are actually useful things for the
ser. I think that’s why we still have SD cards and USB Input in the car.
hey [decision makers] don’t know if people are using it’’. UX experts often
eel that their results from qualitative user studies are overruled by
anagement, based on the underlying assumption that they are not rep-

esentative of the general user base. Insights from naturalistic or natural
ata can, therefore, be used to support and validate their hypotheses.
eature usage analyses can be used to prioritize features within the
ystem. The analysis of clickstream data or driving data can highlight
urrent usability issues that need to be addressed. Additionally, usabil-
ty metrics derived from the current system can serve as input when
etting the usability goals for a new version. Therefore, the authors
rgue that triangulation of qualitative research with quantitative data
nsights can help to shift the requirements and feature elicitation from
ersonal best guesses to more objective decisions.
User flow visualizations. The main objective of the design phase is

o derive a usable implementation that can be released (Nielsen, 1992).
n the ideation phase, design ideas are gathered, and first wireframes
nd sketches are drawn and evaluated. Whereas idea generation is
highly creative process, data-driven methods have the potential to

ssist UX experts in finding the most suitable design choice. The data
ollected in today’s vehicles, which allows conclusions to be drawn
bout current user behavior, can act as a source of inspiration. To
xploit the full potential of the data, it is important to provide designers
ith visualizations and tools that enable them to efficiently analyze
ser interaction data. Multiple different methods, including Sankey
iagrams (Riehmann et al., 2005; Friendly, 2002), Outflow (Wong-

uphasawat and Gotz, 2012) or MatrixWave (Zhao et al., 2015) have
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proven to be efficient for many different analysis tasks and help design-
ers to find unintended or unexpected user behavior that in turn can be
used as inspiration for new design ideas. These approaches aggregate
large amounts of event sequence data and are therefore well suited
to visualize data that is collected in large naturalistic user studies or
natural data collected from the whole user base.

Automatic design suggestions. Apart from analyzing and visualiz-
ing user behavior data to support the designers in their idea generation
process, multiple approaches exist that automatically generate design
suggestions based on different kinds of data. For example, Gajos et al.
(2010) propose Supple, a system that renders interfaces based on the
device’s constraint and user traces that are used to customize the
interface to specific usage patterns. Another example of a method that
makes automatic design suggestions is presented by Bailly et al. (2013).
Their approach makes suggestions on how to structure menus based on
an adapted Search-Decision-Pointing model used to predict selection
times of menu items.

Model-based evaluation of early-stage prototypes. After the
ideation phase, wireframes are transformed into prototypes of different
fidelity that need to be evaluated. In Study 3, automotive UX experts
report that early intermediate designs are mostly evaluated qualita-
tively by in-house experts or in small user studies. While evaluations
with experts can provide important insights, they are not suitable for
evaluating metrics such as time on task or glance behavior. However,
feedback on metrics such as time on task or glance behavior can be
crucial already in early development phases. Modeling methods allow
automatic evaluation of early-stage prototypes and can give valuable
feedback even before a user study is conducted. Multiple approaches
exist that allow predictions to be made for various metrics such as
time on task (Schneegaß et al., 2011; Green et al., 2015; Lee et al.,
2019; Kim and Song, 2014) or glance duration (Pettitt and Burnett,
2010; Large et al., 2017; Pampel et al., 2019; Purucker et al., 2017).
For example, Large et al. (2017) propose a method to model the visual
demand of IVISs when used concurrently with driving. Their approach
is based on an information-theoretic model, for which the dependent
variables have been identified in a simulator study. Whereas current
work is based on rather small amounts of data, generated through lab
experiments, the use of big data for such prediction tasks holds great
potential. Approaches based on a large amount of naturalistic or natural
data allow the application of dedicated machine learning algorithms.
Those applications have already proven to surpass the prediction
accuracy of relatively simple regression methods in other automotive
applications (e.g. Ebel et al., 2020b). A general advantage of applying
modeling methods to natural data is that, on the one hand, the entire
user base is covered and, on the other hand, continuous data collection
also implies continuous improvement of the models. Since natural data
can continuously be collected the model parameters can be adjusted in
a real-time manner in such a way that the model will adopt if user
behavior in the field changes. In addition, the vast amount of data
that can be collected via telematics would also enable the inclusion of
multiple different parameters, such as contextual information regarding
the driving situation, into the models.

