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Abstract—Spherical microphone array (SMA) recordings are
particularly suited for dynamic binaural rendering as the micro-
phone signals can be decomposed into a spherical harmonic (SH)
representation that can be freely rotated to match the head
orientation of the listener. The rendering of such SMA recordings
is a non-trivial task as the SH signals are impaired due to
truncation of the SH decomposition order, spatial aliasing and
the gain limitation of the employed radial filters. The percep-
tually most relevant consequence of this is an alteration of
the magnitude transfer function at high frequencies. Previously,
the magnitude least squares (MagLS) renderer for binaural
rendering of SH signals was proposed to mitigate these effects
under the assumption of ideal order-truncated plane waves,
i.e., disregarding the influence of spatial aliasing as well as
of non-ideal radial filters. Based on the MagLS renderer, we
present a binaural rendering method for SMA recordings that
integrates a comprehensive SMA model into the magnitude least
squares objective. We evaluate the proposed end-to-end renderer
by analyzing the reproduced binaural magnitude response. Our
results suggest that the method significantly improves the high-
frequency rendering mainly due to the inherent binaural diffuse-
field equalization, while it achieves a slight improvement in the
low and mid frequency range, where the error of the conventional
method is already small. A reference implementation of the
method accompanies this paper.

Index Terms—Spherical Microphone Arrays, Ambisonics,
Spherical Harmonics, Binaural Rendering

I. INTRODUCTION

Ambisonics [1]-[3] provides a flexible framework for spa-
tial audio capture, processing and rendering by utilizing a
decomposition of the signals into spherical harmonics (SHs).
Although Ambisonics neither dictates a specific capturing
nor rendering technology, the sound capture with a spherical
microphone array (SMA) and subsequent binaural rendering to
headphones constitute the most common processing pipeline.

Sound capture with SMAs and binaural rendering using
head-related transfer functions (HRTFs) are both non-trivial
tasks. SMAs distort the captured sound field in several ways:
i) They theoretically require a continuous distribution of
microphones and the restriction to a finite set of discrete
microphones in practice causes SH order truncation and spatial
aliasing [4]. ii) Their limited size limits the ability to capture
spatial information at low frequencies where the wavelength is
much longer than the dimensions of the array. This manifests
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as the requirement of regularizing the incorporated so-called
radial filters [5]. iii) To avoid ambiguities, the microphones
have to be mounted on a rigid scattering object that further
distorts the captured sound field [6].

The regularization of the radial filters, i.e., the limitation of
the amplification gains, has to be performed at low frequencies
only. Its impact on the binaural output signals is small as the
SH coefficients of an HRTF set do not contain large amounts
of energy in high SH orders at low frequencies [7]. The effects
of spatial aliasing and order truncation become apparent above
the spatial aliasing frequency as spatial ambiguities and a
limitation of the spatial resolution, respectively. The spatial
aliasing frequency of typical arrays is in the order of a few
thousand Hz.

Binaural rendering typically involves the SH decomposition
of an HRTF set. The circumstance that the ear position does
not coincide with the center of the SH expansion, which is
usually performed about the mid-point of the interaural axis,
causes the higher SH orders of the HRTFs to contain signifi-
cant energy at high frequencies [7]. This energy is missing in
the output of renderers that use a reduced SH order, resulting
in an attenuation of the high frequencies. Additionally, the
rendering of high frequencies is impaired by a secondary effect
of spatial aliasing: the energy at frequencies above the aliasing
frequency, where the SH order truncation of the HRTF set
causes an attenuation, is increased. However, these two effects
on the magnitude transfer function do not cancel out and the
impact of the spatial aliasing often dominates.

Following the idea of their independence, the challenges of
SMA sound capture and binaural rendering have previously
been tackled separately. The design of SMA radial filters [5],
[8], [9], [3, Sec. 6.8] aims at recovering the directionality of a
captured sound field and at removing the influence of the scat-
tering off the rigid spherical microphone body. The SH order
truncation can be equalized on average using a spherical head
filter [10], while diffuse-field equalization [9, Sec. 3.8.2], [11]
may be applied to compensate for the average influence of
spatial aliasing. It was shown in [12] that the equalization
of the magnitude transfer function to compensate for the
influence of aliasing and truncation provides a significant
perceptual improvement, and the resulting output is close to
the ground truth ear signals if the rendering is performed at
an SH order of 7 or higher.



