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ARTICLE

Observation of ballistic upstream modes at
fractional quantum Hall edges of graphene
Ravi Kumar1,9, Saurabh Kumar Srivastav 1,9, Christian Spånslätt 2,3,4, K. Watanabe 5, T. Taniguchi 5,

Yuval Gefen6, Alexander D. Mirlin3,4,7,8 & Anindya Das 1✉

The presence of “upstream” modes, moving against the direction of charge current flow in

the fractional quantum Hall (FQH) phases, is critical for the emergence of renormalized

modes with exotic quantum statistics. Detection of excess noise at the edge is a smoking gun

for the presence of upstream modes. Here, we report noise measurements at the edges of

FQH states realized in dual graphite-gated bilayer graphene devices. A noiseless dc current is

injected at one of the edge contacts, and the noise generated at contacts at length, L= 4 μm
and 10 μm away along the upstream direction is studied. For integer and particle-like FQH

states, no detectable noise is measured. By contrast, for “hole-conjugate” FQH states, we

detect a strong noise proportional to the injected current, unambiguously proving the exis-

tence of upstream modes. The noise magnitude remains independent of length, which

matches our theoretical analysis demonstrating the ballistic nature of upstream energy

transport, quite distinct from the diffusive propagation reported earlier in GaAs-based

systems.
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Transport in integer quantum Hall (QH) states occurs
through one-dimensional edge modes located at the edge
of the sample with downstream chirality dictated by the

magnetic field (Fig. 1a). This is also true for particle-like frac-
tional quantum Hall (FQH) states1,2. By contrast, so-called “hole-
conjugate” FQH states (i+ 1/2 < ν < i+ 1 with filling factor ν and
i= 0, 1, 2,..) are expected to host counter-propagating chiral edge
modes moving respectively along the downstream and upstream
directions. A paradigmatic example is the ν= 2/3 bulk state.
MacDonald and Johnson3,4 proposed that the edge supports two
counter-propagating modes: a downstream mode, ν= 1, and an
upstream ν= 1/3 mode (Fig. 1b-middle panel). The existence of
upstream modes is of fundamental importance5 and crucially
affects transport properties including electrical and thermal
transport6,7, noise, and particle interferometry8,9.

There has been an extensive effort over recent years to detect
experimentally upstream modes and their properties in GaAs/
AlGaAs quantum well based 2DEG. Two questions then come to
mind. The first is whether the upstream modes can be detected by
measuring the electrical conductance. Indeed, for the hole-
conjugate ν= 2/3 state, and for distances much smaller than
the charge equilibration length, the two-terminal electric con-
ductance G is expected10 to be 4=3 e2

h (instead of 2=3 e2
h ), con-

firming the counter-propagating character of edge modes. This
value was indeed measured, but only on engineered edges at
interfaces between two FQH states11. In experiments on a

conventional edge (the boundary of a ν= 2/3 FQH state), G ¼
2=3 e2

h is found to be robust and essentially equal to the filling
factor ν= 2/3, implying that charge propagates only in the
downstream direction. This topological value of 2=3 e2

h � ν e2
h is

expected universally in the regime of strong charge
equilibration10,12–14; it does not tell anything about the presence
or absence of upstream modes. For spin-unpolarized ν= 2/3 state
on a conventional edge in GaAs15 an increase of G from G ¼
2=3 e2

h to � 0:73 e2
h was detected at shortest lengths, thus providing

an indication of counter-propagating modes. However, the con-
ductance remained far from 4=3 e2

h . For a more conventional spin-
polarized ν= 2/3 state, also studied in Ref. 15, G remained equal
to 2=3 e2

h down to the lowest distances. The second question is
whether the upstream mode can be detected by measuring
the thermal conductance. Thermal transport on an edge may be
qualitatively different from charge transport10,13. Even if charge
propagates only downstream, energy may propagate upstream.
Measurements of thermal conductance GQ at ν= 2/3 and related
fillings yielded results fully consistent with the theory expected
from hole-conjugated character of these states with upstream
modes16–19. Still, measurements of GQ do not prove unambigu-
ously the existence of upstream modes. Ideally, for ν= 2/3, hole-
conjugate state with counter-propagating 1 and 1/3 modes is
favored by particle-hole symmetry, which is however only
approximate in any realistic situation. Note, however, that an
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Fig. 1 Edge profile, Device schematic, Hot spot, Noise spot, and QH response. a Left panel: density profile at the edge of a sample with co-propagating
mode structure for ν= 2, giving rise to two-terminal conductance of G2T= 2e2/h (cf. the top panel of (b)). Right panel of a: density profile at the edge of a
sample with counter-propagating mode structure for ν= 2/3, giving rise to the two-terminal conductance G2T= (4/3)e2/h for sample length L<lCeq, where
lCeq is the charge equilibration length (cf. the middle panel of (b)). Here, X is the coordinate across the edge. The bottom panel of b shows the structure of a
ν= 2/3 edge for lCeq<L<l

