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Abstract 

Background: In this cross‑national study, Spanish, Finnish, and Swedish middle and high school students’ procedural 
flexibility was examined, with the specific intent of determining whether and how students’ equation‑solving accu‑
racy and flexibility varied by country, age, and/or academic track. The 791 student participants were asked to solve 
twelve linear equations, provide multiple strategies for each equation, and select the best strategy from among their 
own strategies.

Results: Our results indicate that knowledge and use of the standard algorithm for solving linear equations is quite 
widespread across students in all three countries, but that there exists substantial within‑country variation as well as 
between‑country variation in students’ reliance on standard vs. situationally appropriate strategies. In addition, we 
found correlations between equation‑solving accuracy and students’ flexibility in all three countries but to different 
degrees.

Conclusions: Although it is increasingly recognized as an important construct of interest, there are many aspects of 
mathematical flexibility that are not well‑understood. Particularly lacking in the literature on flexibility are studies that 
explore similarities and differences in students’ repertoire of strategies for solving algebra problems across countries 
with different educational systems and curricula. This study yielded important insights about flexibility and can push 
the field to explore the extent that within‑ and between‑country differences in flexibility can be linked to differ‑
ences in countries’ educational systems, teaching practices, and/or cultural norms around mathematics teaching and 
learning.
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Introduction
Flexibility in the use of mathematical procedures—or 
procedural flexibility—has emerged as an important 
outcome in educational policy and practice (National 
Council of Teachers of Mathematics [NCTM], 2014; 
National Research Council, 2001; Star, 2005). As noted 
in a position paper on procedural fluency from the 
National Council of Teachers of Mathematics (NCTM, 
2014): “All students need to have a deep and flexible 

knowledge of a variety of procedures, along with an 
ability to make critical judgments about which proce-
dures or strategies are appropriate for use in particular 
situations.” Researchers have begun to investigate pro-
cedural flexibility, in mathematical domains including 
arithmetic (Blöte et  al., 2001; Shaw et  al., 2020; Tor-
beyns et  al., 2009), computational estimation (Star & 
Rittle-Johnson, 2009), algebra (e.g., Rittle-Johnson & 
Star, 2007), linear algebra (Maciejewski & Star, 2019) 
and calculus (Maciejewski & Star, 2016); and among 
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American (Rittle-Johnson & Star, 2009) and interna-
tional (Hästö et al., 2019; Joglar et al., 2018; Xu et al., 
2017) students.1 Within this literature, procedural 
flexibility is defined as knowledge of multiple strat-
egies and the ability to select the most appropriate 
strategy for a given problem and problem-solving cir-
cumstances (e.g., Star, 2005).

Algebra, particularly linear equation solving, has 
proved to be a particularly productive content area 
for research on mathematical flexibility (e.g., Huntley 
et al., 2007; Star et al., 2015). In many countries around 
the world, students are introduced to linear equa-
tion solving at roughly the same age (12 or 13  years). 
For linear equations, such as 3(x + 1) = 15, a standard 
algorithm exists (the first step of which is to distrib-
ute the 3; Buchbinder et al., 2015; Star & Seifert, 2006), 
yet there are other alternative strategies that are argu-
ably more optimal for this particular equation, such as 
dividing both sides of the equation by 3 as a first step. 
We refer to strategies that are arguably better than a 
standard algorithm as “situationally appropriate.” With 
this label, we acknowledge that it is rarely the case that 
one strategy is always the best but rather that what it 
means for a strategy to be better than another is often 
dependent on the solver’s beliefs and goals as well as 
the particular tasks to be solved (Verschaffel et  al., 
2009). Findings from the literature suggest that stu-
dents do not always select a situationally appropriate 
strategy for a given equation, even though they have 
knowledge of multiple strategies (Newton et al., 2010). 
Furthermore, even gifted students or mathematics 
content experts who have knowledge of multiple strat-
egies do not always choose a situationally appropriate 
strategy (Dover & Shore, 1991; Star & Newton, 2009). 
There appears to be a difference between what one 
knows and what one decides to use spontaneously dur-
ing problem solving (Dover & Shore, 1991; Flavell & 
Wohlwill, 1969).

As mentioned above, core to procedural flexibility is 
the ability to select a situationally appropriate strategy 
for a given problem, from among a solver’s knowledge 
of multiple problem-solving strategies. Yet it is also the 
case that identifying such a strategy that is most appro-
priate can be quite subtle and nuanced (Hatano & Ina-
gaki, 1984; Verschaffel et  al., 2009). In some cases, 
the most efficient strategy—i.e., the strategy with the 
fewest steps, or the strategy that can be executed the 

quickest—may be considered situationally appropri-
ate. However, it might also be the case that the strategy 
that can be executed most reliably and without error 
could be viewed as situationally appropriate. More 
generally, within the discipline of mathematics, math-
ematicians tend to believe that a situationally appro-
priate strategy is the one that is most elegant, despite 
the fact that it is often difficult to objectively define 
elegance (Hardy, 1940).

The relationship between flexibility and solving accuracy
In addition to the identification of procedural flexibility 
as a learning outcome (NCTM, 2014; Star, 2005), there 
is also an expectation in the literature that flexibility is 
related to accuracy (e.g., Rittle-Johnson & Star, 2007). In 
other words, increased procedural flexibility is believed 
to support increased problem-solving accuracy. There 
is some indirect evidence in support of this assumption. 
For example, Rittle-Johnson and colleagues (Rittle-John-
son & Star, 2007, 2009; Rittle-Johnson et al., 2009, 2012; 
Star & Rittle-Johnson, 2008) found that a contrasting 
cases intervention in the domain of linear equation solv-
ing generally led to gains in both procedural flexibility 
and accuracy. Yet at the same time, Xu and colleagues 
(Xu et al., 2017) found that procedural flexibility was not 
strongly correlated with accuracy scores, in that students 
who were very accurate equation solvers did not consist-
ently demonstrate high flexibility.

There are other recent studies that have explored pos-
sible relationships between strategy flexibility and prob-
lem-solving accuracy in different mathematical domains 
and among students from a variety of age levels. For 
example, Carr and Taasoobshirazi (2017) found that 
early variability in primary school mathematics strat-
egy use was linked to positive learning outcomes in later 
years. McMullen and colleagues (McMullen et al., 2017) 
found that students’ strategies for working with rational 
numbers predicted later pre-algebra skills. Similarly, 
Levav-Waynberg and Leikin (2012) found a relationship 
between geometrical knowledge and the strategies used 
by students who engaged with tasks for which there were 
multiple possible solution methods. In addition, Lemaire 
and Siegler (1995) found that improved adaptivity in 
strategy use was one explanation for increased speed and 
accuracy in multiplication tasks for French 2nd grad-
ers. Taken together, these studies suggest that there is a 
relationship between the strategies that students use and 
their accuracy in problem solving, although (as noted 
above) this evidence is not conclusive with respect to 
procedural flexibility.1 Although less widely studied, flexibility also plays a key role in other STEM 

disciplines, including spatial thinking (Uttal, Miller, & Newcome, 2013), 
electronics (Pirttimaa, Husu, & Metsärinne, 2017), fingerprint analyses 
(Mustonen & Hakkarainen, 2015), and biomedical engineering ethics (Martin, 
Rayne, Kemp, Hart, & Diller, 2005).
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The relationship between flexibility and mathematical 
expertise
Perhaps a corollary to the presumed relationship between 
procedural flexibility and accuracy is the expectation 
that older students (or those with greater mathematical 
expertise) will also be higher in flexibility. The correlation 
between flexibility and age and/or mathematical exper-
tise has been suggested in other mathematical domains, 
such as computational estimation (Dowker, 1992) or in 
qualitative studies of struggling students (Lynch & Star, 
2014). In addition, Chinese 8th grade students who 
showed high accuracy in equation solving—successfully 
solving an average of 10.84 out of 12 linear equations, or 
90.3%—also exhibited relatively high levels of procedural 
flexibility (Liu et  al., 2018). However, at the same time, 
other studies have found that both younger and older stu-
dents possess relatively low levels of flexibility, with lit-
tle or no growth as student’s age and presumably become 
more mathematically knowledgeable. For example, Star 
and Seifert (2006) found that US 6th graders exhibited 
flexibility in only about 9% of post-test problems, despite 
arriving at correct answers on 77% of problems. Simi-
larly, Lewis (1981) found that US undergraduates exhib-
ited flexibility at a comparable rate (9–12% of problems), 
with mathematicians only somewhat better (about 20% of 
problems). (Recent work suggests a possible link between 
flexibility and confidence in mathematics, which could 
begin to help explain the differences in flexibility found 
in past studies with US students and Chinese students 
(Maciejewski, 2020).) However, note that studies spe-
cifically designed to examine the relationship between 
procedural flexibility and age—i.e., involving students at 
multiple grade levels, either via a cross-sectional or lon-
gitudinal design—are quite rare in the literature on flex-
ibility. As a result, the extent of the relationship between 
procedural flexibility, age, and mathematical expertise is 
still largely unexplored.