Almost all methods proposed in the literature perform a
direction-independent global equalization of the magnitude
transfer function of the entire rendering pipeline. The magni-
tude least squares (MagLS) binaural rendering technique [13]
is fundamentally different as it achieves an equalization that is
dependent on the incidence direction of the sound. It follows
the idea from [7], where it was shown that large amounts of
energy in high orders of the SH representation of the HRTF
set can be shifted to lower SH orders by time-alignment of
the corresponding HRIRs. Based on Rayleigh’s duplex theory,
both approaches neglect the interaural time differences of the
HRIR set at high frequencies, and MagLS finds a suitable
phase response to optimally recreate the directional magnitude
response of the HRTF set in a least-squares sense. Although
the objective of the MagLS renderer does not minimize a
perceptually motivated error function, user studies have shown
its perceptual benefits [12], [13].

The original MagLS formulation [13] performs the equaliza-
tion of the HRTFs in isolation. In other words, it produces an
order-limited HRTF representation whose magnitude exhibits
minimal deviations from the original non-truncated HRTF
representation without considering signal impairments due to
the employed sound capture and processing methods. Based
on the MagLS renderer, we propose a novel binaural rendering
algorithm with the aim of jointly solving the challenges
of both, SMA sound capture and binaural rendering, from
the capture-end to the rendering-end. This is achieved by
integrating a comprehensive SMA model into the objective
function of the MagLS renderer.

II. SIGNAL MODEL

The sound pressure at radius r from the origin due to a
plane wave arriving from the spherical direction Q= (i, ),
composed of azimuth angle ¢ and zenith angle ), can be
described in terms of SH pressure coefficients of order n and
degree m [14, Eq. (2.3.6)],

p;n(k’?", Q) = bn(kr) Yr:n(Q) ) (D

where Y,7*(§2) are the SHs, and k=w/c is the wave number
depending on the angular frequency w and the speed of
sound c. The factor b,, (kr) accounts for the radial dependency
of the pressure and modifies the SH mode strengths accord-
ingly. In a free-field, it is given by b, (kr) = 4mi"™ j, (kr), with
the imaginary unit i=+/—1 and the spherical Bessel func-
tion j, (k). In the presence of a rigid sphere with radius ro <r
that is centered at the coordinate origin, b, (kr) fully represents
the effect of the scattering of the incident sound field off the
sphere and is given by [14, Eq. (4.2.10)]

 Jnlkro)
h’;L(kTO)

bolir) = aai" (o) mi) @
where ()’ denotes the derivative and h,,(kr) is the spherical
Hankel function. Without limiting the generality of the results,
we assume such a rigid-sphere array in the remainder as this
is the most common configuration. Expressions for b,, (kr) for
further configurations are provided in [15].

From the SH pressure coefficients (1), the corresponding
space-domain sound pressure p(kr,2) at a location defined
by the coordinates 7 and )¢ is obtained after SH expansion
by [14, Eq. (2.1.65)]

plhr, Q) =" > Y(Q0)" py(kr,Q) . 3)
n=0 m=-—n

The (-)* operator denotes complex conjugation. An SMA
samples the pressure given by (3) at several locations on the
surface of the rigid sphere where r = r(, such that b, (kr) loses
the radial dependency and is denoted as b, (w) in the following.
We express the vector of all pressure samples collected by
the SMA in matrix-vector notation by limiting the maximum
SH order to a finite N as

pu(w, Q) =Y Br(w) yx(Q) (4)

where the vector y;(Q) contains the (N+1)2> SH ba-
sis functions up to order N evaluated at (), the matrix
Yy u=yx(), ..., yg(Q2u)] contains such SH vectors
for all M microphone locations, and By (w) is a (N+41)?
diagonal matrix with b,, (w) replicated for all orders n € [0, N]
and degrees m € [—n,n] on its diagonal. The superscript (-)H
denotes the Hermitian (conjugate) transpose. Note that at
this point, the limitation of the SH order to N creates an
error when compared to the infinite-order expansion of (3)
that can be kept arbitrary small over the frequency range
of interest by choosing a correspondingly high evaluation
order N [14, Ch. 9].

