
Evaluation of high level methods for efficient planning as satisfiability

Downloaded from: https://research.chalmers.se, 2025-06-18 04:27 UTC

Citation for the original published paper (version of record):
Erös, E., Dahl, M., Falkman, P. et al (2021). Evaluation of high level methods for efficient planning
as satisfiability. IEEE International Conference on Emerging Technologies and Factory Automation,
ETFA, 2021-September. http://dx.doi.org/10.1109/ETFA45728.2021.9613254

N.B. When citing this work, cite the original published paper.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

Evaluation of high level methods for efficient
planning as satisfiability

Endre Erős1, Martin Dahl1, Petter Falkman1 and Kristofer Bengtsson1

Abstract—Fast planning algorithms play a key role in intelli-
gent automation systems where control sequences are constantly
calculated. In order to determine which algorithms increase
planning performance, we evaluate and compare several high
level planning methods on a set of standard benchmarks. We
focus on planning as satisfiability as the leading approach for
solving difficult planning problems.

Index Terms—automated planning, planning as satisfiability,
artificial intelligence, SAT solvers, intelligent automation.

I. INTRODUCTION

In order to create truly flexible automation systems, they
need to include planning algorithms that can compute sched-
ules and sequences of operations automatically. Taking cor-
rectness of planning algorithms for granted, efficiency is the
key trait such algorithms must have in order to be applicable in
the industry. Hence, this paper investigates and evaluates per-
formances for some commonly used techniques in automated
planning such as invariants, skipping steps and subgoaling.

Planning is a deliberative decision making process which
yields sequences of operations that drive state change towards
a goal. Planning as satisfiability, where planning problems are
encoded as logical formulas and handled by SAT solvers [1]
was introduced by Kautz and Selman in 1992 [2]. In a SAT
based approach, a solver determines whether there exists a
satisfiable assignment for a given Boolean formula that en-
codes the plan. It turned out to be quite a valuable contribution
since SAT based planning excels in solving hard combinatorial
planning problems with a high number of variables [3].

Over the last two decades, many methods have emerged
with the aim to improve the efficiency of SAT solving [4]
and SAT based planning [5]. Additionally, coupling a SAT
solver with theory solvers, for example theories such as
linear arithmetic, bit vectors, or arrays, SMT based planning
techniques [6] can encode and tackle real-world scenarios and
complex application domains [7].

In this paper, we investigate and compare several relevant
methods for planning as satisfiability. We do not however
study the detailed tuning of these solvers, but instead focus
on what we call high level methods to improve the planning
performance, which for example include the structure of the

1Endre Erős, Martin Dahl, Petter Falkman and Kristofer Bengtsson
are with Chalmers University of Technology, Electrical Engineering, Sys-
tems and Control Department, Automation Research Group, Gothen-
burg, Sweden. endree@chalmers.se, martin.dahl@chalmers.se, pet-
ter.falkman@chalmers.se, kristofer.bengtsson@chalmers.se

model and how to call the solvers. To the extent of our
knowledge, there are no other studies that perform such an
evaluation and comparison of high level planning methods.
Thus, we hope that our effort will be useful, particularly for
those who aim to implement new satisfiability based planners.

The paper is organized in the following way. The next
section presents, evaluates, combines and compares planning
methods in an evolutionary way, using a number of standard
planning benchmarks. Some drawbacks and special combi-
nations are discussed in Section 3. Section 4 presents the
combined results and the paper is concluded in Section 5.

II. PLANNING METHODS

In planning as satisfiability, a planning problem is encoded
into a logical formula Fj , where j represents the number of
plan steps. This formula is then tested for satisfiability by
a solver, which either returns UNSAT for a failed planning
attempt or it returns SAT and provides a satisfying assignment
which is parsed to yield a plan. If the result from the solver
is UNSAT, the planning problem is encoded into a logical
formula of length j+1 and tested again by the solver. This goes
on sequentially until the solver returns SAT with a satisfying
assignment, or until a maximum limit on the plan length is
breached. More formally:

Definition 2.1: A planning problem Ψ with a plan length j
can be encoded by the logical formula Fj :

Fj = I(t0) ∧ (

j−1∧
k=0

m∨
n=0

(Tn(tk, tk+1))) ∧G(tj) (1)

where I are clauses that encode the initial state at time-step
t0, Tn are clauses that encode the m transitions of the model
for all successive time-steps tk and tk+1, and G are clauses
that encode the goal state at the horizon tj .

