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Abstract

Numerical Model Reduction (NMR) is adopted for solving the non-linear microscale problem that arises from computational
omogenization of a model problem of porous media with displacement and pressure as unknown fields. A reduced basis is
btained for the pressure field using Proper Orthogonal Decomposition and the pertinent displacement basis is obtained using
onuniform Transformation Field Analysis. An explicit, fully computable, a posteriori error estimator is derived based on the

inearized error equation for quantification of the NMR error in terms of a suitably chosen energy norm. The performance of
he error estimates is demonstrated via a set of numerical examples with varying load amplitudes.

2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Computational homogenization; Error control; Model reduction

1. Introduction

Computational homogenization using the so-called “Finite Element squared” (FE2) procedure, cf. Feyel et al. [1],
is a known approach to multiscale modeling where the constitutive relation is replaced with subscale computations
carried out on Representative Volume Elements (RVE). The main advantage of FE2, compared to a fully resolved
olution, is the reduced computational cost, while still taking small scale processes or structures into account.
owever, the FE2 scheme can still be very computationally demanding for practical problems since the number of
VE problems rapidly increases with the macroscale mesh density. It is therefore of interest to investigate methods

o reduce the computational cost of solving the individual RVE problems.
A number of Numerical Model Reduction1 (NMR) methods have been proposed for reducing the solution

pace of a discrete RVE problem. Many strategies are based on superposition of characteristic “modes”. Waseem
t al. [2] and Aggestam et al. [3] presented reduced models for computational homogenization of linear transient
eat flow based on Spectral Decomposition (SD). Another example is the “eigendeformation-based reduced-order

∗ Corresponding author.
E-mail address: fredrik.ekre@chalmers.se (F. Ekre).

1 The terms Reduced Order Modeling (ROM) and Model Order Reduction (MOR) are also used frequently in literature. We have chosen
to use the term Numerical Model Reduction (NMR) to emphasize that we are using numerical methods to reduce the numerical problem,
rather than tampering with the underlying model.
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homogenization” technique introduced by Fish and coworkers [4,5], which relies on the concept of Transformation
Field Analysis (TFA) [6]. A similar approach, Nonuniform Transformation Field Analysis (NTFA), were presented
by Michel and Suquet [7,8]. Fritzen et al. [9–12] combined NTFA with Proper Orthogonal Decomposition (POD)
for visco-elasticity. Jänicke et al. [13] applied this approach to poroelasticity, whereby the pore pressure acts similar
o inelastic strains in the NTFA framework. The result of applying the reduced model to the RVE problem(s) is
hat the macroscale problem reduces to a single-phase continuum with the “mode coefficients” as internal variables.
he same POD-base reduction model is considered in this paper. Other reduction techniques have been studied

n the context of multiscale finite element methods by e.g. Nguyen [14] for parametrized PDEs and by Efendiev
t al. [15,16] for flows in heterogeneous media. A related topic is the concept of “hyperreduction”, which has also
een investigated for multiscale methods by, for example, Hernández et al. [17] and Memarnahavandi et al. [18],

where, in addition to reducing of the number of degrees of freedom, also the cost for evaluating the residual is
reduced. Reduced integration is, however, not considered in this paper.

Application of the reduced basis induces an error in addition to other modeling errors and the error inherent to
the underlying (FE) discretization. In order to verify results from the reduced model it is of interest to control and
quantify this error. Different error estimators have been developed in the context of multiscale modeling for different
model reduction techniques. For example, methods for estimating the error from POD type reduction techniques have
been presented by Abdulle et al. [19,20] for heterogeneous multiscale methods and by Boyaval [21] for numerical
homogenization. Ohlberger and Schindler [22] developed a method for estimating the error for localized reduced
basis multiscale methods. Error estimation based on the constitutive relation error have been proposed by Kerfriden
et al. [23] and Chamoin and Legoll [24]. For the estimator proposed in this paper, we focus entirely on estimation
of the NMR error and consider the fully resolved finite element solution to be the exact one, cf. e.g. Aggestam
et al. [3] and Ekre et al. [25,26].

In this paper, we consider a continuum mechanics model of porous media as the model problem, cf. e.g. Jänicke
et al. [13] but with non-linear permeability. We construct a reduced basis for the microscale problem using POD. The
main contribution of this paper is the derivation of an explicit error estimator for estimation of the error stemming
from the reduced basis. The estimate is based on the linearized version of the error equation together with an
auxiliary symmetric form, cf. e.g. Pares et al. [27–29] which serves as an approximate bound. From the auxiliary
form we obtain error bounds based on the discrete residual, cf. e.g. Jakobsson et al. [30]. We aim to base the estimate
on the “active” modes, i.e. only the modes used for the reduced solution, and will thus not consider hierarchical
approaches (e.g. by computing additional modes used solely for the purpose of estimating the error).

Throughout this paper, regular font is used to denote scalars (e.g. α), bold italic font is used to denote first and
second order tensors (e.g. u, ε), and bold font to denote fourth order tensors (e.g. E). The scalar product (single
contraction) is denoted with ‘·’, double contraction is denoted with ‘:’ and the outer product is denoted with ‘⊗’.
For first order tensors a, b, second order tensor A and fourth order tensor B, we thus have

a · b = ai bi , (1a)

(A · b)i = Ai j b j , (1b)

(B : A)i j = Bi jkl Akl , (1c)

(a ⊗ b)i j = ai b j , (1d)

for Cartesian components, where repeated indices are summed over (Einstein summation convention). A superposed
dot is used for time derivatives (e.g. u̇ =

du
dt ). Volume averaging of a field • is denoted as

⟨•⟩□ :=
1

|Ω□|

∫
Ω□

• dΩ , (2)

here Ω□ is the domain occupied by an RVE, and |Ω□| the corresponding volume.
The remainder of this paper is outlined as follows: Section 2 introduces computational homogenization for the

odel problem of porous media and defines the RVE problem, Section 3 introduces numerical model reduction
NMR) applied to the microscale (RVE) problem(s), Section 4 presents an error estimator for the NMR error in
erms of an energy norm, Section 5 presents numerical examples demonstrating the behavior and effectivity of the
stimator, and finally the paper is concluded in Section 6 with a summary and outlook for future work.
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2. Two-scale analysis based on computational homogenization

2.1. The model problem - strong and space–time weak formats

As a model problem we consider a continuum mechanics description of a linear-elastic porous medium, where
he pores are filled with a viscous fluid. We base our model on Jänicke et al. [13] which adapts Biot’s equations

for linear consolidation [31,32], with displacement u = u(x, t) and pressure p = p(x, t) as the primary fields

−σ (u, p) · ∇ = 0 ∀x ∈ Ω × (0, T ], (3a)

Φ̇(u, p) + ∇ · w(∇ p) = 0 ∀x ∈ Ω × (0, T ], (3b)

here σ is the Cauchy stress tensor, Φ the fluid storage function and w the seepage velocity. The two fields are
ubjected to standard boundary conditions on the Dirichlet (Γ (u|p)

D ) and Neumann (Γ (u|p)
N ) parts of the boundary,

espectively

u = upres on Γ (u)
D × (0, T ], t := σ · n = tpres on Γ (u)