The processing of SMA pressure signals is typically per-
formed in the SH domain by employing the discrete spherical
harmonics transform (DSHT) matrix Ex [16, Sec. 3.6],

PN, Q) =Evm Yy Brw) yg(@) . )

The DSHT matrix En v is also referred to as microphone
encoder in Ambisonics literature and is either obtained as
the pseudoinverse En v = (YZ?M)T or by employing quadra-
ture weights o of the respective spherical sampling grid,
En =Y \ diag(a). In an ideal situation, i.e., in the absence
of spatial aliasing and when N — oo, py (w, ) is a vector of
the coefficients p”* (krg, Q) of the captured plane wave that are
defined by (1). With a discrete microphone array, py(w, Q)
contains a subset of the coefficients of the original plane wave
for n <N that may deviate to some extent from the true
coefficients.

III. CONVENTIONAL BINAURAL RENDERING

The computation of the binaural signals from microphone
signals, or a SH decomposition thereof, is termed rendering
or also decoding in the Ambisonics context. In a nutshell, the
conventional rendering requires multiplying p*(krg, 2) with
the inverse of b, (kro), which are referred to as radial filters
in the SMA literature and in practice require regularization.
The result is multiplied with the corresponding SH coefficients
H™(w, ) of the employed HRTF set. We refer the reader
to [7] or [17] for further details.



Due to the circumstance that the ear positions do not
coincide with the center of the SH expansion, the SH coeffi-
cients H""(w, ) exhibit significant energy at high SH orders
for high frequencies. Their truncation causes an error in the
reconstructed magnitude response of the binaural signals when
the higher orders are not used in the rendering. By neglecting
the time information in the HRTF set at high frequencies, the
energy in high SH orders can be shifted towards lower orders
to improve the spectral balance of the order-limited binaural
rendering. Binaural rendering with a high-frequency time-
aligned HRTF set was proposed in [7]. Further improvement of
the reconstructed binaural magnitude response can be achieved
using the magnitude least squares (MagLS) approach [13] that
calculates an optimal phase for an improved reconstruction of
the magnitude response at high frequencies.

Although these methods significantly improve the rendering
at high frequencies, they neglect the impact of the discrete
sampling of the sound pressure performed by the SMA which
leads to spatial aliasing and SH order truncation of the cap-
tured signal. Further, they assume ideal radial filtering of the
renderer input signals. In other words, the underlying signal
model of the original MagLS approach from [13] is given by

pn(©) = yn (D) . (6)

Our contribution lies in incorporating the extended signal
model into the MagLS objective function, i.e., we formu-
late the problem taking into account that the SH coeffi-
cients of the captured sound field deviate from the correct
ones by some extent. This can be done in two different
ways: i) by using the SH domain signal model from (5) or
ii) by working directly with the microphone signals from (4)
without SH decomposition. The expressions for the corre-
sponding three renderers, conventional MagLS, the proposed
end-to-end MagLS (eMagLS) based on the SH pressure coef-
ficients (5), and the alternative end-to-end MagLS (eMagL.S2)
based on the microphone pressure signals (4), only differ in the
employed pressure model. Hence, the derivations below are
formulated using the generic pressure variable p(w,(2), that
represents (4), (5), or (6), depending on the specific renderer.

IV. END-TO-END MAGNITUDE LEAST SQUARES
BINAURAL RENDERING

In this section, we integrate the signal model for the sound
pressure p(w, ) into the least squares and magnitude least
squares objectives to find the corresponding optimal rendering
filters w(w). Given that the entire processing pipeline from
the microphones to the binaural output is composed of linear
time-invariant (LTI) operations, it is possible to represent
the pipeline — or arbitrary segments of it — by means of
multiple-input-multiple-output (MIMO) LTI filters. In other
words, M microphone signals are turned into two output
signals. As the processing is independent for the left and right
ear and differs only with respect to the employed HRTFs,
we formulate the problem in the following as an M-to-1
multiple-input-single-output (MISO) problem for a selected
ear.