We are going to explore how modifications to this planning
approach affect the efficiency of planning, and in some cases
ease modeling. In order to do that, we implement a set of
algorithms which make use of different planning methods.
Each subsection explores some methods and compares their
performances on a set of classical planning benchmarks.

The benchmarks that are chosen to test the methods are:
gripper [8], blocksworld [9], rovers [10], barman [11] and
childsnack [12]. These benchmarks are chosen to represent
different strengths and weaknesses of the following planning
methods. An overview of evaluated methods is shown in
Figure 1.978-1-7281-2989-1/21/$31.00 ©2021 IEEE

Fig. 1. Planning methods. There is a total of 48 method combinations,
however we do not investigate all combinations in this paper. Starting from
the left side, we evolve our algorithms with methods shown in this figure.

A. Incremental vs. sequential base

As mentioned earlier, a satisfiability based planning algo-
rithm sequentially increases the plan length until a plan is
found or until a limit is breached. The sequential algorithm
(Algorithm 1) takes a planning problem and returns a result
that either holds a plan or is empty, which represents that no
solution was found.

An integer variable step keeps track of the step in the plan
that the algorithm is currently at. At line 2 of Algorithm 1,
the main loop checks whether the limit on the plan length is
breached. It is important to limit the plan length so that the
algorithm can terminate in case a solution can’t be found, or
where it takes a long time to calculate it.

A context ctx is created at line 3 to which the algorithm
asserts a number of constraints, as shown between lines 4 and
9. The solver now checks the consistency of all assertions
in the context ctx and if a satisfiable assignment exists, it is
parsed into a plan and returned by the algorithm at lines 13
and 14. Otherwise, if no satisfiable assignment exists, the step
variable is incremented by 1 and the whole procedure repeats
while the statement step ≤ smax holds.

Algorithm 1: Sequential
Input: (i, g, M, smax)
Output: planning result

1 let step := 0;
2 while step ≤ smax do
3 let ctx := new context;
4 add constraint (ctx, i, 0);
5 add constraint (ctx, g, step);
6 let m disj := disjunction for trans in M;
7 for s in (0 to step) do
8 add constraint (ctx, m disj, s);
9 end

10 if check(ctx) == UNSAT then
11 step += 1;
12 else
13 let planning result = parse(ctx.get model);
14 return planning result;
15 end
16 end
17 return new empty planning result;

Algorithm 2: Incremental
Input: (i, g, M, smax)
Output: planning result

1 let step := 0;
2 let ctx := new context;
3 add constraint (ctx, i, step);
4 let bp := new backtracking point;
5 add constraint (ctx, g, step);
6 while step ≤ smax do
7 step += 1;
8 if check(ctx) == UNSAT then
9 ctx.backtrack to level bp;

10 let m disj := disjunction for trans in M;
11 add constraint (ctx, m disj, step);
12 let bp := new backtracking point;
13 add constraint (ctx, g, step);
14 else
15 let planning result = parse(ctx.get model);
16 return planning result;
17 end
18 end
19 return new empty planning result;

The downside of Algorithm 1 is that for every iteration
where an assignment is not found, a new context has to
be created. Gocht and Balyo showed in 2017 [13] that it
is possible to achieve a significant speed-up by using an
incremental SAT-solver. Instead of throwing away the context
with all the accumulated data from previous results, the same
context is used and constraints are just added on top.

The incremental algorithm (Algorithm 2) utilizes an incre-
mental solver which makes it possible to add a backtracking
point in each step so that the solver can choose which part of
the context to save, and thus learn from previous attempts. In
summary, some advantages of an incremental base solver are:

1) learnt clauses are kept
2) heuristic data is gathered
3) overhead from asserting the same clauses is reduced
At line 3 of Algorithm 2, the initial constraints for step-0

are asserted into the context. Before asserting the goal, the
algorithm creates a backtracking point so that if no satisfiable
assignment was found, only the goal can be removed from the
context, leaving the initial constraints.