N × (0, T ], (4a)

p = ppres on Γ
(p)
D × (0, T ], h := w · n = hpres on Γ

(p)
N × (0, T ]. (4b)

We consider linear constitutive relations for the stress, and fluid storage. The stress is given by

σ = E : ε[u] − αp I, (5)

here E is the constant elastic stiffness tensor, ε[u] = [u ⊗ ∇]s is the linear strain tensor and α is the Biot
oefficient. The storage function and seepage velocity for the liquid phase are given by

Φ = φ + α∇ · u + βp, (6a)

w = −K · ∇ p, (6b)

here φ is the (initial) porosity, K is the permeability tensor, and β is the effective compressibility parameter of
he fluid-filled pore space. α and β can be estimated in terms of the bulk moduli of the fluid, K f, and the solid,
K s, phase as follows:

α = 1 −
K
K s , (7a)

β =
φ

K f +
α − φ

K s . (7b)

In previous papers [13,26] the permeability tensor K has been constant. In this paper, however, we consider a
on-linear formulation and let K depend on the volumetric part of the strain, viz.

K (∇ · u) := f (∇ · u)K 0, f (∇ · u) :=
1
α2

0

(
α0 + ∇ · u

)2
, (8)

here α0 is a material parameter, and where K 0 = k I is a reference permeability.

emark. In the limit α0 → ∞ we obtain the classical linear formulation K → K 0. □

Finally we need an initial condition for Φ, viz.

Φ|t=0 = Φ0 = φ + α∇ · u0 + βp0. (9)

The standard weak format in space–time, corresponding to (3), reads: Find (u, p) ∈ U × P such that∫
I

∫
Ω

[
ε[v] : E : ε[u] − ∇ · v αp

]
dΩdt =

∫
I

∫
ΓN

v · tpres dΓdt ∀v ∈ V, (10a)∫
I

∫
Ω

[
qβ ṗ + ∇q · K (∇ · u) · ∇ p + ∇ · u̇ αq

]
dΩdt +

∫
Ω

[qΦ]|t=0 dΩ =∫
I

∫
ΓN

qhpres dΓdt +

∫
Ω

[qΦ0]|t=0 dΩ ∀q ∈ Q. (10b)
3
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The semi-discrete version of (10) is obtained by defining

U(t) := {v ∈ Uh : v = upres on Γ (u)
D }, (11a)

U0
:= {v ∈ Uh : v = 0 on Γ (u)

D }, (11b)

P(t) := {q ∈ Ph : q = ppres on Γ
(p)
D }, (11c)

P0
:= {q ∈ Ph : q = 0 on Γ

(p)
D }, (11d)

here Uh ∈ [H 1(Ω )]3 and Ph ∈ H 1(Ω ) represents the finite element discretization, and H 1 the space of functions
ith square integrable derivatives of order 0 and 1. The spaces used in (10) are consequently defined as

U := H 1(I ;U(t)), (12a)

V := L2(I ;U0), (12b)

P := H 1(I ;P(t)), (12c)

Q := {q(x, t) : q|t=0 ∈ P0, q|I ∈ L2(I ;P0)}. (12d)

ere, we introduced Bochner spaces for space–time functions, such that, e.g., H 1(I ; X ) = {v(x, t) : ∥v(•, t)∥X ∈

H 1(I )} and L2(I ; X ) = {v(x, t) : ∥v(•, t)∥X ∈ L2(I )} for a space X of spatial functions with suitable norm
•∥X . L2(I ) and H 1(I ) are the spaces of square integrable functions and functions of square integrable derivatives,

espectively, on the time interval I .

emark. In order to shorten notation, we henceforth adopt the convention that the trace is included in H 1(I ),
eaning that e.g., q ∈ H 1(I ;X) infers that q(0) and q(T ) exist and reside in X. □

.2. First order selective homogenization in the spatial domain

The single-scale problem in Section 2.1 is replaced by a two-scale problem. We introduce (i) running averages in
he weak form and (ii) scale separation via first order selective homogenization, following Larsson et al. [33]. As a
rst step we replace the single-scale problem (10) with the following, two-scale, problem: Find (u, p) ∈ UFE2 ×PFE2

uch that

A(u)(u, p; v) − L (u)(v) = 0 ∀v ∈ VFE2 , (13a)

A(p)(u, p; q) − L (p)(q) = 0 ∀q ∈ QFE2 , (13b)

here the space–time variational forms are defined as

A(u)(v, q; w) :=

∫
I

∫
Ω

[
a(u)
□ (v, w) − b□(q, w)

]
dΩdt, (14a)

L (u)(w) :=

∫
I

∫
ΓN

w · tpres dΓdt, (14b)

A(p)(v, q; r ) :=

∫
I

∫
Ω

[
m□(q̇, r ) + a

(p)
□ (q, v; r ) + b□(r, v̇)

]
dΩdt +

∫
Ω

[
m□(q, r ) + b□(r, v)

]⏐⏐⏐
t=0

dΩ , (14c)

L (p)(r ) :=

∫
I

∫
ΓN

rhpres dΓdt +

∫
Ω

[
m□(p0, r ) + b□(r, u0)

]⏐⏐⏐
t=0

dΩ . (14d)

n (14) we introduced pertinent space-variational RVE-forms, representing running averages on domains Ω□ located
t each macroscale spatial point x̄:

a(u)
□ (v, w) := ⟨ε[w] : E : ε[v]⟩□, (15a)

b□(q, v) := ⟨∇ · v α q⟩□, (15b)

m□(q, r ) := ⟨rβq⟩□, (15c)

a
(p)
□ (q, v; r ) := ⟨∇r · K (∇ · v) · ∇q⟩□. (15d)

In order to define the two-scale trial spaces UFE2 , PFE2 and the corresponding test spaces VFE2 , QFE2 , we introduce
rst order homogenization. However, to simplify matters we adopt selective homogenization, in the sense that it is
4
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only the displacement field u that is decomposed into macroscale and microscale parts, whereas p is represented
only as a fluctuation field. Hence, in each RVE, centered at macroscale coordinate x̄, we thus decompose u as

u(x̄; x, t) = uM(x̄; x, t) + uµ(x̄; x, t), (x, t) ∈ Ω□ × I, (16)

here we use first order homogenization for the macroscale part, viz.

uM(x̄; x, t) := ū(x̄, t) + ε̄(x̄, t) · [x − x̄], (17)

ith ε̄ := [ū ⊗ ∇]s. As to the pressure field we have

p(x̄; x, t) = pµ(x̄; x, t), (x, t) ∈ Ω□ × I, (18)

.e., the pressure field “lives” entirely on the subscale.

emark. In view of the two-scale parametrization, the integrals for, e.g., A(u) in Eq. (14) should be interpreted as

A(u)(v, q; w) =

∫
I

∫
Ω̄

1
|Ω□|

∫
Ω□

ε[δu(x̄; x, t)] : σ (u(x̄; x, t), p(x̄; x, t)) dΩdΩ̄dt, (19)

here consequently the RVE forms are parametrized with x̄, e.g., a(u)
□ (•, •) = a(u)

□ (•, •){x̄}. □

We are now in the position to define the two-scale ansatz and test spaces

UFE2 :=

{
u : u|Ω□ = uM[ū] + uµ, u|

Γ
(u)
N

= ū, uµ
∈ Uµ

□, ū ∈ Ū
}
, (20a)

VFE2 :=

{
v : v|Ω□ = vM[v̄] + vµ, v|

Γ
(u)
N

= v̄, vµ
∈ Vµ

□, v̄ ∈ V̄
}
, (20b)

PFE2 :=

{
p : p|Ω□ = pµ, pµ

∈ P□

}
, (20c)

QFE2 :=

{
q : q|Ω□ = qµ, qµ

∈ Q□

}
, (20d)

f. Ekre et al. [25]. The details of the ansatz and test spaces in (20) are discussed in sections 2.3 and 2.4.