H
eq, where l

H
eq is the thermal equilibration length, giving rise to G2T= (2/3)e2/h with a downstream mode of conductance (2/3)e2/h

and a charge-neutral upstream mode. The downstream charge modes are represented by the red solid lines, while the upstream charge mode is the black
solid line and the charge-neutral upstream is the black dashed line in panel (b). The blue wiggly lines in the middle panel of b represent the interaction
between the counter-propagating modes. c Schematics of the device and measurement setup, where the device is set into ν= 2/3 FQH state. A noiseless
dc current is injected at contact C and terminates into the cold ground (CG) contact D. The upstream mode carries the heat from the hot spot (where the
energy is dissipated) near the contact C and reaches the noise spot close to contact B. The noise at this contact is then measured at a frequency of
~763 kHz using an LCR resonance circuit followed by amplifier chain and spectrum analyzer. d Transverse Hall resistance (Rxy) and longitudinal resistance
(Rxx) of the device-1 at 10 T.
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edge with two co-propagating ν= 1/3 modes is a fully legitimate
candidate1,2 too. Such a model would be consistent not only with
measured electrical conductance G ¼ 2=3 e2

h but also with the
thermal conductance measurements reported in Ref. 18. On a
broader scope, several alternative approaches attempting to
establish the presence of upstream current of heat at edges of a
variety of FQH states in GaAs/AlGaAs structures were employed
in Refs. 20–24. Those studies used structures involving quantum
point contacts or quantum dots. It is also worth noting
that candidates to the non-Abelian ν= 5/2 state possess a dif-
ferent number of upstream modes, and intensive current efforts
aim at understanding which of them is actually realized in
experiment17,25–30.

The emergence of the two-dimensional graphene platform
opened up a new era in the study of FQH physics31,32, with
different Landau level structure (as compared with traditional
GaAs heterostructures), new fractions, and enriched family of
quantum Hall states due to an interplay of spin, orbital, and valley
degrees of freedom33–38. Furthermore, graphene features an
unprecedented sharp confining potential and is thus expected to
exhibit bulk-edge correspondence without additional complex
edge reconstruction39,40. Also, in view of the sharp edge, one
expects strong interaction between the edge modes in graphene,
which may give access to regimes that are difficult to reach in
GaAs structures. Moreover, the presence of the layer degree of
freedom offers richer tunability in bilayer graphene31,41.
Remarkably, for graphene or graphene-based hybrid structures,
no direct evidence for the presence of upstream modes has so far
been reported. Here, we report a smoking gun signature of
upstream modes for hole-conjugate FQH states in bilayer gra-
phene and identify their nature, employing noise spectroscopy,
which is a purely electrical tool. The essence of our approach is as
follows42. When a bias is applied to an FQH edge segment, the
Joule heat is dissipated at the “hot spots” as shown in Fig. 1c. In
the presence of upstream modes, heat is transported upstream to
the so-called noise spot (Fig. 1c), where the heat partitions the
charge current and thereby generates noise.

We have carried out electrical conductance together with noise
measurements at integer QH states, electron-like state ν= 1/3
and hole-conjugate states ν= 2/3 and ν= 3/5, realized in a dual
graphite gated hexagonal-boron-nitride (hBN)-encapsulated
high-mobility bilayer graphene (BLG) devices in a cryo-free
dilution fridge at a base temperature of ~20 mK. For ν= 1/3 state
and integer QH states, we do not detect any excess noise along
the upstream direction. This is expected because the corre-
sponding edge states do not host upstream modes. By contrast,
for ν= 2/3 and ν= 3/5 FQH states, a finite noise is detected
which increases with increasing injected current. At the same
time, the averaged current in the upstream direction is zero. Thus,
noise detection unambiguously demonstrates that upstream
modes exist for the hole-conjugate FQH states in graphene and
only carry heat energy. Moreover, the magnitude of the noise
remains constant for two different lengths L= 10 μm and 4 μm
between the current injecting contact and noise detection point in
the same device. Moreover, our experimentally measured noise
magnitude matches remarkably well with our theoretical analysis.
This conclusively demonstrates the ballistic nature of upstream
modes, implying the absence of thermal equilibration on the
length scales employed in the experiment.

