
THESIS FOR THE DEGREE OF LICENTIATE OF TECHNOLOGY

Characterizing Piecewise Linear
Neural Networks

Theoretical and Applied Perspectives

Anton Johansson

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences

Chalmers University of Technology and University of Gothenburg
Göteborg, Sweden 2022

Characterizing Piecewise Linear Neural Networks: Theoretical and Applied
Perspectives
Anton Johansson
Göteborg 2022

© Anton Johansson, 2022

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

Typeset with LATEX
Printed by Chalmers Reproservice
Göteborg, Sweden 2022

Characterizing Piecewise Linear Neural Networks
Theoretical and Applied Perspectives

Anton Johansson

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences

Chalmers University of Technology and University of Gothenburg

Abstract

Neural networks utilizing piecewise linear transformations between layers
have in many regards become the default network type to use across a wide
range of applications. Their superior training dynamics and generalization
performance irrespective of the nature of the problem has resulted in these
networks achieving state of the art results on a diverse set of tasks.

Even though the efficacy of these networks have been established, there is a
poor understanding of their intrinsic behaviour and properties. Little is known
regarding how these functions evolve during training, how they behave at
initialization and how all of this is related to the architecture of the network.
Exploring and detailing these properties is not only of theoretical interest, it
can also aid in developing new schemes and algorithms to further improve the
performance of the networks.

In this thesis we thus seek to further explore and characterize these properties.
We theoretically prove how the local properties of piecewise linear networks
vary at initialization and explore empirically how more complex properties
behave during training. We use these results to reason about which intrinsic
properties are associated with the generalization performance and develop
new regularization schemes. We further substantiate the empirical success
of piecewise linear networks by showcasing how their application can solve
two tasks relevant to the safety and effectiveness of processes related to the
automotive industry.

Keywords: machine learning, neural network, piecewise linear, automotive
applications.

iv

List of publications

This thesis is based on the work represented by the following papers:

I. D. Parthasarathy and A. Johansson “Does the dataset meet your expecta-
tions? Explaining sample representation in image data”
In proceedings of BNAIC/Benelearn, 2020.

II. A. Johansson, N. Engsner, C. Strannegård, P. Mostad “Slope and general-
ization properties of neural networks”
arXiv preprint arXiv:2107.01473.

III. D. Parthasarathy and A. Johansson “SilGAN: Generating driving ma-
neuvers for scenario-based software-in-the-loop testing”
In proceedings of the third IEEE International Conference On Artificial Intelli-
gence Testing 2021.

IV. A. Johansson, N. Engsner, C. Strannegård, P. Mostad “Improved Spectral
Norm Regularization for Neural Networks”
Submitted.

Additional papers not included in this thesis:

V. D. Chatterjee, S. Ahlinder, A. Johansson “DataCleaningTool: An open-
source MATLAB app for cooperative data cleaning”
Submitted

v

vi

Author contributions

I. Conducted auxiliary experiments, had regular meetings with the main
author during the latter part of the project, jointly developed the overlap
index and assisted with writing the paper.

II. Formulated some of the hypotheses and programmed all experiments.
Wrote large parts of the paper.

III. Conducted auxiliary experiments, had frequent meetings with the main
author to discuss the development of the method, proposed the expansion
stage of the model and assisted with writing the paper.

IV. Devised the regularization method, conducted the experiments and wrote
the paper.

Acknowledgements
Thank you Petter for the insights and support that you have given me throughout these
years. Performing research can at times be taxing but I felt that our discussions helped
me and made it enjoyable even at times when there was no major significant output.

Thank you Niklas and Claes for all of the meetings, suggestions and general discussions
regarding the projects and related fields.

Thank you Dhas for giving me the opportunity to experience a more applied aspect of
research.

Thank you to the people at the math department for making it a great place to work.

Thank you Mutsuki for your patience and love.

vii

viii

Contents

Abstract iii

List of publications v

Acknowledgements vii

Contents ix

1 Introduction 1

1.1 Preliminaries . 2

2 Geometric exploration 9

2.1 Geometric properties of the activation regions 9

2.2 Geometric properties of the affine transformations 11

2.3 Conclusion . 17

3 Overview of papers 19

3.1 Paper I . 19

3.2 Paper II . 21

3.3 Paper III . 24

3.4 Conclusion . 25

3.5 Paper IV . 26

Bibliography 29

ix

x CONTENTS

Appendix 33

A Appendix 33

A.1 Proofs . 33

A.2 Experimental details . 35

Papers I-IV

1 Introduction

As the empirical success of deep learning methods is becoming progressively
more evident, forming crucial components for technologies such as speech
recognition [Roger et al. (2020)], object detection [Redmon et al. (2016)] and
natural language processing [Otter et al. (2021)], there is an ever growing need
to understand the inner workings of the method theoretically. For example,
being able to prove for which tasks or scenarios a network is prone to yield
erroneous results can not only enable engineers to quickly test and develop
new prototypes, it also forms a crucial aspect of deploying deep learning in
safety critical scenarios.

While it is human to strive for a full theory in all generality, such a theory of
of deep learning is likely to be an insurmountable task for years to come. It
is thus more fruitful to focus our efforts on the behaviour of the method in
a restricted setting, obtaining partial theories and explanations that can shed
light on the behaviour of deep learning in a limited context.

A restricted setting that can be simpler to analyze is that of the neural networks
for which the mapping at inference time between the input and output space is
piecewise linear. Such a mapping arises when all non-linear transformations
between the layers in the network are given by piecewise linear functions, e.g.,
by utilizing ReLU activation functions [Nair and Hinton (2010)], max-pooling
[Gholamalinezhad and Khosravi (2020)] or certain normalization layers [Ioffe
and Szegedy (2015)].

These networks have not only achieved state of the art results on several tasks
[He et al. (2016); Redmon et al. (2016); Szegedy et al. (2015)], they can addi-
tionally be decomposed into simpler constituent parts where the function is
completely described by an affine relation. A global understanding of these
networks and their behaviour could thus be facilitated by understanding the
characteristics of these local constituent parts and their behavior. Such a charac-
terization of the local properties of the piecewise linear networks will establish

1

2 1. Introduction

a firm foundation from which one can reason about the method, paving the
way for a comprehensive understanding of deep learning in this restricted
regime.

We thus undertake the task of further facilitating this characterization. In
this endeavor we explore and detail the properties of these networks, both by
theoretically proving how they behave at initialization and also by empirically
demonstrating their behaviour during training. We use our results to reason
about the generalizability of deep learning and develop new regularization
schemes. Additionally, we further add on to the empirical success of deep
learning by demonstrating how these networks can allow us to approach
and solve novel tasks where classical machine learning methods fail, here
demonstrated as the solution to the problem of detecting possible failure modes
for models trained on immense data sets and for the problem of generating
realistic automotive test-stimuli from simple specifications.

The structure of the thesis is as follows. In Section 1.1 we first introduce the
preliminaries for understanding the included papers, introducing what neural
networks are, how they can be used in machine learning and additionally
the geometry that arises from working with piecewise linear networks. In
Section 2 we showcase some minor results regarding piecewise linear networks,
both empirical results for how the functions behave during training but also
theoretical results regarding their behaviour at initialization. Finally, in Section
3 and onwards we introduce the main papers of this thesis.