Cross‑cultural differences in flexibility
Furthermore, the current literature on flexibility also 
suggests that there may be substantial cross-cultural dif-
ferences in both problem-solving accuracy as well as 
procedural flexibility. As noted above, both Liu and col-
leagues (Liu et al., 2018) and Xu and colleagues (Xu et al., 
2017) found that Chinese middle school students exhib-
ited very high accuracy and moderate levels of proce-
dural flexibility when solving linear equations. Yet studies 
with US middle school students (e.g., Rittle-Johnson & 
Star, 2007; Star & Seifert, 2006) found both accuracy and 
procedural flexibility rates to be substantially lower than 
what was found among the Chinese students. Although 
cross-cultural studies of mathematical problem solving 
exist in the literature (e.g., Cai, 2000; Cai & Hwang, 2002; 

Chen & Stevenson, 1995), no prior cross-cultural studies 
have examined students’ procedural flexibility.

There are several reasons to believe that procedural 
flexibility may indeed differ cross-culturally. In particular, 
prior studies have consistently found that students from 
different countries demonstrated different types of math-
ematical thinking when solving problems (Cai, 2004; 
Jiang et  al., 2014, 2017). For example, Cai (2000, 2004) 
found that American students exhibited greater diver-
sity of thinking and also used more uncommon strate-
gies when solving mathematics problems as compared to 
their Chinese peers, although Chinese students’ accuracy 
was higher. Similarly, a recent study comparing Spanish 
and Chinese 4th to 8th grade students’ performance on 
addition problems and proportion problems (Jiang et al., 
2017) found differences between the reasoning used by 
Chinese and Spanish students. Relatedly, Gorgorió et al. 
(2018) found differences between Spanish and Finnish 
university students’ mathematical knowledge and strate-
gies upon entry to a primary teacher education program. 
More generally, curriculum has been found to influence 
mathematics learning in international comparative stud-
ies of mathematics achievement (Martin et  al., 2008; 
Mullis et al., 2012) suggesting that curricular differences 
between countries would also influence students’ proce-
dural flexibility. Yet at the same time, other studies have 
found a striking degree of uniformity amongst students’ 
mathematical understandings (or lack thereof ) and strat-
egies in many countries. For example, previous stud-
ies found that students from several different countries 
showed a strong tendency to overuse a certain type of 
proportional reasoning strategy to solve a set of prob-
lems and were not capable of switching amongst different 
strategies based on the types of problem (De Bock et al., 
2002, 2007; Fernández et al., 2012; Li et al., 2014). Simi-
larly, various misconceptions related to the use of nega-
tive signs, equals signs, variables, and fractions appear to 
be prevalent in a variety of countries (Booth et al., 2014; 
Bush & Karp, 2013). As a result, whether (and the degree 
that) there are cross-cultural differences in students’ 
procedural flexibility is an open question, the answer to 
which will be informative to efforts in many countries to 
promote the development of procedural flexibility as one 
instructional outcome.

The present study
We study the development of procedural flexibility (fol-
lowing Star’s definition; Star, 2005) in the context of 
solving linear equations in secondary mathematics edu-
cation. In particular, the present study takes advantage 
of the recently developed validated assessment of proce-
dural flexibility in equation solving, the Tri-Phase Flex-
ibility Assessment (Xu et  al., 2017) (described in more 
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depth below). Using convenience samples of students 
from three countries (Spain, Finland, and Sweden), a 
cross sectional design (assessing both middle school and 
high school students), and working with students in both 
basic and advanced tracks in mathematics, we explore 
the following research questions.

RQ1  How does accuracy in linear equation solving 
vary by age (middle school vs. high school), by 
academic track (basic vs. advanced track), and by 
country (Spain, Finland, and Sweden)? As noted 
above, there is mixed evidence in the prior lit-
erature as to the presence of cross-cultural dif-
ferences in mathematical proficiency. We seek to 
add to the existing cross-national results found 
in studies such as PISA and TIMSS to more spe-
cifically document cross-cultural differences in 
mathematical problem-solving within the par-
ticular domain of linear equation solving.

RQ2  How does procedural flexibility in linear equa-
tion solving vary by age, by academic track, and 
by country? As noted above, previous research 
has not addressed how country, academic track 
or age are related to students’ procedural flexibil-
ity. By investigating students’ procedural flexibil-
ity in various contexts, we aim to identify factors 
that inhibit or enhance flexibility, which in turn 
may (in future research) shed light on how pro-
cedural flexibility might develop over time.

RQ3  To what extent are procedural flexibility and 
accuracy related? Does this relationship vary by 
age, academic track, and/or country? Although 
the prior literature on procedural flexibility 
implicitly assumes that procedural flexibility 
is related to accurately solving mathematical 
tasks, there is little direct evidence in support 
of this relationship—and some of this evidence 
is mixed. While the development of procedural 
flexibility is itself a reasonable instructional goal, 
procedural flexibility without accuracy is cer-
tainly not optimal and could be counterproduc-
tive. In particular, when, where, and under which 
circumstances do both procedural flexibility and 
procedural accuracy develop?

Method
Participants
A total of 791 middle school and high school students 
from Finland, Sweden, and Spain participated in the 
study. The convenience samples of schools and students 

were recruited by members of the research team who 
were local to each country. The schools were diverse in 
terms of geographic location and size. It is also worth 
noting that the public educational systems in Finland, 
Sweden and Spain are mostly composed of schools whose 
students are relatively homogenous in terms of ethnicity 
and socio-economic status, at least as compared to the 
United States (e.g., Boli, 2014; Sahlberg, 2014).

These three countries were selected both for conveni-
ence but also because they have (among western Euro-
pean countries) an interesting mix of both similarity and 
variation among various educational and mathematics 
educational indicators, suggesting that cross-national 
comparisons could be productive. For example, all three 
countries differ to some degree on indicators, such as 
2015 PISA scores (511, 494 and 486, for Finland, Swe-
den, and Spain, respectively), 2017 public expenditure in 
education (5.7% of GDP, 6.8% of GDP, and 4.0% of GDP, 
respectively), and in the proportion of 15 years who are 
underachieving in mathematics (13.6%, 20.8%, and 22.2%, 
respectively).2 Furthermore, while students from these 
three countries can be considered to be educated in cul-
turally similar western European contexts, the literature 
suggests that may be interesting differences in their typi-
cal mathematics teaching and learning environments. 
In particular, there is some evidence that the secondary 
mathematics teaching and learning environment in Spain 
may be quite different than in Finland and Sweden, two 
countries that may have many similarities in views of how 
math is taught. For example, researchers have found the 
Spanish mathematics curriculum (especially in second-
ary school) to be very traditionally teacher centered, with 
emphasis on the routine application of rules with a focus 
on accuracy and speed, and with classwork, assessments, 
and homework involving a great deal of timed practice 
(e.g., González-Astudillo & Sierra-Vázquez, 2004). In 
contrast, in Finland and Sweden, the literature suggests 
that one more typically finds a de-emphasis on timed 
drills (Hemmi & Krzywacki, 2014; Pehkonen et al., 2018). 
As a result, while primarily driven by convenience, our 
investigation of students in Finland, Sweden, and Spain 
provides research contexts that have interesting similari-
ties (between Finland and Sweden) as well as differences 
(in Spain) to allow for a fruitful exploration of how proce-
dural flexibility might vary across countries.

In Finland, 257 students from 8 schools participated in 
the study, 93 of whom were in 8th grade (middle school) 
and the remaining 164 in 11th grade (high school). The 
eight schools were selected to represent typical schools 
in Finland; note that demographic information is not 

2 https:// ec. europa. eu/ euros tat/ web/ educa tion- and- train ing/ eu- bench marks.

https://ec.europa.eu/eurostat/web/education-and-training/eu-benchmarks
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generally collected in Finland, since schools are very 
homogeneous in terms of student characteristics. Of the 
high school students, 103 were in the advanced math-
ematics track, while 61 were in the basic track. Finnish 
children start mandatory schooling at age 7 and attend 
compulsory school until the end of 9th grade, using 
a standard mathematics curriculum. In high school 
students choose between two tracks in mathematics: 
advanced and basic. Attendance in grades 10–12 is not 
compulsory, and approximately 50% of students choose 
to attend.