At line 8, the algorithm checks the consistency of assign-
ments in the context. If a satisfiable assignment is found, it
is parsed and returned. Otherwise, the algorithm backtracks to
the latest point, removing the assertions added after it from
the context.

At line 11, the transitions are added, after which a new
point is made so that the algorithm can backtrack to it if the
assignments are not consistent with the goal assignment. This
goes on until a plan is found or until a limit on the plan length
is breached. Figure 2 compares planning efficiency between
these two algorithms, where one utilizes an incremental solver
and another one does not.

10 1 100 101 102 103

incremental

10 1

100

101

102

103
se

qu
en

tia
l

300 sec. timeout

30
0

se
c.

 ti
m

eo
ut

blocksworld
childsnack
gripper
rovers
barman

Fig. 2. This scatter plot shows that the algorithm that utilizes incremental
solving is usually much faster in solving problems than the non-incremental
algorithm because learned clauses are kept in the context. 73 (incremental)
vs 61 (sequential) out of 200 instances were solved, where 97% are solved
faster using the incremental base algorithm.

B. Invariants vs. explicit model

In the previous subsection, it was concluded that using the
incremental base algorithm can substantially improve planning
efficiency. From now on, we will only use the incremental
algorithm as our base.

Invariants can be considered both as a modeling aid as well
as a performance increasing method in automated planning.
Invariants are specifications that must hold in every step of
the calculated plan. More formally:

Definition 2.2: An invariant is a logical clause that must
hold for all reachable states of Ψ, and can be encoded in the
the logical formula Fj :

Fj = I(t0) ∧ (

j−1∧
k=0

m∨
n=0

Tn(tk, tk+1)) ∧ (

j∧
k=0

N(tk)) ∧G(tj)

where I are clauses that encode the initial state at time-step
t0, Tn are clauses that encode the m transitions of the model
for all successive time-steps tk and tk+1, N are clauses that
encode invariants for all time-steps tk, and G are clauses that
encode the goal state at the horizon tj .

In essence, invariants prune states from the state space.
They can be added to the model to forbid some undesired
behavior, or to enforce tighter constraints and thus derive a
more compact state space representation. In each case, the
state space gets reduced and thus planning is more efficient.

For an existing problem, invariants can sometimes be syn-
thesized to speed up planning [14]. However, invariants can
often be a convenient tool to use for modelling different
problems, but can in some cases be quite hard to use. Never-
theless, in order to illustrate how modelling using invariants
can improve planning efficiency, let’s look at a well known
PDDL benchmark example, Blocksworld. The Blocksworld
example is one of the most famous planning domains in
artificial intelligence.

Imagine a set of blocks sitting on a table. The goal is to
build one or more vertical stacks of blocks. The catch is that
only one block may be moved at a time: it may either be
placed on the table or placed atop another block. Because of
this, any blocks that are, at a given time, under another block
cannot be moved [9].

Invariants that should hold at any given time for the
Blocksworld example are added to this problem:

1) b1 can’t be on b2 if b2 is on b1
2) if holding any block, the gripper can’t be empty
3) at most one block can be held
4) a block can’t be on several different blocks
5) if a block is on the table, it is not on a block
6) if b1 is on b2, b2 is not clear

Now we have a much safer and smaller state space repre-
sentation, and as an effect, planning is much faster. Figure 3
shows the difference between planning times with and without
making use of planning invariants for a number of standard
planning benchmarks.

10 1 100 101 102 103

invariant

10 1

100

101

102

103

ex
pl

ici
t

300 sec. timeout

30
0

se
c.

 ti
m

eo
ut

blocksworld
childsnack
gripper
rovers
barman

Fig. 3. On this scatter plot, it is shown that modelling the problem using
invariants reduces the state space and thus speeds up planning , especially in
the harder cases. 90 (invariants) vs 73 (explicit) out of 200 instances solved,
where 97% are solved faster using invariants.