The binaural signal for the left or right ear s.(w),
with e € {1,r}, is obtained by filtering the multichannel mi-
crophone signal s(w), due to an arbitrary sound field that
was captured by the array, with the rendering filter for the
ear w.(w), that comprises the radial filtering and the HRTFs
of that ear, and summing all filtered channels

H(w) we(w) . (7

In case of the MagLS and the eMagLS renderers, which
are both based on an SH domain signal model, also the
microphone signal s(w) is expressed in the SH domain,
i.e., both s(w) and w,(w) are vectors of length (N+1)2,
where N is the SH order. In case of the eMagl.S2 renderer,
which is based directly on the microphone signals (4), both
s(w) and w.(w) have length M, where M is the number of
microphones.

For notational brevity, all derivations below are expressed
for a single ear only, and the subscript e € {l,r} is omitted.

Se(w) =s

A. Least Squares Binaural Rendering

The MagLS renderer is typically derived as an extension of
the least squares (LS) renderer [13]. The LS rendering filters
minimize the squared difference between the HRTF H (w, 2)
and the filtered plane wave p(w,$2) for all incidence direc-
tions € on the unit sphere S2,

wrs(w) :argmin/ ‘pH(w,Q)w—H(w7Q)’2 dQ .
w o Joes?
®)
For a discretely measured HRTF set, the objective function is
discretized as

. 2

wis(w) = arg min ||PH(w) w — h(w)” , 9

where h(w) contains the HRTFs measured at
K directions h(w)=[H(w,Q), ..., Hw,Qx)]T and
Pw)=[p(w,), ..., p(w,Qxk)] contains the sound

pressure p(w, ) described by one of the models from (4),
(5) or (6), evaluated at the same directions. The least-squares
solution is found analytically as the pseudoinverse of the
pressure matrix P(w) times the HRTF vector,

wis(w) = (PM(w))" h(w) . (10)

The least-squares solution wr,g(w) implicitly comprises the in-
verse SH transform and the HRTF filtering. If the conventional
definition of py () from (6) is employed, the same solution
is obtained if the HRTF set is SH transformed by using a
pseudoinverse as DSHT matrix [18]. If the definition of the
sound pressure p(w, €2) from (4) or (5) is used, the pseudoin-
verse needs to be regularized as the model does not include
radial filtering and the scattering term b, (w) attenuates high-
order modes for low frequencies. We propose regularization by
limitation of the singular values on the diagonal of X, that are
obtained via the singular value decomposition P2 =U S VH,
to a small percentage  of the maximum singular value oy,ax,

diag(X) = max (diag(X), 5 omax) - (11)

The regularized inverse is then obtained as V X1 UH,



B. Magnitude Least Squares Binaural Rendering

For low frequencies, magnitude and phase of the HRTFs
are reproduced with little error by the LS renderer because
the underlying physical problem is solvable [7]. At high fre-
quencies, the ambiguities and information loss introduced by
spatial aliasing and SH order truncation prevent a precise
solution. As shown in [7], it is not necessary to preserve the
timing information at high frequencies and optimizing only
the magnitude by fitting a suitable phase reduces the error of
the solution compared to the LS renderer [13].

Hence, the MagLS renderer utilizes the LS approach
for low frequencies but transitions to the magnitude least
squares objective for frequencies higher than the transition
frequency wy [13],

wrns(e) = argmin | ) [ Pe) w - 1o
+ (1= 2W) || [P w)w| — h@)]* ], a2
where the function
oy @

defines the transition between the least squares and the mag-
nitude least squares objective. The corresponding optimal
filters wyrs(w) represent the MagLS, eMagLS or eMagLS2
renderer, depending on the employed pressure model p(w, 2)
from (6), (5), or (4), respectively.

The magnitude least squares optimization problem is gener-
ally difficult to solve; an approximate solution can be obtained
by reformulation as a complex two-way partitioning problem
and subsequent relaxation of the rank-1 constraint [19]. In
practice, however, it was found that the solution wyps(w;)
for the current frequency bin w; is well approximated by
iteratively reconstructing the K x1 phase vector ®(w;) for
all K directions from the solution for the previous bin
wi—1 [3, Sec. 4.11.2],

®(w) =2 (PH(wl) wmrs(wi-1))
(PH( wz)) |h(w)] )

(14)

wyLs(wy) = (15)

where element-wise definitions of the angle function /()
and the exponential e() are employed for vector-valued ar-
guments. The pseudoinverse is again regularized as described
in Sec. IV-A.

As noted in [13], a global time delay can be applied above
the transition frequency to avoid a discontinuity in the group
delay of the decoding filters at the transition frequency.