In Sweden, 288 students from 6 schools participated 
in the study, 87 of whom were in the 9th grade (middle 
school) and the remaining 201 in the 10th grade (high 
school). The six schools were selected to represent typi-
cal public schools in Sweden. Two schools were located 
in a larger city and the remaining four schools were in 
four different smaller cities. Based on statistics provided 
by the Swedish National Agency for Education,3 it is 
estimated that around 25% of the participating students 
came from a foreign background (i.e., were either born 
outside of Sweden or both parents were born outside of 
Sweden), which is similar to the national average. Of the 
high school students, 181 were in the advanced track, 
while 20 were in the basic track. Swedish children start 
compulsory schooling at age 7 and attend compulsory 
school until the end of 9th grade, using a standard math-
ematics curriculum. Attendance in grades 10–12 is not 
compulsory, and over 95% of students choose to attend.

In Spain, 246 students from 5 schools participated in 
the study, 164 of whom were in 8th grade (middle school) 
and the remaining 82 were in 11th grade (high school). 
Participating schools were similar to typical urban pub-
lic schools in Spain, in that students were predominantly 
middle class and of Spanish background with gender 
parity. Regarding social background, the five participat-
ing schools were from two different geographic regions. 
Four schools were located in a region with an average 
immigration ratio of 9% (nationally, approximately 8.7% 
of students in Spain are foreign immigrants) and one 
school in a region with 4% of immigrant students. Of 
the high school students, 47 were in the advanced track 
in mathematics, while 35 were in the basic track. Span-
ish children start mandatory school at age 6 and attend 
compulsory school until the end of 10th grade, using a 
standard mathematics curriculum. Attendance in grades 
11 and 12 is not compulsory; approximately 70% of Span-
ish students choose to attend.

Note that in each of the three countries, multi-step 
linear equation solving is first introduced in 7th grade. 

In addition, although we used a convenience sample 
of schools that was not randomly or representatively 
sampled, research team members local to each coun-
try reported that the schools selected for participation 
in this study were considered to be very typical and not 
exceptional along any dimension, including number of 
students, proportion of males and females, proportion of 
students with a foreign background, proportion of stu-
dents whose parents have college degrees, etc. Finally, 
despite the different structures of the education systems, 
we estimate that in each country approximately 20% of 
the age cohort attend what we call advanced mathematics 
in high school.

For each country, the middle school sample included 
students who would ultimately go on to high school 
in either the advanced mathematics track or the basic 
mathematics track, as well as those who would not con-
tinue their schooling beyond what was mandatory in 
each country. In the interest of facilitating compari-
son of results between middle school students and high 
school students who were in advanced mathematics, we 
identified the top 20% of middle school students in each 
country’s sample using overall accuracy scores. Note that 
this “advanced middle school” category is merely a sub-
set of the sample of students from middle school, given 
that (unlike in the high schools) there is no tracking of 
students in middle school in any of the participating 
countries. The advanced middle school cohort is a rea-
sonable group to compare with the advanced high school 
students within and between countries, since the latter 
group consists, roughly speaking, of the top 20% of stu-
dents in the age cohort.4

Because of the different educational systems being 
examined, it was not always possible to compare identical 
samples; for example, the middle school students in the 
present study were in 8th grade in Spain and Finland but 
in 9th grade in Sweden. The distribution of students in 
each country at each level varied considerably. For exam-
ple, in Spain only 47 of the 246 students (19%) were in 
the advanced mathematics track in high school, while in 
Finland and Sweden, these proportions were 40% (103 
of 258) and 63% (181 of 288), respectively. We have cho-
sen measures and made comparisons in such a way as 
to minimize the effect of these differences; specifically, 
averages over countries are calculated by assigning equal 
weight to each country, not each student.

3 https:// www. skolv erket. se/ skolu tveck ling/ stati stik.

4 Our data do not allow us to precisely determine the extent that this top 20% 
of middle school students in each country’s sample did indeed go on to take 
more advanced mathematics classes in subsequent years. However, anecdotal 
reports in each country suggests that it is extremely likely that this would have 
been the case.

https://www.skolverket.se/skolutveckling/statistik
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Information about students’ gender, race, and socio-
economic status was not collected. We discuss this issue 
below as an important limitation of this study.

Measures and procedures
All students completed a translation5 of the Tri-Phase 
Flexibility Assessment (Xu et  al., 2017), which was 
designed to assess students’ procedural flexibility, poten-
tial flexibility, and spontaneous flexibility in linear equa-
tion solving (we define these constructs below). The 
assessment consists of a test, instructions on how it is 
to be administered, and specifications on how to code 
the data. Note that Xu and colleagues (Xu et  al., 2017) 
explored the psychometric properties of the Tri-Phase 
Flexibility Assessment and found it to be valid and reli-
able; in particular, Xu and colleagues found this instru-
ment to have high internal consistency (Cronbach’s 
alpha) for measuring flexibility and spontaneous flexibil-
ity, as well as good composite reliability and convergent 
validity for these constructs. As a result, we have fol-
lowed their procedure as closely as possible in the use of 
and administration of the assessment.

The test consisted of 12 linear equations to be solved 
in three phases, which were implemented in the pre-
sent study identically to the procedures used by Xu et al. 
(2017). In Phase 1, students were asked to solve each of 
the 12 problems as quickly and as accurately as possible. 

Students were instructed to write their solutions in a 
box that was clearly marked. Students were provided 
15  min for completing this phase. In Phase 2, students 
returned to the same 12 problems and were asked to 
generate as many different solutions for each problem as 
possible (e.g., in Finnish: kirjoittaa jokaiseen tehtävään 
niin monta eri ratkaisua kuin mahdollista; in Spanish: 
resolver la ecuación de todas las formas diferentes posi-
bles que podáis; in Swedish: lös varje uppgift på så många 
olika sätt som möjligt); the test provided space for up to 
5 different strategies. Note that we did not provide any 
further explanation or examples about what constituted a 
“different” strategy, as we were interested to see how stu-
dents themselves interpreted this request. Students were 
provided 20 min for this phase.

Finally, in Phase 3, students were asked to return to the 
12 problems and to circle the strategy for each problem 
(from among the multiple strategies that they produced) 
that they considered to be the best (e.g., in Finnish: paras; 
in Spanish: la major; in Swedish: bäst). As with the word 
“different,” we did not provide explanation to guide stu-
dents in their selection of the best strategy, as we wanted 
to see how students themselves interpreted this request. 
Students were given 5 min for this phase.

The assessment included four types of linear equa-
tions, with three of each type (see Table  1). Note that, 
for the first three problem types, the three equations for 
each type had the same structure but differed in terms of 
the coefficients and constants in each problem: The first 
problem of each type (Problems 1, 4, and 7) had integer 
coefficients and constants. Of the other two problems, 
one used fractions (Problems 3, 5, and 8) and one used 
decimals (Problems 2, 6, and 9).

Table 1 Assessment problems, with standard algorithms and situationally appropriate methods

# Problem Standard algorithm Innovative strategy

1 4(x − 2) = 24 Begin by distributing 
the parentheses

4x − 4 · 2 = 24 Divide a constant to 
both sides before 
distributing

x − 2 =
24

4

2 3(x + 0.69) = 15 3x + 3 · 0.69 = 15 x + 0.69 =
15

3

3
4

(

x +
3

5

)

= 12 4x + 4 ·
3

5
= 12 x +

3

5
=

12

4

4 4(x + 6)+ 3(x + 6) = 21 Begin by distributing 
the parentheses

4x + 4 · 6+ 3x + 3 · 6 = 21 Change in variable – 
combine

7(x + 6) = 21

5
5

(

x +
3

7

)

+ 3

(

x +
3

7

)

= 16 5x + 5 ·
3

7
+ 3x + 3 ·

3

7
= 16 8

(

x +
3

7

)

= 16

6 2(x − 0.31)+ 3(x − 0.31) = 15 2x − 2 · 0.31+ 3x − 3 · 0.31 = 15 5(x − 0.31) = 15

7 8(x − 5) = 3(x − 5)+ 20 Begin by distributing 
the parentheses

8x − 8 · 5 = 3x − 3 · 5+ 20 Change in variable – 
subtract from both

5(x − 5) = 20

8
8

(

x −
2

5

)

− 11 = 6

(

x −
2

5

)

8x −
16

5
− 11 = 6x −

12

5 2

(

x −
2

5

)

= 11

9 5(x + 0.6)+ 3x = 5(x + 0.6)+ 7 5x + 3+ 3x = 5x + 3+ 7 3x = 7

10 2x−6

2
+

6x−18

3
= 5 Begin by obtaining a 

common denominator 
for the two expressions

3(2x−6)
2·3

+
2(6x−18)

2·3
= 5 Reducing each fraction 

before combining
(x − 3)+ (2x − 6) = 5

11 x+3

3
+

3x+9

9
= 1

3·(x+3)
3·3

+
3x+9

9
= 1

x+3

3
+

x+3

3
= 1

12 5x+5

5
+

6x+6

6
= 6

6(5x+5)
6·5

+
5(6x+6)

5·6
= 6 (x + 1)+ (x + 1) = 6

5 To ensure that the translations of this instrument were accurate, we began 
by working with the native English-speaking and native Chinese-speaking 
authors of the original Xu et al. assessment to create an English version of the 
instrument. This version was then translated into Finnish, Spanish, and Swed-
ish by native-speaking collaborators in each country and then back-translated 
and checked for accuracy by the first author, who is a native English speaker.
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All equations could be solved with the following stand-
ard algorithm that is taught as an explicit component of 
the mathematics curriculum in Finland, Sweden, and 
Spain and that has been used in prior research on linear 
equation solving (e.g., Buchbinder et  al., 2015; Rittle-
Johnson & Star, 2007; Star & Seifert, 2006): First, use the 
distributive property to ‘clear’ parentheses. Second, com-
bine like variable and constant terms on the left and right 
sides of the equation. Third, add or subtract to both sides, 
putting variable terms on the left side and constant terms 
on the right side of the equation, resulting in an equation 
of the form ax = b. Finally, solve for the variable by divid-
ing both sides by the coefficient of the variable term.