Beta testing. After prototyping and testing, the main objective is
to implement the functionality of the developed feature and to ensure
seamless integration into the vehicle environment. Currently the auto-
motive product development process is a purely stage-gate concept with
fixed milestones, making it necessary to perform complete vehicle tests
before a new feature can be deployed. However, UX experts need more
agile and data-driven development practices, for example Continuous
Experimentation (CE). Being able to run A/B experiments and getting
quantifiable data about the user acceptance of a feature is essential to
develop designs that meet customer demands. This enables designers
to test new features, compare them with one another, learn how
users respond to them, and optimize already running features (Tang
et al., 2010). To enable CE as it is already available in different
11

digital domains (Kohavi et al., 2013; Ros and Runeson, 2018), multiple p
challenges need to be addressed (Giaimo et al., 2019). Not only detailed
user interaction data from production vehicles is necessary, challenges
concerning the organizational and legal framework (see Section 4.1)
also need to be solved.

Continuous user feedback. The main advantage of implicit data
is that it can be automatically collected over a long period. This opens
up many application areas for applications based on such data; from
single driver behavior analysis to aggregated results of different user
groups, from the short-term learning process to long-term UX. Currently
implicit data, collected in naturalistic driving studies, is mostly used
for episodic UX analysis, such as evaluating a few months of driver be-
havior, conducting usability testing, behavioral hypothesis testing, and
other activities. However, UX experts need cumulative UX assessment,
recollecting different periods of use, such as the learning process, using
process, change of the behavior over time, etc. (Nielsen, 1992). The vast
amount of natural data that can be collected over the whole product
life cycle bears great potential to enable such analyses. Several studies
indicate ongoing research in this direction. For example, Marrella and
Catarci (2018) propose implicit metrics for learnability evaluation,
looking at deviations between the expected user behavior and actual
user behavior, based on the analysis of user logs. This approach helps
by quantifying the degree of learnability over time and assists in identi-
fying potential learning issues. In another study, Gerostathopoulos et al.
(2019) present the first attempt to use machine learning algorithms
for automated learnability evaluation implementing automated quality
gates.

Measurement of subjective UX factors. To assess subjective UX
factors such as trust, perceived safety, satisfaction, usefulness, accep-
tance, and others, qualitative methods, such as self-report methodolo-
gies are considered better suited. Nevertheless, implicit data has the
potential to derive quantitative metrics that could be used for the vali-
dation of subjective UX measures. For example, in the web domain, Fox
et al. (2005) investigate which implicit metrics are correlated with
user satisfaction to evaluate if explicit user satisfaction ratings and
implicit user interest metrics could be cross-validated. Another example
is presented by Lachner et al. (2017). The authors show that web-
site visitors from different countries show significantly different usage
patterns, suggesting that even personal characteristics, that influence
the experience of a user, can be measured using quantitative metrics.
Whereas being relatively unexplored, the measurement of UX based on
implicit data could be a great advantage for the automotive and general
UX design process (Law, 2011).

Driver state monitoring. Another area of implicit data application
n post-mortem analyses performed in the Post-Design phase is driver
tate monitoring. Multiple works focus on combining vehicle data with
ndividual physiological data (Taelman et al., 2009; Murphey et al.,
018; Aghaei et al., 2016), which indicates future possibilities for in-
luding driver physiological characteristics, such as driver state, stress,
rousal, fatigue, and others, into the overall UX assessment. Aghaei
t al. (2016), propose a model for smart driver monitoring using
hysiological measures such as skin moisture, eye movements, heart
ate, and respiratory activities. However, due to the GDPR restrictions,
hese metrics can only be used in naturalistic driving studies where
rivers’ full consent to share their sensitive data is given. Since the
iometrical parameters are restricted for usage in the natural automo-
ive environment, attempts to create metrics for driver state evaluation
ased solely on implicit car data are also investigated. For example, Li
t al. (2018) found a correlation between driver distraction and steering
ntropy, which they used as basis to propose a driver distraction anal-
sis method. Kircher and Ahlstrom (2010) show a correlation between
isual distraction and vehicle-based measures such as throttle hold rate,
teering wheel reversal rate, and speed variability. They illustrated
hat the cumulative calculation of these measures helps understand
river visual distraction. Kanaan et al. (2019) investigated the uti-
ization of implicit vehicle-based measures, e.g., high curvature and

oor surface conditions, for measuring driver distraction. They assessed
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driver distraction by detecting long (more than 2 s) off-road glances
while performing secondary tasks. The above studies show the potential
of implicit data to evaluate the driver’s state while performing tasks.
This would improve the overall picture of driving behavior, providing
deeper insights while reasoning for specific driver behavior.