Results
Device and electrical response. For our measurements, we have
used two dual graphite gated hexagonal-boron-nitride (hBN)-
encapsulated bilayer graphene devices, which are fabricated using
the standard dry transfer pickup technique, see the Method

section and Supplementary Information (SI), section S1. To
observe, at modest magnetic fields, well-developed FQH states,
which are highly susceptible to disorder (below ν < 1), screening
layers are required. The presence of the top graphite gate serves
that purpose and improves the quality of the device43. The device
schematic is shown in Fig. 1c. The zero-magnetic-field gate
response of the devices is shown in SI (S1). From this data,
the mobility of the devices is extracted and found to be
~1.7 × 105cm2V−1s−1 and ~3 × 105cm2V−1s−1 for devices 1 and
2, respectively. First, we perform electrical conductance mea-
surements at a fixed magnetic field of 10 T using standard lock-in
amplifier. The electron density is tuned by the back graphite gate,
keeping the top graphite gate fixed at zero voltage. The measured
transverse Hall resistance (Rxy) and longitudinal resistance (Rxx)
of device-1 are shown in Fig. 1d for ν ≤ 1. Clear plateaus in Rxy are
developed for ν= 1, ν= 2/3, and ν= 1/3, accompanied with
zeroes in Rxx for ν= 1 and ν= 2/3, and a very low (in comparison
to h/e2) resistance of 30− 40Ω for ν= 1/3. Similarly, plateaus are
seen in Rxy for ν= 1, ν= 2/3, ν= 3/5 and ν= 1/3 for device-2, see
SI (S10), where Rxx reaches zero for ν= 1, ν= 2/3 and ν= 1/3,
and ~200Ω for ν= 3/5.

Next, we perform noise measurements at ν= 2/3, ν= 1/3, and
integer QH states for two different lengths L= 10 μm and 4 μm of
device-1. The Measurement scheme for L= 10 μm is shown in
Fig. 2a, where the device is set into ν= 2/3 QH state with d and u
representing counter-propagating downstream and upstream
eigenmodes. The measurement scheme for shorter length
L= 4 μm is obtained in the same device by changing the chirality
(see SI, S5). Before the noise measurements, we perform two
crucial checks: bias-dependent response of the ν= 2/3 FQH state
and chirality of charge transport. For this, a 100 pA AC signal is
injected on top of the DC bias current at contact C, keeping
contact D at the ground, and the AC voltage at contacts C and B
is measured. The voltage at contact C, shown as VC in Fig. 2c,
remains flat as a function of the DC bias current, which means
the conductance of the ν= 2/3 state does not change with the bias
current. This kind of response, implying that there is no transport
through the bulk (via states above the bulk gap), is a prerequisite
check for the noise measurements. This is in full consistency with
the value of the gap of ν= 2/3 at 10 T, which is around 5 K as
determined from the activation plot of Rxx (see SI, S9), i.e., well
above our largest bias voltage. Further, no detectable voltage is
measured at contact B (shown as VB in Fig. 2c), which
demonstrates that the charge propagates downstream only.
Similar results are obtained for the shorter length (4 μm) (see
SI, S5). Thus, if our ν= 2/3 edge hosts counter-propagating
modes (which is demonstrated below), the charge equilibration
length is much smaller than the size of our device.

Noise and analysis. To unambiguously demonstrate the existence
of an upstream mode, we injected a noiseless dc current at contact
C and measured the voltage noise, SV at contact B along the
upstream direction (Fig. 2a). For the noise measurement, an LCR
resonant circuit with the resonance frequency of ~763 kHz is
utilized together with an amplifier chain and a spectrum analyzer
(see methods and SI(S4))44–47. At zero bias, the equilibrium
voltage noise measured at the amplifier contact is given by18,44