The diffuseness constraint from [7] matches the interaural
coherence of the output of the time-alignment renderer to the
coherence of the HRTF set and can also be integrated into the
MagLS renderer [3, Sec. 4.11.3], as well as into the eMagLS
and eMagl.S2 renderers, by replacing the conventional model
of the plane wave from (6) that was used ibidem with one of
the extended models from (4) or (5).

V. INSTRUMENTAL EVALUATION
A. Evaluation Measures

We evaluate the proposed renderers using the summed
magnitude response (SMR) error

GSMR(U}» Q) = SMRMLS (w, Q) — SMRref(o.), Q) s (16)

i.e., the difference between the SMR from a magnitude least
squares renderer and the reference SMR obtained from a least-
squares renderer with SH order N =32. The SMR was also
used in [13],

SMR(w, ) = 101og ( |p" (w, Q) wi(w)|”
+ P (w. Q) wi(w)]” ) |

and is inspired by the binaural composite loudness level [20],
[21]. In the evaluation, the pressure signal p(w, §2) is modeled
by the comprehensive SMA signal model. More precisely, the
SH-domain model from (5) is applied to evaluate the MagLS
and the eMagL.S renderers, and the model without the SH de-
composition from (4) is applied to evaluate the eMagl.S2
renderer.
As a global metric, we define the average SMR error

A7)

K
ESMR = E > Z ar By{lesmr (w, Qi)[},  (18)
k=1 b=1

by third-octave-band averaging B{-} of the absolute SMR er-
ror |esmr (w, 2)| for each band with index b, and subsequently
averaging over all B third-octave bands and K evaluation
directions using the quadrature weights ay.

The binaural diffuse-field magnitude response of an HRTF
set is approximated by the average magnitude response

K

> o (|Hi(w, Q)|+ [H(w,

k=1

), (19)

N |

|Hae(w)| =

i.e., by averaging the magnitude of the HRTF over K direc-
tions on the surface of the unit sphere S? across both ears.

Similarly, in case of the MagLS renderers, we average the
rendered binaural ear signals due to plane-waves impinging
from K directions

| Hagmrs (w w, Q) wmrs,1(w)]

K
D> o (lp

k=1

l\J\H

+ P (w, ) wmrs s (w)]) - (20)

All of the following simulations are based on the HRIR set
of the Neumann KU100 dummy head from [22] that includes
2702 measurement directions on a Lebedev grid. For the ren-
derers, we use a transition frequency f; =wy / (27) of 2kHz as
proposed in [13]. In case of the MagLS renderer that uses the
conventional pressure model from (6), Tikhonov-regularized
radial filters b, (w)~! (cf. (2)) with a regularization weight
of 0.01 were used to remove the spherical scattering [5]. In
case of the eMagLS and eMagLS2 renderers based on (5)
and (4), respectively, a regularization weight 8 = 0.01 is used

(cf. (11)).
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Fig. 1. SMR errors for incidence directions in the horizontal plane as a function of incidence angle and frequency for frequencies below the transition

frequency f < f;. The simulated array is the Eigenmike em32 microphone array.
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Fig. 2. Same as Fig. 1 but for frequencies above the transition frequency f > f;. Note the different color scale compared to Fig. 1.
B. Results

Fig. 1 and 2 show the SMR error esmr(w,€2) of the
MagLS, the eMagLS and the eMagl.S2 renderers for plane-
wave incidence directions in the horizontal plane and a simu-
lation of the Eigenmike em32 SMA. The SMA configuration
contains M = 32 microphones distributed on a rigid sphere of
radius 4.2 cm. It supports a SH decomposition of order N =4,
and the spatial aliasing frequency is approximately 5 kHz.

Fig. 1 shows esymr (w, 2) for frequencies below the transition
frequency fi =2kHz. The SMR errors stay below 3dB in
magnitude for all evaluated directions. The SMR errors of
the eMagLS and eMagL.S2 renderers are very similar to each
other in this frequency range and are only slightly lower
than the SMR errors generated by the MagLS renderer. This
confirms that the assumption of ideal radial filters in the
MagLS renderer creates only a small error.