1.1 Preliminaries

1.1.1 Neural networks

Let us start with defining what a neural network is. Working with the same
definition as in Paper II [Johansson et al. (2021)], a neural network f : Rn0 →
Rnc will for us consist of

• a sequence of positive integers n0, n1, ..., nn = nc, where n1, . . . , nn−1

denote the width of the hidden layers,

• for i = 1, ..., n, an (ni × ni−1)-dimensional matrix Wi and a vector bi of
length ni, and

• a continuous activation function g : R → R applied separately to each
dimension.

1.1. Preliminaries 3

We define f0(x) = x and for i = 1, . . . , n− 1 a continuous map f i : Rn0 → Rni

by setting
f i(x) = g(Wif

i−1(x) + bi)

while we set f(x) = fn(x) = Wnf
n−1(x) + bn. A commonplace terminology

that we will follow is that the output of neuron j of layer l < n is given by the
j:th component of f l(x).

If not otherwise mentioned, we will refer to the sets of all matrices Wi and
vectors bi of the network as the weights and biases of the network. These sets
will be denoted as W and B respectively and the union of the sets θ := W ∪B
will be referred to as the parameters of the network. We will at times write
the network function as f(·; θ) to make the dependence of the network on the
parameters explicit.

If we momentarily restrict ourselves to regression for simplicity, then the
supervised machine learning task is to learn parameters θ such that the network
learns to associate feature vectors x ∈ Rn0 with a corresponding value-vector
y ∈ Rnc . This association is achieved by first sampling a training set Dt of
feature-value pairs from some distribution P , Dt := {(xi, yi)}Ni=1, (xi, yi) ∼
P ∀i, and then employing a suitable loss function l : Rnc×Rnc → R to minimize
the discrepancy between the predicted value f(xi) and associated value-vector
yi, where (xi, yi) ∈ Dt. For example, the archetypal loss function for regression
can be argued to be the lp-loss given as lp(x1, x2) = ||x1 − x2||pp, where || · ||p
denotes the p-norm, most common choices being p = 1 or 2. For this loss we
may formulate the learning task as

min
θ

∑
(xi,yi)∈Dt

lp(f(xi; θ), yi)︸ ︷︷ ︸
:=l(θ;Dt)

(1.1)

which can be minimized through some variant of gradient descent. The typical
variant is to work with some form of stochastic gradient descent (SGD) where
the gradient is calculated only for a batch, meaning a subset of the training data,
at each iteration.

1.1.2 Generalization

For a wide variety of tasks the minimization of (1.1) can be relatively easy given
that the network has sufficiently many parameters. However, this minimization
does not mean that the network generalizes, meaning that the network might
have learned parameters θ that only rely on spurious associations that are only

4 1. Introduction

present in Dt but that will not minimize l(θ;Dv) for Dv∩Dt = ∅, Dv ∋ (xi, yi) ∼
P .

Many techniques exist to guide the minimization descent such that the network
does not learn spurious associations and instead generalizes, e.g.,

• Regularization where a penalty term R(θ) is added to the minimization
objective which penalizes solutions that are more ’complex’. For example,
weight decay which penalizes the magnitude of the weights squared.

• Small batch sizes which adds a stochastic element to the descent.

• Early stopping where a separate validation set Dv is obtained, with
Dv ∩ Dt = ∅, Dv ∋ (xi, yi) ∼ P , and at each iteration of gradient descent
the two terms l(θ;Dv) and l(θ;Dt) are calculated to gauge if the current
parameters θ are generalizing or not. At the iteration where l(θ;Dv)
increases but l(θ;Dt) decreases one stops the gradient descent.

1.1.3 Generative adversarial network

One of the key examples demonstrating the power of neural networks and one
we rely on in Paper III is that of the Generative Adversarial Network (GAN)
[Goodfellow et al. (2014); Schmidhuber (2020)]. The GAN method has shown
the capacity to be able to solve exceptionally complicated tasks which previous
methods struggled with, e.g., generating art following a certain style, creating
realistic hand-writing and speech synthesis [Kong et al. (2020); Shahriar (2021)].

While GANs can be used for supervised tasks, it is most straightforward to
introduce the method in an unsupervised setting. We thus have a training set
without associated labels, meaning Dt = {xi}Ni=1, and we seek to approximate
the distribution P that generated the training data. In the most simple approach
to this problem we work with two neural networks, a generator G and a
discriminator D. The generator attempts to learn to transform samples z from
a prior distribution p(z) such that they follow the distribution of interest P , i.e.,
G(z) ∼ P . Simultaneously, the discriminator strives to learn to differentiate
between the generated samples G(z) and the true samples x ∈ Dt by outputting
a probability which indicates how likely the input is to follow the distribution
P . The full learning objective for this competition can be formulated as a
minmax game as

min
G

max
D

V (G,D) = Ex∼P [logD(x)] + Ez∼p(z)[1−D(G(z))], (1.2)

1.1. Preliminaries 5

which can be approximately solved by sequentially training the generator and
discriminator, ultimately allowing us to approximate complex distributions by
simply specifying networks of sufficiently high complexity and running SGD
on the loss objective (1.2).

While this basic scheme can allow us to tackle tasks which are intractable with
classical machine learning algorithms, several improvements have been made
to extend and improve upon the GAN scheme. For example, one can extend
the scheme to model conditional distributions p(x|y) by supplying different
conditions y to both the generator and discriminator, altering the loss function
as

min
G

max
D

V (G,D) = Ex∼p(x|y)[logD(x, y)] + Ez∼p(z)[1−D(G(z, y))]. (1.3)

With such a scheme one can, e.g., develop models that transform sketches to
realistic photos [Isola et al. (2017)] and generate true to life images from text
[Reed et al. (2016)].

1.1.4 Geometric view of piecewise linear networks

In Paper II we utilize a geometric perspective of piecewise linear neural net-
works to characterize their behaviour. With this geometric perspective we
decompose the input space into smaller constituent regions where the function
is completely described by an affine relation, see Figure 1.1.

With this perspective we can analyze the behaviour of the network by analyz-
ing the behaviour of the local affine transformations and associated regions,
obtaining global conclusions from this local view. For example, if certain net-
work architectures predispose adjacent regions to be extremely dissimilar then
it is likely that such a network will not be able to model the smooth variations
present in many physical phenomena, making it likely that the network will not
generalize on a wide variety of tasks. Another benefit of this perspective is that
understanding and posing constraints on the network can be simpler if done in
terms of the local characteristics of the regions and the affine transformations,
e.g., a constraint on the network to be robust against perturbations can be
understood as a constraint on the singular values of the affine transformations.

While piecewise linear networks can be obtained by a several different piece-
wise linear transformations between the layers, for simplicity of analysis in this
introductory setting we will restrict ourselves to networks that utilize Rectified

6 1. Introduction

x1

x2

x2x1

y

Figure 1.1: Decomposition of a piecewise linear neural network f : R2 → R into regions
of affine transformations. (Left) The regions in the x1x2-plane with the region borders
represented by solid lines. For simplicity, the regions are only illustrated in an axis-
parallel rectangle. (Right) A cross-section of the local affine transformations associated
with the regions.

Linear Units (ReLU) as activation functions. In this case

g(x) = max(0, x).