SV ¼ G2ð4kBTRþ V2
n þ i2nR

2ÞBW ; ð1Þ

where kB is the Boltzmann constant, T is the temperature, R is the
resistance of the QH state, G is the gain of the amplifier chain,
and BW is the bandwidth. The first term, 4kBTR, corresponds to
the thermal noise, and V2

n and i2n are the intrinsic voltage and
current noise of the amplifier. At finite bias, the upstream mode
carries heat from the hot spot to the noise spot near the amplifier
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contact. This leads to the enhancement of stochastic inter-mode
tunneling processes in the noise-spot region, which creates an
excess noise, see below for detail. At the same time, the intrinsic
noise of the amplifier remains unchanged. Frequency indepen-
dence of the thermal noise and the excess noise allows us to
operate at a higher frequency (~763 kHz) so that we can eliminate
the contribution from flicker noise (1/f) which usually becomes
negligible for frequency above a few tens of Hz. The excess noise
(δSV) due to bias current is obtained by subtracting the noise
value at zero bias from the noise at finite bias, i.e δSV= SV(I)−
SV(I= 0). The excess voltage noise δSV is converted to excess
current noise SI according to SI ¼ δSV

R2 , where R ¼ h
νe2 is the

resistance of the considered QH edge.
In the absence of an upstream mode, the energy cannot flow

from the hot spot near C to the noise spot near B, see Fig. 2a, so
that no noise is expected. This is precisely what is observed for
ν= 1 and ν= 1/3 states, see Fig. 2d. At the same time, it is shown
in Fig. 2d that for the ν= 2/3 state there is a strong noise which
increases almost linearly with current. This is quite striking as at
contact B the time-averaged current is zero (Fig. 2c). This clearly
demonstrates that the ν= 2/3 edge hosts an upstream mode that
leads to an upstream propagation of energy, even though the
charge propagates downstream only. The mechanism of the noise
generation is as follows42. The heat propagating upstream from
the hot spot near C reaches the noise spot near B, inducing their
creation of particle-hole pairs propagating in opposite directions.
If the particle (or hole) is absorbed at contact B, while the hole
(or, respectively, particle) flows downstream, there will be a
voltage fluctuation at B detected by our noise measurement
scheme. Similarly, the noise along the upstream direction is
detected for ν= 2/3 and ν= 3/5 of device-2 as shown in SI(S10).
Note that the 1/3 state gives rise to detectable noise at a larger bias
current (Fig. 2d), which is, however, very weak: the noise
magnitude remains ~15 times smaller than the noise measured

for 2/3 state. This tiny increase in noise for 1/3 as compared to
ν= 1 in Fig. 2d may be attributed to a minute amount of bulk
contribution for 1/3 state. This is consistent with the bias
response of the 1/3 state shown in SI(S12) where the conductance
barely changes with the applied bias, thus confirming that the
bulk contribution to transport in the 1/3 state is indeed tiny.

To verify that the heat propagates from the hot spot to the
noise spot entirely via the edge, we have measured the noise in an
alternative configuration. In this setting, a noiseless dc current is
injected at contact A, while the contact C is electrically floating as
shown in Fig. 2b. In this situation, in order to induce the noise,
the heat would have to propagate upstream from the hot spot
near D to the noise spot near B. However, this path is “cut” by the
metallic contact C held at the base temperature. Thus, the only
way for the heat to propagate is via the bulk. As shown in Fig. 2e,
no detectable noise is measured at contact B, which rules out any
sizeable bulk conduction of heat in our device.

To inspect the length dependence of the noise, we have also
studied it for L= 4 μm of the same device-1 (see SI, S5). The data
are shown in Fig. 2d. It can be seen that the noise amplitude is
nearly identical for L= 10 μm and 4 μm. This is striking since it
shows that the heat propagates upstream ballistically and without
losses along the ν= 2/3 edge, from the hot spot to the noise spot.
There are two distinct mechanisms that could suppress the heat
propagation and thus the noise: (i) thermal equilibration between
the counter-propagating modes10,13,42,48 and (ii) dissipation of
energy from the edge to other degrees of freedom, including
phonons, photons, and Coulomb-coupled localized states49–51. Our
results show that none of these mechanisms is operative at bath
temperature (Tbath) ~ 20mK on the length scale of L= 10 μm. The
absence of thermal equilibration on the edge is in a striking contrast
with the very efficient electric equilibration emphasized above.

