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Abstract We demonstrate, for the first time, experimental over-the-fiber training of transmitter neural
networks (NNs) using reinforcement learning. Optical back-to-back training of a novel NN-based digital
predistorter outperforms arcsine-based predistortion with up to 60% bit-error-rate reduction.

Introduction
Modern high spectral efficiency fiber-optic com-
munication systems operate at high symbol rates
with high-order constellation formats. However,
cascaded linear and nonlinear impairments in-
duced by non-ideal hardware components includ-
ing the digital-to-analog converter (DAC), power
amplifier (PA), and in-phase-quadrature modula-
tor (IQM), can severely degrade the system per-
formance[1]–[5]. To improve the performance of
optical communication systems, digital predistor-
tion (DPD) is used to pre-compensate for the
transmitter impairments. The most commonly
used DPD is based on linear digital pre-emphasis
(DPE)[6]–[8] to compensate for the DAC frequency
response and is typically combined with nonlin-
ear arcsine-based predistortion[9],[10] to cancel the
IQM nonlinearity. DPD based on Volterra se-
ries and generalized memory polynomials have
also been widely studied for pre-compensation
of radio-frequency amplifiers[11]–[13] and optical
transmitters[1]–[5].

As an alternative to these model-based ap-
proaches, DPD based on neural-networks (NNs)
has been studied in both wireless[14]–[17] and opti-
cal communications[18]–[21]. Similar to its conven-
tional counterparts, the NN-based DPD methods
can be categorized into two groups, namely those
using an indirect learning (ILA) and a direct learn-
ing architecture (DLA). It has been shown that, in
general, DLA achieves better performance than
ILA[21]. However, training an NN-based DPD ap-
plying DLA requires back-propagating the gradi-
ent over the nonlinear system, which is impossi-
ble in an experimental setting. One way to cir-
cumvent this limitation is to develop a surrogate
differentiable model of the experimental chan-
nel and use this model for training[16]–[20]. Simi-
lar approaches have been proposed in the con-
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text of end-to-end learning of transmitter–receiver
pairs in both wireless[22],[23] and optical commu-
nications[24],[25]. However, approaches using sur-
rogate models require additional modeling ef-
forts and may lead to performance degradation
in cases where the model deviates significantly
from the real system[23]. A different approach to
relieve the limitation of gradient back-propagation
for transmitter learning is based on reinforce-
ment learning (RL), complemented by supervised
learning (SL) of the receiver[26].

In this paper, we demonstrate, for the first
time, training of transmitter NNs over an optical
back-to-back channel using RL. Compared to[26],
where transmitter optimization of signal constella-
tions was demonstrated over memoryless chan-
nels, we focus on optimization of a NN-based
DPD with memory input for the optical transmit-
ter impaired with both dispersive and nonlinear
effects. In contrast to other NN-based DPD em-
ploying DLA[16]–[19], the proposed DPD is directly
trained over the optical channel without any sur-
rogate model. Experimental results show that the
proposed DPD effectively mitigates nonlinear ef-
fects and achieves significantly better bit-error-
rate (BER) performance than a baseline scheme
with DPE and arcsine.

The proposed DPD
NN structure: The architecture of the proposed
NN-based DPD is shown in the inset figure in
Fig. 1. The DPD NN consists of an input layer,
an output layer with linear activation, and 3 fully-
connected hidden layers with ReLU activation.
The detailed number of neurons in each layer is
also shown in Fig. 1. Similar to[14],[27],[28], in or-
der to take the memory effect into account, the
input layer is fed with 2L + 1 real-valued signals,
where one signal corresponds to the current in-
stantaneous input and the remaining 2L signals
to the inputs of the previous and future L time
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Fig. 1: Experimental setup. Black lines: electrical path; Red lines: optical path; ECL: External cavity laser; BPF: bandpass filter;
VOA: variable-optical attenuator. The inset figure shows the NN structure of the proposed DPD.

steps, respectively. Moreover, a shortcut connec-
tion is employed to directly add the current in-
put to the output, which has been shown to allow
for better performance and quicker convergence
rate[16]–[18],[28].
Data-aided digital signal processing (DSP) for
training: To train the DPD, the oversampled sig-
nal received at the receiver needs to be sent back
to the DPD. To do that, the ADC output is first re-
sampled to have the same rate as the transmitted
signal. Then, data-aided DSP, which is shown in
Fig. 1, including time-synchronization, equaliza-
tion, and phase-recovery is applied, after which
the equalized oversampled signal z is sent back
to the DPD. In contrast to conventional DSP[29]

where a fractional-spaced equalizer is used, the
data-aided DSP used here operates at the sam-
ple level, and is more complex to run in a real sys-
tem. However, we note that such data-aided DSP
is only needed for training the proposed DPD, and
regular DSP is used after training.
DPD training: Training of the proposed DPD is
performed by modifying the approach in[26], with
the goal to minimize the mean-square-error be-
tween the oversampled transmitted and received
signals. Given the baseband pulse-shaped trans-
mit signal xk, the NN-based DPD, denoted by
fθ, where θ is the set of trainable parame-
ters, takes a vector of 2L + 1 signals xk =

[xk−L, . . . , xk, . . . xk+L] as input and generates
the pre-distorted signal to which a Gaussian per-
turbation is applied such that a random signal
yk ∼ CN (fθ(xk), σ

2
p)), where σ2

p is the variance of
the Gaussian perturbation, is transmitted. Then,
the parameters of the NN-based DPD are up-
dated according to θt+1 = θt−α∇θ`(θt) (1), where
∇θ`(θ) = 1

N

∑N
k=1 |zk − xk|2∇θ log πθ(yk|fθ(xk)),

α is the learning rate, N is the training batch-
size and πθ(yk|fθ(xk) is the probability of trans-
mitting yk given fθ(xk). In our experiment, we set
α = 0.001 and N = 217.