.3. The macroscale (homogenized) problem

The macroscale problem is obtained from Eq. (13) by setting vµ
= 0 and qµ

= 0. Find ū ∈ Ū such that∫
I

∫
Ω

ε[v̄] : σ̄ (ū, uµ) dΩdt =

∫
I

∫
ΓN

v̄ · tpres dΓdt ∀v̄ ∈ V̄, (21)

here Ū and V̄ are the ansatz and test spaces for the macroscale problem. We omit the exact definitions of these
paces, since we henceforth in this paper focus solely on the local microscale RVE-problem. The homogenized
tress σ̄ is defined as

σ̄ {ε[ū]} := ⟨σ ⟩□, (22)

here σ̄ {ε̄} is implicit due to the history dependence.

.4. The microscale (RVE) problem

Since we shall (in this paper) be concerned only with the solution of the RVE-problem, we consider the situation
here uM from (17) is known, i.e. ū(t) and ε̄(t) are known functions in time (for the given RVE in question). The
roblem (13) thus reduces to that of finding (uµ, p) ∈ Uµ

□ × P□ that solve

A(u)
□ (uµ, p; vµ) = 0 ∀vµ

∈ Vµ

□, (23a)

A(p)
□ (uµ, p; q) − L (p)

□ (q) = 0 ∀q ∈ Q□, (23b)

here we introduced the RVE space–time variational forms

A(u)
□ (v, q; w) :=

∫ [
a(u)
□ (uM

+ v, w) − b□(q, w)
]
dt, (24a)
I

5
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A(p)
□ (v, q; r ) :=

∫
I

[
m□(q̇, r ) + a

(p)
□ (q, uM

+ v; r ) + b□(r, u̇M
+ v̇)

]
dt +

[
m□(q, r ) + b□(r, uM

+ v)
]⏐⏐⏐

t=0
,

(24b)

L (p)
□ (r ) :=

[
m□(p0, r ) + b□(r, u0)

]⏐⏐⏐
t=0

. (24c)

e adopt Dirichlet boundary conditions, for both uµ and p, and the spaces of spatial functions for the RVE problem
are consequently defined as

U0
□ := {v ∈ U□,h : v = 0 on Γ□}, (25a)

P□ := {q ∈ P□,h : q = 0 on Γ□}, (25b)

where U□,h and P□,h are the (spatially) FE-discretized function spaces. The trial and test spaces in (23) can be
expressed as

Uµ

□ := H 1(I ;U0
□), (26a)

Vµ

□ := L2(I ;U0
□), (26b)

P□ := H 1(I ;P□), (26c)

Q□ := {q(x, t) : q|t=0 ∈ P□, q|I ∈ L2(I ;P□)}. (26d)

3. Numerical Model Reduction

In this Section we present the NMR procedure for establishing the reduced version of the RVE problem in
Eq. (23). The Section is organized as follows: Section 3.1 introduces an alternative formulation of Eq. (23) utilizing
that Eq. (23a) is time invariant, Section 3.2 introduces the NMR-ansatz of p and uµ based on spatial modes,
Section 3.3 presents the explicit reduced RVE problem, Section 3.4 discusses the mode identification strategy,
Section 3.5 defines a projection operator onto the reduced space (used for error estimation, cf. Section 4), and
Section 3.6 summarizes the NMR strategy.

3.1. Preliminaries

We will now use the fact that Eq. (23a) is time-invariant, and does not contain any time derivatives, of u or p, to
reduce the problem further. As a preliminary step we introduce an implicit reduction of the displacement fluctuation
uµ. For any t ∈ I we define

uµ(t) = uµ

ε̄ (t) + uµ
p{p(t)}, (27)

where uµ

ε̄ (t) ∈ U0
□ satisfies

a(u)
□ (uµ

ε̄ (t), δuµ) = a(u)
□ (−uM(t), δu) ∀δuµ

∈ U0
□, (28)

nd the implicit function uµ
p is defined from

uµ
p{q} := uµ

p ∈ U0
□ : a(u)

□ (uµ
p , δu) = b□(q, δu) ∀δu ∈ U0

□. (29)

In summary, for a given RVE, we use the following decomposition of u

u = uM
+ uµ

= uM
+ uµ

ε̄  
=:uε̄

+uµ
p = uε̄ + uµ

p . (30)

Remark. We note, from (28), that uµ

ε̄ can be directly assessed in terms of unit strain perturbations, i.e.

uµ

ε̄ (x, t) =

ndim∑
i, j=1

û(i, j)
ε̄ (x)ε̄(t) : [ei ⊗ e j ], (31)

where the “unit fields” û(i, j)
ε̄ (= û( j,i)

ε̄ ) ∈ U0
□ are solved from

a(u)
□ (û(i, j)

ε̄ , δuµ) = −a(u)
□ (ei ⊗ e j · [x − x̄], δuµ) ∀δuµ

∈ U0
□ i, j = 1, 2, . . . , ndim. (32)
□

6
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With the displacement fluctuation implicitly known from p we can formulate a condensed version of the original
problem in (23): Find p ∈ P□ such that

A□(p, q) − L□(q) = 0 ∀q ∈ Q□, (33)

where we defined

A□(q, r ) :=

∫
I

[
m□(q̇, r ) + a□(q; r ) + b□(r, u̇ε̄ + uµ

p{q̇})
]
dt +

[
m□(q, r ) + b□(r, uε̄ + uµ

p{q})
]⏐⏐⏐

t=0
, (34a)

L□(q) :=

[
m□(p0, q) + b□(q, u0)

]⏐⏐⏐
t=0

, (34b)

ith

a□(q; r ) := a
(p)
□ (q, uε̄ + uµ

p{q}; r ). (35)

.2. NMR-ansatz

We now introduce the concept of Numerical Model Reduction (NMR) with the aim to reduce the computational
ost of solving each RVE problem (33). To this end we construct a reduced spatial basis for the pressure, and define

pR(x, t) as the approximation of p(x, t) with an expansion using NR modes

p(x, t) ≈ pR(x, t) =

NR∑
a=1

pa(x)ξa(t) ∈ P□,R := H 1(I ;P□,R), (36)

here {pa}
NR
a=1 is a set of linearly independent basis functions that span the reduced RVE space

P□,R := span{pa}
NR
a=1 ⊂ P□, (37)

nd where ξa are mode “activity coefficients”. The identification of the spatial modes pa will be discussed further
in Section 3.4.