For these networks with ReLU activation functions, the regions which con-
stitute the decomposition of the input space into sets where the network is
completely described by an affine relation are known as activation regions. These
are obtained by sending an input through the network and observing the re-
sulting binary pattern (known as activation patterns) indicating which neurons
that are active (output > 0) and inactive (output ≤ 0) in the hidden layers,
hence the name activation region. Mathematically, for a given x we can define
an activation region Rx as

Rx := {x̃ ∈ Rn0 : 1{f l(x̃) > 0} = 1{f l(x) > 0}, l = 1, 2, ..., nn−1}

where the inequalities and indicator function 1 is assumed to act component-
wise. For the rest of this thesis, if a property is valid for all activation regions,
we drop the subscript x and simply refer to a general region as R. That the
activation regions form the above mentioned decomposition of the input space
can be understood in the manner that switching a neuron from off to on (on
to off) entails engaging (disengaging) another non-linearity, thus the network
will with probability 1 be non-linear for any section in the input space that
encompasses different activation regions [Hanin and Rolnick (2019b)].

1.1. Preliminaries 7

While not strictly piecewise linear, we will additionally recognize networks
where a non piecewise linearity is only used in the output layer, e.g., sigmoid,
softmax or similarly, as piecewise linear. These final activation functions often
only serve to map the output into a predefined range and can in many cases
be removed with minimal ramifications. Such a network can thus easily be
converted to an equivalent piecewise linear network by the removal of the
activation function on the output layer and all analysis can be performed on
that equivalent piecewise linear network instead.

In this thesis we mainly focus on the properties of the affine transformation
associated with each region, and only showcase minor results for the regions
themselves. This restriction is mainly done due to the fact that previous re-
search into the regions has already extensively detailed many of their properties
and behaviour. For example, the regions have been shown to be convex poly-
topes [Hanin and Rolnick (2019b)], to act as hash encoders for the training
set [He et al. (2021)], used to reverse-engineering neural networks [Rolnick
and Kording (2020)], utilized for formal verification and robustness against
adversarial inputs [Botoeva et al. (2020); Croce et al. (2019)] and have been
connected to the interpretability of the network [Xu et al. (2021)].

On the other hand, little is known about the behaviour of the affine transfor-
mation. We thus focus our investigation on this aspect of the piecewise linear
networks and an excerpt of some natural inquires for these transformations
can be seen below:

• How different can the affine transformation be between two neighbouring
regions?

• What is a typical rank of the affine transformation?

• How are shapes preserved when mapped under them?

• How are the properties of the affine transformations related to the training
algorithm?

In this thesis we seek to explore and answer some of these inquires. Answering
these will help characterize piecewise linear networks and subsequently facili-
tate any analysis into the behaviour of deep learning in this piecewise linear
regime.

8 1. Introduction

2 Geometric exploration

Since the task that we have undertaken is exploratory in nature, some experi-
ments that we have performed have given results that are interesting but not
significant enough to stand on their own for a publication. While not major,
these results are a natural starting point for setting the stage for the larger
investigations that have been performed and showcasing how the geometry be-
haves in different situations. We will thus present some of them in the ensuing
sections.

2.1 Geometric properties of the activation regions

In order to use the activation regions to characterize the networks we will first
need some suitable measure to characterize the activation regions themselves
and their properties. For example, attributes such as small, big or elongated are
among some geometric properties of the regions that could serve to delineate
the differences between the piecewise linear networks, possibly providing a
characterization between the networks that can successfully learn a task and
those that cannot. We thus start with detailing two possible geometric measures
for this task, the volume of the region and the distance from a point to the
nearest region edge.

2.1.1 Volume of regions

A natural measure of the regions to consider is that of the volume of the regions.
Unfortunately this measure is deficient for the task of understanding the geo-
metric properties for a wide variety of network structures. This deficiency can
easily be understood through two properties:

9

10 2. Geometric exploration

• Obtaining the volume of a single convex polytope in Rn scales as O(n5),
making it unfeasible to obtain the volume of a region for the large in-
put dimensions present in many deep learning problems [Kannan et al.
(1997)].

• For networks where the number of neurons is smaller than the input
dimension, the volume of every activation region is infinite. Thus the
measure will provide no information for these networks. This follows
from the fact that each wall of an activation region is given by the set
where a neuron is switched from on to off or vice versa. Since n0 + 1
hyperplanes are needed to constrict a region of finite volume in Rn0 , each
region will have an infinite volume if there are fewer neurons than the
dimension of the input space, meaning n0 ≥

∑n−1
i=1 ni.

The volume is thus not a suitable measure to facilitate a characterization of the
piecewise linear networks.

2.1.2 Distance to the edge of a region

A measure that we opt for and that is more feasible is that of the closest distance
d∗ from a point x to the edge of the associated region Rx. This measure is also
suitable since it can allow us to analyze geometric differences that can arise
between two different sets of points, e.g., between the training and validation
set.

The first question is how to calculate this measure in an efficient manner. Since
the activation region is defined by a specific activation pattern, one way to
obtain the analytical distance to the region edge is to simply calculate the
distance d from x to all neuron decision boundaries. The smallest obtained
distance will be d∗, i.e.,

d∗ = min
l=1,2,...,n−1
i=1,2,...,nl

dist
(
x, {x ∈ Rn0 :

(
Wlf

l−1(x) + bl
)
i
= 0}

)
, (2.1)

which can be seen in Figure 2.1 (left). While this distance to the region edge
can be obtained in a straightforward manner, the time complexity scales as
O(

∑n−1
l=1 nl), making it expensive to calculate for larger networks. For simplic-

ity, in this introductory part of the thesis we will restrict ourselves to smaller
networks and thus (2.1) will suffice to demonstrate the properties of interest.
However, if one wishes to analyze the distance to the nearest region edge
for larger networks then some form of stochastic approximation of (2.1) is

2.2. Geometric properties of the affine transformations 11

necessary to keep the computational burden to a minimum.1

An immediate possible application emerging from this measure is that of
detecting data points where the function has to adapt quickly to provide a
good fit, e.g., for mislabeled data points enclosed by data points of the correct
class. For such data points, the required quick adaptation of the function to the
mislabeled point compared to that of the surroundings is likely to cause the
function to need multiple different affine transformations to ensure a good fit,
necessitating crossing multiple activation regions. One can thus hypothesize
that such mislabeled data points are situated closer to the region boundary. A
hypothesis that we explore in the subsequent section.

2.1.3 Detecting mislabeled data points

Building on the hypothesis that mislabeled points should be closer to the region
boundary than that of ’normal’ points, we set up an experiment where we first
mislabel 100 data points in the training set of MNIST and then train a network
on the full MNIST training set consisting of 60000 points. Subsequently we
compare the distance to the nearest region edge for these 100 points and 500
randomly chosen ’normal’ points2 and compare their resulting distributions,
see Figure 2.1 (right).

As can be seen from the histogram, the mislabeled data points are situated in
the lower end of the full distribution, giving some evidence to the validity of the
hypothesis. Unfortunately it can also be seen that there is a substantial amount
of correctly labeled points which are located close to the region boundary,
making it impractical to use this scheme to detect possible mislabeled data
points.