As shown in Fig. 2, all three renderers create much larger
errors at high frequencies above 6kHz. (Note the different
color scales in Fig. 1 and 2.) However, in comparison to the
conventional binaural renderer in Fig. 3, that uses the SH trans-
formed HRTF set or, equivalently, the LS renderer (10) with
the signal model from (6), all three MaglLS-based renderers
achieve a significant improvement in the high-frequency range.
The low-frequency performance of the conventional binaural
renderer is not shown explicitly as the conventional renderer
is equivalent to the MagLS renderer for low frequencies,
cf. Fig. la and (12). Spatial aliasing prevents the accurate
rendering of the binaural magnitude response with a low

2
-180

-90 0

Azimuth (°)

90

Fig. 3. SMR errors for incidence directions above the transition frequency
f > ft (same as Fig. 2) but for the conventional binaural renderer using the
SH transformed HRTF set. For frequencies below the transition frequency
f < ft, the conventional renderer and the MagLS renderer are equivalent,
cf. Fig. la.

SH decomposition order of N =4. However, by including the
full SMA description into the definition of the plane-wave
model, the eMagL.S and eMagL.S2 renderers improve the ren-
dered magnitude response. In comparison to the MagLS ren-
derer, Fig. 2a, which overemphasizes high frequencies in all
directions, the eMaglS and eMagLS2 renderers, Figs. 2b
and 2c, equalize the high-frequency magnitude response on
average, which is similar to what a diffuse-field equalization
filter does. The eMagLS2 renderer, Fig. 2c, creates a slightly
lower SMR error than the SH-domain-based eMagLS renderer,
Fig. 2b, especially for frontal incidence directions.

The inherent diffuse-field equalization of the proposed
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Fig. 4. The binaural diffuse-field magnitude response |Hg¢| of the employed
HRTF set (Reference) and for different rendering approaches. |Hgs| is
reproduced accurately by the proposed eMagLS and eMagLS2 renderers,
while the MagLS renderer overemphasizes the diffuse-field magnitude for
high frequencies above 8 kHz.

TABLE I
AVERAGE SMR ERRORS €gpr IN dB FOR THE MAGLS, EMAGLS AND
EMAGLS2 RENDERERS, AND DIFFERENT SMA CONFIGURATIONS. THE
SMA CONFIGURATIONS INCLUDE THE EIGENMIKE EM32 WITH A SH
DECOMPOSITION ORDER OF N = 4 AND RADIUS r = 4.2 cm, AND FIVE
DIFFERENT LEBEDEV GRIDS WITH [N BETWEEN 1-5 AND 7 = 8.5 cm.

em32  Lebl Leb2 Leb3 Leb4  Leb5
MagLS 4.2 15.0 11.3 94 7.9 6.8
eMagLS 2.0 3.6 3.7 3.1 2.8 2.5

eMagL.S2 1.8 3.0 3.0 2.6 2.6 2.3

renderers is also observable when considering the binaural
diffuse-field magnitude responses in Fig. 4 that were cal-
culated using 2702 plane-wave incidence directions on the
entire unit-sphere, including incidence directions outside of
the horizontal plane. The eMagLS and eMaglLS2 renderers
generate binaural diffuse-field magnitude responses that follow
the reference diffuse-field magnitude response of the pure
HRTFs closely, while the MagLS renderer overemphasizes
frequencies above 8 kHz by up to +10dB.

To further investigate the high-frequency performance of
the renderers, average SMR errors €gyr according to (18) for
frequencies above the transition frequency f; =2 kHz and dif-
ferent SMA configurations are provided in Tab. I. The average
SMR errors esyr were again calculated for 2702 incidence
directions on the entire unit sphere. The array configurations
include the FEigenmike em32 with radius 4.2cm and five
other SMAs with radius 8.5 cm and microphones distributed
according to Lebedev grids. The Lebedev grids of the arrays
Lebl to Leb5 support SH decomposition orders of N =1 to
N =5, respectively. For all tested SMA configurations, the
MagLS renderer creates the highest average SMR error esyg
between 4.2dB for the em32 and 15.0dB for the Lebl grid,
followed by the eMagLS and the eMagL.S2 renderers. The
eMagLS and eMagLS2 renderers reduce ésyr significantly.
The eMagLS renderer generates errors between 2.0dB and
3.7dB, and the eMagL.S2 renderer further improves the ren-
dering of the binaural magnitude response slightly, generating
average SMR errors between 1.8 dB and 3.0 dB. In contrast to
the SMR errors in Figs. 1-3, the average SMR error €gyr con-
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Fig. 5. SMR errors for incidence directions in the horizontal plane, fre-
quencies above the transition frequency f > f; and the simulated equatorial
microphone array (EMA) using the eMagLS renderer.

siders the absolute value of the magnitude error. The eMagLS
and eMagLS2 renderers reduce this error considerably for all
array configurations under test, which proves that they do not
only reduce the magnitude error on average but also in total.

