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Abstract—We propose a method to generate an acoustical
levitation trap at the same time as suppressing the sound in
a multi-wavelength region of space. The method uses a spherical
basis expansion of the sound field in the quiet zone, calculated
by translating individual source expansions of elements in a
transducer array. We show that it is possible to control the size
of the quiet zone with the truncation order of the expansion,
and explain the trade-off between field suppression in the quiet
zone and stiffness loss of the levitation trap. Measurements of
a generated sound field show the existence of a region of lower
sound pressure. Simulations demonstrate a contrast up to 50 dB
and sizes up to 60 mm for a 256 element array.

Index Terms—Acoustic Levitation, Transducer Arrays, Sound
Field Control

I. INTRODUCTION

Acoustic levitation is a useful technique for non-contact
manipulation of small lightweight objects. In most cases,
the levitation is done in free space, so that one or more
levitation traps can be designed without considering other
objects in the sound field [1, 2]. This is a feasible approach
when there are no external objects in the vicinity of the
target levitation object, and the traps for all target objects are
designed together. However, the free field assumption fails if
there are scattering objects present in the sound field. These
scattering objects can be e.g. required parts of the hardware
setup, external tooling, or display elements [3]. We proposed
earlier to use superposition of sound fields with mutual quiet
zones and levitation traps to levitate multiple objects, in which
case the additional scattering objects are the other levitating
objects [4, 5]. Work has been presented by other authors on
creating self-bending beams with physical acoustical lenses
to avoid scatterers that are close to the array [6]. One major
disadvantage of this acoustic lens approach is that the lens
is static, preventing reconfiguration of the levitation system
during operation.

One intuitive way to avoid unwanted scattering from exter-
nal objects in the sound field is to create a region of space
around the object where the sound pressure is low enough
that the scattering can be disregarded. This is preferable
to full modeling of the scattering from the object due to
computational complexity of such modeling, as well as errors
stemming from model inaccuracies. We propose a way to
create large quiet zones to avoid arbitrary scatterers in the
sound field.

II. METHOD

Similar to our earlier work on simultaneous levitation of
multiple objects using quiet zones, our proposed method is
based on optimizing the driving phases and magnitudes of
transducer elements in an array to minimize a cost function [4].
This cost function consists of two parts, one which describes
the levitation trap for the desired levitation object, and one
which describe the quiet zone. The choice of trap description
is in principle independent from the quiet zone description, as
long as it can be represented as a single-value real cost. In
this paper we choose to target small lightweight objects, due
to the simplicity of the cost function and wide spread use of
such methods [7, 8].

The quiet zone part of the cost function should represent the
overall quietness in the desired region. One way to describe
this would be to sample the sound pressure at strategically
chosen points in the region, and design a cost function from
those discrete points. However, such a sampling would have
to be dense enough so that the sound field cannot have
substantially different magnitude in between the sample points
and at the sample points. To avoid a dense sampling of the
quiet region we instead choose to represent the sound field as
a spherical basis expansion around the center of the desired
quiet region [9]. While an infinite expansion is needed to
fully represent the sound field, similar to a Taylor expansion,
a truncated expansion is sufficient to accurately describe the
sound field within a certain expansion radius [10]. Thus, the
sound field p at a point 7 close to the center of the desired
quiet zone 7 is described as
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where (f,é,é) are the spherical coordinates of the point 7
relative to the center or the quiet zone, j, are spherical
Bessel functions, Y, are spherical harmonics, & = w/c is the
wavenumber of the sound field, S} () are the local expansion
coefficients of the sound field, and NN is the truncation order
for the expansion.

Since the sound field in question is generated by a trans-
ducer array, it can be described as the superposition of the
sound fields generated by the individual transducers. Expand-
ing the sound field in the spherical basis functions is a linear
operation, thus the expansion coefficients of the total sound
field are the superposition of the expansion coefficients of the



fields generated by all the individual transducers. This can be
written in terms of normalized expansions as