In order to satisfy (29), and find uµ
p{p(t)}, we make the following ansatz

uµ

p,R(x, t) =

NR∑
a=1

uµ
a (x)ξa(t) (38)

where uµ
a (x) are (spatial) displacement modes and where ξa(t) are the same mode activity coefficients as those used

for the reduced pressure field. Due to linearity, the sequence of displacement modes can be solved from (29), i.e.
find uµ

a = uµ
p{pa} ∈ U□ such that

a(u)
□ (uµ

a , δuµ) = b□(pa, δuµ) ∀δuµ
∈ U0

□ a = 1, 2, . . . , NR. (39)

his corresponds to solving one stationary, linear, problem for each mode pa . We note that there is no need to
establish the full uµ

p{q} : P□ → U0
□.

Remark. We note that there is no reduction of the balance of momentum equation, and the residual of Eq. (23a)
is guaranteed to be zero. This follows from time invariance of Eq. (23a), the definition of the displacement
field (Eqs. (30), (38)) and the definition of the modes uµ

a (x) solved from the corresponding pressure modes pa

(Eq. (39)). □

3.3. Explicit form of the reduced subscale problem

With the approximations from the previous section we can, following the procedure in Jänicke et al. [13], define
the reduced equivalent of (23): Find pR ∈ P□,R such that
A□(pR, qR) − L□(qR) = 0 ∀qR ∈ Q□,R, (40)

7
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where Q□,R follows from (26d), with P□ replaced by P□,R. Hence, we can expand the test function q using the
spatial pressure modes, i.e. qR =

∑NR
a=1 paηa , and express (40) explicitly as the problem of finding the mode

coefficients ξb(t) ∈ H 1(I ), b = 1, 2, . . . , NR such that∫
I
ηa

[
m□(

NR∑
b=1

pb ξ̇b, pa) + a
(p)
□ (

NR∑
b=1

pbξb, uε̄ +

NR∑
b=1

uµ

b ξb; pa) + b□(pa, u̇ε̄ +

NR∑
b=1

uµ

b ξ̇b)
]
dt +

ηa(0)
[
m□(

NR∑
b=1

pbξb, pa)ξb + b□(pa, uε̄ +

NR∑
b=1

uµ

b ξb)
]⏐⏐⏐

t=0
− ηa(0)

[
m□(p0, pa) + b□(pa, u0)

]⏐⏐⏐
t=0

= 0

∀ηa ∈ X , a = 1, 2, . . . , NR, (41)

where

X := {v(t) : v|t=0 ∈ R, v|I ∈ L2(I )}. (42)

Eq. (41) can be formulated as a semi-discrete, non-linear, system of size NR as follows

M ξ̇ + R(ξ ) − f = 0, (43a)

M ξ 0
− f 0

= 0, (43b)

where ξ is the vector of unknowns, ξ = (ξ1, ξ2, . . . , ξNR ), and where

(M)ab = (M)ba = m□(pb, pa) + b□(pa, uµ

b ), (44a)

(R)a = a
(p)
□ (

NR∑
b=1

pb(ξ )b, uε̄ +

NR∑
b=1

uµ

b (ξ )b; pa), (44b)

( f )a = b□(pa, −u̇ε̄) =
[ndim∑

i j

b□(pa, −ei ⊗ e j · [x − x̄] − û(i, j)
ε̄ ei ⊗ e j )

]
: ˙̄ε, (44c)

( f 0)a =

[
m□(p0, pa) + b□(pa, u0 − uε̄)

]⏐⏐⏐
t=0

. (44d)

Symmetry of M follows from symmetry of m□(•, •), symmetry of a(u)
□ (•, •), and from the definition of the

isplacement modes in (39), i.e. b□(pa, uµ

b ) = a(u)
□ (uµ

a , uµ

b ) = b□(pb, uµ
a ).

The full two-scale model involves the solution of (reduced) microscale problems (41), typically one for each
acroscale quadrature point, in order to find homogenized stress σ̄ and the sensitivity w.r.t. the macroscale strain

∂σ̄
∂ ε̄

. In particular, the homogenized stress can be formulated as

σ̄ (t) = Ēε̄ : ε(t) +

NR∑
a=1

Ē p,a ξa(t), (45)

where the fourth order tensor Ēε̄ and the second order tensors Ē p,a can be computed in the “offline stage”, resulting
in efficient evaluation of the homogenized stress, i.e.

Ēε̄ = ⟨E⟩□ +

ndim∑
i j

⟨E : ε[û(i, j)
ε̄ ]⟩□ei ⊗ e j , (46a)

Ē p,a = ⟨E : ε[uµ
a ]⟩□ − ⟨pa⟩□ I, (46b)

where E is the fourth order stiffness tensor for linear elasticity.

3.4. Identification of the reduced basis

In this section we discuss the procedure of constructing the reduced basis. In this paper we will use Proper
Orthogonal Decomposition (POD), cf. Jänicke et al. [13], however there are other options. As an example, similar
to Ekre et al. [26], it is possible to find a basis using Spectral Decomposition also for the nonlinear problem by (i)

ignoring the coupling and (ii) using a constant permeability.

8
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The POD basis is extracted from a dataset of spatial pressure “snapshots” collected during fully resolved training
imulations where the RVE is subjected to prescribed macroscopic load meant to activate the typical behavior of
he material. For a dataset of NS snapshots p̂k := p(tk), k = 1, 2, . . . , NS we first form the correlation matrix C

with entries2

(C)kl = ⟨ p̂k p̂l⟩□ k, l = 1, 2, . . . , NS. (47)

he correlation matrix is used to solve the eigenvalue problem Cϕ = λϕ, from which we obtain eigenvalues λa

and eigenvectors ϕa , ordered based on the eigenvalues in decreasing order such that λ1 ≥ λ2, . . . . The final modes,
sed for the reduced pressure solution, are computed as

pa =

NS∑
k=1

p̂k(ϕa)k, a = 1, 2, . . . , NR. (48)

Remark. The number of modes NR is determined by truncation of the eigenvalues series, in practice when the
quotient λN /λ1 becomes “sufficiently small”. □

.5. Projection onto the reduced space

For the subsequent error analysis we define a projection operator ΠR : L2(Ω□) → P□,R such that, for any given
∈ L2(Ω□) and for any given reduced set P□,R, the projection ΠRq ∈ P□,R is defined by the following identity

m□(ΠRq, δq) = m□(q, δq) ∀δq ∈ P□,R. (49)

We also define the complementary operator

ΠC := I − ΠR (50)

where I is the identity operator. We note that for p, q ∈ L2(Ω□) the following identity holds

m□(p,ΠCq) = m□(ΠC p, q) (51)

since

m□(p,ΠCq)
(50)
= m□(p, q) − m□(p,ΠRq)

(49)
=

m□(p, q) − m□(ΠR p,ΠRq)
(49)
= m□(p, q) − m□(ΠR p, q)

(50)
= m□(ΠC p, q). (52)

3.6. Summary of NMR procedure

The NMR procedure is summarized in Fig. 1 where we highlight the following steps corresponding to the figure:

1. Training simulations solving Eq. (23) with representative loading while capturing pressure snapshots;
2. Computation of pressure modes pa(x) based on snapshot POD (Eq. (48)), and the corresponding displacement

modes uµ
a (x) (Eq. (39));

3. Pre-computation of fixed quantities based on the modes used for the solution and error estimation (e.g. M
and f for the discrete system (43));

4. Solution of the reduced system Eq. (43);
5. Estimation of the NMR error (see Section 4).

The figure also illustrates which steps can be performed in the offline stage and which steps belong to the online
stage.