C. Equality vs. propositional logic

In the previous section, it was concluded that invariants
have a beneficial effect for both the modeling and planning
efficiency. From now on, we consider problems that are
reinforced with additional invariants, if that is indeed possible.

Beside invariants, there are other things that can aid model-
ing. By using different first-order logic theories to increase
expressiveness, some problems can be modeled in a much
more convenient way compared to using pure propositional
logic. In this paper, we only investigate equality logic since it
is appropriate for modelling most classical planning problems.

Using a first-order theory with increased expressiveness to
ease modeling can potentially lead to decreased decidability.
Let’s investigate the expressiveness and decidability aspects
of both propositional and equality logic theories, in order to
determine the beneficial effects on modelling and planning
performances. A more comprehensive text on the problem of
expressiveness vs. decidability, as well as decision procedures
in general can be found in [15].

Definition 2.3: The following grammar defines the syntax
of formulas in propositional logic:

formula : formula ∧ formula | ¬formula | atom

atom : Boolean − identifier | true | false

Example: Let’s continue with the Blocksworld example and
look at an action that is modeled in pure propositional logic:

(: action pick up

: parameters (?x − block)

: precondition

(and (clear ?x)

(ontable ?x)

(handempty))

: effect

(and (not (ontable ?x))

(not (clear ?x))

(not (handempty))

(holding ?x))

This action describes picking up a block from the table. In
order to pick the block x up, the block has to be ontable and
clear for picking up or placing another block on top of it.
The hand has to be empty, as indicated by the handempty
variable. After the block has been picked up, it is no longer
ontable, nor is it clear. The hand is no longer empty, it is
now holding the block x.

As it can be seen, to model this action for every block
x, there has to be as many Boolean variables for holding,
ontable and clear as there are defined blocks.

Let us now study the equality logic and the Blocksworld
example using finite domain variables. If we restrict ourselves
to using only finite domain variables, equality logic can be
thought of as propositional logic where the atoms are equalities

between variables or between variables and constants. A more
formal definition of equality logic follows:

Definition 2.4: The following grammar defines the syntax
of formulas in equality logic:

formula : formula ∧ formula | ¬formula | atom

atom : term = term

term : identifier | constant

where the identifiers are variables defined over a single finite
domain of values. These values can be a subset of the set
of Integers or Reals. Just the same, the variables can be
of an enumeration type and define their own finite domain.
Constants are elements from the same domain as identifiers.

Example: The same pick up action modeled using equality
logic could look something along the lines of:

(: action pick up

: parameters (?x − block)

: precondition

(and (clear ?x)

(= (on ?x) ′′table ′′))

: effect

(and (not (clear ?x))

(= (on ?x) ′′hand ′′))

Now, instead of using the Boolean variables holding and
ontable for every block as well as the handempty variable,
we can use just one enumeration type variable on with a finite
domain:

vDon = blocks ∪ {′′table ′′, ′′hand ′′}

Both propositional and equality logic are NP-complete [16],
[17], which means that they can model the same decision
problems with not more than a polynomial difference in vari-
ables [15]. Certain problems are more conveniently modeled
in equality logic compared to propositional logic, and for some
other problems the opposite is true.

As for efficiency, the high level structure in the input
equality logic formula can potentially be used to make the
decision procedure work faster. This information may be lost
if the problem is modelled directly in propositional logic [15].

Figure 4 compares planning efficiency between problems
modeled in propositional logic and equality logic on 2 plan-
ning benchmarks.

D. Skipping steps

As it was mentioned before, the planning algorithms in-
crement the plan length by one when an assignment is not
found, after which the encoding for that length is tested for
satisfiability. This is a good method when the yielded plan
should be of minimal length. However, calculating the shortest
length plan can sometimes be very slow, as Rintanen showed
in [18] (shown in Figure 5).

