
A Novel Machine Learning Based Approach for Post-OCR Error Detection

Downloaded from: https://research.chalmers.se, 2025-10-27 09:50 UTC

Citation for the original published paper (version of record):
Virk, S., Dannélls, D., Sheikh, M. (2021). A Novel Machine Learning Based Approach for Post-OCR
Error Detection. International Conference Recent Advances in Natural Language Processing,
RANLP: 1463-1470. http://dx.doi.org/10.26615/978-954-452-072-4_164

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Proceedings of Recent Advances in Natural Language Processing, pages 1463–1470
Sep 1–3, 2021.

https://doi.org/10.26615/978-954-452-072-4_164

1463

A Novel Machine Learning Based Approach for Post-OCR
Error Detection

Shafqat Mumtaz Virk
Språkbanken Text, Dept. of Swedish

University of Gothenburg
405 30 Gothenburg, Sweden

virk.shafqat@gmail.com

Dana Dannélls
Språkbanken Text, Dept. of Swedish

University of Gothenburg
405 30 Gothenburg, Sweden

dana.dannells@svenska.gu.se

Azam Sheikh Muhammad
Chalmers University of Technology

412 96 Gothenburg, Sweden
sheikhazam@gmail.com

Abstract

Post processing is the most conventional ap-
proach for correcting errors that are caused
by Optical Character Recognition (OCR) sys-
tems. Two steps are usually taken to correct
OCR errors: detection and corrections. For the
first task, supervised machine learning meth-
ods have shown state-of-the-art performances.
Previously proposed approaches have focused
most prominently on combining lexical, con-
textual and statistical features for detecting er-
rors. In this study, we report a novel system to
error detection which is based merely on the
n-gram counts of a candidate token. In addi-
tion to being simple and computationally less
expensive, our proposed system beats previous
systems reported in the ICDAR2019 competi-
tion on OCR-error detection with notable mar-
gins. We achieved state-of-the-art F1-scores
for eight out of the ten involved European lan-
guages. The maximum improvement is for
Spanish which improved from 0.69 to 0.90,
and the minimum for Polish from 0.82 to 0.84.

1 Introduction

Post processing is the most conventional approach
for correcting errors that are caused by Optical
Character Recognition (OCR) systems. Tradition-
ally, the task is divided into two subtasks: (1) Error
detection to classify words1 as either erroneous or
valid, and (2) Error correction to find suitable can-
didates to correct the erroneous words (Kolak and
Resnik, 2005; Kissos and Dershowitz, 2016; Mei
et al., 2016). A large body of work has proven the
success of statistical and supervised machine learn-
ing methods for both subtasks (Afli et al., 2016;

1We write ‘word’ although, in practice, it actually refers
to any token in our data – not necessarily a lexical word. We
will use the term ’token’ and ’word’ alternatively throughout
the paper.

Schulz and Kuhn, 2017; Nguyen et al., 2018; Am-
rhein and Clematide, 2018; Nguyen et al., 2019).

Machine learning methods largely rely on fea-
ture engineering for their performances, particu-
larly in supervised settings. Feature engineering in-
volves exploring various features and feature com-
binations that best characterise the data. However,
for post-OCR error detection, finding a suitable
set of features is challenging because of the diver-
sity of OCR errors (Amrhein and Clematide, 2018).
This has been demonstrated in previous work and
more recently in the ICDAR competitions (Chiron
et al., 2017; Rigaud et al., 2019) where various
features have been explored with varying success
rates (more details in Section 2).

To address this challenge we propose a novel
approach to the error detection task. Instead of
examining more features we focus merely on a
single feature, namely the n-gram counts of the
candidate token. Our approach is inspired by dic-
tionary lookup approaches, which are known for
their simplicity and efficiency but are restricted to
the dictionary size. Since building large-scale dic-
tionaries is a challenging task in itself, we propose
to generate n-grams of a given candidate token, and
then use their counts as the only feature to train ma-
chine learning models (more details in Section 3).
We evaluate our method on the ICDAR2019 dataset
(Chiron et al., 2017) and compare the results to a
number of approaches reported in the competition
(Section 4). Our system achieves state-of-the-art re-
sults for eight out of the ten involved languages by
beating the previous results with fair margins and
comparable scores for the remaining two languages.
Our approach is very simple and is computation-
ally less expensive as it does not require any other
feature computation apart from the n-gram counts.2

2The data and models are available under CC BY

1464

2 Related Work

Our work takes inspiration from dictionary based
approaches and uses supervised machine learn-
ing techniques to train a post-OCR error detection
model. We therefore focus on reviewing the works
related to dictionary and statistical supervised ma-
chine learning based approaches.