Each equation could also be solved by one or more 
situationally appropriate strategies, which was optimally 
matched to the structural features of the problem and 
resulted in fewer calculations to reach the solution (see 
Table 1). For the first three equation types, a situationally 
appropriate strategy involved treating the common par-
enthetical terms as a variable (i.e., a ‘change in variable’ 
strategy; Star & Seifert, 2006), either by dividing to both 
sides as a first step (Problems 1–3), combining like terms 
(Problems 4–6), or subtracting from both sides as a first 
step (Problems 7–9). For the fourth equation type, a situ-
ationally appropriate strategy involved simplifying each 
fractional term before combining (Problems 10–12).

Analysis
Each test was scored by one or two mathematics educa-
tion professors or graduate students who were educated 
in the target country and also fluent in the language of 
instruction in that country. Scorers began by examining 
students’ solutions produced in Phase 1—i.e., those writ-
ten in the space designated for each problem on the test 
to hold the solutions provided in Phase 1. Scorers then 
determined the accuracy of each attempt made during 
Phase 1, by evaluating whether a student arrived at the 
correct numerical answer by correct intermediate steps 
on the Phase 1 solution attempt for each problem. No 
partial credit was awarded, and thus the accuracy score 
for each student was an integer between 0 and 12. Scor-
ers then examined all solution strategies produced during 
Phases 1 and 2 for each problem, coding each strategy as 
to whether it followed the standard algorithm described 
above, the situationally appropriate strategy illustrated in 
Table 1, or some other strategy. The assessment problems 
were designed so that the identification of a student’s 
strategy as situationally appropriate or standard could be 
usually determined by looking only at the initial steps of 
the student’s work. To this point, our coding was identi-
cal to that of Xu et al (2017).

Once coding of strategy type and accuracy were 
completed, students’ procedural flexibility, potential 

flexibility, and spontaneous flexibility were calculated, 
using a procedure that was very similar to what has 
been used in prior studies with the Tri-Phase Flexibility 
Assessment (Xu et al., 2017).6 Each student was deemed 
flexible (F) on a given equation if they exhibited proce-
dural flexibility on that problem, e.g., if they met the fol-
lowing three criteria:

A. the student exhibited knowledge of the standard 
solution method for that equation,

B. the student exhibited knowledge of a situationally 
appropriate solution method for that equation, and

C. the student identified (in Phase Three) the situation-
ally appropriate strategies as best for that equation.

The flexibility score for each student was an integer 
ranging from 0 to 12.

If a student provided the situationally appropriate strat-
egy but failed to meet one of the other two criteria, they 
were deemed to show potential flexibility (PF) for that 
equation, indicating that their knowledge of the situ-
ationally appropriate strategy suggested that they may be 
on the verge of becoming procedurally flexible. The max-
imum potential flexibility score for each student was 12, 
although note that a student could either be flexible (F) 
or potentially flexible (PF) on a problem but not both.

Also note that there were two different types of poten-
tial flexibility, depending on which of the other flexibil-
ity criteria (A, B, or C; see above) was not satisfied for 
a given equation. PF-AB indicated that the student did 
not identify the situationally appropriate strategy as best 
among those that were generated, and PF-BC indicated 
that the student did not make use of the standard algo-
rithm for that equation.7

Finally, for any student who demonstrated flexibility on 
a given equation, if a situationally appropriate strategy 
was used in the first solution attempt (i.e., in Phase 1 of 

6 After engaging in multiple discussions with the authors of the Xu et  al. 
(2017) paper, we made several changes to their scoring system and flex-
ibility subconstruct nomenclature, which we (as well as the Xu et al. authors) 
believe to be an improvement in the assessment of flexibility and related sub-
constructs. First, what Xu et al. refer to as “practical flexibility,” we now refer 
to as “spontaneous flexibility” – which indicates whether a student used a 
situationally appropriate strategy in the first solution attempt. In contrast to 
Xu et  al., we consider spontaneous flexibility to be a special and somewhat 
atypical outcome, rather than a desirable outcome for all students on all prob-
lems. Second, what Xu et al. refer to as “potential flexibility,” we now refer to 
as “flexibility”; our three criteria for flexibility are identical to Xu et al.’s three 
criteria for potential flexibility. We consider flexibility (as we define it here) 
to be the main outcome of interest, rather than an indicator that a student 
is approaching the main outcome of interest (as is the case in Xu et al.). And 
finally, we introduce a more nuanced notion of “potential flexibility” to cap-
ture indicators that flexibility is emerging for a student.
7 A third type of potential flexibility, PF-AC, while theoretically possible, 
cannot practically occur, as criterion C requires the presence of criterion B.
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the assessment), this student was said to have spontane-
ous flexibility (SF) for that equation. The maximum pos-
sible spontaneous flexibility score for each student was 
again 12.

Results
We discuss results in terms of country-specific patterns 
of performance as well as several findings that compare 
performances across countries. Note that since our sam-
ple is not a representative one from each country, it is not 
particularly meaningful to draw conclusions from the 
absolute numbers in our results. Rather, we look for pat-
terns, where multiple indicators are aligned—and for this 
reason, we mostly avoid statistical tests.

Tables  2, 3 shows students’ accuracy, flexibility, spon-
taneous flexibility and potential flexibility (including its 
two subtypes) for the Spanish, Swedish, and Finnish mid-
dle and high school students.

Procedural flexibility
Procedural flexibility was quite modest; across all groups 
of participants in the study, average demonstrated flex-
ibility was 1.8 problems (out of 12, or 15% of equations; 
see Table  2). Swedish students had slightly higher flex-
ibility on average (2.3 equations), with Spanish students 
having lower flexibility on average (1.4 equations). Mid-
dle school students had the lowest level of flexibility (0.5 
equations), with advanced middle school students with 
slightly higher flexibility (1.2 equations) and advanced 

Table 2 Summary of key variables (mean and standard deviation) related to flexibility, for all students in Finland, Sweden and Spain

MS middle school; MS-A advanced middle school students; HS-A advanced mathematics track high school; HS-B basic track high school; Acc accuracy; F flexibility; 
SF spontaneous flexibility; PF potential flexibility

n Acc F SF PF PF‑AB PF‑BC

Weighted averages over 
countries

Avg 791 5.4 (2.0) 1.8 (1.6) 0.5 (0.9) 0.6 (0.7) 0.6 (0.7) 0.0 (0.2)

MS 344 3.1 (2.9) 0.5 (1.4) 0.1 (0.6) 0.3 (0.9) 0.3 (0.9) 0.0 (0.2)

HS‑B 116 5.1 (2.5) 1.4 (2.1) 0.2 (0.8) 0.6 (0.9) 0.6 (0.9) 0.0 (0.2)

HS‑A 331 8.0 (3.0) 3.6 (3.5) 1.3 (2.5) 0.9 (1.4) 0.8 (1.4) 0.1 (0.4)

Finland Avg 257 4.5 (2.1) 1.7 (1.6) 0.6 (1.0) 0.5 (0.6) 0.4 (0.6) 0.0 (0.1)

MS 93 1.6 (2.3) 0.5 (1.7) 0.2 (1.0) 0.1 (0.4) 0.1 (0.4) 0.0 (0.2)

HS‑B 61 3.9 (2.3) 0.4 (1.1) 0.0 (0.1) 0.4 (0.7) 0.3 (0.7) 0.0 (0.2)

HS‑A 103 7.9 (2.7) 4.3 (3.2) 1.5 (2.5) 0.9 (1.5) 0.8 (1.4) 0.1 (0.3)

Sweden Avg 288 5.1 (1.8) 2.3 (1.7) 0.8 (1.1) 0.7 (0.6) 0.6 (0.5) 0.1 (0.2)

MS 87 3.0 (2.5) 0.7 (1.6) 0.0 (0.3) 0.5 (1.0) 0.4 (0.9) 0.0 (0.3)