10 1 100 101 102 103

equality

10 1

100

101

102

103
pr

op
os

iti
on

al

300 sec. timeout

30
0

se
c.

 ti
m

eo
ut

blocksworld
gripper

Fig. 4. This scatter plot shows that modelling problems using equality logic
can sometimes increase planning efficiency. In some other cases, there is no
high level structure that can be exploited by modelling the problem in equality
logic, thus there is no big difference in performance. Thus, the appropriateness
of using equality over propositional logic depends on the problem itself.

The evaluation cost of an unsatisfiable formula can be much
higher than the evaluation cost of a satisfiable one, even if the
latter is not of shortest length. Especially, when considering
the sum of evaluation costs for all unsatisfiable formulas, it can
be seen that the planner can spend a lot of time trying to find
a satisfiable assignment. This is because the cost of evaluating
the unsatisfiable formulas usually increases exponentially as
the plan length increases [18].

1 2 3 4 5 6 7 8 9
Plan lenght

0

2

4

6

8

10

CP
U

tim
e

(s
)

0.1 0.1 0.2

1.0

5.0

10.0

0.5

1.0

3.0

UNSAT
SAT

Fig. 5. Evaluation cost of the unsatisfiable formulas for plan lengths 1 to 6
and the satisfiable formulas for plan length 7 and higher, from [18].

0 5 10 15 20 25 30 35 40
instances

0

50

100

150

200

250

300

CP
U

tim
e

(s
)

blocksworld
childsnack
rovers
gripper
barman

const_1
const_3
const_5
const_10
quadratic
exp_2

Fig. 6. This cactus plot shows the planning times of algorithms that skip
planning steps in a certain way. The algorithms are essentially the same, it
is only the step skipping rate that differs in them. Since skipping of steps
is implemented on top of the incremental base algorithm, the solver has not
learnt anything from the skipped iterations. In some cases, and as visible for
the Blocksworld instance, skipping steps actually negates the good effects of
using the incremental base solver. This will be further discussed later.

When finding the first satisfiable solution which yields the
plan with the minimal length is not a strict requirement,
an improvement in the planning time can sometimes be
achieved. Rather than increasing the plan length by one after
an assignment is not found, this improvement is realized by
incrementing the plan length by a larger value. This allows us
to skip some hard unsatisfiable instances which take a long
time to evaluate.

As mentioned, skipping steps does not guarantee that the
shortest plan will be yielded. For example, if we choose to
evaluate only the encodings for the plan lengths 1, 2, 4 and 8
from Figure 5, we will skip the hard unsatisfiable instances 5
and 6, but also the first satisfiable instance 7. The plan length
will be of length 8 instead of 7, but the benefit will be the
decrease in planning time, 2.2s instead of 16.9s.

Incrementing the plan length after an assignment is not
found can, for example, evolve in some constant or exponential
rate. One could choose to solve for constantly increasing plan
lengths 2i or 5i for integers i ≥ 1, quadratic i2, or for
exponentialy increasing lengths 2i for integers i ≥ 1.

Figure 6 compares planning efficiency between planning
algorithms that utilize different rates of skipping steps when
using an incremental solver. Figure 7 compares the results
when using a sequential solver.

E. Subgoaling

Skipping steps seems to help for some problems, and for
others it does not. As we will discuss later, this is because we
use the incremental base algorithm. Thus, we will continue to
increment the rate stepwise.

When a goal is defined as a conjunction of several predi-
cates, such predicates can be looked at as subgoals. Instead of
asking the planner to reach the monolithic goal in one planning
task, multiple planning tasks can be instantiated to plan for
each subgoal. Having a simpler goal shortens the plan length

0 5 10 15 20 25
instances

0

50

100

150

200

250

300
CP

U
tim

e
(s

)

blocksworld
childsnack
rovers
gripper
barman

const_1
const_3
const_5
const_10
quadratic
exp_2

Fig. 7. The beneficial effect of skipping steps if much more visible if the base
solver is non-incremental. This means that there is no drawback of skipping
steps because the solver has not learnt anything from the skipped clauses.

and thus the planning time. As mentioned before, the cost of
evaluating unsatisfiable formulas increases exponentially, thus
it is usually faster to search for a large number of shorter plans
than the other way around.