Simple dictionary based approaches has per-
formed reasonably well for various natural lan-
guage processing tasks (e.g. Hull and Grefenstette
(1996); Sindhu and Sagar (2017)). It is therefore
not surprising the approach has been applied to de-
tecting OCR errors before (Schulz and Kuhn, 2017;
Nguyen et al., 2018). Taking this approach, dic-
tionaries and large word lists are usually compiled
from corpora and other sources. Each token in the
data is then compared with the word in the dictio-
nary to determine whether it is an error word or not.
This approach has been explored by the CSIITJ
team who was among the six successful teams par-
ticipating in the ICDAR 2019 competition (Rigaud
et al., 2019). The team complied a dictionary of
over 370 thousand English and French words and
checked each word in the dataset against it.

Dictionary lookup methods for post-OCR are
challenging because they usually suffer from out-
of-vocabulary problem. Another limitation is in
detecting real-word errors, i.e. the word appears in
the dictionary but is wrong in its context. There-
fore alternative methods to OCR error detection
have been proposed (see a comprehensive survey
of existing methods by Nguyen et al. (2021)).

The remaining teams in ICDAR 2019 applied
techniques from: (i) Context-based character cor-
rection using BERT (CCC) – the winning sys-
tem; (ii) Character level attention approach us-
ing the open source system OpenNMT (CLAM);
(iii) Weighted finite-state transducers based on
noisy channel model (REA1&2); and (iv) Char-
acter level seq2seq multi-layer LSTM (UVA).

Other approaches to post-OCR error detec-
tion combined character-, word-n-grams and con-
text based features to train a machine learning
model (Mei et al., 2016; Khirbat, 2017; Nguyen
et al., 2019; Dannélls and Persson, 2020). Mei
et al. (2016) trained a regression model on 6 fea-
tures containing n-gram and context information.
Khirbat (2017) trained a support vector machine
(SVM) model with 3 features: presence of non-

4.0 licence at https://github.com/spraakbanken/
NovelOCRErrorCorrection.

alphanumeric characters, bi-gram frequency of the
word and context information that is if the word
appears with its context in other places. Nguyen
et al. (2019) trained a Gradient Tree Boosting clas-
sifier on a set of 13 character and word features on
two datasets of English historical handwritten doc-
uments (monograph and periodical) taken from the
ICDAR competition (Chiron et al., 2017). The fea-
tures they experimented with include character and
word n-gram frequencies, part-of-speech, and the
frequency of the OCR token. Dannélls and Persson
(2020) trained an SVM model on 6 statistical and
word based features including the number of non-
alphanumeric characters, number of vowels, word
length, tri-gram character frequencies, number of
uppercase characters and the amount of numbers
occurring in the word.

As many authors point out the choice of the fea-
tures is essential for the performance of the ma-
chine learning model. The advantage of these meth-
ods is that they are trained to detect both real-word
and non-word errors. The drawback is they require
laborious feature engineering.

Laborious feature engineering is a bottleneck
not only for machine learning but also for other
statistical approaches that rely on pre-defined fea-
tures extracted from data, such as noisy channel
approaches (Evershed and Fitch, 2014; Kissos and
Dershowitz, 2016; Drobac et al., 2017).

3 Method

3.1 Datasets and Preprocessing
We used the datasets from the ICDAR2019 compe-
tition on post OCR error detection and correction.3

The total size of the original data is 22 million char-
acters and it contains varying numbers of charac-
ters for ten European languages (Bulgarian, Czech,
German, English, Spanish, Finnish, French, Dutch,
Polish, Slovenian) together with the correspond-
ing ground truth data. The dataset comes with the
OCRed and ground truth aligned at the character
level. For our experiments, we needed to align it at
the token (word) level. We did that by tokenizing
the ground truth at space and for each token taking
the same number of characters from the OCRed
version. After we removed the special alignment
symbols (‘@’ and ‘#’) inserted by organizers for
alignment. The resulting OCRed and ground truth
tokens were compared to set the labels ‘0’ if the