HS‑B 20 4.9 (1.5) 2.0 (1.7) 0.3 (0.6) 0.8 (0.9) 0.7 (0.9) 0.1 (0.2)

HS‑A 181 7.5 (3.4) 4.3 (3.6) 2.2 (2.9) 0.7 (1.0) 0.5 (0.9) 0.2 (0.5)

Spain Avg 246 6.7 (1.8) 1.4 (1.5) 0.2 (0.5) 0.7 (0.8) 0.7 (0.8) 0.0 (0.0)

MS 164 4.8 (2.8) 0.3 (0.9) 0.0 (0.2) 0.4 (1.2) 0.4 (1.2) 0.0 (0.1)

HS‑B 35 6.6 (2.7) 1.7 (2.8) 0.3 (1.1) 0.7 (1.1) 0.7 (1.1) 0.0 (0.0)

HS‑A 47 8.7 (2.6) 2.1 (3.2) 0.2 (1.2) 1.1 (1.7) 1.1 (1.8) 0.0 (0.0)

Table 3 Summary of key variables (mean and standard deviation) related to flexibility, for high-achieving students in Finland, Sweden 
and Spain

n Acc F SF PF PF‑AB PF‑BC

Weighted averages over 
countries

MS‑A 90 6.6 (2.4) 1.2 (2.3) 0.3 (1.2) 0.7 (1.5) 0.7 (1.5) 0.0 (0.2)

HS‑A 331 8.0 (3.0) 3.6 (3.5) 1.3 (2.5) 0.9 (1.4) 0.8 (1.4) 0.1 (0.4)

Finland MS‑A 24 4.8 (2.3) 1.5 (2.9) 0.6 (1.9) 0.3 (0.8) 0.2 (0.7) 0.1 (0.4)

HS‑A 103 7.9 (2.7) 4.3 (3.2) 1.5 (2.5) 0.9 (1.5) 0.8 (1.4) 0.1 (0.3)

Sweden MS‑A 22 6.5 (1.3) 1.3 (2.1) 0.2 (0.5) 1.0 (1.4) 1.0 (1.4) 0.0 (0.0)

HS‑A 181 7.5 (3.4) 4.3 (3.6) 2.2 (2.9) 0.7 (1.0) 0.5 (0.9) 0.2 (0.5)

Spain MS‑A 44 8.5 (1.6) 0.8 (1.5) 0.0 (0.3) 0.9 (1.9) 0.9 (1.9) 0.0 (0.0)

HS‑A 47 8.7 (2.6) 2.1 (3.2) 0.2 (1.2) 1.1 (1.7) 1.1 (1.8) 0.0 (0.0)
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mathematics track high school students having the 
greatest flexibility (3.6 equations). Swedish and Finn-
ish advanced track high school students had the highest 
flexibility (each exhibiting flexibility on 4.3 equations, on 
average—or 36% of the equations on the assessment).

Note that this degree of procedural flexibility is quite 
consistent with prior studies. As noted above, in a study 
of experts’ and undergraduates’ performance on lin-
ear equations similar to those used in the present study, 
Lewis (1981) found that undergraduates chose to use a 
situationally appropriate strategy on only 12% of equa-
tions. Similarly, and also on similar linear equations, Star 
and Seifert (2006) found that middle school students used 
situationally appropriate strategies on only 2.5 out of 19 
equations (or 13.2%). In this light, Swedish and Finnish 
advanced track high school students’ levels of flexibility 
are unexpectedly high.

Potential flexibility
The results for students’ potential flexibility largely mir-
ror the procedural flexibility results (see Tables  2, 3). 
As a reminder, a student was deemed to have potential 
flexibility on a problem if the situationally appropriate 
strategy was provided but either (a) this strategy was 
not identified as the best (PF-AB), or (b) the standard 
algorithm was not used (PF-BC). On the whole, across 
all participants, on average students exhibited potential 
flexibility on 1.1 of the 12 problems on the assessment. 
High school students’ potential flexibility was generally 
higher than that of middle school students, both for the 
whole sample as well as for Spain, Sweden, and Finland 
individually.

Looking more closely at the potential flexibility of stu-
dents within each country, Spanish students present an 
interesting case in several ways. First, in the advanced 
mathematics classes, Spanish students had the highest 
potential flexibility both in middle school (0.9 equations) 
and in high school (1.1 equations). What appeared to 
prevent these students from being flexible was that they 
did not select the situationally appropriate strategy as 
better than the standard strategy.

Second, consider Spanish students’ knowledge of the 
standard algorithm. Across all three countries, PF-BC 
(students who did not demonstrate knowledge of the 
standard algorithm) was rare. However, among Spanish 
advanced middle school students and advanced math 
track high school students, the average PF-BC score 
was 0—meaning that the advanced middle school and 
advanced track high school students consistently exhib-
ited knowledge of the standard algorithm. By compari-
son, for Finland and Sweden, the PF-BC score was very 
small but positive, with weighted average of 0.04 and 
0.10, respectively.

And third, Spanish students’ procedural flexibility was 
also constrained by their choice of situationally appropri-
ate strategies in the third phase of the test. Considering 
only those students who knew both the standard and sit-
uationally appropriate strategy (F + PF-AB) and looking 
at the proportion of these students who were not flexible 
(PF-AB), we find that in Spain, 33% of students who knew 
both types of strategies identified the standard strategy 
as “best” (and so were not deemed flexible), whereas 
the corresponding numbers for Finland and Sweden 
were 19% and 20%, respectively. A similar pattern holds 
when comparing middle school students to other middle 
school students and high school students to other high 
school students, except in the basic track high school 
group, where numbers are more similar across countries. 
We return to these points below in the discussion, specif-
ically the differences between the strategies used and the 
procedural flexibility of Spanish students as compared to 
students from Finland and Sweden.

Spontaneous flexibility
Spontaneous flexibility, operationalized to be when stu-
dents used a situationally appropriate strategy in the 
first attempt on a problem (in Phase 1), was very low 
across the sample (with an overall average of 0.5 prob-
lems out of 12) and virtually non-existent among Span-
ish students (the Spanish average across all students was 
0.2; see Tables 2, 3). Spontaneous flexibility was highest 
for advanced track high school students, with Swedish 
advanced mathematics track students possessing sur-
prisingly high levels (2.2 problems out of a possible 12). 
Across the entire sample, 162 students had at least one 
spontaneously flexible solution, with 36 students contrib-
uting 48% of the spontaneous flexibility cases. Spontane-
ous flexibility occurred on all tasks but was slightly more 
prevalent in tasks 1–3.

Analyses at the student level
As a separate analysis, we investigated characteristics of 
each student’s performance on the test as a whole. Look-
ing across all 12 equations, did students exhibit knowl-
edge of the standard algorithm and/or a situationally 
appropriate strategy anywhere on the assessment? Did 
students exhibit flexibility and/or spontaneous flexibility 
on any of the equations on the assessment? This analysis 
reveals interesting differences between students in Fin-
land, Sweden, and Spain.

With respect to the strategies that students used while 
equation solving, there is strong evidence that almost all 
participating students in each country had knowledge 
of the standard algorithm. As Table 4 indicates, 100% of 
Spanish high school students, more than 95% of Finnish 
and Swedish high school students, and more than 95% 
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of Spanish and Swedish middle school students used 
the standard algorithm on at least one of the 12 equa-
tions on the assessment. Finnish middle school students 
were somewhat of an exception, with only 61% using 
the standard algorithm on at least one problem. With 
respect to the use of situationally appropriate strategies, 
as expected, high school students seemed more aware of 
situationally appropriate strategies than middle school 
students. Among Swedish students, over 90% of high 
school students used a situationally appropriate strategy 
on at least one equation, as compared to about 50% of 
middle school students. Situationally appropriate strat-
egy use was comparable in Finland amongst advanced 
high school students (93% used a situationally appro-
priate strategy at least once), but this figure dropped to 
about 40% for middle school and basic track high school 
students. Spanish students were the least likely to use sit-
uationally appropriate strategies, with 60% of high school 
students and about 22% of middle school students using a 
situationally appropriate strategy at least once.

Swedish students emerged as particularly strong when 
looking at the results for flexibility and spontaneous 
flexibility. Over 80% of Swedish high school students in 
the sample exhibited flexibility and 58% of high school 
advanced track students exhibited spontaneous flexibil-
ity on at least one equation on the assessment. Note that 
the former is comparable to Finnish students but the lat-
ter is substantially higher. In addition, Spanish students’ 
reliance on the standard algorithm is also highlighted in 
this analysis. Only 2% of Spanish advanced track high 
school students exhibited spontaneous flexibility on any 
problem on the assessment (using a situationally appro-
priate strategy on the first attempt in solving a problem), 
as compared with 38% and 58% of Finnish and Swedish 
advanced mathematics track students.