2.2 Geometric properties of the affine transforma-
tions

The first question that we have to ask ourselves is how we explore the properties
of the affine mapping in every activation region. Since the network f is locally

1It is not difficult to envision such a stochastic approximation scheme. Simply sample points
on concentric spheres of increasing radii around the point of interest and when a sampled point
obtain a different activation pattern one has an upper bound on d∗.

2Normal might be an ambiguous term since there most likely already exists mislabeled data
points in the original MNIST data set.

12 2. Geometric exploration

d∗

d∗x

Correctly labeled data
Mislabeled data

Distance density

Figure 2.1: Distance to the closest region edge. (Left) Illustration of the nearest region
distance d∗. The dotted lines are the distances that has to be evaluated in equation
(2.1). (Right) Histogram over the differences in distances to the nearest region edge for
mislabeled and correctly labeled data points. The mislabeled histogram is created from
100 data points and the correctly labeled histogram from 500 data points. Experimental
details associated with the plots can be found in Appendix A

affine in every activation region R, meaning that there exists WR ∈ Rnc×n0 and
b ∈ Rnc such that f(x) = WRx + b,∀x ∈ R, we can explore the properties of
the mapping by exploring the properties of WR. The main properties that we
are interested in is the rank and singular values of WR.

Throughout this section we will use the fact that the affine transformation WRx

for a region Rx can be obtained as

WRx
= WnZn−1(x)Wn−1 · · ·Z2(x)W2Z1(x)W1 (2.2)

where Zi(x) is a diagonal boolean matrix indicating which neurons in layer
i that are active when passing input x through the network. To simplify the
notation, if a property is valid for all R ∈ R, we will simply write Zi(x) as Zi.
We can now proceed with our investigation into the rank and singular values
of WR.

2.2.1 Rank of the affine transformation

The rank of the affine transformation gives information regarding the dimen-
sion of the space that the input data points are mapped to. A low rank could
indicate that the training procedure is not optimal, and that the network is not
fully utilizing the available capacity to solve the task at hand. For compression
tasks the rank can also indicate the amount of superfluous information that is

2.2. Geometric properties of the affine transformations 13

removed from the input. It is therefore of interest to investigate the rank and
its behaviour further.

Theoretical properties. The first step in analyzing the rank is to have an
efficient way of obtaining it. At initialization of the network, the rank of the
affine transformation WR associated with a region R can easily be obtained as

rank(WR) = min(n0, nc,min
i

trace(Zi)), (2.3)

meaning that we only need to check which quantity that is the smallest between
the input dimension, the output dimension and the number of active neurons
at every layer in order to obtain the rank. This follows since the effect of Zi in
(2.2) is to simply zero out rows of the corresponding matrices Wi, leaving us
with a product of random matrices which can be deduced to have a rank given
as (2.2), see Appendix A for a proof. While this rank property can be proven
to hold at initialization, we make the assumption that the learning trajectory
is such that the equality remains valid even when updating the parameters
during SGD, allowing us to analyze the rank and its behaviour during training.

Empirical observations. As mentioned previously, the rank of the affine
transformation might indicate when the training is not proceeding as intended,
providing us with a possible tool for debugging the training procedure and
facilitating the model construction process. One such example where the be-
haviour of the rank can assist an analyst in the model construction process
can be seen below in Figure 2.2 where we train a network with two hidden
layers with 200 neurons each on FashionMNIST [Xiao et al. (2017)]. We train
the network with a learning rate λ that is too large for the training dynamics
to properly converge and compare it to a learning rate for which the training
proceeds smoothly. From the loss and accuracy curves we can see that after
a certain amount of epochs the network trained with a high learning rate col-
lapses and that the model predictions are of little use beyond this point. While
this information is available from the loss curves, it is not visible as early as it is
for the rank trajectory. Comparing the low learning rate setting where the rank
stays maximal throughout the entire training to the high learning rate setting
where the rank starts decreasing immediately we can quickly understand that
something is amiss in the high learning rate setup. Since the environmental
impact and cost of training deep learning models has substantially increased
in the last decade [Strubell et al. (2019)], any scheme that can allow an analyst
to cancel a flawed training run in advance can be of benefit.

However, to make this a practical scheme one would need to obtain solid
evidence that this behaviour does not occur for non-flawed runs, thus ensuring
that no well-performing models are discarded.

14 2. Geometric exploration

0 50 100
Epoch

10 5

10 4

10 3

10 2

Loss

0 50 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

0 50 100
Epoch

0
1
2
3
4
5
6
7
8
9

10
Mean rank

0 50 100
Epoch

10 2

Loss

0 50 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy

TrainValidation

0 50 100
Epoch

0
1
2
3
4
5
6
7
8
9

10
Mean rank

λ = 0.01

λ = 0.1

Figure 2.2: Difference in rank between two different learning rates. (Top row) The
training evolution for a network with learning rate λ equal to 0.01. The rank is stable
throughout the training. (Bottom row) The training evolution for a network with λ
equal to 0.1. The rank is decreasing throughout most of the training, making it clear
that it might be wise to cancel the training procedure at an early stage. Experimental
details associated with the plots can be found in Appendix A.

2.2.2 Singular values of the affine transformations

The singular values of W details the extent of how far away points can be
mapped under W . The values thus give insights into if all points in a region are
mapped to a similar location or if they can be spread out over space, allowing
us to obtain a more detailed understanding of the geometry of the network
mapping. We explore the singular values of W both through theoretical analy-
sis and empirical experiments.

Theoretical properties. We start this exploration by first studying how the
singular values can vary as we move between two adjacent activation regions
R and R̃, where with adjacent we mean that the associated activation patterns
for R and R̃ only differ with one element.

Returning to equation (2.2) and assuming that the activation patterns of R and

2.2. Geometric properties of the affine transformations 15

R̃ differ only because of the k:th neuron in the l:th layer, we have that we can
write WR and WR̃ as

WR = WnZn−1Wn−1 · · ·Zl · · ·Z2W2Z1W1 (2.4)

WR̃ = WnZn−1Wn−1 · · · Z̃l · · ·Z2W2Z1W1 (2.5)

where Zl and Z̃l only differ in the k:th element on the diagonal. Using this fact
we can write either of the matrices as a perturbed version of the other, meaning
that WR = WR̃ + E where

E = WnZn−1Wn−1 · · · (Zl − Z̃l) · · ·Z2W2Z1W1. (2.6)

This identity allows us to make use of perturbation theory for singular values
[Stewart (1990)] to obtain a bound on the differences of the singular values as√∑

i

(σi − σ̃i)2 ≤ ||E||F , (2.7)

where σi denotes the i:th singular value of WR and similarly for σ̃i and WR̃.
While expression (2.7) does not immediately yield itself to a theoretical analysis
for general networks, by restricting ourselves to the single layer fully connected
case we can proceed with more ease. For these networks the squared Frobenius
norm of the perturbation is given as

||E||2F =
∑
i

∑
j

(
W2

)2
k,j

(
W1

)2
k,i

, (2.8)

where W2,W1 are the weights of the inward and outward connections to the
hidden layer, and thus for these networks we can perform an analysis with
more ease. A straightforward application of this identity is to analyze how the
singular values vary between adjacent regions at initialization of the network.
Many of the commonly used initialization schemes initialize the weights of
the network independently according to a distribution with zero mean and
variance proportional to the number of neurons in the previous layer, i.e.,
σ2 = C/nl−1 for weights in layer l for some C > 0 [Glorot and Bengio (2010);
He et al. (2015)]. Thus for these networks, the expected difference of the

16 2. Geometric exploration

singular values can be upper bounded as

E[
∑
i

(σi − σ̃i)
2] ≤ E

[
||E||2F

]
=

∑
i

∑
j

E
[(
W2

)2
k,j

(
W1

)2
k,i

]
(2.9)

=
∑
i

∑
j

E
[(
W2

)2
k,j

]
E
[(
W1

)2
k,i

]
(2.10)

=
∑
i

∑
j

C

n1

C

n0
(2.11)

= n0nc
C

n1

C

n0
(2.12)

=
C2nc

n1
. (2.13)

From this expression we can see that the expected difference decreases when
more neurons are added to the hidden layer, giving an indication that adjacent
regions might behave similarly at initialization for large networks3.