Algorithm 3 shows how subgoaling utilizes the incremental
algorithm to solve for each conjunct of the monolithic goal.
If that was indeed possible, the algorithm concatenates the
results to yield the plan for the monolithic problem in line 18.

Subgoal ordering matters: If the subgoal order is not
correct, finding a plan can sometimes be slower or even
impossible. This depends quite much on the nature of the
problem itself as planning problems often exhibit symmetry
properties that could be exploited to speed up their solving.

Algorithm 3: Subgoal
Input: (i, G, M , smax)
Output: planning result

1 let subresults := new empty list;
2 let first sub := Incremental(i, G[0], M, s max);
3 let n := 0;
4 subresults.push(first sub);
5 Plan(first sub, subresults, n, i, G, M , smax);
6 function Plan(r, subresults, n, i, G, M , smax) begin
7 if n < G.len()− 1 then
8 n = n + 1;
9 let new i := if r.trace.len() == 0 then

10 i;
11 else
12 result.trace.tail();
13 end
14 let sub := Incremental(new i, G[n], M, smax);
15 subresults.push(sub);
16 Plan(sub, subresults, n, i, G, M , smax);
17 else
18 return Concatenate(subresults);
19 end

For example, the two highly symmetrical problems Gripper
and Childsnack benefit the most from subgoaling. There is no
important subgoal order that has to be enforced in order to get
a correct plan. On the other hand, the Blocksworld problem
relies heavily on a correct order of subgoals.

F. Shortening the plan length

When planning with methods that skip steps or use sub-
goaling, yielded plans often have more steps than necessary.
Sometimes, it is possible to remove chunks from a plan. An
efficient way to do this is to detect loops in the plan and
remove sections of it that lead back to an already visited state.

Usually, the requirement to visit the same state more than
once is tracked by an additional variable, hence the states in
the trace have the information about the complete state. If
all variables are considered in a state, there should not be
two of the same states in a plan. Having this in mind, we
can remove parts of the plan to yield a valid plan of shorter
length. Algorithm 4 shows how redundant sections of a plan
are removed.

At line 5 of Algorithm 4, the Find function searches the plan
for duplicate states and saves them, as well as their location
in the plan, to a list. If duplicate states do exist, they cover a
certain section of a plan that has to be removed. It can be that
more than two duplicate states exist, as well as more than one
pair of duplicates.

If that is the case, the section they cover can overlap in
some way, as shown at B and C parts of Figure 8. Hence, the
function GetBiggest finds the biggest section covered by two
duplicates and the function Remove removes it from the plan.
The plan is now shortened. However, it can be that it still
contains some duplicate states. Because of this, the Shorten
algorithm performs all the mentioned steps recursively until it
exhausts all duplicates from a plan.

Algorithm 4: Shorten
Input: plan of length n
Output: plan of length m, m ≤ n

1 Shorten(plan);
2 function Shorten(plan) begin
3 let duplicates := new empty list;
4 for frame in plan do
5 duplicates.push(Find(frame.state, plan));
6 end
7 if not duplicates is empty then
8 let biggest := GetBiggest(duplicates, plan));
9 let new trace := RemoveLoop(biggest, plan));

10 Shorten(new plan);
11 else
12 return plan;
13 end

Fig. 8. Shorten plan scenarios. In scenario A, there is only one section of the plan that leads back to a same state (states 1 - 4), so the part is removed. In
scenario 2, there are two overlapping loops, so in order to be more efficient, the algorithm removes the bigger loop. There might be loops still in the plan
after removal so in the next iteration, the algorithm checks the plan for more loops. In scenario C, there is some nesting of loops, so the algorithm finds the
biggest loop and removes both in one go.

10 1 100 101 102 103

subgoal

10 1

100

101

102

103

m
on

ol
ith

ic

300 sec. timeout

30
0

se
c.

 ti
m

eo
ut

blocksworld
childsnack
gripper
rovers
barman

Fig. 9. On this scatter plot, it is shown that subgoaling will usually decrease
planning time, especially in highly symmetrical problems.