Problems attempted and strategies used
Although students in all three countries were allotted 
the same amount of time for the assessment, there were 
differences in how many problems students were able to 
attempt before time was called in each phase. In Phase 1 
of the assessment, Spanish students on average attempted 

10.2 of the 12 equations, as compared to 9.0 equations for 
Swedish students and 8.5 for Finnish students. Advanced 
mathematics track high school students in Spain were 
the quickest in progressing through the equations on the 
assessment in Phase 1, attempting an average of 11.0 of 
the 12 equations, while Finnish middle school students 
were the slowest, attempting on average only 6.6 equa-
tions. The proportion of participants who did not answer 
any of questions 10–12, correctly or incorrectly, was 35% 
for Finland, 33% for Sweden and 26% for Spain. The high-
est percentages were for Finnish and Swedish middle-
school students (55–56%) and the lowest for Spanish 
advanced high-school students (13%). We believe many 
of these students ran out of time although some may 
simply not have known what to write for these problems. 
These results suggest that Spanish students who partici-
pated in the study were quicker equation solvers than 
those students in Finland and Sweden.

In Phase 2 of the assessment students were asked to 
provide additional strategies for solving each equation, 
including those equations that they did not attempt in 
the first phase. Over the two phases, Spanish students 
on average attempted more equations (an average of 10.2 
problems) than did Finnish (9.3 problems) or Swedish 
(9.2 problems) students. Spanish advanced mathematics 
track high school students worked through the equations 
the quickest, attempting an average of 11.0 equations of 
the 12, while Finnish middle school students were again 
the slowest, attempting only an average of 7.3 equations.

Figure  1 provides additional information about the 
strategies that students used on the assessment. This 
figure shows the percentage of students in each country 
and at each level, where the standard algorithm (top row) 
or a situationally appropriate strategy (bottom row) was 
used for each equation number. For example, in the lower 
left pane, the point (9, 50) indicates that 50% of Finnish 
advanced math track high school students used a situ-
ationally appropriate strategy on Eq. 9 on the assessment, 
in either Phase 1 or Phase 2. Similarly, in the upper right 
pane, the point (3, 60) indicates that 60% of Spanish mid-
dle school students used the standard algorithm on Eq. 3 
on the assessment. We note a general pattern on the 

Table 4 Percent of students from each country with at least one standard, situational, flexible, or spontaneously flexible solution

Swedish HS-B (basic track high school) students are not included because of the small sample size

MS middle school; HS high school; HS-A advanced mathematics track high school; HS-B basic track high school; Fin Finland; Swe Sweden; Spa Spain

Standard Situationally Appropriate Flexible Spontaneous Flexible

MS HS‑B HS‑A MS HS‑B HS‑A MS HS‑B HS‑A MS HS‑B HS‑A

Fin 61.3 95.1 100.0 40.9 42.6 93.2 12.9 19.7 81.6 3.2 1.6 37.9

Swe 96.6 – 98.9 50.6 – 93.9 23.0 – 81.8 3.5 – 58.0

Spa 98.2 100.0 100.0 22.6 60.0 68.1 12.8 48.6 42.6 1.8 11.4 2.1
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middle equation (Eqs. 3, 5, and 8) in each group of three, 
especially salient in Spanish (upper right pane) middle 
school students’ decreased use of the standard algorithm. 
The common factor here is that these are equations that 
involve fractional coefficients, which are well-known 
sources of difficulties for students (e.g., Siegler, 2017). 
The effect is slightly less pronounced for Finnish and 
Swedish students (upper left and middle pane), since they 
also had more difficulties with decimal coefficient prob-
lems (Eqs. 2, 6, and 9).

Figure  1 shows a number of interesting differences 
between the types of strategies used by Finnish, Swed-
ish and Spanish students on the assessment. First, we see 
that Spanish students made extensive use of the standard 
algorithm (upper right pane) with very infrequent use 
of situationally appropriate strategies (lower right pane). 
Spanish students’ use of situationally appropriate strate-
gies occurred primarily on Eqs. 1, 2, and 3 (i.e., the first 
equation type; see Table  1) of the assessment but very 
rarely on the other equation types.

Second, Fig. 1 also shows that Finnish basic track high 
school students’ (lower left pane, dotted red circle) use of 

situationally appropriate strategies was almost identical 
to Finnish middle school students (lower left pane, solid 
green)—this similarity was less pronounced in Spain 
and Sweden. Third, we also note that the percentage of 
Swedish middle school students (upper middle pane, 
solid green) and basic track high school students (upper 
middle pane, dotted red circle) who use a standard algo-
rithm drops dramatically on Problems 10, 11, and 12 of 
the assessment, perhaps indicating that Swedish students 
(other than those in the advanced high school track) may 
not have yet learned how to apply the standard algorithm 
to this equation type. Swedish students commonly used 
the standard algorithm on all other equations. Finally, 
there is a general and expected decline in the number 
of solutions towards the end of the test, but this effect 
is much more pronounced in the Finnish and Swedish 
samples.

In sum, with respect to equations attempted and strat-
egies used, our results indicate considerable differences 
between Spanish, Finnish, and Swedish students—as well 
as within each country across ages and academic tracks. 
Spanish students across all ages and tracks used the 

Fig. 1 Average frequency of student use of the standard algorithm (upper three figures) and situationally appropriate strategies (lower three 
figures) produced per task in percent per level. Note Levels are middle school (solid green), basic math track high school (dotted red circle) and 
advanced math track high school (dashed blue triangle). The first three tasks are presented in the order 1–3–2, so that each of the three first blocks 
is in integer–fraction–decimal coefficient order
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standard algorithm more, and situationally appropriate 
strategies less, than either Finnish or Swedish students. 
In addition, Spanish students worked the fastest through 
the assessment, attempting the most equations.

Accuracy
Accuracy in solving the 12 linear equations on the assess-
ment varied considerably. Across all groups of students 
in all three countries, on average half of equations were 
correctly solved in Phase 1 (average 5.4, see Table  2). 
As expected, high school students were more accurate, 
on average, than middle school students. Spanish high 
school students in the advanced mathematics track were 
the most accurate (averaging 8.7 equations correctly 
solved out of 12), followed by Finnish advanced math 
track high school students (7.9 equations solved cor-
rectly) and Swedish advanced math track high school 
students (7.5 solved correctly). Among the younger stu-
dents, Spanish middle school students were again the 
most accurate, followed by Sweden and Finland. In fact, 
Spanish advanced middle school students (8.5 equations 
solved correctly) were even more accurate equation solv-
ers than Finnish or Swedish advanced track high school 
students.

Noteworthy patterns were also seen when comparing 
the accuracies of middle and high school students from 
within the same country. In Finland, there was a large 
jump in accuracy between advanced middle school and 
advanced track high school students, with an average 
increase of 3.1 more equations solved correctly. There 
were more moderate jumps between middle school and 
basic math track high school students (in the range 1.8–
2.3 for all countries). Interestingly, in Spain, there was 
virtually no change between advanced middle school stu-
dents (8.5 problems solved correctly) and advanced track 
high school students (8.7 problems solved correctly).

In sum, the general findings from the analysis of stu-
dents’ accuracy confirms the expected relationships 
between accuracy and grade level (middle school or high 

school) as well as accuracy and academic track (advanced 
or basic) within each country. High school students were 
more accurate equation solvers than middle school stu-
dents and advanced track high school students were 
more accurate than basic math track high school stu-
dents. Results also show that Spanish students were the 
most accurate equation solvers, and that their ability to 
solve problems accurately was quite robust even among 
Spanish middle school students, with minimal average 
change as students moved into high school.