While the previous analysis allows us to get a better grasp on the local variations
of piecewise linear networks, we still lack a global perspective of the behaviour
of the network. Further restricting ourselves to the setting where n0 = nc = 1,
we can partly resolve this issue by utilizing information regarding the number
of activation regions that one can encounter along any interval. Knowing
how the singular values of the regions can vary as we go between them and
additionally how many regions we cross in a given interval will allow us to
obtain a better understanding of how the function varies in that interval.

If we introduce the random variable

N : Number of activation regions in a unit interval (2.14)

then recent work in the setting n0 = nc = 1 proves that at initialization we
will have E[N] ≈ #{neurons} [Hanin and Rolnick (2019a)]. Utilizing this fact
and making the additional assumption that the distribution for N is sharply
peaked at the mean, i.e., P (N = E[N]) ≈ 1, then we can bound the squared

3Unfortunately, except for the case where n0 = nc = 1, replacing ’might behave’ with ’will
behave’ requires additionally that the singular vectors should be similar for large networks. This is
more difficult to analyze theoretically.

2.3. Conclusion 17

slope difference for two regions R, R̃ a unit distance away from each other as

E[(σ − σ̃)2] ≤ E
[N - 1∑

j=1

2[(σj − σ̃j+1)
2

]
(2.15)

≈
n1−1∑
j=1

2E[(σj − σ̃j+1)
2] (2.16)

≤ 2(n1 − 1)
C2

n1
(2.17)

= 2C2 − 2
C2

n1
. (2.18)

Thus we can see that there is a constriction on how different the average slope at
initialization in two regions a unit distance away from each other can be, giving
a further geometric understanding of neural networks in the 1d-regression
setting.

Empirical observations. Given that (2.13) and (2.18) only provides upper
bounds on the difference of the singular values, it is of interest to compare
the bounds with empirically obtained estimates to see how tight they they
are. Thus we perform an empirical experiment where we initialize a single
layer neural network in PyTorch [Paszke et al. (2019)] (which uses Xavier ini-
tialization where the components of Wl are sampled independently according
to U [−1/

√
nl−1, 1/

√
nl−1], giving C = 1/3 [Glorot and Bengio (2010)]) with

nc = 10, vary the number of neurons in the hidden layer and obtain the squared
difference of the singular values. The comparison can be seen in Figure 2.3
where in both plots we can see that the bounds are relatively loose. The bound
(2.13) gives an indication for how the difference evolves as the network grows
while (2.18) can be seen to only provide a rough upper bound and no additional
information.

2.3 Conclusion

From these minor results, regarding the distance to the closest region and the
behaviour of the rank and singular values of the affine transformations, we can
see how these geometric properties can allow us not only to understand the
piecewise functions better, but also to envision schemes that can facilitate the
usage of deep learning.

We now move on to the more significant results and applications which we

18 2. Geometric exploration

0 200 400 600 800 1000
n1

10 5

10 4

10 3

10 2

10 1

100

i
(

i
i)2

Upper bound nc/3n1
Empirical mean (n0 = 5)
Empirical mean (n0 = 50)
Empirical mean (n0 = 500)

0 200 400 600 800 1000
n1

0.00

0.05

0.10

0.15

0.20

(
)2

Upper bound 2/9 2/(9n1)
Empirical mean

Figure 2.3: How the difference between the singular values evolve as the network grows
wider. (Left) The singular value difference between adjacent regions for a single layer
network with nc = 10. (Right) The singular value difference between regions a distance
1 from each other for a single layer network with n0 = nc = 1. It can be seen that both
bounds are relatively loose. Experimental details associated with the plots can be found
in Appendix A.

have obtained, compiled into the four papers on which this thesis is based.

3 Overview of papers

In this section we provide an introduction and conclusion to each paper. While
Paper II and Paper IV are related to general properties and schemes for neural
networks, Paper I and Paper III are more focused on applying neural networks
to solve problems in the automotive industry.

3.1 Paper I

3.1.1 Introduction

One of the main difficulties that can occur when trying to utilize deep learning
for a given task is that of ensuring that the method works as intended over a
wide range of scenarios. Measuring the validation loss can give an indication
of the efficacy of the model but such a measure can fail to give an indication of
how it will work in deployment when new unknown scenarios, unlike those
appearing in the train or validation set, will be presented to the model.

Since the objective of stochastic gradient descent is to reduce the loss over a
given batch containing different scenarios, it is reasonable to assume that the
scenarios that are commonly occurring in our training set will have a greater
effect on the trajectory of the descent procedure. We thus work under the
assumption that the descent will yield a model that will be able to perform well
for the scenarios that are abundant in the training data and potentially struggle
when encountering sparsely occurring scenarios. For example, consider a
self-driving bus as in Figure 3.1 where a component in the vehicle is meant to
display bounding boxes around objects of interest, e.g., traffic signs, vehicles
and pedestrians. If such a component relies on deep learning then it it is likely
that the component will fail to output bounding boxes around objects that occur
sparsely in the training data, potentially leading to catastrophic consequences.

19

20 3. Overview of papers

Here this is visualized as the failure to detect the cyclist in the bottom right,
the cause potentially being the lack of cyclists or pedestrian crossings in the
training data.

Figure 3.1: Illustration of a potential failure mode when components rely on deep
learning, here showcased as the failure of a bounding box detector. (Left) A self-driving
bus with its corresponding field of vision. (Right) The different scenarios the bus
encounters and the bounding boxes represented in green. It can be seen that the system
manages to enclose traffic signs but fails to create a bounding box for the cyclist in
the bottom right. Such a failure could be attributed to a lack of cyclists or pedestrian
crossings in the training data.

With the data sets required to obtain accurate models growing ever larger, it is
becoming infeasible to manually label which scenarios that are abundant and
which that are sparsely occurring in the training data, making that a difficult
path to conclude that the sparsity of a scenario likely contributed to the failure.
While obtaining labels from samples is infeasible, simulation based methods
can allow us to approximately obtain samples from labels, opening up the
way to generate novel scenarios and discover failures modes for real driving
scenarios by exploring the models behaviour on simulated samples.

In Paper I we thus postulate that these novel scenarios are likely to be regarded
as outliers by the model, converting the problem of detecting possible sparsity
issues of the training data to one of outlier detection, see Figure 3.2.

Since these novel scenarios can be generated with ease through simulation,
we circumvent the expensive annotation of the training data and can identify
scarce scenarios, ultimately effectivizing further data collection schemes.