3https://sites.google.com/view/icdar2019-
postcorrectionocr/dataset

https://github.com/spraakbanken/NovelOCRErrorCorrection
https://github.com/spraakbanken/NovelOCRErrorCorrection

1465

token was erroneous or ‘1’ if the token was valid.
These labels are the dependent variables that are to
be learned and predicted by the machine learning
models. Table 1 shows example tokens, ground
truth, and the labels from English, Danish, and
Finnish datasets. Table 2 shows the number of
training and test sets produced for each language
after removing the duplicates and instances with
‘NA’ values and the class percentage i.e. what per-
centage of the total is the class ‘0’ and ‘1’ in the
training and test sets.

3.2 Machine Learning Models and Encoding

Machine learning classifiers are known to have pros
and cons depending on the task at hand. Dannélls
and Virk (2020) compared between 5 state-of-the-
art machine learning classifiers including Logistic
Regression, Decision Tree, Bernoulli Naive Bayes,
Naive Bayes and SVM. They found that SVM is the
best choice for post-OCR detection. Others have
also shown the performance of SVM is equivalent
to the performance of artificial neural networks
(Arora et al., 2010; Hamid and Sjarif, 2017; Am-
rhein and Clematide, 2018). In response to these
previous experiments, in this study we have chosen
to experiment with SVM models.

We take advantage of the implementation of the
machine learning algorithms in the sklearn mod-
ule (Pedregosa et al., 2011). Because the module
requires the data to be in numeric form we used
one-hot encoding for data transformations (see Sec-
tion 4.1). While the details of the encoding method
are beyond the scope of this paper, the major idea
behind one-hot encoding is to add an extra dimen-
sion in the feature vector for each unique feature
value. This produces an N dimensional feature
vector (the learned encoding), where N is the total
number of unique values of all features. In our
case we have words as the training data. Suppose
[w1,w2,w3......wn] is the set of unique words, and
[0,1,1......0] is the set of corresponding labels rep-
resenting whether the word is erroneous or not.
The learned one-hot encoding will be a (n+2) di-
mensional vector, where n is the unique number of
words in the training data and there are 2 unique
label values. Each word is then encoded by setting
the corresponding word and label dimensions of
the vector to 1 while the remaining dimensions are
set to 0.

3.3 Generating the Machine Learning
Features

As mentioned previously, we took inspiration from
dictionary look up based approaches, but in this
study we have applied it in a novel way. Instead
of building a dictionary separately from different
external resources, we let our SVM model build
it from the training data. This was achieved by
learning one-hot encoding from the training data
(i.e. words), encoding the training data and then
using the resulting vectors as the only feature to
train the SVM model. In other words, we turn the
model into a dictionary lookup kind of system as
the model memorizes vectors of each training in-
stance. During prediction the trained model simply
relies on the observed word, i.e. whether its en-
coded feature vector has been seen in the training
data and predicts accordingly.

This type of approach has a major restriction that
it is not scalable and is bound to feature values seen
in the training data. In our case this means if a word
has not been seen in the training data the system
will simply fail to predict whether it is erroneous
or not. Another downfall is that depending on the
size of training data it may take days to train such
models. To overcome these limitations we experi-
mented further with the n-gram approach. Instead
of using the complete word, for each candidate to-
ken, we generated character uni-grams, bi-grams,
and tri-grams from it. These n-grams together with
their counts within the token were used as feature
values to train and test the model. To take an ex-
ample, suppose our candidate word is ‘passenger’.
The computed uni-, bi-, and tri-gram counts will
be as follows:

• uni-gram {‘a’:1, ‘e’:2, ‘g’:1, ‘n’:1, ‘p’:1,
‘r’:1, ‘s’:2}

• bi-gram {‘ p’:1, ‘as’:1, ‘en’:1, ‘er’:1, ‘ge’:1,
‘ng’:1, ‘pa’:1, ‘r ’:1, ‘se’:1, ‘ss’:1}

• tri-gram {‘ pa’:1, ‘ass’:1, ‘eng’:1, ‘er ’:1,
‘ger’:1, ‘nge’:1, ‘pas’:1, ‘sen’:1, ‘sse’:1}