Relationships between procedural flexibility and accuracy
Finally, we sought to better understand the relationship 
between procedural flexibility and accuracy. We per-
formed correlational analyses between accuracy scores 
and all variables related to procedural flexibility (see 
Tables  5, 6). Statistically significant correlations above 
0.5 are generally considered to be strong (Cohen, 1988; 
Hemphill, 2003). However, note that we have elected to 
use the very conservative p < 0.0001 significance level, 
given that we perform 36 correlation calculations. Even 
with the most conservative (Bonferroni) correction, the 

Table 5 Pearson correlations between accuracy and flexibility variables

Bolded correlations are statistically significant at the p < 0.0001 level. Correlations above 0.5 are in bold italics

There were too few students in the high school basic tracks (HS-B) to calculate reliable correlations, but these students are included in the “All” columns. Note that the 
averages over countries are not weighted by the number of students in the different groups

MS middle school; HS-A  advanced mathematics track high school; F flexibility; SF spontaneous flexibility; PF potential flexibility

All countries Finland Sweden Spain

All MS HS‑A All MS HS‑A All MS HS‑A All MS HS‑A

n 791 344 331 257 93 103 288 87 181 246 164 47

F 0.60 0.32 0.51 0.70 0.63 0.46 0.70 0.41 0.66 0.38 0.33 0.22

SF 0.48 0.18 0.47 0.50 0.48 0.45 0.64 0.22 0.62 0.10 0.12 ‑0.04

F + PF 0.63 0.33 0.54 0.73 0.52 0.49 0.71 0.41 0.68 0.46 0.38 0.24

Table 6 Confidence intervals (95%) of Pearson correlations 
between accuracy and flexibility variables

n F SF F + PF

All countries All 791 [0.56, 0.65] [0.43, 0.54] [0.58, 0.67]

MS 344 [0.62, 0.75] [0.40, 0.59] [0.66, 0.78]

HS‑A 331 [0.27, 0.48] [− 0.02, 0.23] [0.36, 0.55]

Finland All 257 [0.66, 0.77] [0.57, 0.71] [0.66, 0.77]

MS 93 [0.23, 0.42] [0.07, 0.28] [0.23, 0.42]

HS‑A 103 [0.49, 0.74] [0.30, 0.62] [0.36, 0.66]

Sweden All 288 [0.19, 0.46] [− 0.03, 0.27] [0.24, 0.50]

MS 87 [0.22, 0.57] [0.01, 0.41] [0.22, 0.57]

HS‑A 181 [0.43, 0.59] [0.38, 0.55] [0.45, 0.61]

Spain All 246 [0.29, 0.60] [0.28, 0.59] [0.33, 0.62]

MS 164 [− 0.07, 0.48] [− 0.32, 0.25] [− 0.05, 0.49]

HS‑A 47 [0.57, 0.74] [0.52, 0.70] [0.59, 0.75]
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familywise error rate is 0.0036, which is less than 0.005. 
In addition, note that an increase in flexibility (F) has 
an ambiguous effect on potential flexibility (PF): A non-
flexible student could become flexible (leaving the PF rate 
unchanged), or a student with PF could leave PF for F, 
thus reducing PF. For this reason, Tables 5, 6 includes the 
row F + PF which measures flexibility for potentially or 
“fully” flexible students. We use the Fisher r-to-z trans-
formation to obtain an estimate of the significance of the 
differences between correlations.

On the whole, procedural flexibility and accuracy were 
strongly and positively correlated, r = 0.60 . At the coun-
try level (and combining middle and high school stu-
dents), procedural flexibility and accuracy were strongly 
correlated both in Finland ( r = 0.696 ) and Sweden 
( r = 0.704 ); in Spain, this correlation was significant but 
lower (r = 0.38) than in the other two countries (z > 5.20; 
p < 0.0001). Among middle school students, only in Fin-
land were procedural flexibility and accuracy strongly 
correlated ( r = 0.63 ); in Spain and Sweden, the cor-
relation was significant but of only moderate strength. 
Among high school students, only in Sweden were 
procedural flexibility and accuracy strongly correlated 
( r = 0.66 ); in Finland, this correlation was significant 
but lower (z = 2.36; p < 0.02). There was not a significant 
association between procedural flexibility and accu-
racy among Spanish high school students. A similar but 
weaker pattern emerges for spontaneous flexibility.

We interpret these results to indicate that flexibility 
and accuracy are generally related. The design of this 
study does not allow us to determine causality. How-
ever, regardless, it does appear that (a) greater accuracy 
is associated with greater procedural flexibility; (b) high 
accuracy is associated with the complete range of proce-
dural flexibility, both high and low; and (c) without some 
ability to accurately solve equations, it is unlikely that a 
student will be flexible. However, our results also point 
to a substantial degree of variation—both within and 
between countries, as well as in terms of age and aca-
demic track.

Discussion
The goals of this study were to investigate procedural 
flexibility in linear equation solving among a conveni-
ence sample of middle and high school students in 
Spain, Finland, and Sweden. Despite its identification 
as an increasingly important mathematics learning out-
come, the literature on flexibility and its development is 
relatively sparse. Lacking are international studies of stu-
dents’ procedural flexibility, particularly those that shed 
light on relationships that may exist between procedural 
flexibility, solving accuracy, and age/grade level. With the 
goal of addressing these gaps, our research questions in 

the present study explored whether accuracy and proce-
dural flexibility in linear equation solving varied by age, 
by academic track, and by country (RQ1 and RQ2), and 
the extent to which procedural flexibility and accuracy 
were related and how this relationship varied by age, by 
academic track, and by country (RQ3).

Our results indicate the following. First, we generally 
found expected relationships between students’ age (mid-
dle school vs. high school) and both procedural flexibility 
and accuracy. High school students in all three countries 
were generally more accurate and more flexible solvers 
than middle school students. Similarly, when looking 
only at advanced mathematics track students, we found 
that high school students were generally more accurate 
and flexible solvers than advanced math middle school 
students.

Second, and consistent with prior research, we found 
that flexibility levels were modest among all students, 
with spontaneous flexibility quite low. Across all three 
countries and age groups, students exhibited flexibility 
on about 1.8 (about 15%) of the 12 problems, were poten-
tially flexible on an additional 0.6 problems, and were 
spontaneously flexible on only 0.5 problems. Swedish 
and Finnish advanced track high school students had the 
highest flexibility, with each exhibiting flexibility on 36% 
(or about 4.3) of the equations on the assessment.

Third, our results indicate that knowledge and use of 
the standard algorithm for solving linear equations are 
widespread across all three countries. It appears that this 
standard algorithm is still the dominant method that is 
taught for solving equations, at least for the students in 
our sample from Spain, Sweden, and Finland. Relatedly, 
it also seems that the use of situationally appropriate 
methods for solving equations is present to some extent 
(particularly in Sweden and Finland) but is far less preva-
lent than the standard algorithm. In addition, fourth, we 
found that procedural flexibility and accuracy were posi-
tively and strongly correlated, where (in general) students 
with higher flexibility also had higher accuracy.

Fifth, our results also indicate interesting and impor-
tant difference between Spanish, Swedish, and Finnish 
students. Spanish students were the most accurate solv-
ers, and they achieved their high accuracy scores largely 
by implementing the standard algorithm. Spanish stu-
dents’ ability to accurately use the standard algorithm 
appeared to be already highly developed in middle school. 
Relatedly, Spanish students exhibited lower procedural 
flexibility and almost no spontaneous flexibility (when a 
student used a situationally appropriate strategy in the 
first solution attempt), indicating very infrequent use of 
situationally appropriate strategies. In addition, we found 
that the generally positive association between proce-
dural flexibility and accuracy was weakest for Spanish 
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students, for whom there was no significant relation-
ship between flexibility and accuracy. Furthermore, our 
results indicate that Finnish and Swedish students’ equa-
tion solving profiles—including procedural flexibility and 
accuracy—were quite similar. Students in both countries 
had moderate flexibility (particularly for advanced track 
mathematics students in high school), some spontaneous 
flexibility, and reasonable accuracy. Swedish high school 
students in the basic track were much more flexible than 
their Finnish peers; however, the sample was small, so 
this conclusion is quite tentative.

It is perhaps not surprising that the results from Finn-
ish and Swedish students are somewhat similar. Finland 
and Sweden have many cultural similarities, and per-
haps one could presume that their educational systems 
with regard to mathematics instruction are also quite 
similar. Both countries have adopted similarly structured 
inclusive compulsory basic education; textbooks used 
by schools in each country have some basic similarities; 
and in both countries teachers are given considerable 
autonomy in terms of the choice of and implementation 
of curriculum (Hemmi & Krzywacki, 2014; Pehkonen 
et  al., 2018). Yet at the same time, there are important 
differences between Finland and Sweden that one might 
presume would impact mathematics instruction in mid-
dle and high school, particularly procedural flexibility. 
For example, a comparative study about teacher educa-
tion in Finland and Sweden (Hemmi & Ryve, 2015; see 
also Hemmi & Krzywacki, 2014) found differences in 
how mathematics teachers are educated. In particular, 
it was found that Swedish mathematics teacher educa-
tors prioritized the importance of individual interaction, 
building on students’ ideas, and deriving mathematics 
from everyday situations, while in Finland, clarity, peda-
gogical routines, homework, and specific goals for every 
lesson were more highly valued. Another comparative 
study between Sweden and Finland found that in Swedish 
classrooms it is common to see students working through 
their textbooks independently at their own individual-
ized pace, whereas Finnish teachers favor whole-class 
instruction, where all students are engaged with the same 
mathematical tasks (Pehkonen et al., 2018). Furthermore, 
a comparative study of Swedish and Finnish high school 
mathematics textbooks (Bergwall & Hemmi, 2017) 
revealed that Finnish textbooks offered more opportuni-
ties for learning proof, while Swedish materials featured a 
higher variation in the nature and types of proof-related 
reasoning. One might hypothesize that the more individ-
ualized approach that is more typical in Sweden would 
offer fewer opportunities to compare different strategies 
and thus to cultivate procedural flexibility, yet the present 
results appear to indicate the opposite—that on average 
Swedish students have slightly more procedural flexibility 

than Finnish students. Understanding the relationships 
between instructional environments in mathematics 
classrooms in Finland and Sweden and these students’ 
procedural flexibility is an interesting area for continued 
study.