Being a substantial activity of the Post-Design phase, data-driven
methods such as clickstream analysis, glance behavior, and video data
analysis have the great potential to enhance current practices. Appli-
cations based on machine learning algorithms are already successfully
used in digital domains and have great potential for broader use in
automotive development. In the Post-design phase a, hypothetically,
large amount of natural data from production vehicles is available
to provide UX practitioners with numerous applications to further
evaluate designs that are already on the market. Based on this implicit
data, quantifiable evidence and statistical significance are needed to
prioritize the improvements and support the decision-making in the
following re-design activities.

4.4. RQ4: Recommended actions to better integrate data-driven methods
into the UX design process

Having discussed the potentials and limitations of data-driven , as
well as the explicit needs of practitioners, we are suggesting measures
that can assist OEMs and practitioners to better incorporate data-
driven methods into the UX design process. Although we state that
the proposed actions do not guarantee completeness or success, we
are confident, thanks to diverse experiences from the studies and close
cooperation with the OEMs, that they provide an important foundation
for establishing data-driven UX as a practice in the automotive develop-
ment. The measures presented in the following are, therefore, intended
to show the direction in which research should be conducted to bridge
the gap between data-driven methods and the automotive UX design
process.

Incorporate data-based evidence in decision-making processes.
Currently, most design decisions are made based on opinions or gut
feelings of individuals. In cases of disagreement, the results of small
qualitative user studies are often overruled. We, therefore, argue that
it is necessary to integrate policies or processes ensuring that each
assumption that is made regarding the importance of a feature or its
usefulness is backed up by statistical evidence. The provided statistical
evidence can then be used to tailor qualitative studies to investigate
the identified problem in detail. By doing this OEMs can not only be
more certain that their product will meet the user’s needs, but they
can also save money that would have been spent for implementing or
researching a feature that does not benefit customers in any way.

Increase interdisciplinary collaboration. To fully exploit the po-
ential of data-driven methods for the UX design process it is important
o merge the expertise of data scientists and UX experts. Data-driven
valuation methods should be developed in close cooperation with the
X experts such that they can easily access and interpret all relevant

nformation. Only a close collaboration between data scientists and UX
xperts can ensure that the need for intuitive data visualizations is
atisfied. Further, Yang et al. (2018) argue that ‘‘there is a real need
or design tools and methodologies that support designers who lack constant
ccess to capable data scientists’’. They additionally present multiple
est practices on how machine learning can be incorporated into the
esign process. On the other hand, it is also important to empower UX
xperts by increasing their knowledge, such that they can effectively
ork with data or even machine learning. Whereas multiple books and
nline courses exist to help designers learn about statistics and machine
earning (Hebron, 2016; Carter and Nielsen, 2017), it seems that this
nowledge is not yet so widespread in the automotive industry. The
oal needs to be to provide UX experts with the knowledge and tools
eeded, such that basic statistical expertise is available. If automatically
12

ggregated statistics are easily accessible for UX experts and for product
management, it is less of a burden for UX experts and product managers
to use statistical analysis to either make decisions or test hypotheses.

Introduce clear technical specifications. One of the most severe
limitations automotive UX experts and data scientists complain about
is a lack of specification and documentation. We therefore argue that
each new feature that is developed needs to satisfy the interface specifi-
cations dictated by an overarching logging framework. Therefore, user
behavior and interaction data can be analyzed for all features within
the system. Additionally, when a user-facing feature is developed, UX
experts also need to be involved in the early stages of the functional
feature specification. They need to clearly formulate their requirements
on how the respective feature needs to be evaluated and what data-
points are therefore needed. This practice aims to prevent the currently
often observed problem that specific signals needed for user behavior
evaluation are not available due to insufficient specification in early
product development stages.