It is worth mentioning that the scope of n-gram
counts is limited to the word itself, rather than the
entire training data i.e. these counts represent the
occurrence of a particular uni-, bi-, or tri-gram
within the word rather than the total count of the
n-gram in the training data. Previous authors have
attempted to exploit n-gram frequencies (e.g. Mei
et al. (2016); Khirbat (2017)) computed over the

1466

English Danish Finnish
Word GT Label Word GT Label Word GT Label
matter matter 1 Bezirke Bezirke 1 jolloin jolloin 1
the the 1 .Fiili @F@li 0 lainasimat lainasiwat 0
king@ king 0 welche welche 1 saimat saiwat 0
very very 1 niedergese@ht niedergesetzt 0 takaisin takaisin 1
glad glad 1 Bericht Bericht 1 jtt jtt 1
hereof,@ hereof, 0 Wesentlichen Wesentlichen 1 kaupungissa kaupungissa 1
@Hkewise likewise 0 hkle hatte 0 Maan Waan 0

Table 1: A sample from the English, Danish, and Finnish datasets after the preprocessing step (GT = Ground
Truth).

Language Training Set Test Set
0 1 0 1

#words % #words % #words % #words %
Bulgarian (BG) 17844 0.37 29635 0.63 9750 0.40 14404 0.60
Czech (CZ) 7227 0.19 31230 0.81 3335 0.27 9081 0.73
Danish (DE) 18216 0.29 45325 0.71 3573 0.25 10784 0.75
English (EN) 9844 0.33 20559 0.67 3802 0.33 7609 0.67
Spanish (ES) 33164 0.51 31698 0.49 8996 0.59 6287 0.41
Finnish (FI) 48644 0.22 165940 0.78 11996 0.23 39781 0.77
French (FR) 85678 0.20 343858 0.80 21855 0.20 85535 0.80
Dutch (NL) 45593 0.51 47875 0.49 15619 0.47 17712 0.53
Polish (PL) 21436 0.70 8912 0.30 6730 0.57 5008 0.43
Slovenian (SL) 6098 0.16 31865 0.84 5128 0.31 11501 0.69

Table 2: Training and test dataset statistics

entire training data, but not in the sense we are
proposing in this study. This is what makes our
approach novel. The intuition for using n-grams
instead of complete word to overcome the above
mentioned limitation is simple: For a given word,
it is more probable that the uni-, bi-, and tri-grams
generated from the word have been seen in the train-
ing data as opposed to the complete word. This can
remove the previously mentioned limitation of us-
ing the words as feature based approach and make
the system more scalable and computationally less
expensive.

4 Experiments and Results

4.1 Experimental Settings

We experimented in four different settings, named
‘Word’, ‘Unigram’, ‘Bigram’ and ‘Trigram’. Each
refers to a setting in which a particular feature de-
scribed in Section 3.3 is used i.e. ‘Word’ represents
the setting where complete words are used as the
only feature, while ‘Unigram’, ‘Bigram’ and ‘Tri-
gram’ to the setting where generated uni-, bi- and
tri-gram counts are used as features respectively.

In each of the settings, we kept the same division

of training and test datasets as in the ICDAR 2019
competition to make the results directly compara-
ble.

As for the machine learning models, we used
sklearn’s ‘DictVectorizer’, ‘OneHotEncoder’, and
‘CountVectorizer’ for data transformations and
‘SVC’ classifier with default parameters for train-
ing and testing. The only optimization was done
by setting the class weight to ‘balanced’ to over-
come the issue of imbalanced class distribution in
the training data for some of the languages (more
detail about it in the following results section).

4.2 Results and Discussion

The results of the experiments are presented in Ta-
ble 4 for all four settings i.e. ‘Word’, ‘Unigram’,
‘Bigram’, and ‘Trigram’. For comparisons, the
results from the ICDAR2019 post-OCR error de-
tection task are given in Table 3. The scores are
highlighted in bold if they are better than the IC-
DAR2019 results for the corresponding language in
each individual setting, while the best score across
all four settings is underlined. If a score is both
bold and underlined, it means it is the state of the
art score.