Sy (rg) = Z QZST,Z (7)
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where (); is the complex driving amplitude for transducer [,
and S;’fl(f"q) is the local expansion of the field generated by
said transducer when driven at unit magnitude and reference
phase. The local expansions for all the individual transducers
are obtained by applying translation theorems for spherical
wave expansions to a single expansion representing the source
behavior. The details of translation theorems for spherical
wave expansions is too involved to cover in this paper, and we
refer the interested reader to other literature [10]. The source
expansion can stem from analytical derivations of the source
characteristics, or from fitting an expansion to measured data.
In this paper we used measured data of a single transducer
located in the central portion of the array, and performed
a least squares fit of the expansion coefficients. Since the
transducer geometry is rotationally symmetric, the fit was
performed under the assumption that the source radiation is
also rotationally symmetric. This fit produced a mean absolute
relative error of roughly one decibel when used to recompute
the sound field at the measured positions.

It is easy to see from (1) that minimizing the magnitude
of all the expansion coefficients S)*(7,) will also minimize
the overall magnitude of the sound field inside the expansion
radius. The summed square magnitudes of the expansion
coefficients is therefore a basic single value descriptor of
the quietness in the quiet zone. However, the expansion
coefficients are not of the same typical magnitude, which
causes the minimization of the summed square magnitudes
to prioritize certain coefficients over others. To counteract
this imbalance, the actual expansion coefficients are pre-scaled
with typical values before the reduction to a single quantifying
value. These typical values are calculated using the spherical
Hankel functions h,,, as

M, = Qmaxk|hn (k7)|\/47(2n + 1),

i.e. the magnitude of monopole source expansion coefficients
evaluated at the mean distance between the transducers in
the array and the center of the quiet zone, 7, scaled by the
maximum amplitude Qn.x of the transducer elements.

The cost function can finally be expressed as

n<N m (7 2
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where O; is a cost function for a trap, evaluated at the target
trap location 7%, and w is a weight controlling the relative
importance of the quiet zone and the trap. For simplicity,
we choose to reuse an earlier trap cost function proven to
create stable levitation traps [11, Eq. (5)]. By changing the
truncation order N for the sound field expansion, the region
considered for the quiet zone can be controlled, where a higher
truncation order considers a larger region. This cost func-
tion is minimized using a Broyden-Fletcher-Goldfarb-Shanno
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Fig. 1. Photograph of the array, a levitating red polystyrene ball, and the
measurement microphone in the quiet zone.
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Fig. 2. Mean sound pressure level on concentric spherical shells of varying
radius in the quiet zone for different orders of the quiet zone.

(BFGS) style algorithm, with the phases and magnitudes of
the transducer amplitudes as the variables [12, 13]. Since the
cost function (2) is non-convex, it is relevant to initialize the
optimization at a favorable state. We therefore choose to start
each minimization at phases and magnitudes which are known
to create a levitation trap at the trap position, i.e. a minimum of
the trap cost function O,. The quiet zone is thereafter included
one order at the time, each optimization stage starting from the
solution of the previous. Since the cost function only changes
slightly with each new order, this sequential optimization will
track local minima through the non-convex solution space.

III. RESULTS

The proposed method for quiet zone and levitation trap
generation was applied to an example setup, chosen to match
hardware setups used in many experiments. This consist of
a 16x16 planar transducer array operating at 40 kHz, with
transducers spaced in a square grid with an element spacing
of 10.5 mm. Note that the element spacing is larger that one
wavelength, which indicates that there is spatial aliasing in
the sound field, i.e. the array does not have optimal ability
to control the sound field. The trap and the quiet zone was
placed 50 mm and 67 mm above the array respectively, the
trap 30 mm to one side and the quiet zone 15 mm to the other,
relative to the center of the array, see Fig. 1.



1,000 4
~ —o— 5z
S 500 | 5y
S —— S,
=
5 1
£ 2w
: i ’\‘\—\A\‘\‘
H

50 | | | | ‘ ‘

0 5 10 15 20 25

Quiet zone order, N

Fig. 3. Trap stiffness for varying quiet zone order.

The performance in the quiet zone was evaluated by calcu-
lating the mean sound pressure level on concentric spherical
shells centered at the target quiet zone location. As seen in
Fig. 2, the sound pressure level is indeed lower in the center
of the quiet zone compared to outside the zone. It is also clear
that the zone order IV has the intended effect of changing the
overall size of the zone, where a higher zone order creates a
larger region where the sound pressure is suppressed.