3.2. Paper II 21

Figure 3.2: Illustration of the novelty hypothesis. Data points representing novel
scenarios can be represented as outliers, converting the problem of identifying possible
failure modes to one of outlier detection. Here the blue curve represents the empirical
data distribution obtained from the training set. The cyclist scenario can clearly be seen
to be an outlier compared to the other scenarios.

3.1.2 Conclusion

By working with piecewise linear networks related to the VGG-networks [Si-
monyan and Zisserman (2015)] and with a data set of circles and squares, we
show that by utilizing outlier detection techniques for neural networks we
can get an indication of sparsity issues in the training data, confirming the
posed novelty hypothesis. Further, by specifying a distribution of expected
scenarios in terms of low level interpretable features and comparing the sup-
port of the empirical training data distribution to that of the distribution of
expected scenarios, we are additionally able to obtain a global interpretable
understanding of the characteristics of the training data. This information can
facilitate further data collection schemes by steering collection efforts towards
sparsely occurring scenarios.

3.2 Paper II

3.2.1 Introduction

One of the main considerations that has to be taken into account when per-
forming any kind of machine learning is that of overfitting. While measuring
the validation loss can give an indication of overfitting, such a measure does
not necessarily prevent it from occurring. One common way of counteracting
overfitting and simultaneously promoting generalization is that of enforcing a
restriction on a suitable geometric property of the functions that one considers,
where suitable should be interpreted as that there exists a connection between
the property and the inclination of the function to overfit.

22 3. Overview of papers

While the existence of such a property might appear obscure at first, in 1d-
regression it is not difficult to realise that the derivative is a geometric property
that is associated with the generalization, and that enforcing a penalty on the
magnitude of the derivative is likely to improve generalization for a wide
range of tasks. This fact is visualized in Figure 3.3 where we see that the
generalization for polynomial regression is improved when a penalty on the
magnitude of the weights is added to the loss function, consequently restricting
the size of the derivative of the estimators.

ŵ = argmin
w

||Xw − y||22 ŵ = argmin
w

||Xw − y||22 + λ||w||22

Figure 3.3: Illustration showcasing that the derivative is a geometric property related to
generalization for 1d-regression. The data generating function is given by the second or-
der polynomial drawn in solid blue and the dashed line indicates the fit an eighth order
polynomial with coefficients ŵ. (Left) Fitting the polynomial without any restrictions
(Right) Fitting the polynomial with an added penalty on the magnitude of the weights.
The generalization improves as the penalty is added indicating that the derivative is
related to the generalization.

While the derivative is clearly connected to the generalization for 1d polynomial
regression, it is not immediately clear which geometric properties that are tied
to generalization for neural networks employed in high dimensional tasks such
as image classification or bounding box detection.

Understanding which geometric properties that are associated with the general-
ization can allow for the development of new regularization schemes and will
additionally facilitate the understanding of the high-dimensional behaviour of
neural networks. While such a property might be elusive for general networks,
by restricting ourselves to piecewise linear networks we can employ the geo-
metric perspective and understand the functions in terms of the constituent
activation regions and the corresponding affine transformations. In this setting,
a natural choice for geometric properties to consider are those that describe
the behaviour of the local mappings WR. Further basing our intuition on the
one-dimensional regression case, we can realise that the mappings ability to
quickly adapt to variations is a property that can induce overfitting. While for

3.2. Paper II 23

a high-dimensional mapping this property is not completely captured by any
single number, the magnitude of the increase in the direction of fastest increase
captures an aspect of the mappings ability to adapt to sudden variations in the
data, and it is thus of interest to explore its relation with the generalization of
the network.

We refer to this property as slope [Johansson et al. (2021)] and subsequently
define it as:

Definition 1. Given a continuous function f : Rns → Rnc and some p with
1 ≤ p ≤ ∞, we define its slope (or p-slope) at x ∈ Rns as

Slopef (x) = sup
v∈B∗

(
lim
t↓0

||f(x+ tv)− f(x)||p
t

)
where || · ||p denotes the p-norm1, the limit is taken over positive t, and

B∗ = {v ∈ Rns : ||v||p = 1}.

The slope is undefined unless the limit exists for all v ∈ B∗.

In Paper II we investigate how the slope varies as we train different networks
to generalize on different data sets and additionally explore its properties as
the data set is modified.

3.2.2 Conclusion

By training multiple network architectures on different classification tasks, we
could observe that the slope is a geometric property that have an association
with the generalization. For all networks the slope grows continuously during
training which signals that when the network inevitably overfits the slope will
be larger than that compared to a generalizing network obtained at an earlier
epoch through early stopping. Additionally, for all generalizing networks the
slope is relatively stable to changes in the network width and only possess a
weak dependence on the depth of the network, indicating that all networks
express the underlying function in a similar manner.

We thus see evidence that controlling the slope can be another way of promot-
ing generalization for neural networks.

1||x||p =
(∑

i |xi|p
)1/p

24 3. Overview of papers

3.3 Paper III

3.3.1 Introduction

A fundamental task in ensuring the safety of modern vehicles lies in ensuring
that the integrated software behaves as intended. For example, if the automatic
brake system engages erroneously it can have the effect of disrupting traffic
and potentially leading to a fatal collision, making it a crucial task to verify
its soundness before the vehicle is put on the market. This ensurance is often
an exercise in exposing the vehicle to a wide array of scenarios and verifying
that the software acts as intended under all circumstances. With the software
interpreting the surrounding world through real-valued time-series containing
information regarding the state of the vehicle, e.g., the evolution of the vehicle
speed and engine speed, exposing the software to a wide variation of scenarios
corresponds to exposing the software to a wide range of varying time-series
which captures a possible driving trajectory for the vehicle.

While arguably the most straightforward way of obtaining these signals is
to drive the vehicles around and record the time-series resulting from the
interplay between all the vehicle properties, it is not a practical approach and
is resource intensive. Consider the scenario in Figure 3.4 where we want to
record the properties of a bus when driving along a winding route. Assuming
that our software under test only relies on the evolution of the vehicle speed,
engine speed and selected gear we selectively focus our attention on these
three properties. While such a test drive along the route will initially allow us
to verify the function of our software under this scenario, a question naturally
arises what we do if we want to extend upon the scenario and test our software
under slightly different conditions, e.g., recording the state properties of the
bus as it is carrying a different amount of passengers or as the friction with
the road is changed. Sending the vehicle out in the field again along the same
route over and over to record slight variations of the same scenario is clearly a
scheme that will be ineffective, cost-consuming and polluting.

In Paper III we thus seek to improve on this methodology. We utilize data
from previous test drives for buses to create a Generative Adversarial Network
which is able to transform a simple specification of a test to a fully fledged time
series adhering to that given specification, see Figure 3.5.

Such a scheme circumvents the expensive testing routine described above and
instead allows engineers to obtain realistic tests without access to a physical
vehicle, effectivizing the testing procedures and reducing the emissions of
greenhouse gases.