1467

F1-Score
CCC CLAM CSIITJ RAE1 RAE2 UVA

BG 0.77 0.68 x x x x
CZ 0.70 0.41 x x x x
DE 0.95 0.93 x 0.90 0.89 x
EN 0.67 0.45 0.45 0.53 0.57 0.47
ES 0.69 0.56 x 0.62 0.60 x
FI 0.84 0.51 x 0.44 0.46 x
FR 0.67 0.45 0.42 0.42 0.45 x
NL 0.71 0.61 x x x 0.83 x
PL 0.82 0.72 x x x x
SL 0.69 0.54 x x x x

Table 3: Evaluation results of ICDAR2019 error detection task of the six successful systems.

Word Unigram Bigram Trigram
class weight=balanced

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
BG 0.68 0.93 0.79 0.83 0.80 0.82 0.90 0.69 0.79 0.89 0.84 0.86 0.86 0.84 0.85
CZ 0.93 0.12 0.21 0.95 0.57 0.70 0.83 0.73 0.78 0.96 0.63 0.74 0.96 0.51 0.67
DE 0.95 0.14 0.25 1.0 0.55 0.71 1.0 0.54 0.70 0.93 0.72 0.81 0.81 0.76 0.78
EN 0.63 0.91 0.75 0.89 0.71 0.79 0.96 0.59 0.73 0.89 0.78 0.83 0.84 0.77 0.81
ES 0.83 0.90 0.86 0.88 0.88 0.88 0.99 0.61 0.75 0.90 0.89 0.90 0.87 0.91 0.89
FI x x x 0.79 0.64 0.71 0.68 0.77 0.72 0.90 0.77 0.83 0.90 0.77 0.83
FR 0.94 0.23 0.36 0.86 0.75 0.80 1.0 0.63 0.77 0.82 0.82 0.82 0.81 0.84 0.83
NL 0.80 0.95 0.87 0.71 1.00 0.83 0.98 0.45 0.62 0.71 1.00 0.83 0.72 0.99 0.84
PL 0.75 0.97 0.85 0.70 1.00 0.83 0.98 0.57 0.72 0.73 0.93 0.84 0.73 0.98 0.83
SL 0.92 0.14 0.24 1.00 0.42 0.59 0.98 0.60 0.74 0.97 0.44 0.60 0.93 0.32 0.48

Table 4: Evaluation results of post-error detection using the proposed methodology.

As can be seen, with ‘Word’, our system beats
the ICDAR2019 F1 scores for five languages (BG,
EN, ES, NL, PL), while ICDAR2019 scores are
better for three language (CZ, DE, FI, SL). Due
to the time constrains we could not complete the
experiments for the remaining two languages (FI,
FR).

With ‘Unigram’, our system beats the IC-
DAR2019 F1 scores for six languages (BG, EN, ES,
FR, NL, PL) with the default class distribution (more
details about class distribution to follow). With the
balanced class distribution , we were able to beat
scores of two more languages (CZ, SL) making it
eight in total. For the remaining two languages (DE,
FI), ICDAR2019 results are better. Also not that
we get noticeable improvements in F1 scores with
’Unigram’ as compared to ’Words’ for all of the
languages except NL and PL.

With ‘Bigram’, our system beats the IC-
DAR2019 results for seven languages (BG, CZ,
EN, ES, FR, NL, PL) with default class distribution.
Again, due to time constraints, we were unable to
complete the experiments with the balanced class

weight in the ‘Bigram’ setting, but similarly to the
other results in the ‘Unigram’ setting, we should
expect an improvement once the experiments have
been completed. The languages for which our ap-
proach does not beat the ICDAR2019 scores are
Finnish and Danish. There is a marginal differ-
ence for Finnish (0.83 vs 0.84), while a notable
difference for Danish (0.81 vs 0.95). Also note,
we achieved further improvements compared to the
‘Unigram’ F1 scores.

With ‘Trigram’ the results start deteriorating for
most of the languages, and improve for a couple of
them (FR and NL) achieving state-of-the art for NL.

In summary, we were able to beat ICDAR2019
results for eight out of ten languages in different set-
tings reaching state-of-the art F1 scores (underlined
and bold) for those languages. The improvements
vary from +0.2 to +2.1 for Bulgarian (0.77 to 0.86),
Czech (0.70 to 0.78), English (0.67 to 0.83), Span-
ish (0.69 to 0.90), French (0.67 to 0.83), Dutch
(0.71 to 0.87), Polish (0.82 to 0.84), and Slovenian
(0.69 to 0.74).