2 Another common approach is to define the entries as the scalar product of the “nodal values”, i.e. (C)kl = p̂T
k

p̂
l
, where p̂

k
and p̂

l
are vectors containing the finite element representation of p̂ and p̂ , respectively.
k l

9
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Fig. 1. Schematic illustration of the major steps for establishing the reduced RVE problem.

. Estimation of the NMR error

The reduced solution based on the reduced basis is an approximation of the exact solution, which is an extra
ource of error in addition to e.g. space- and time-discretization errors, model errors, etc. In what follows we ignore
rrors stemming from other sources, and focus solely on the error introduced by NMR, by considering the solution
o the fully resolved (finite element) problem to be exact.

We define the exact error in the pressure as

gex(x, t) := p(x, t) − pR(x, t) ∈ P□, (53)

where p ∈ P□ is the exact solution, and where pR ∈ P□,R is the reduced solution. Since the problem is non-linear
he equation for solving the exact error is also non-linear. We will therefore base the error estimate on a linearized
rror equation.

The following building blocks are used in order to obtain the explicit error estimate:

• definition of the error and corresponding error equation (Section 4.1);
• definition of the approximate error solved from the linearized error equation (Section 4.1);
• definition of an auxiliary form and corresponding auxiliary error equation (Section 4.2);
• derivation of explicit estimates based on the auxiliary error equation (Section 4.3).

he steps of the procedure are summarized in Section 4.4.

.1. Linearized error equation and residual

Formally, the exact error gex must be solved from the following (non-linear) equation:

A□(pR + gex, q) − L(q) = 0 ∀q ∈ Q□. (54)

or estimating the error we will use the linearized version of (54) and define the approximate error g(x, t) ≈ gex(x, t)
hich is solved from the following problem: Find g(x, t) s.t.

A□,R(g, q) = R□(q) := L□(q) − A□(pR, q) ∀q ∈ Q□, (55)

here the linearized form is defined as follows

A□,R(g, q) := A′

□(pR; q, g) :=

[ d
dτ

A□(pR + τg, q)
]⏐⏐⏐

τ=0
=∫

I

[
m□(ġ, q) + a□,R(g, q) + b□(q, uµ

p{ġ})
]
dt +

[
m□(g, q) + b□(q, uµ

p{g})
]⏐⏐⏐

t=0
, (56)

ith

a□,R(g, q) := a′

□(pR; q, g) :=

[ d
dτ

a□(pR + τg, q)
]⏐⏐⏐

τ=0
=

⟨∇q · K · ∇g + ∇q · K ′
· ∇ p [∇ · uµ

{g}]⟩ . (57)
R p □

10
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The residual from Eq. (55) can be written explicitly as

R□(q) = L□(q) − A□(pR, q) =

[
m□(p0, q) + b□(q, u0)

]⏐⏐⏐
t=0

−∫
I

[
m□( ṗR, q) + a□(pR; q) + b□(q, u̇ε̄ + uµ

p{ ṗR})
]
dt −

[
m□(pR, q) + b□(q, uε̄ + uµ

p{pR})
]⏐⏐⏐

t=0
=∫

I

[
m□(− ṗR −

α

β
∇ · [u̇ε̄ + uµ

p{ ṗR}], q) + ⟨∇q · K · ∇ pR⟩□

]
dt

+

[
m□(p0 − pR +

α

β
∇ · [u0 − uε̄ − uµ

p{pR}], q)
]⏐⏐⏐

t=0
=∫

I

[
m□(Mt , q) + ⟨∇q · (−wt )⟩□

]
dt +

[
m□(M0, q)

]⏐⏐⏐
t=0

, (58)

here we defined

Mt := − ṗR −
α

β
∇ · [u̇ε̄ + uµ

p{ ṗR}], (59a)

wt := −K (∇ · [uε̄ + uµ
p{pR}]) · ∇ pR, (59b)

M0 := p0 − pR +
α

β
∇ · [u0 − uε̄ − uµ

p{pR}]. (59c)

or the linear problem, cf. Ekre et al. [26], it is possible to parametrize the residual w.r.t. {ξa(t)}NR
a=1 and ε̄(t) in

ime, and trivially define Mt to include also the contribution from wt without requiring any extra work in the online
tage. For this formulation, Mt and M0 in (59) can be parametrized. However, due to the non-linearity, wt cannot
e parametrized in the same (low) order.

Since Eq. (40) is assumed to be solved exactly we note that

R□(qR) = 0 ∀qR ∈ Q□,R, (60)

hereby the following Galerkin-like orthogonality holds:

R□(q) = R□(q) − R□(ΠRq) = R□(ΠCq) ∀q ∈ Q□. (61)

.2. Auxiliary symmetric form and auxiliary error equation

We now define an auxiliary form with the requirements that it should (i) define a norm, (ii) localize in time, and
iii) (approximately) bound A□,R from below. We define Â□(•, •) as follows:

Â□(g, q) :=

∫
I
â□(g, q)dt +

1
2
m□(g, q)|t=0 +

1
2
m□(g, q)|t=T , (62)

here we also defined

â□(g, q) := ⟨∇g · K 0 · ∇q⟩□. (63)

Â□ now defines the following global space–time norm

∥q∥ :=

√
Â□(q, q) =

√∫
I
∥q∥2

adt +
1
2
∥q∥2

m|t=0 +
1
2
∥q∥2

m|t=T (64)

ogether with the spatial norms ∥ • ∥a and ∥ • ∥m

∥q∥a :=

√
â□(q, q), ∥q∥m :=

√
m□(q, q). (65)

As we discussed earlier the auxiliary form should be a lower bound of the true tangent A□,R, i.e.

Â□(q, q) ≲ A′

□(pR; q, q) = A□,R(q, q). (66)

his approximation is motivated by the follow inequality for the limit p → 0:

Â□(q, q) ≤ lim A′

□(p; q, q), (67)

p → 0

11
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which holds for the auxiliary form, as defined by Eq. (62), since the bilinear form pertinent to the linearized problem

lim
p → 0

A′

□(p; q, q) =

∫
I

[
m□(q̇, q) + lim

p → 0
a′

□(p; q, q) + b□(q, uµ
p{q̇})

]
dt +[

m□(q, q) + b□(q, uµ
p{q})

]⏐⏐⏐
t=0

=∫
I

[
lim

p → 0
a′

□(p; q, q)  
=â□(q,q)

]
dt +

1
2

[
m□(q, q) + b□(q, uµ

p{q})  
≥0

]⏐⏐⏐
t=0

+
1
2

[
m□(q, q) + b□(q, uµ

p{q})  
≥0

]⏐⏐⏐
t=T

≥

∫
I
â□(q, q)dt +

1
2
m□(q, q)

⏐⏐
t=0 +

1
2
m□(q, q)

⏐⏐
t=T = Â□(q, q), (68)

here we used that (i) limp → 0 a
′

□(p; q, r ) = ⟨∇q · K 0 · ∇r⟩□, and (ii) b□(q, uµ
p{q}) = a(u)

□ (uµ
p{q}, uµ

p{q}) ≥ 0
rom Eq. (39).