The performance of the trap is shown in Fig. 3, and is
evaluated as the trap stiffness in the axial directions of the
coordinate system. It can be seen that the trap stiffness is
reduced when the quiet zone order is increased, i.e. the trap is
weaker when the quiet zone is larger. However, this reduction
of stiffness is not a significant issue since the forces around
the trap are several times stronger than the gravitational pull
on the object.

A slice of the sound field generated by the array around a
quiet zone of order 15 can be seen in Fig. 4 (simulated) and
Fig. 5 (measured). Both of these indicate the existence of a
quiet zone of similar qualitative shape and sound pressure, also
in line with Fig. 2. However, the high pressure region to the
left in the investigated slice has a lower sound pressure level in
measurements than in simulations. This could be caused by an
overestimation of the strength of the transducer elements used
in modeling, and effectively decreases the contrast between
quiet zone and the rest of the field when comparing the
measured field and the simulated field.

IV. DISCUSSION

When the two evaluations in Fig. 2 and Fig. 3 are considered
together, it is clear that the creation of a quiet zone has an
influence on the levitation trap. It can also be seen in Fig. 2
that the pressure level in the interior of the quiet zone is higher
for high zone orders compared to low orders, even though the
trap is weakened. This is likely due to the circumstance that the
the overall objective is more demanding, and it is not possible
to maintain the same trap strength, quiet zone size, and quiet
zone strength. In essence there is a trade off between trap
stiffness and the size and strength of the quiet zone, controlled
by the zone order N and the quiet zone weight w, see (2). If
the quiet zone weight is increased the suppression in the quiet
zone is enhanced for higher orders as well, but at the expense
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Fig. 4. Simulated sound field around the quiet zone.
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Fig. 5. Measured sound field around the quiet zone.

of the stiffness of the trap. This indicates that there is a limit
on how large the quiet zone can become before either the trap
or the quiet zone breaks down. For the investigated geometry,
the trap and the center of the quiet zone are approximately
48 mm apart. It is easy to understand that the quiet zone cannot
include the region too close to the trap and still be successful,
since the trap requires high sound pressures to exist.

The difference between the measured and simulated sound
fields seen in Figs. 4 and 5 has two likely causes: the directivity
model and the array calibration. Our modeling assumes that
all transducers have the same radiation characteristic, obtained
from measuring a single transducer in the array. It is likely
that there is some variation of the transducer behavior, in
particular between elements in the center of the array and
those along the edges. The array has transducers arranged in
a square grid which could introduce an azimuth dependency
in the transducer directivity, which would not show in our
measurements of the transducer directivity and the resulting fit
of the source expansion. Secondly, the elements in the specific
hardware array used to perform the measurement of the sound
field are only phase calibrated, not amplitude calibrated. This



means that some of the elements could be stronger or weaker
than assumed. A quiet zone is formed by mutual cancellation
of the sound fields from the transducers, and is thus more
sensitive to errors in the magnitude of each of the individual
fields, compared to e.g. the strength of a focus point or a
levitation trap. That there is still a quiet zone in the measured
field indicates that this approach is somewhat resilient to array
mis-match, which is preferable to approaches that require a full
characterization of each element in the array.

V. CONCLUSION

We have presented a method for generating a levitation trap
and at the same time suppressing the sound field in a different,
but nearby, region of space. Our experiments and simulations
indicate that the approach is reasonably effective, achieving
a sound pressure contrast of up to 50dB for small regions,
and about 30dB for regions of a diameter of approximately
40mm. While this is achieved at the expense of the trap
stiffness, it is still strong enough to levitate the target object
in the simulated cases as well as in the single experimentally
tested case. For heavier objects, it is possible to modify the
weights used in the numerical optimization to prioritize the
trap at the expense of a weaker quiet zone.

This method could be used to levitate multiple large objects
by superposing multiple sound fields with mutual traps and
quiet zones. This requires that a suitable cost function for
single large object levitation is used, as well as hardware with
sufficient sound power output and spatial control of the sound
field. If the levitated objects are close in proximity to each
other there can be multiple scattering occurring between the
objects, which is not directly handled by this approach. How-
ever, this could be handled by including the scattering in the
sound field model for the quiet zone. The steps required to do
so are not difficult in principle, but tedious in implementation.