Up to now, all the data were at Tbath ~ 20 mK. Now, we explore
the effect of temperature. Figure 3a and b show the evolution of
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The solid black line is the theoretically calculated noise. e Noise measured along the downstream direction for ν= 2/3 for the scheme shown in Fig. 2b.
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the ν= 2/3 noise at L= 4 μm and L= 10 μm, respectively, with
increasing Tbath. At each temperature, the noise data in Fig. 3a
and b are fitted linearly for both positive and negative bias
current, and from the averaged slopes we quote the noise value at
ISD= ± 1nA in Fig. 3c for both L= 4 μm and L= 10 μm. The
linear fittings are shown in SI (S7). It is seen that the noise
remains constant and equal for both lengths up to Tbath ~ 50 mK.
We have verified [see SI (S6)] that the cooling of the electron
system remains efficient down to our lowest temperature, i.e.,
the electron temperature Te is very close to Tbath in the whole
temperature range of our measurements. In particular, for Tbath of
40 mK and 50 mK, the electron temperature Te is equal to Tbath.
For the lowest temperature, Tbath= 20 mK, we find, for the
ν= 2/3 state, Te= 22 mK, i.e., only slightly higher than Tbath.

For higher temperature, the noise decays with Tbath (or,
equivalently, with Te), and the decay is substantially faster for the
larger L. This decay can be attributed to one of two mechanisms
mentioned above: thermal equilibration within the edge (which
would imply a crossover from ballistic to diffusive regime of heat
flow) or loss of heat to the bulk. Both mechanisms are expected to
be enhanced at higher temperature18,49–51, but further work is
needed to understand which of them is dominant.

Our experiments thus clearly indicate that at low temperatures,
Tbath ≤ 50 mK, the upstream heat transport is ballistic and
lossless. To support this conclusion, we have calculated
theoretically the expected noise SI on the ν= 2/3 edge in this
regime. The theory extends that of Refs. 42,48 to the ballistic
(rather than diffusive) regime of heat transport corresponding to
vanishing thermal equilibration. In this regime, the backscattering
of heat takes place only at interfaces with the contact regions10,19.
We assumed the bias voltage V= (3h/2e2)ISD to be much larger
than T, which is well fulfilled for our typical current ISD ~ 1nA.
The result (see method section and SI (S13) for detail)

SI ¼ 0:146 eISD ð2Þ
is shown in Fig. 2d and is an excellent agreement with the
experimental data, thus giving a further strong support to our
interpretation of the experiment.

Discussion
Our measurements of noise present an unambiguous demon-
stration of the presence of an upstream mode in ν= 2/3 and
ν= 3/5 FQH edges in graphene. This mode is responsible
for the upstream heat transport that is at the heart of the noise
generation mechanism. Remarkably, the noise is temperature-
independent for Tbath ≤ 50 mK and remains the same for
L= 4 μm and L= 10 μm, demonstrating the ballistic and lossless
character of heat transport. The ballistic heat transport implies
the absence of thermal equilibration on the edge, in contrast
to full charge equilibration revealed by electric conductance

measurements. This is entirely consistent with the data of Ref. 18

on thermal conductance in graphene. There, a dramatic differ-
ence between the charge and heat equilibration lengths was
explained by the vicinity of a system to a strong-interaction fixed
point, where the bare modes of the ν= 2/3 edge are renormalized
into a charge and a neutral mode. Very recently, the absence of
thermal equilibration (notwithstanding very efficient electric
equilibration) was also reported for GaAs samples19.