With respect to the case of Spain, why might Spanish 
students’ flexibility and accuracy in equation solving be 
so different than similarly aged students from Sweden 
and Finland? A main finding from the present study was 
that Spanish students (even beginning in middle school) 
were faster and more accurate equation solvers who 
tended to exclusively rely upon the standard algorithm. 
Unlike in Sweden and Finland, secondary mathematics 
teaching in Spain appears to be almost completely cen-
tered on routine application of methods to get the cor-
rect answer as fast as possible (González-Astudillo & 
Sierra-Vázquez, 2004). Spanish students are also used 
to working under time pressure to solve mathematics 
problems, often in the form of frequent timed written 
tests as well as standardized multiple-choice assessments 
(Rico, 1993). Spanish students’ relatively greater facility 
with efficient use of standard algorithms has not previ-
ously been reported in international comparative stud-
ies. Anecdotal reports on Spanish equation solving (e.g., 
Joglar et al., 2018; Ruiz & Bosch, 2007) suggest that teach-
ers place great emphasis on knowledge of and efficient 
use of standard algorithms and that Spanish students 
receive a lot of training and practice in how to quickly 
execute the standard algorithm. In addition, these results 
may be particularly influenced by the organization and 
design of the curriculum and the use of didactic materials 
in mathematics classrooms, especially textbooks. Despite 
some changes in the official mathematics curriculum, 
there is a great deal of inertia and resistance to change 
in Spanish instruction. For example, the algorithm for 
computing square roots, which has not appeared in the 
Spanish curriculum since 1997, is still present in many 
Spanish secondary mathematics classrooms. It is also the 
case that teachers, authors, and publishers understand 
textbooks as encyclopedic manuals, with lists of axioms, 
definitions, theorems, proofs, and routine exercises. As 
a result, most Spanish mathematics textbooks generally 
have a very methodical approach that prioritizes the use 
of traditional algorithms (López Beltrán et al., 2020).

In fact, it may even be the case that Spanish teach-
ers and students believe that standard approaches are 
more highly valued than the situationally appropriate 
approaches used in the present study. Spanish students 
might perceive that the “best” strategy is the one that 
reduces the likelihood of making mistakes or the one that 
the teachers and textbooks use more frequently, which 
may make the standard algorithm for solving linear 
equations the best default strategy for them. In support 
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of this latter point, our results indicate that Spanish stu-
dents had almost twice as high a chance of choosing the 
standard over the situationally appropriate strategy as 
compared to the other two countries (33% vs. 19%). Rela-
tively high PF-AB scores (e.g., on 1.1 of the 12 problems 
for Spanish advanced high school students, the highest 
PF-AB score for students in any country or age group) 
suggests that Spanish students, when asked to indicate 
whether the standard algorithm or a situationally appro-
priate strategy was best, chose the standard strategy.

The idea that a standard algorithm could be considered 
as the best approach to a problem, perhaps even better 
than what we refer to here as a situationally appropri-
ate approach, has a rational basis. After all, the stand-
ard algorithm is applicable to a wide range of equation 
types, while a particular situationally appropriate strat-
egy is applicable to a much narrower range of equations. 
As a result, it is generally possible to immediately start 
using a standard algorithm on a given equation, avoid-
ing the need to examine a problem’s structural features 
to determine whether one of several possible situation-
ally appropriate approaches could be used. Thus, if a 
standard algorithm has become well-practiced, a student 
may be able to quickly, effortlessly, and accurately imple-
ment it—and thus, it may indeed be the best approach 
to that problem, especially in a test-like context like the 
Tri-Phase Flexibility Assessment used here. This type of 
solving behavior—a strong preference for the standard 
algorithm, even amongst students who exhibited knowl-
edge of both standard and situationally appropriate 
approaches—was relatively uncommon amongst Finnish 
and Swedish students in this study, as well as among Chi-
nese students in a prior study using the same instrument 
(Xu et al., 2017). This suggests that it may be promising 
to further explore this issue. In particular, what criteria 
do students use in determining which strategies are the 
best? What role does prior mathematical experience play 
in this determination? Previous studies have found that 
mathematics experts showed relatively consistent criteria 
for identifying the most elegant or situationally appropri-
ate strategy as the best, while students held more diverse 
criteria; furthermore, some students also believed the 
standard strategy was better (as did many of the Span-
ish students in the present study) (Star & Madnani, 2004; 
Star & Newton, 2009). Researchers have suggested that 
such knowledge of situationally appropriate strategies 
might be related to both the sociocultural context of the 
learner and the learners’ prior knowledge (Hatano & Ina-
gaki, 1984; Newton et al., 2019; Verschaffel et al., 2009). 
Thus, it would be interesting to further investigate how 
students evaluate which strategy is the “best” and how 
cross-cultural factors and prior knowledge might affect 
students’ evaluation criteria.

Finally, it is also the case that differences in teacher 
preparation programs between the three countries could 
be a possible explanation for the presumed variation in 
teaching practices that may underlie some of our find-
ings. Recent studies (Muñiz-Rodríguez et  al., 2016), 
based on the TEDS-M study, show that secondary math-
ematics teacher preparation programs in Spain may be 
relatively ineffective, at least as compared to those in 
other countries, including Finland. Designing interven-
tions to address the problem of how to promote students’ 
procedural flexibility as part of professional development 
programs in Spain might be an interesting direction for 
further work.

Limitations
The following limitations suggest caution in the interpre-
tation of the results of this study. First, in this descriptive 
study, we relied on a relatively small convenience sam-
ple of students in each of the three countries that were 
examined. We also were unable to obtain demographic 
information about participating students including gen-
der, race, and socio-economic status. Future studies in 
this area should consider utilizing a larger and/or a rep-
resentative sample that includes a broad range of stu-
dent demographic indicators. The relationship between 
flexibility and these demographic factors is largely unex-
plored (cf. Star et  al., 2015). However, given prior work 
that more generally establishes links between mathemat-
ics achievement and students’ race, gender, and socio-
economic status (e.g., McGraw et  al., 2006; Reyes & 
Stanic, 1988), it is reasonable to assume that such a rela-
tionship would also exist for flexibility and is worthy of 
further investigation. Second, the design of the study was 
cross-sectional, which clearly limits our ability to make 
any substantive claims about the development of proce-
dural flexibility between middle and high school; the pre-
sent results are merely suggestive. Third, our focus here 
was on procedural flexibility in the mathematical domain 
of linear equation solving; it would be instructive to con-
tinue to explore flexibility and its development in multi-
ple countries in other or multiple mathematical domains. 
Fourth, the assessment that was used to measure flex-
ibility was a timed test. As a result, some students may 
not have had sufficient time to list all alternative strate-
gies that they knew for a given problem (see also Hästö & 
Palkki, 2019, for an in-depth analysis of student speed in 
the Finnish part of the data set). Furthermore, timed tests 
have been linked by some scholars to increased math 
anxiety, which in turn can negatively impact students’ 
performance (Boaler, 2014). Thus it may be the case that 
students would have exhibited greater flexibility had the 
assessment been administered in an untimed manner. 
Fifth, because of the different educational system being 
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examined, it was not always possible to compare identi-
cal samples; for example, the middle school students in 
the present study were in 8th grade in Spain and Fin-
land but in 9th grade in Sweden. Such differences in age 
across countries could explain some of the differences in 
flexibility that were found here. Finally, the distribution 
of students in each country at each level varied consid-
erably, which could have impacted results. For example, 
in Spain only 47 of the 246 students (19%) were in the 
advanced mathematics track in high school, while in Fin-
land and Sweden, these proportions were 40% (103 of 
258) and 63% (181 of 288), respectively.

Conclusions
Although it is increasingly recognized as an important 
construct of interest, there are many aspects of math-
ematical flexibility that are not well-understood. Par-
ticularly lacking in the literature on flexibility are studies 
that explore similarities and differences in students’ rep-
ertoire of strategies for solving algebra problems across 
countries with different educational systems and cur-
ricula. Although its use of a cross-sectional design and 
a convenience sample of students limits the generaliz-
ability of its results, this study yielded important insights 
about flexibility, including widespread use of a stand-
ard algorithm among participating students in all three 
countries that were investigated, substantial variation 
in the use of standard as well as situationally appropri-
ate approaches to linear equation solving, and positive 
correlations between the accuracy of students’ strategies 
and their flexible use of these strategies. Future research 
can continue to explore the extent that within- and 
between-country differences in flexibility can be linked 
to differences in countries’ educational systems, teach-
ing practices, and/or cultural norms around mathematics 
teaching and learning.
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