Reduce silo mentality and introduce data transparency. One
of the most frequently mentioned limitations addresses the lack of
knowledge and documentation about what data is available, how it can
be accessed, and who is responsible for it. This leads to practitioners
often not even considering basing their decisions on data. One of the
UX experts, interviewed in Study 3, explains that ‘‘[...] we have to ask
several people throughout the company to get the data. This slows us down
because it can take a relatively long time until we get something useful. Most
of the time we can’t wait that long because we have to make progress with
our designs’’. One possibility to counteract this is to introduce a centrally
responsible unit that manages an OEM-wide data catalog containing
all available datapoints, their functional documentation, and current
and/or intended use cases. Additionally, this unit should also handle
all legal approval processes for each signal. It is necessary to provide
practitioners with a clear guideline of what information is needed, such
that they are empowered in using data-driven methods in their daily
work.

Introduce agile practices and modernize infrastructure One of
the most discussed questions when it comes to automotive software de-
velopment is the question of how agile software development practices
including Continuous Integration (CI) and CE can be integrated into
the automotive development process. Hohl et al. (2016) and Katumba
and Knauss (2014) describe multiple challenges OEMs are facing in
their software development that are of an organizational and social na-
ture. These include long communication chains, a low cross-functional
mindset, high efforts for compliance and validation, and technical chal-
lenges. Whereas it is desirable to implement agile practices throughout
the software development process, CE as an experiment-driven devel-
opment approach is of particular interest for the UX design process.
Many of the advantages of CE, which are well-established in other fields
of application, can be transferred to the automotive industry (Giaimo
et al., 2019). However, to leverage the potentials of CE, multiple
challenges such as safety and security concerns or hardware-induced
resource constraints need to be addressed. Whereas multiple studies
focus on conceptual analyses regarding the deployment of CE in cyber–
physical systems, only a few papers present concrete approaches to
solutions (Giaimo et al., 2020). Giaimo and Berger (2020) propose a
prototypical implementation and discuss design criteria to enableCE,
but also state that their approach is not close to commercial use. It is
necessary, therefore, to investigate how the current challenges can be
tackled and how CE practices can be brought into practice, such that
software-based automotive designs can be evaluated similarly to web
pages or mobile apps.

5. Discussion

Fig. 5 summarizes our results and relates them to each other. The
figure represents conflicts between the needs we have collected in RQ2

and the limiting factors apparent in automotive development (RQ1). In
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Fig. 5. Summary of the results in accordance to Fig. 1 and Fig. 3. The solid lines and lightning bolts indicate which specific limitation conflicts with which need. The dotted
outlines and arrows indicate the consideration of combined previous results.
the following, we discuss some of these conflicts and relate them to the
recommendations that emerged from our studies (RQ4).

The most apparent conflict is probably between the use of per-
sonalized or pseudonymized customer data and the current data pro-
tection laws and regulations. The studies have shown that access to
personalized or pseudonymized data is important for the both devel-
opment and evaluation of intelligent in-car functions. Personalized or
pseudonymized data is particularly important for customer research
and evaluation tasks such as learnability assessment. Alternative qual-
itative procedures, such as extensive user surveys or lab experiments
that aim to reduce the uncertainty in the early stages of product
development are often costly. Data-driven approaches based on natural
data do not introduce the cost associated with user studies. However, all
newly requested data must go through an internal assessment process to
ensure that it does not potentially contain personal information. OEM
processes are lengthy and not clearly defined, resulting in delays even
for data points that do not contain personal information. We do not see
any technical possibility to resolve the conflict between the need for
personalized or pseudonymized data and the data privacy regulations.
However, the legal assessment can be supported by an early guideline
specifying how datapoints of new features need to be documented, and
what legal requirements they need to satisfy. Additionally, by clearly
defining and streamlining the internal risk assessment processes, OEMs
can also minimize the influence of such processes on non-person-related
data.

Another conflict arises between the need for data transparency and
the current vehicle architecture, consisting of a multitude of distributed
subsystems. UX experts and data scientists need to have access to
detailed data documentation from the different data sources to generate
data-driven customer insights. However, since the components are
often developed by multiple suppliers, access to the data points within
these subsystems is usually limited. Also, practitioners are missing a
superordinate instance responsible for the administration and holistic
interpretation of individual data points. As a result, a holistic picture
of available data points is often not available to the UX experts or
can only be put together with great effort and remaining uncertainties.
However, several scenarios for reducing the barriers and remaining
uncertainties are conceivable. From an organizational point of view,
13
a central coordinating role in the development, providing a holistic
overview of the data points and main nodes in the vehicle needs to be
established. This facilitates traceability and makes it easier to identify
all signals relevant to a specific issue. Furthermore, the silo mentality
between different departments in the OEMs themselves needs to be
abolished to promote interdisciplinary collaboration and efficiency.
However, it should be noted that this is an organizational-cultural
problem and can neither be solved uniformly nor does it apply equally
to all OEMs.