3.4. Conclusion 25

t = 0

t = T

T0
t

0

1

Evolution of vehicle properties

Vehicle Speed
Engine Speed
Selected gear

Test route

Figure 3.4: Test route and the associated evolution of the vehicle properties over time for
a bus. (Left) The test route (dashed line) that the bus drives along. (Right) The resulting
evolution of the vehicle properties captured in terms of the vehicle speed, engine speed
and selected gear. The relevant information to test our software is captured in the three
time series. All signal values have been normalized to lie between 0 and 1.

0 T
t

0

1

0 T
t

0

1
Generated signalsSimple specification

GAN

Figure 3.5: Conversion of a specification to a realistic test scenario. (Left) The spec-
ification detailing our desired test. Only the desired variations in the vehicle speed
is specified. (Right) The transformed specification, consisting of the three signals of
interest and adhering to the given specification. The conversion is done by training and
utilizing a GAN.

3.4 Conclusion

By training a GAN2 on previously collected test scenarios we demonstrate that
one can obtain realistic fully-fledged signals from simple specifications in the
form of one-dimensional time series. By constructing a expansion module for
the network we additionally showcase that partial specifications are possible,
reducing the requirement on the engineer to specify the duration of the entire
test scenario. This entire scheme facilitates the testing procedure and enables

2While this network is not completely piecewise linear due to the usage of instance normaliza-
tion layers [Ulyanov et al. (2016)], it can still be argued to be well described by the piecewise linear
theory since the predominant non-linear transformations are piecewise linear and thus control the
training dynamics.

26 3. Overview of papers

a shift from hardware based testing setup to one more reliant on software,
consequently opening a path for more effective and environmentally greener
automotive tests.

3.5 Paper IV

3.5.1 Introduction

While ensuring that our neural networks generalize is one of the key aspects
model deployment, ensuring that the models are robust to noise can be an
equally important aspect. Verifying that our models can provide accurate
predictions in the presence of both natural and adversarial noise can in some
settings be a precondition to model deployment, for example in the self-driving
vehicle sector where one can immediately realise the dangers with a self-driving
car relying on a model susceptible to adversarial attacks.

From the results in Paper II indicating the slope as a factor for generalization
and with previous research indicating that controlling the slope promotes
robustness of the network [Yoshida and Miyato (2017)], we sought to develop
a scheme that can regularize the slope in an efficient manner. While previous
techniques were able to control the slope to some extent, they do so in the form
of upper bounds, lacking a fine-grained control over the quantity of interest.
We thus wanted a more precise scheme that targets the slope directly while at
the same time not being too computationally expensive to use.

Using the same identity in equation (2.2) we show that one can obtain an
efficient and precise regularization scheme that targets the slope for piecewise
linear networks where one sends an input forward and backward through the
network which allows for a subsequent power iteration technique to estimate
the slope, see Figure 3.6 for a visualization of the procedure and how it relates
to a regular forward-pass.

3.5.2 Conclusion

By utilizing our proposed scheme to regularize the slope we demonstrate that
we obtain an improved test accuracy over different data sets compared to the
methods that only rely on upper bounding the desired quantity.

When it comes to robustness we could observe that working with our scheme

3.5. Paper IV 27

f1[C(W1, b1)] f2[C(W2, b2)] L(W3, b3) WRx+ bRx

Z1
RC(W1, 0)

T (W1, 0)

Z2
RC(W2, 0)

Z1
RT (W2, 0)

L(W3, 0)

Z2
RL(W

T
3 , 0)

WRv = uv

WT
Ru

Forward-pass

Forward mode

Backward mode

C(W, b) : Convolution with kernel W and bias b
T (W, b) : Transposed convolution with kernel W and bias b Zi

R : Boolean matrix
L(W, b) : Affine transform with weights W and bias b

(a)

(b)

Legend:

Figure 3.6: The difference between a regular forward-pass and the forward and back-
ward modes for a two hidden layer network. (a) A regular forward-pass of x through
the network. Each box showcases the operation that maps the input between the layers.
The black squares indicate the neurons mapped to zero by the ReLU activation functions
f i. (b) The forward and backward modes used to estimate the slope ||WR||2. An input
v is sent through the network to yield u whereupon u is sent backwards through the
network. Adapted from Figure 1 in Paper IV.

maintains a strong safeguard against adversarial noise, with the method for cer-
tain data sets and attacks achieving significantly superior robustness compared
to other methods.

28 3. Overview of papers

Bibliography

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., and Misener, R. (2020).
Efficient verification of relu-based neural networks via dependency analysis.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 3291–
3299. AAAI Press.

Croce, F., Andriushchenko, M., and Hein, M. (2019). Provable robustness of relu
networks via maximization of linear regions. In Chaudhuri, K. and Sugiyama,
M., editors, The 22nd International Conference on Artificial Intelligence and
Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of
Proceedings of Machine Learning Research, pages 2057–2066. PMLR.

Feng, X. and Zhang, Z. (2007). The rank of a random matrix. Applied Mathematics
and Computation, 185(1):689–694.

Gholamalinezhad, H. and Khosravi, H. (2020). Pooling methods in deep neural
networks, a review. CoRR, abs/2009.07485.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Teh, Y. W. and Titterington, D. M., editors,
Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010,
volume 9 of JMLR Proceedings, pages 249–256. JMLR.org.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A. C., and Bengio, Y. (2014). Generative adversarial networks.
CoRR, abs/1406.2661.

Hanin, B. and Rolnick, D. (2019a). Complexity of linear regions in deep net-
works. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,

29

30 BIBLIOGRAPHY

Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 2596–2604. PMLR.

Hanin, B. and Rolnick, D. (2019b). Deep relu networks have surprisingly
few activation patterns. In Wallach, H. M., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E. B., and Garnett, R., editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 359–368.

He, F., Lei, S., Ji, J., and Tao, D. (2021). Neural networks behave as hash
encoders: An empirical study. CoRR, abs/2101.05490.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In 2015
IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pages 1026–1034. IEEE Computer Society.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In Bach, F. R. and Blei,
D. M., editors, Proceedings of the 32nd International Conference on Machine Learn-
ing, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and
Conference Proceedings, pages 448–456. JMLR.org.

Isola, P., Zhu, J., Zhou, T., and Efros, A. A. (2017). Image-to-image translation
with conditional adversarial networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 5967–5976. IEEE Computer Society.

Johansson, A., Engsner, N., Strannegård, C., and Mostad, P. (2021). Slope and
generalization properties of neural networks. CoRR, abs/2107.01473.

Kannan, R., Lovász, L., and Simonovits, M. (1997). Random walks and an o*(n5)
volume algorithm for convex bodies. Random Struct. Algorithms, 11(1):1–50.

Kong, J., Kim, J., and Bae, J. (2020). Hifi-gan: Generative adversarial networks
for efficient and high fidelity speech synthesis. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

BIBLIOGRAPHY 31

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In Fürnkranz, J. and Joachims, T., editors, Proceedings
of the 27th International Conference on Machine Learning (ICML-10), June 21-24,
2010, Haifa, Israel, pages 807–814. Omnipress.

Otter, D. W., Medina, J. R., and Kalita, J. K. (2021). A survey of the usages of
deep learning for natural language processing. IEEE Trans. Neural Networks
Learn. Syst., 32(2):604–624.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J.,
and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep
learning library. In Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-
Buc, F., Fox, E. B., and Garnett, R., editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 8024–8035.

Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi, A. (2016). You only
look once: Unified, real-time object detection. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 779–788. IEEE Computer Society.