Experimental setup
The experimental setup is shown in Fig. 1. Bi-
nary sequences are first mapped to constella-
tion points and 2–times upsampled before pulse-
shaped by a root-raised cosine filter with 10%

roll-off. The resulting signals are fed to the NN-
based DPD, after which a DPE filter is applied
to pre-compensate for the DAC frequency re-
sponse. The purpose of using the DPE is to
pre-compensate for most of the linear memory ef-
fects (e.g., the narrow DAC frequency response)
so that the required DPD input length can be
reduced —the NN only needs to deal with the
residual memory and nonlinear effects. The pre-
compensated signals are then fed to a 60 GS/s
DAC (24 GHz bandwidth) and amplified by an
electrical PA (SHF-824, 35 GHz) to drive the IQM.
The optical carrier is generated by an external
cavity laser (ECL) operating at 1550 nm, and 50%
of the ECL output is sent to the coherent receiver
for self-homodyne detection. Similar to[18], we
consider a back-to-back setup, where the opti-
cal path includes a bandpass filter (BPF) and a
variable-optical-attenuator (VOA). At the receiver,
the signal is detected by a coherent receiver and
sampled by a 80 GS/s analog-to-digital converter
(ADC). BER performance measurements use in-
dependent random data and pilot-based DSP[29]

to reconstruct the signal.
We train the DPD by running the algorithm de-

scribed in the previous section for 300 iterations.
In each iteration, the DPD generates the pre-
distorted signals and feeds them to the optical
channel after the Gaussian perturbation is ap-
plied. At the receiver, data-aided DSP is applied
to the received signals and the signal is sent back
to the DPD and used for updating the DPD pa-
rameters according to (1). Finally, the DPD with
updated parameters is used to generate the pre-
distorted signals in the next training iteration.

Results
Baseline performance: We start with measuring
the performance of two commonly used base-
line schemes. As a first baseline, a linear
DPE scheme is applied to compensate for the
DAC frequency response. An improved baseline
combines DPE and arcsine with clipping, where
the arcsine linearizes the modulator response
while the optimized clipping reduces the peak-to-
average power ratio. The achieved BER perfor-
mance for 64QAM and 256QAM with 30 GBaud
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Fig. 2: BER performance versus DAC output voltage for (a): 64QAM and (b) 256QAM; The green and blue curve serve as two
baseline schemes, where the green one applies linear DPE only while the blue one applies both DPE and arcsine and clipping.

For 256QAM, the DPD is trained with 64QAM signal, and directly applied to the 256QAM transmission.
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Fig. 3: BER performance versus the DPD input length for
64QAM at DAC-Vpp 400 mV. Dashed curves: baselines with

DPE (green) and DPE and arcsine (red).

transmission is shown in Fig. 2 (a) and (b), re-
spectively.
BER performance on 64QAM: We now train and
evaluate the performance of the proposed NN-
based DPD in a 64QAM transmission. We note
that for each DAC output peak-to-peak voltage
(DAC-Vpp), a separate DPD needs to be trained
due to the fact that each DAC-Vpp corresponds
to a different drive voltage swing, and therefore
different output signal power as well as different
transmitter nonlinear effects. Fig. 2 (a) visualizes
the BER performance of the proposed DPD. For
a range of DAC-Vpps, our approach, with input
length set to 2L + 1 = 3 (blue) and 2L + 1 = 7

(black), achieves significant better BER perfor-
mance than the baseline schemes.
BER performance on 256QAM: We then apply
the DPD trained for 64QAM to the 256QAM trans-
mission without retraining. The achieved BER is
shown in Fig. 2 (b). Interestingly, the DPD trained
for 64QAM signals outperforms the two baselines
for all considered DAC-Vpps, indicating that the
proposed DPD has the flexibility to be trained for
a single constellation format, but deployed for dif-
ferent constellation formats.
Impact of DPD input length: We evaluate the im-
pact of the DPD input length on the the BER per-
formance. To have a fair comparison, all DPDs
are trained for the same number of iterations (300
iterations) with the DAC-vpp set to 400 mV. Fig. 3

shows the achieved BER performance as a func-
tion of the DPD input length. For a DPD in-
put length 1, it is shown that the proposed NN-
based DPD achieves better performance than the
baseline scheme applying DPE only, while per-
forms slightly worse than the one using both DPE
and arcsine with optimized clipping. Such perfor-
mance is expected, because the NN-based DPD
should still be able to learn to compensate for the
modulator response, similar to what the arcsine
does. As we increase the DPD input length, the
BER performance of the proposed scheme im-
proves. With the DPD input length set to 2L+1 =

5, the optimal performance is achieved. However,
when the input length is further increased, the
BER increases. A possible explanation of this be-
havior is that, the NN-based DPD with large input
length may require more training iterations, and
training all NNs with the same number of itera-
tions (i.g., 300) may lead to insufficient training
for the large NNs.
DPD stability: Finally, we evaluate the stability of
the trained DPD. Our measurements show that
the performance of the trained DPD remains sta-
ble over hours and can be repeated after several
days without retraining. Such results seem to in-
dicate that the proposed scheme requires rare re-
training and may only need to be trained at link
setup or transceiver calibration.

Conclusions
We demonstrated a novel over-the-fiber training
of NN-based DPD utilizing reinforcement learn-
ing. Our experimental results show that the pro-
posed DPD significantly outperforms the consid-
ered baseline schemes with up to 60% BER re-
duction for a 30 GBaud single channel transmis-
sion.
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