Methods
Device fabrication and measurement scheme. For making encapsulated devices,
we used the standard dry transfer pick-up technique52,53. Fabrication of these
heterostructures involved mechanical exfoliation of hBN and graphite crystals on
an oxidized silicon wafer using the widely used scotch-tape technique. BLG and
graphite flakes were exfoliated from natural graphite crystals. Suitable flakes were
identified under the optical microscope. The thickness of the top and bottom
graphites were ~5 nm and ~20 nm, respectively, and the thickness of of the top and
bottom hBN flakes were of the order of ~20 nm. The smaller distance between
graphite gate and BLG layer (~20 nm thick bottom hBN) was a similar range to the
magnetic length scale of our experiment at 10 T, implying a sharp confining
potential at the physical edge of BLG. Details of the fabrication procedure are in SI
(S1). The BLG channel area of the stack was microscopically ironed using an AFM
(atomic force microscopy) tip in contact mode54, to remove any atomic level strain
or ripples or small bubbles from the channel area, which can arise due to the
stacking process. After this, for making contacts we used electron beam lithography
(EBL). After EBL, reactive ion etching (mixture of CHF3 and O2 gas) was used to
define the edge contact. Then, thermal deposition of Cr/Pd/Au (4/12/60 nm) was
done in an evaporator chamber having a base pressure of ~1− 2 × 10−7 mbar. The
optical image of the two measuring devices are shown in SI (S1). The schematic of
the device and measurement setup are shown in Fig. 1c. All the measurements
are done in a cryo-free dilution refrigerator having a base temperature of ~20mK.
The electrical conductance was measured using the standard Lock-in technique.
For Rxy, an ac current is injected at contact C (Fig. 1c), contact A is kept at the
ground, and we measure the potential difference across the contacts D and B. For
Rxx, we inject current at C, contact D is kept at ground, and we measure the
potential difference across the contacts A and B. The resistance value of Rxy for
ν= 2/3 is ≈39 kΩ= (3/2)h/e2, implying full charge equilibration among the
counter-propagating eigenmodes. Under no charge equilibration, one would get a
very different value of the resistance according to Landauer-Buttiker formalism, see
SI (S11) for detail. The noise is measured employing noise thermometry based on
an LCR resonant circuit at the resonance frequency of ~763 kHz and amplified by
homemade preamplifier at 4K followed by room temperature amplifier, and finally
measured by a spectrum analyzer. The details of the noise measurement technique
are mentioned in the SI (S4).

Theoretical calculation of noise. We assume the regime of strong charge equi-
libration along the edge segment, i.e., L � lCeq, where l

C
eq is the charge equilibration

length. Then, the dc noise S generated due to inter-mode tunneling along this
segment is given by

S ¼ 2e2

hlCeq

ν�
νþ

ðνþ � ν�Þ
Z L

0
dx ΛðxÞe�

2x
lCeq :

Here, h is the Planck constant, and ν+ and ν− are the total filling factors associated
with the downstream and upstream edge modes, respectively, with the bulk filling
factor ν= ν+− ν−. The exponential factor in the integral is a result of chiral charge
transport, ν+ ≠ ν−, and implies that the dominant noise contribution comes from

Fig. 3 Temperature dependence of the noise. a and b show the noise along the upstream direction at ν= 2/3, at different bath temperatures for L= 4 μm
and L= 10 μm, respectively. c Noise value at ISD= 1 nA, extracted from the averaged slopes (positive and negative bias) of the linear fittings of the noise
data (Fig. 3a and b), is plotted as a function of bath temperature for 4 μm (red circles) and 10 μm (blue circles) for ν= 2/3. The error bar here is the
standard deviation in averaged slope of the linear fit. The linear fittings of the noise data are shown in SI (S7).
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the noise spot—a region of size � lCeq near the contact that is located on the
upstream side of the segment (the voltage probe where the noise is measured).

The noise kernel Λ(x) is calculated by assuming a thermally non-equilibrated
regime. In this case, Λ becomes x-independent within the edge segment, so that the
x-integral is straightforwardly calculated, yielding for the ν= 2/3 edge the noise

S2=3 ¼
2e2

9h
ΛðV;ΔÞ ;

where the dependence of Λ on the bias voltage V and the interaction between edge
modes (parameter Δ) is noted. We take Δ ≈ 1, which corresponds to the strong-
interaction fixed point5, at which the heat equilibration length is much larger than
the charge equilibration length18, as observed experimentally. To determine the
dependence of Λ on the voltage, we first calculate the effective temperatures of the
downstream and upstream modes on the edge. They are found from the system of
energy balance equations that include the Joule heating at the hot spot as well as a
partial reflection of heat at interfaces between the interacting segment of the edge
and the contact region. The contacts are modeled in terms of non-interacting one
and 1/3 modes (see SI, S13). For Δ= 1, the corresponding reflection coefficient is
R ¼ 1=3. The resulting temperatures of the modes are

kBTþ ¼ 0:13eV ; kBT� ¼ 0:23eV :

The noise kernel Λ is now calculated by using the Green’s function formalism
for the chiral Luttinger liquid and the Keldysh technique. Expressing the result
in terms of the bias current ISD= (2e2/3h)V, we come to the final result given
by Eq. (2) of the manuscript. An analogous calculation for ν= 3/5 edge yields
SI= 0.138 eISD, which is in a very good agreement with the experiment too
(see SI, S13).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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