REFERENCES

[1] Diego Martinez Plasencia et al. “GS-PAT: High-Speed
Multi-Point Sound-Fields for Phased Arrays of Trans-
ducers”. en. In: ACM Transactions on Graphics 39.4
(July 2020). 1SSN: 0730-0301, 1557-7368. DpoI: 10.
1145/3386569.3392492.

[2] Asier Marzo and Bruce W. Drinkwater. “Holographic
Acoustic Tweezers”. en. In: Proceedings of the National
Academy of Sciences 116.1 (Jan. 2019), pp. 84-89.
ISSN: 0027-8424, 1091-6490. po1: 10. 1073/ pnas .
1813047115.

[3] Rafael Morales et al. “LeviProps: Animating Levi-
tated Optimized Fabric Structures Using Holographic
Acoustic Tweezers”. en. In: Proceedings of the 32nd
Annual ACM Symposium on User Interface Software
and Technology. New Orleans LA USA: ACM, Oct.
2019, pp. 651-661. 1SBN: 978-1-4503-6816-2. DOI: 10.
1145/3332165.3347882.

(4]

(5]

(6]

(7]

(8]

Carl Andersson and Jens Ahrens. “A Method for Si-
multaneous Creation of an Acoustic Trap and a Quiet
Zone”. In: 2018 IEEE 10th Sensor Array and Multi-
channel Signal Processing Workshop (SAM). IEEE, July
2018, pp. 622-626. 1ISBN: 978-1-5386-4752-3. pOI: 10.
1109/SAM.2018.8448949.

Carl Andersson and Jens Ahrens. “Minimum Trap
Separation for Acoustical Levitation Using Phased Ul-
trasonic Transducer Arrays”. en. In: Proceedings of
the 23rd International Congress on Acoustics. Aachen,
Germany, Sept. 2019, pp. 1117-1123. 1SBN: 978-3-
939296-15-7.

Mohd Adili Norasikin et al. “SoundBender: Dynamic
Acoustic Control Behind Obstacles”. In: Proceedings
of the 31st Annual ACM Symposium on User Interface
Software and Technology. UIST ’18. New York, NY,
USA: Association for Computing Machinery, Oct. 2018,
pp. 247-259. 1SBN: 978-1-4503-5948-1. DOI: 10.1145/
3242587.3242590.

Asier Marzo et al. “Holographic Acoustic Elements
for Manipulation of Levitated Objects”. In: Nature
Communications 6.1 (Oct. 2015), p. 4316. por: 10.
1038/ncomms9661.

Julie R Williamson, Euan Freeman, and Stephen Brew-
ster. “Levitate: Interaction with Floating Particle Dis-
plays”. In: Proceedings of the 6th ACM International
Symposium on Pervasive Displays - PerDis ’17. New
York, New York, USA: ACM, June 2017. ISBN: 978-1-
4503-5045-7. pot: 10.1145/3078810.3084347.

Earl G Williams. Fourier Acoustics. Sound Radiation
and Nearfield Acoustical Holography. Elsevier, June
1999. 1SBN: 978-0-08-050690-6.

N A Gumerov and R Duraiswami. Fast Multipole Meth-
ods for the Helmholtz Equation in Three Dimensions.
Elsevier, 2005. 1SBN: 978-0-08-044371-3.

Carl Andersson and Jens Ahrens. “Reducing Spiraling
in Transducer Array Based Acoustic Levitation”. In:
2020 IEEE International Ultrasonics Symposium (IUS).
Las Vegas, NV, USA: IEEE, Sept. 2020, pp. 1-4. ISBN:
978-1-72815-448-0. por: 10.1109/1US46767 .2020.
9251489.

Ciyou Zhu et al. “Algorithm 778: L-BFGS-B: Fortran
Subroutines for Large-Scale Bound-Constrained Op-
timization”. In: ACM Transactions on Mathematical
Software (TOMS) 23.4 (Dec. 1997), pp. 550-560. DOTI:
10.1145/279232.279236.

Pauli Virtanen et al. “SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python”. en. In:
Nature Methods (Feb. 2020), pp. 1-12. 1SSN: 1548-
7105. poI: 10.1038/541592-019-0686-2.