Reed, S. E., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. (2016).
Generative adversarial text to image synthesis. In Balcan, M. and Weinberger,
K. Q., editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, pages 1060–1069. JMLR.org.

Roger, V., Farinas, J., and Pinquier, J. (2020). Deep neural networks for auto-
matic speech processing: A survey from large corpora to limited data. CoRR,
abs/2003.04241.

Rolnick, D. and Kording, K. P. (2020). Reverse-engineering deep relu networks.
In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 8178–8187. PMLR.

Schmidhuber, J. (2020). Generative adversarial networks are special cases of ar-
tificial curiosity (1990) and also closely related to predictability minimization
(1991). Neural Networks, 127:58–66.

Shahriar, S. (2021). GAN computers generate arts? A survey on visual arts,
music, and literary text generation using generative adversarial network.
CoRR, abs/2108.03857.

32 BIBLIOGRAPHY

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks
for large-scale image recognition. In Bengio, Y. and LeCun, Y., editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings.

Stewart, G. W. (1990). Perturbation theory for the singular value decomposition.
In IN SVD AND SIGNAL PROCESSING, II: ALGORITHMS, ANALYSIS AND
APPLICATIONS, pages 99–109. Elsevier.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy considera-
tions for deep learning in NLP. In Korhonen, A., Traum, D. R., and Màrquez,
L., editors, Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 3645–3650. Association for Computational Linguistics.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 1–9. IEEE Computer Society.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. (2016). Instance normalization:
The missing ingredient for fast stylization. CoRR, abs/1607.08022.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. CoRR, abs/1708.07747.

Xu, S., Vaughan, J., Chen, J., Zhang, A., and Sudjianto, A. (2021). Traversing
the local polytopes of relu neural networks: A unified approach for network
verification. CoRR, abs/2111.08922.

Yoshida, Y. and Miyato, T. (2017). Spectral norm regularization for improving
the generalizability of deep learning. CoRR, abs/1705.10941.

A Appendix

A.1 Proofs

Proof (Proof of equation (2.3)).

We will not prove equation (2.3) in all generality but restrict ourselves to real
independent random element matrices which we define below.

Definition 2. A real independent random element (RIRE) matrix is a real matrix A
where all elements Aij are distributed independently and identically according to an
absolutely continuous probability measure w.r.t the Lebesgue measure.

While this is a restriction, it encompasses all default initialization schemes for
neural networks, e.g., used in PyTorch.

Additionally, for the proof we will need two Lemmas.

Lemma 1. If A is a RIRE matrix then A has full rank with probability 1.

A proof of this can be can be found in [Feng and Zhang (2007)].

Lemma 2. If A,B are two RIRE matrices of size (n1, n2) and (n2, n3) then their
product C = AB is of rank min(n1, n2, n3).

Proof. Since both A and B are RIRE matrices we know that rank(B) = min(n3, n2)
and rank(A) = min(n2, n1) We thus want to prove that rank(C) = min(n3, n2, n1).
We can prove this by constructing each column of C one at a time. The i:th
column ci of C is given by ci := Abi where bi denotes the i:th column of B.

We generate these vectors one at a time until either two things happen. Either
the previously generated vectors c1, c2, ..., ci span the image space of A at which

33

34 A. Appendix

point all subsequently generated vectors will lie in the span of the previously
generated vectors, or c1, c2, ..., ci does not span the image space and thus only
a subspace and the next vector ci+1 will thus with probability 1 not lie in the
span (and therefore be linearly independent). In the second case the generation
process keeps going until either the first scenario happens or we have generated
all c1, c2, ..., cn1

vectors. If the first scenario occurs then the dimension of the
image space of C is given by min(n3, n2) and in the second case it is given by
n1. Combining these results we get that the rank of the matrix C is given by
min(n3, n2, n1).

We now state the theorem of interest and prove it. Equation (2.3) will then
follows as a corollary.

Theorem 1. If the matrix W is the product of W1,W2, ..,Wn RIRE matrices of size
(n1, n2), (n2, n3), ..., (nn, nn+1) then the rank of W is given as

rank(W) = min(n1, n2, ..., nn, nn+1).

Proof. We will prove this through induction. Lemma 2 proves the base case
and we thus assume that it is true for a product of n − 1 RIRE matrices and
want to prove that it is true for n RIRE matrices.

Given that we have

W = WnWn−1 · · ·W2W1 (A.1)

and by denoting the n − 1 matrix product as A := W̃nW̃n−1 · · · W̃2 we can
proceed as in Lemma 2 and show that

W̃R = AW1 (A.2)

is of rank min(nn+1, nn, ..., n2, n1). As before we can construct the columns of
W sequentially as Aw1,i. Either we generate enough vectors to span the image
space of A or we generate n1 linearly independent vectors. Since the dimension
of the image space of A is now min(nn+1, nn, ..., n3, n2) the rank of W̃R is given
by min(nn+1, nn, ..., n3, n2, n1).

Corollary 1. At initialization, the rank of the matrix WR in the local affine transfor-
mation for the neural network fθ, fθ(x) = WRx+ bR, ∀x ∈ R, is given as

rank(WR) = min(n0, nc,min
i

trace(Zi)).

A.2. Experimental details 35

Proof. As before we utilize the identity

WR = WnZn−1Wn−1 · · ·Z2W2Z1W1.

Since the effect of the diagonal matrices Zi is only to zero out rows in the
corresponding matrix Wi, we can form new RIRE matrices W̃i by removing
the zero rows from ZiWi and additionally setting W̃n := Wn. Thus WR is a
product of the RIRE matrices W̃1, W̃2, ..., W̃n and since the rank of every RIRE
matrix W̃i is given by min(trace(Zi), ni), the result follows.

A.2 Experimental details

A.2.1 Details for Figure 2.1

We train a one layer fully connected network with 200 neurons in the hidden
layer. The network is trained with stochastic gradient descent with a learning
rate of 0.001, momentum of 0.8, batch size of 32 for 100 epochs.

A.2.2 Details for Figure 2.2

We train a fully connected two-layer network with 200 neurons in both hidden
layers. We train with stochastic gradient descent with a momentum of 0.8 for
100 epochs with a batch size of 32 on FashionMNIST.

A.2.3 Details for Figure 2.3

The left plot was created by sampling a point in the input space and sampling
points on concentric circles around the initial point until a point on a circle
ends up in a different activation region. The singular values are then measured
in both the initial region and the region associated with the point on the circle.
This process is repeated 500 times for each neuron amount to get an estimate
of the mean difference.

The right plot was created by sampling points in the input space and going
a distance one away and checking if points a distance one away is in another
activation region. If so then we measure the singular values in both the initial
region and the region associated with the point a distance one away. If the point

36 A. Appendix

a distance one away is not in a different region then a new point is sampled.
This process is repeated 500 times to obtain an estimate of the mean difference.

	Abstract
	List of publications
	Acknowledgements
	Contents
	Introduction
	Preliminaries

	Geometric exploration
	Geometric properties of the activation regions
	Geometric properties of the affine transformations
	Conclusion

	Overview of papers
	Paper I
	Paper II
	Paper III
	Conclusion
	Paper IV

	Bibliography
	Appendix
	Appendix
	Proofs
	Experimental details

	Papers I-IV