Another related conflict exists between the need for data triangu-
lation and the poorly aligned processes when it comes to integrating
data-based evidence in the UX design process. By combining quantita-
tive and qualitative data, UX experts can explore and investigate user
behavior from different perspectives to create a better understanding of
the underlying problem. However, this requires intensive cooperation
with the relevant departments which can only be achieved if OEMs
strengthen the interdisciplinary collaboration between data scientists
and UX experts and make it compulsory to include data-based evidence
when making design decisions.

The product development process in the automotive industry with
its fixed milestones conflicts with the UX experts’ needs to enable
modern development methods such as CE. An iterative procedure for
conceptualizing and exploring concepts is not explicitly defined in the
automotive stage-gate model, introducing potentials for future research
based on the recommended actions presented in the main part of this
work. Focusing on the early stages of product development, smooth
integration of data in UX research activities helps product developers
reduce uncertainty regarding potential customers and scenarios IVISs
are used in. We claim that the degree of maturity of UX concepts
can therefore be improved with relatively low effort. Currently, exist-
ing potentials often cannot be leveraged due to technical limitations.
We additionally found that the central objective of interaction data
collection is satisfying management rather than explicitly answering
questions relevant to the UX design process. However, the requirements
for the elicitation of natural interaction data should be initiated by UX
experts and the problems they face in their daily work. The correspond-
ing data points must be defined based on the question posed by UX
experts.
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In general, data-driven support is well anticipated throughout all
UX design phases and can act as an enabler for multiple methods that
bring the design and evaluation of IVISs to another level. However, not
only the technical limitations that specifically apply to the automotive
domain are conflicting with UX expert’s needs and hinder the potentials
to be leveraged. Insufficient transparency, specification, and documen-
tation of implicit vehicle data, lengthy processes, as well as a lack of
integration of data-specific requirements in the early PD stages, lead
to OEMs being behind their capabilities when it comes to data-driven
and user-centric development of IVISs. The identified conflicts between
the practitioners’ needs and current limitations and our initial recom-
mendations serve as the groundwork for further research developing
organizational, technical, and legal solutions.

6. Conclusion

Based on a multi-phase mixed-method approach that combines the
results of four different studies, we elaborate on the needs, potentials,
and limitations of data-driven methods in the automotive UX design
process. By analyzing the problem at hand from different perspectives,
we provide a first overview aiming to narrow the gap between the
automotive UX design process and data-driven development practices.
UX experts articulate clear desires for better integration of data-driven
methods into the UX design process. To make the current design
process more data-driven and thus more user-oriented, UX experts
need detailed user interaction data, tools, and visualizations that make
complex analysis results easily accessible, as well as methods that allow
triangulation of qualitative and quantitative data. Furthermore, there is
a strong need to integrate development processes such as CE, which
have long been used in web design, into the automotive UX design
process. Our results show that approaches based on in-car data can
improve the UX design process in many respects. Methods includ-
ing data-driven personas of feature usage analyses that complement
the insights generated through traditional market research methods
and qualitative studies facilitate user-centered decision-making. On
the other hand, model-based design evaluations or context-dependent
design suggestions can be seamlessly integrated into the design process
itself. However, our results show that to leverage the extracted poten-
tials and satisfy the needs of UX experts, multiple conflicts need to be
addressed. We therefore recommend that automotive OEMs need to re-
think their current decision-making process when it comes to feature
and requirements elicitation by involving data-based evidence when
making design decisions that affect user-facing features. We addition-
ally argue that the technical requirements for logging detailed user
interaction data must be integrated into early product development
processes. To do so, the interdisciplinary collaboration between data
scientists and UX experts needs to be strengthened, relevant technical
and legal information needs to be transparently distributed within in
the OEMs and the ever-existing problem of silo mentality needs to be
approached.
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