G. Benchmarks

We ran the benchmarks on an Optiplex 9020 desktop PC
with 8GB of RAM and an Intel Core i7-4790 CPU clocked at
3.60GHz. All algorithms used in this study were implemented
using Z3’s [19] quantifier free finite domain (QF FD) theory,
which supports propositional logic, bit-vector theories, pseudo-
Boolean constraints, and enumeration data types. Figure 10
shows how different methods have improved the planning
algorithm throughout the paper.

III. DISCUSSION

Throughout this paper, we have investigated the effects of
incremental solving, invariants, equality logic, skipping steps
and subgoaling. We have done this in an evolutionary way,
where a method from each subsection has improved the ex-
isting algorithm from the previous subsection. However, what
about other method combinations and their performances?

What we learned from this study is that modelling with
invariants always helps, both in easing the modeling itself and
decreasing planning time. If we take that as a starting point
of this discussion, we have to look at methods that fit well
together with invariants. For example, incremental solving lets
us keep some clauses in the context before we move on to the
next step. Since invariants hold in each step of the plan, the
clauses that encode them are never removed from the context.

Continuing on this, if we use an incremental base solver
and skip some steps, the solver will not have the chance
to learn new clauses from the skipped steps. However, what
if we turn things around and use the sequential base to-
gether with skipping steps? Figure 7 shows the results of
this combination. It can be seen that these results better
match Rintatnen’s [18] chart on Figure 5, thus it is more
appropriate to combine non-incremental solving with skipping
steps. Using non-incremental solving with skipping steps is
probably beneficial if the computation is distributed among
several cores. However, single-core planning benefits more
using incremental solving, as seen on Figures 6 and 7.

Beside methods investigated in this paper, there is a mul-
titude of other methods that weren’t considered in this study.
Probably one of the biggest contributors to speed in planning
as satisfiability is parallel planning and it is presented in
detail in [20]. Moreover, there is compositional planning as
investigated in [21], and hierarchical planning [22].

Fig. 10. Algorithm evolution throughout the paper.

Big performance improvements in planning as satisfiability
can be unlocked when methods are altered on the low, SAT
solving level. Some of these methods improve decision heuris-
tics [23], restart heuristics [24] and data structures [25]. We
refer to these methods as low level methods since they affect
the performance of the solver itself. As such, they are of major
interest in the field of planning as satisfiability, however they
are out of the scope for this paper.

IV. CONCLUSION

We implemented and evaluated several high level planning
methods using Z3 and showed how much each method con-
tributes to an increase in planning performance. As discussed,
this is by no means a complete study that covers all planning
methods, however we feel that it is a useful reference and
performance overview of some high level methods.

That being said, we see that there is great opportunity
in studying automated planning, satisfiability, and method
combinations that improve planing performance. Our next step
is to use what we learned in this study in actual industrial
implementations, as well as to investigate other high level
methods that we mentioned in the discussions. Moreover,
an investigative survey of low level planning methods, i.e.
methods that operate on the SAT solving level is a planned
step in our future work.

ACKNOWLEDGMENT

This research is supported by Chalmers University of Tech-
nology and VINNOVA under the projects Unification (contract
nr. 2017-02245) and Unicorn (contract nr. 2017-03055).

REFERENCES

[1] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, E. Giunchiglia and A. Tacchella,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502–
518.

[2] H. Kautz and B. Selman, “Planning as satisfiability,” in Proceedings of
the 10th European Conference on Artificial Intelligence, ser. ECAI ’92.
USA: John Wiley & Sons, Inc., 1992, p. 359–363.

[3] J. Rintanen, “Search methods for classical and temporal planning,”
Tutorials of the 21th European Conference on Artificial Intelligence
(ECAI 2014), vol. 21, 2014.

[4] S. Alouneh, S. Abed, M. H. A. Shayeji, and R. Mesleh, “A com-
prehensive study and analysis on sat-solvers: advances, usages and
achievements,” Artificial Intelligence Review, pp. 1–27, 2018.