We now define the auxiliary error equation for an auxiliary error representation ĝ: Find ĝ ∈ P□ such that

Â□(ĝ, q) = R□(q) = R□(ΠCq) ∀q ∈ Q□, (69)

here the right-hand side can be substituted due to the orthogonality property in (61). We note that the norm of the
uxiliary error is an approximate upper bound on the true error, i.e. ∥g∥ ≲ ∥ĝ∥. This follows from the definition
f the error equations, and the approximate bound from Eq. (66):

∥g∥
2

= Â□(g, g) ≲ A□,R(g, g) = R□(g) = Â□(ĝ, g) ≤ ∥ĝ∥∥g∥. (70)

n summary, we obtain the estimator ∥g∥ ≲ ∥ĝ∥, where the bound is guaranteed in the limit of linear response, cf.
kre et al. [26]. The bound can thus be considered reliable for moderate non-linearities. However, even for strong
on-linearities, we remark that ∥ĝ∥ reflects the full residual due to the coercivity of Â□(•, •).

A more conservative estimate can be obtained by replacing the inequality from Eq. (67) with

Â□(q, q) ≤
1
f −

A□,R(q, q), (71)

nd finding an estimate for f − < 1. This gives a bound that is valid also outside the limit p → 0. In place of
Eq. (70) we obtain

∥g∥
2

= Â□(g, g) ≤
1
f −

A□,R(q, q) =
1
f −

R□(g) =
1
f −

Â□(ĝ, g) ≤
1
f −

∥ĝ∥∥g∥. (72)

or the considered model problem, f − could be estimated by considering Eq. (8) and let

f −
= min

t∈I, x∈Ω□
f (∇ · u(x, t)). (73)

iscarding the skew-symmetric term, we may assume

a′

□(pR; q, q) ≥ f − â□(q, q), (74)

hich motivates Eq. (71).

.3. Explicit estimate

We shall now derive an explicit, fully computable, estimate for the (approximate) error using the auxiliary error
quation (69). From the definition of the norm we have

∥g∥ ≲ ∥ĝ∥ =

√
Â□(ĝ, ĝ) =

√∫
I
∥ĝ∥2

adt +
1
2
∥ĝ∥2

m|t=0 +
1
2
∥ĝ∥2

m|t=T . (75)

ince the auxiliary error equation localizes in time we shall in the following three sections derive upper bounds on
ĝ∥

2
a, ∥ĝ∥

2
m|t=0, and ∥ĝ∥

2
m|t=T , respectively. More specifically, upon considering (58) and (62) the problem in (69)
ocalizes into one problem for t = 0, one problem for each t ∈ I , and one problem for t = T .

12
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4.3.1. Auxiliary error equation at time t = 0
At time t = 0 the auxiliary error equation is reduced to the following problem: Find ĝ(0) =: ĝ0 ∈ P□ such that

1
2
m□(ĝ0, q) = m□(M0,ΠCq) ∀q ∈ P□. (76)

Using the identity from (52), and Cauchy–Schwartz inequality, we obtain the following upper estimate

∥ĝ0∥
2
m = m□(ĝ0, ĝ0) = 2m□(M0,ΠCĝ0) = m□(ΠC M0, ĝ0) ≤ ∥ΠC M0∥m∥ĝ0∥m, (77)

hich results in the following contribution to the global estimate in (75):
1
2
∥ĝ(0)∥2

m ≤ 2∥ΠC M0∥
2
m. (78)

emark. If the initial condition can be represented exactly using the reduced basis, for example if p(•, 0) = 0,
hen we obtain the trivial contribution 1

2∥ĝ(0)∥2
m ≡ 0 since M0 ≡ 0. □

.3.2. Auxiliary error equation at time t ∈ I
In the time interval the auxiliary error equation reduces to the problem of finding ĝ(t) =: ĝt ∈ P□ such that

â□(ĝt , q) = m□(Mt ,ΠCq) + ⟨∇ΠCq · (−wt )⟩□ ∀q ∈ P□. (79)

As discussed previously, for the linear problem (Ekre et al. [26]) it is possible to parametrize the residual w.r.t.
ime, and trivially project the full residual into an effective Mt (whereby wt = 0) without requiring any extra work
n the online stage. However, it is not possible to use that strategy for the non-linear problem since it would require
he solution of a (linear) problem of size N at each timestep. Instead we will propose a different strategy for shifting
ata from wt to Mt in Eq. (85) by using a decomposition of wt using POD.

We first decompose wt (x) at each time t as follows

wt (x) = ŵt (x) + w′

t (x), ŵt (x) ∈ W□ :=

M∑
a=1

wa(x)χa, (80)

here W□ := span{wa(x)}M
a=1 defines a spatial basis of M modes for the seepage, and where χa are the mode

ctivity coefficients. The new basis functions wa are obtained by employing POD (cf. Section 3.4) on a dataset of
eepage snapshots collected during either the (original) offline training stage, or during the simulation itself. For
ach time t , ŵt is thus defined as the projection of wt onto W□. The M mode coefficients χa are solved from3

⟨ŵt · K−1
0 · δŵ⟩□ = ⟨wt · K−1

0 · δŵ⟩□, (81)

i.e. a linear problem of size M ≪ N for each timestep.
To shift ŵ into a contribution to m□(•, •), we define ∆Mt ∈ P□ as the projection of ŵt onto P□

m□(∆Mt , q) = ⟨∇q · (−ŵt )⟩□ ∀q ∈ P□. (82)

With the definition of ∆Mt and ŵt we can rewrite the residual in Eq. (79) as follows

m□(Mt , q) + ⟨∇q · (−wt )⟩□ = m□(Mt , q) + ⟨∇q · (−ŵt − w′

t )⟩□ =

m□(Mt + ∆Mt , q) + ⟨∇q · (−w′

t )⟩□ = m□(M ′

t , q) + ⟨∇q · (−w′

t )⟩□, (83)

where we defined M ′
t := Mt + ∆Mt . Finally, from linearity, ∆Mt :=

∑M
a=1 Mt,aχa where the spatial modes

Mt,a ∈ P□ can be solved from the seepage modes wa

m□(Mt,a, q) = ⟨∇q · (−wa)⟩□ ∀q ∈ P□, a = 1, 2, . . . , M. (84)

The localized error equation (79) now gives the following contribution to the global norm

∥ĝt∥
2
a = â□(ĝt , ĝt ) = m□(M ′

t ,ΠCĝt ) + ⟨∇ΠCĝt · (−w′

t )⟩□. (85)