VI. END-TO-END MAGLS RENDERING FOR THE
EQUATORIAL MICROPHONE ARRAY

The proposed eMagLS binaural rendering approach is not
limited to specific array geometries. In this section, we ap-
ply it to the recently proposed equatorial microphone array
(EMA) [23] to demonstrate the flexibility of the renderer.

The EMA is essentially an SMA with microphones dis-
tributed exclusively around the equator of the spherical scat-
terer. The EMA supports a signal decomposition into 2N + 1
circular harmonics (CHs) that are a subset of the SHs for the
representation of functions only varying in azimuth. This has
the advantage that only 2N+1 instead of at least (N+1)2
microphones are required for a decomposition order of N,
if an EMA is employed instead of an SMA. EMAs provide
similar accuracy as SMAs for sound fields from sources inside
the horizontal plane at the same SH order . Interaural time
differences are conveyed correctly for all angles of sound
incidence. Monaural elevation cues are impaired for non-
horizontal incidence with deviations of the magnitude transfer
function in the order of a few dB [24].

In the following, we employ an EMA with 9 microphones
mounted on a spherical scatterer, supporting a signal decom-
position into CHs of up to 4th order. The radius of the
array and the maximum decomposition order are identical to
the ones of the SMA employed in the previous section. As
evident from Fig. 5, the accuracy of the 9-element EMA when
using eMagLS rendering is similar to that of the 32-element
SMA (depicted in Fig. 2c¢) for horizontal sound incidence.
The binaural diffuse-field magnitude response of the EMA in
Fig. 6 deviates by up to 5dB from the binaural diffuse-field
magnitude response of the HRTFs. This is because the binaural
diffuse-field magnitude response comprises sound incidence
distributed over all possible angles, including non-horizontal
incidence for which the EMA is less accurate. Fig. 6 confirms
that the impairment for non-horizontal incidence is moderate.
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Fig. 6. The binaural diffuse-field magnitude response |Hgs| of the employed
HRTF set (Reference) and for the equatorial microphone array (EMA) after
rendering with the eMagLS renderer.

VII. CONCLUSION

We extended the MagLS binaural rendering technique by
a comprehensive microphone model, including the impact of
SH order truncation and spatial aliasing, in order to facilitate
a complete end-to-end processing routine for SMA signals
without the need of any further equalization filters. The formu-
lation as magnitude least squares optimization problem allows
for two different solutions: the eMagLS renderer processes
SMA signals in the SH domain, while the eMagL.S2 renderer
directly operates on raw microphone signals. Both proposed
approaches outperform the conventional MagLS renderer at
high frequencies, mainly due to their inherent diffuse-field
equalization. However, they not only reduce the average
error over all directions, resulting in an improved diffuse-
field response, but also the absolute error, which we showed
for six different SMA configurations. The eMagL.S2 renderer
performs slightly better than the eMagLS renderer at high
frequencies but requires M convolutions, where M is the
number of microphones in the array. The eMagLS renderer
operates in the SH domain and hence only requires (N +1)2
convolutions, where N is the SH decomposition order. Typi-
cally, SMAs employ M > (N+1)? microphones such that the
eMagLS renderer has a lower computational cost. Moreover,
the SH domain operation of the eMagLS renderer has the
advantage of facilitating dynamic head rotations by a single
matrix multiplication.

We demonstrated the high flexibility of the eMagLS concept
by applying it to the recently proposed equatorial microphone
array. For horizontal sound incidence, the eMagLS renderer
using signals from the equatorial microphone array performs
similar to the one using SMA signals while requiring only
2N + 1 microphones.

MATLAB reference implementations of the proposed
eMagLS and eMagLS2 renderers are provided online'.
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