[5] J. Rintanen, “Planning as satisfiability: Heuristics,” Artificial
Intelligence, vol. 193, pp. 45 – 86, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370212001014

[6] J. E. Arxer, “Smt techniques for planning problems,” 2018.
[7] A. Bit-Monnot, F. Leofante, L. Pulina, and A. Tacchella, “Smt-based

planning for robots in smart factories,” in Advances and Trends in
Artificial Intelligence. From Theory to Practice, F. Wotawa, G. Friedrich,
I. Pill, R. Koitz-Hristov, and M. Ali, Eds. Cham: Springer International
Publishing, 2019, pp. 674–686.

[8] D. M. McDermott, “The 1998 ai planning systems competition,” AI
Magazine, vol. 21, no. 2, p. 35, Jun. 2000. [Online]. Available:
https://ojs.aaai.org/index.php/aimagazine/article/view/1506

[9] F. Bacchus, “Aips 2000 planning competition: The fifth international
conference on artificial intelligence planning and scheduling systems,”
AI Magazine, vol. 22, no. 3, p. 47, Sep. 2001. [Online]. Available:
https://ojs.aaai.org/index.php/aimagazine/article/view/1571

[10] D. Long and M. Fox, “The 3rd international planning competition:
Results and analysis.” J. Artif. Intell. Res. (JAIR), vol. 20, pp. 1–59,
12 2003.

[11] A. Coles, A. Coles, A. Olaya, S. Jiménez, C. Linares López, S. Sanner,
and S. Yoon, “A survey of the seventh international planning competi-
tion,” Ai Magazine, vol. 33, pp. 83–88, 03 2012.

[12] M. Vallati, L. Chrpa, M. Grześ, T. L. McCluskey, M. Roberts, S. Sanner,
and M. Editor, “The 2014 international planning competition: Progress
and trends,” AI Magazine, vol. 36, no. 3, pp. 90–98, Sep. 2015. [Online].
Available: https://ojs.aaai.org/index.php/aimagazine/article/view/2571

[13] S. Gocht and T. Balyo, “Accelerating sat based planning with incremen-
tal sat solving,” in ICAPS, 2017.

[14] J. Rintanen, “An iterative algorithm for synthesizing invariants,” in
AAAI/IAAI, 2000.

[15] D. Kroening and O. Strichman, Decision Procedures: An Algorithmic
Point of View, 2nd ed. Springer Publishing Company, Incorporated,
2016.

[16] S. A. Cook, “The complexity of theorem-proving procedures,” in
Proceedings of the Third Annual ACM Symposium on Theory of
Computing, ser. STOC ’71. New York, NY, USA: Association
for Computing Machinery, 1971, p. 151–158. [Online]. Available:
https://doi.org/10.1145/800157.805047

[17] D. Kozen, “Positive first-order logic is np-complete,” IBM Journal of
Research and Development, vol. 25, no. 4, pp. 327–332, 1981.

[18] J. Rintanen, “Evaluation strategies for planning as satisfiability,” in
Proceedings of the 16th European Conference on Artificial Intelligence,
ser. ECAI’04. NLD: IOS Press, 2004, p. 682–686.

[19] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340.

[20] J. Rintanen, K. Heljanko, and I. Niemelä, “Planning as satisfiability:
parallel plans and algorithms for plan search,” Artificial Intelligence,
vol. 170, no. 12, pp. 1031 – 1080, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370206000774

[21] E. Erős, M. Dahl, P. Falkman, and K. Bengtsson, “Towards composi-
tional automated planning,” 09 2020, pp. 416–423.

[22] D. Schreiber, D. Pellier, H. Fiorino, and T. Balyo, “Efficient sat
encodings for hierarchical planning,” 01 2019, pp. 531–538.

[23] J. Rintanen, “Heuristics for planning with sat,” vol. 6308, 09 2010, pp.
414–428.

[24] J. Huang, “The effect of restarts on the efficiency of clause learning,” in
Proceedings of the 20th International Joint Conference on Artifical In-
telligence, ser. IJCAI’07. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2007, p. 2318–2323.

[25] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: engineering an efficient sat solver,” in Proceedings of the 38th
Design Automation Conference (IEEE Cat. No.01CH37232), 2001, pp.
530–535.