3 Ultimately we want to minimize w′
t = wt − ŵt in terms of ∥w′

t∥K−1
0

=

√
⟨w′

t · K−1
0 · w′

t ⟩□, and thus solve the coefficients from the
orresponding stationary point.
13
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The first term of (85) can be bounded using Cauchy–Schwartz inequality as follows

m□(M ′

t ,ΠCĝt ) = m□(ΠC M ′

t , ĝt ) ≤ ∥ΠC M ′

t∥m∥ĝt∥m, (86)

where the first identity follow from the orthogonality property of ΠC in (51). To proceed we need a relation between
∥ • ∥m and ∥ • ∥a. To this end we define the following eigenvalue problem

â□(ϕa, δp) = λam□(ϕa, δp) ∀δp ∈ P□, a = 1, 2, . . . , N , (87a)

m□(ϕa, ϕb) = δab a = 1, 2, . . . , N , (87b)

here (ϕa, λa), a = 1, 2, . . . , N are eigenpairs ordered such that λ1 ≤ λ2 ≤ · · · ≤ λN . We can compose any
∈ P□ as follows

q =

N∑
a=1

ϕaξa, (88)

and obtain a relation between ∥ • ∥m and ∥ • ∥a

∥q∥
2
m =

N∑
a=1

ξ 2
a =

N∑
a=1

λaξ
2
a

λa
≤

1
λ1

N∑
a=1

λaξ
2
a =

1
λ1

â□(q, q) =
1
λ1

∥q∥
2
a. (89)

ombining (86) and (89) gives the following upper estimate for the first term of (85)

m□(M ′

t ,ΠCĝ) ≤
1

√
λ1

∥ΠC M ′

t∥m∥ĝt∥a. (90)

The second term of (85) can similarly be bounded, using Cauchy–Schwartz inequality, as follows:

⟨∇ΠCĝt · (−w′

t )⟩□ = ⟨∇ΠCĝt · K
1
2
0 · K

−
1
2

0 · (−w′

t )⟩□ ≤√⟨
∇ΠCĝt · K 0 · ∇ΠCĝt

⟩√⟨
w′

t · K−1
0 · w′

t

⟩
= ∥ΠCĝt∥a∥w

′

t∥K−1
0

, (91)

here we defined

∥•∥K−1
0

:=

√
⟨• · K−1

0 · •⟩□. (92)

As the last step we need to relate ∥ΠCĝt∥a to ∥ĝt∥a. A first, conservative, option is to use the identity operator
in place of ΠC already in (85), since the right hand side of the residual can be substituted, cf. Eq. (61). In this case
we directly obtain

⟨∇ĝt · (−w′

t )⟩□ ≤ ∥ĝt∥a∥wt∥K−1
0

. (93)

Remark. This option requires that the identity operator is used in place of ΠC also in the bound for first term in
Eq. (90). □

A second, approximate, option is to simply assume that ∥ΠCĝt∥a ≤ ∥ĝt∥a which results in

⟨∇ΠCĝt · (−w′

t )⟩□ ≲ ∥ĝt∥a∥w
′

t∥K−1
0

. (94)

Combining the results from (90) and (93) or (94) with (85) we obtain the following upper bounds for the
time-interval contribution

∥ĝt∥a ≤
∥M ′

t∥m
√

λ1
+ ∥w′

t∥K−1
0

, ∥ĝt∥a ≲
∥ΠC M ′

t∥m
√

λ1
+ ∥w′

t∥K−1
0

. (95)

.3.3. Auxiliary error equation at time t = T
At time t = T the auxiliary error equation is reduced to the following problem: Find ĝ(T ) =: ĝT ∈ P□ such that

1
m□(ĝT , q) = 0 ∀q ∈ P□, (96)
2
14



F. Ekre, F. Larsson, K. Runesson et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114334

w
f

4

W
p
l

5

m
s

i

w

Table 1
Material parameters for the three material phases in the RVEs used for the numerical
examples.

Phase 1 (matrix) Phase 2/3 (inclusions)

G [GPa] 8.8 15.8
K [GPa] 9.6 16.2
φ [–] 0.2 0.1
K s [GPa] 36 36
K f [GPa] 0.022 2.3
k [m2 MPa−1 s−1] 2 0.033/0.0033
α0 [–] 0.2 0.2

which gives the following trivial contribution to the global norm:
1
2
∥ĝ(T )∥2

m ≡ 0. (97)

4.3.4. Final estimate of NMR error
Eq. (75) together with Eqs. (78), (95), and (97) gives the following estimates of the auxiliary error

∥ĝ∥ ≤

√∫
I
∥ĝ∥2

adt +
1
2
∥ĝ∥2

m|t=0 +
1
2
∥ĝ∥2

m|t=T =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
≤

√∫
I

[
∥M ′

t ∥m√
λ1

+ ∥w′
t∥K−1

0

]2
dt + 2∥ΠC M0∥

2
m =: Eest,

≲

√∫
I

[
∥ΠC M ′

t ∥m√
λ1

+ ∥w′
t∥K−1

0

]2
dt + 2∥ΠC M0∥

2
m =: EΠC

est ,

(98)

here Eest is a guaranteed estimate, and EΠC
est a sharper, but approximate, estimate of the auxiliary error. However,

rom (70) we know that both options are approximate upper bounds on the true error, i.e.

∥g∥ ≲ ∥ĝ∥ ≤ Eest, ∥g∥ ≲ ∥ĝ∥ ≲ EΠC
est . (99)

.4. Summary of error estimation procedure

The steps to obtain the final expression in (98) are summarized below:

• Linearization of the error equation, cf. Eq. (55) and definition of the approximate error g;
• Definition of an auxiliary symmetric and bilinear form Â□(•, •) that localizes in time, cf. Eq. (62), and the

auxiliary error representation ĝ;
• Explicit residual based estimates of the terms in Â□(•, •) (cf. sections 4.3.1, 4.3.2, and 4.3.3), with an extra

POD based projection of the seepage term in the residual, cf. Eq. (82).

e emphasize once again that the estimate is approximate upper bound, since, due to the non-linearity of the
roblem, the following approximations were introduced in the derivations: linearization of the error equation,
inearization around p = 0 when defining the auxiliary form Â, and assumption that ∥ΠCĝ∥a ≤ ∥ĝ∥a.

. Numerical examples

For the numerical examples we consider an RVE in three spatial dimensions consisting of gas saturated matrix
aterial (phase 1) with spherical, water saturated, inclusions of two different types (phases 2 and 3, respectively),

ee Fig. 2. The material parameters for the three phases are presented in Table 1.
In order to quantify the sharpness of the error estimate (as compared to the exact error) we define the effectivity

ndex as

η :=
Eest

E
, (100)
here Eest is the estimate (Eq. (98)), and E := ∥p − pR∥ the “exact” error.
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Fig. 2. RVE for the numerical examples with matrix Phase 1 matrix material (transparent) with spherical inclusions of Phase 2 (blue) and
Phase 3 (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Prescribed macroscale strain components used for training computations in the 11-direction, normalized with the amplitude A such that
maxt tr(ε̄(t)) = A. The same loading is used for the 22- and 33-directions. Snapshots are collected during relaxation i.e. for t > 1 × 10−6 s.

5.1. Training computations for basis extraction

The reduced pressure basis is constructed using POD where snapshots are extracted from training computations.
For the training we use a stress-relaxation test by ramping up the macroscale strain ε̄11(t), cf. Fig. 3, while keeping
the other components fixed to 0 (and similarly for ε̄22(t) and ε̄33(t)). Three different amplitudes of the loading
A = 0.01, A = 0.1, and A = 0.2 are considered, resulting in three different profiles for the pore pressure, see
ig. 4. In order to quantify the magnitude of the non-linearity, the volume average of the permeability coefficient

ntroduced in Eq. (8) is shown in Fig. 5.
The snapshots are collected from the “relaxation part” of the simulation, e.g. from the time steps where

> 1 × 10−6 s. From the snapshot dataset, with snapshots from all three training simulations, the POD basis is
xtracted as described in Section 3.4. In Fig. 6 the first pressure mode, p1, and the corresponding displacement
ode, uµ

1 are visualized.

.2. Example 1: Reduced solution of training simulations

As a first example we consider the macroscopic loading used for the training (see Section 5.1) and try to replicate
he training simulations using the reduced basis. The result are presented for different magnitudes A, and for
ifferent tolerances used as the cutoff in the “residual-shifting” POD basis for the seepage wt , see Section 4.3.2,
.e. λM/λ1 < TOL where M determines the resulting number of modes. The seepage POD is based on snapshots

rom the reduced simulation. In Figs. 7 the number of seepage modes M are visualized for different NR and for the

16
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g

Fig. 4. Volume-averaged pressure ⟨p⟩□, normalized with the bulk modulus K and the amplitude A, corresponding to the macroscopic loading

iven in Fig. 3 for three different amplitudes.

Fig. 5. Volume-averaged permeability coefficient ⟨ f ⟩□, corresponding to macroscopic loading given in Fig. 3, for three different amplitudes
A.

different loading amplitudes A. The exact error and the estimate and the resulting effectivity index η are plotted
in Figs. 8 and 9 for A = 0.01, in Figs. 10 and 11 for A = 0.1, and in Figs. 12 and 13 for A = 0.2. We note
that as the amplitude increases the exact error (and the estimates) also increases, i.e. the basis performs worse for
higher non-linearities. The figures show the importance of the residual shifting POD: using a better basis, in this
case using a lower tolerance leading to more modes, have a significant impact on the estimate and the effectivity
index.

5.3. Example 2: Combined macroscopic loading

In order to test the effectiveness of the reduced basis we also try a different macroscopic loading where the
macroscopic strains ε̄11, ε̄22, and ε̄33 are varied according to Fig. 14. The same amplitudes used for the training
is also used to define this loading (A = 0.01, A = 0.1, and A = 0.2), where each amplitude approximately
corresponds to same maximum averaged pressure ⟨p⟩□, see Fig. 15, and the same maximum averaged permeability
⟨ f ⟩□, see Fig. 16.

The exact and estimated error in energy norm is plotted in Fig. 17 for A = 0.01, in Fig. 18 for A = 0.1,
and in Fig. 19 for A = 0.2. In this example only the POD threshold λM/λ1 < 10−12 is used for the seepage

−
basis. The figures also include results from the bound given in Eq. (72), i.e. the estimate is scaled with f =

17
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Fig. 6. The first mode shapes visualized on the yz-plane in the middle of the RVE: p1(x) top left, uµ

1,x (x) top right, uµ

1,y (x) bottom left,
and uµ

1,z(x) bottom right.

Fig. 7. Example-1: Number of seepage modes M obtained in the seepage POD, for the different tolerances and the different amplitudes A,
as a function of number of modes NR used for the pressure approximation.
18
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P

P

Fig. 8. Example-1: Exact and estimated error in energy norm for amplitude A = 0.01, for different tolerances for generating the seepage
OD basis in the residual shifting.

Fig. 9. Example-1: Effectivity index for the estimated error in energy norm for A = 0.01, for different tolerances for generating the seepage
POD basis in the residual shifting.

Fig. 10. Example-1: Exact and estimated error in energy norm for amplitude A = 0.1, for different tolerances for generating the seepage
OD basis in the residual shifting.
19
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Fig. 11. Example-1: Effectivity index for the estimated error in energy norm for A = 0.1, for different tolerances for generating the seepage
OD basis in the residual shifting.

Fig. 12. Example-1: Exact and estimated error in energy norm for amplitude A = 0.2, for different tolerances for generating the seepage
OD basis in the residual shifting.

Fig. 13. Example-1: Effectivity index for the estimated error in energy norm for A = 0.2, for different tolerances for generating the seepage
OD basis in the residual shifting.
20
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a

m

Fig. 14. Example-2: Prescribed macroscale strain components used for prediction normalized with the amplitude A such that maxt tr(ε̄(t)) = A.

Fig. 15. Example-2: Volume-averaged pressure ⟨p⟩□, normalized with the bulk modulus K and the amplitude A, corresponding to the
macroscopic loading given in Fig. 14, for three different amplitudes.

Fig. 16. Example-2: Volume-averaged permeability coefficient ⟨ f ⟩□ for the macroscopic load case given in Fig. 14, for three different
mplitudes A.

inx∈Ω□,t∈I f (∇ ·u(x, t)). However, we note the estimate is robust also without this, and, since f − locally becomes
very small for the higher amplitude loads, the resulting effectivity is very poor.
21
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Fig. 17. Example-2: Exact and estimated error in energy norm (left) and effectivity index (right) using amplitude A = 0.01. The more
onservative estimator is obtained through scaling by the factor f −.

Fig. 18. Example-2: Exact and estimated error in energy norm (left) and effectivity index (right) using amplitude A = 0.1. The more
onservative estimator is obtained through scaling by the factor f −.

Fig. 19. Example-2: Exact and estimated error in energy norm (left) and effectivity index (right) using amplitude A = 0.2. The more
onservative estimator is obtained through scaling by the factor f −.

. Conclusions and outlook

In this paper we have presented NMR applied to the RVE problem arising from computational homogenization
f porous media with a non-linear constitutive relation for the seepage. We derived an explicit, fully computable,
posteriori error estimator based on the linearized error equation for estimation of the NMR error in terms of the

nergy norm pertinent to the linearized problem. The results for the chosen numerical examples demonstrate the
erformance of the estimator and it was shown that the estimator overestimates the true error between one and two
rders of magnitude. For the studied model problem, the estimator is conservative also for strong non-linearities.
22
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As shown for the linear problem [26], the effectivity of the estimator can be improved by including spectral
odes in the reduced basis. This should be investigated also for the non-linear problem. Left for future work is also

o further develop the estimator for estimation of user-defined quantities of interest (cf. [26]), and the application of
he estimator to a full-fledged nested FE2 procedure (cf. [25]), which would require taking care of error transport
etween the two scales. Finally, the procedure can be applied to other important applications of non-linear transient
roblems, accounting for e.g. inelastic deformations.
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