As can be noticed in all four settings, we get

1468

comparatively low F1 scores for CZ, DE, and SL.
The reason for this is the low recall resulting from
imbalanced class distribution in the training data
of these languages. The class distribution for the
class label 0/1 is 0.19/0.81, 0.29/0.71, 0.16/0.84
and 0.20/0.80 respectively for CZ, DE, SL, and FI as
also shown in the Table 2. The sklearn’s SVC clas-
sifier provides an option to balance the class weight
by setting its class weight parameter to ‘balanced’.
With this optimization the results improved for CZ,
FI, SL as shown in Table 4 in the ‘Unigram’ settings
while declined for the rest of the languages.

5 Conclusion and Future Work

Training supervised machine learning models with
large number of features is a computationally ex-
pensive task. This has been demonstrated in pre-
vious work where handcrafted features were con-
sidered at the expense of high computational costs.
In this study we have taken a different approach
and have proposed to use n-gram counts as the only
feature to train SVM models. N-gram counts have
previously been used for post-OCR detection, but
not in the sense that we have proposed in this study.
Instead of computing the n-gram counts over the
entire training data we have proposed to compute
them within a given token and use them as the only
feature to train and test our models.

To find the best ‘n’ for the n-grams, we exper-
imented with uni-grams, bi-grams, and tri-grams.
We tested the approach on the ICDAR 2019 dataset.
As the experiment results show, with uni-grams our
model outperforms the best system reported in the
ICDAR2019 competition for six out of the 10 Eu-
ropean languages included in the competition with
default class distribution, and two more languages
with balanced class distribution. With bi-grams,
our model outperforms the previous system for 7
languages with comparable results for the remain-
ing three languages. With tri-grams the results start
deteriorating for most of the languages meaning
that bi-grams are the best choice. Overall, with this
approach we were able to beat 8 out of the 10 lan-
guages achieving state-of-the-art results for those
languages.

The proposed approach is interesting because it
eliminates the need for feature engineering; a task
which is laborious and computationally expensive.
The results show simple n-gram counts, which are
fairly easy to compute, are enough for the task
at hand. The approach is also gainful because it

does not require large amounts of data. Given the
relatively small datasets we experimented with we
were able to show our method is performing better
for the majority of languages compared to deep
learning systems such as the ones explored by the
CCC and UVA teams.

As previously said, we have used an SVM clas-
sifier with default parameters. In the future, we
plan to apply parameter optimization, e.g. scaling,
class distribution, grid-search, etc. to try and im-
prove the results further. For example to detect
real word errors when the word with an error is
still a good word but inappropriate in the context.
Another possible way to improve the results is to
use the back-off approach in the n-gram setting.
Taking a back-off approach we will use a bi-gram
if a tri-gram is not in the vocabulary in a tri-gram
setting, and likewise a uni-gram if a bi-gram is not
in the vocabulary.

With these reported state-of-the-art results on
post-OCR error detection, it will be interesting to
experiment how these results will contribute to the
improvement of the overall task of post-OCR error
correction. We leave this to be another possible
direction to explore further.

Acknowledgments

The work presented here was funded by (1) the
Dictionary/Grammar Reading Machine: Compu-
tational Tools for Accessing the World’s Linguis-
tic Heritage (DReaM) Project awarded 2018–2020
by the Joint Programming Initiative in Cultural
Heritage and Global Change, Digital Heritage and
Riksantikvarieämbetet, Sweden; (2) the Swedish
Research Council as a part of the project South Asia
as a linguistic area? Exploring big-data methods
in areal and genetic linguistics (2015–2019, dnr
421-2014-969); (3) From Dust to Dawn: Multilin-
gual Grammar Extraction from Grammars project
funded by Stiftelsen Marcus och Amalia Wallen-
bergs Minnesfond 2007.0105, Uppsala University;
(4) the Swedish Research Council as part of the
project Evaluation and refinement of an enhanced
OCR-process for mass digitisation (2019–2020,
dnr IN18-0940:1 and 421-2014-969). It is also
supported by Sprkbanken Text and Swe-Clarin,
a Swedish consortium in Common Language Re-
sources and Technology Infrastructure (CLARIN)
Swedish CLARIN (dnr 821-2013-2003).

1469

References
Haithem Afli, Loı̈c Barrault, and Holger Schwenk.

2016. OCR error correction using statistical ma-
chine translation. International Journal of Compu-
tational Linguistics and Applications 7(1):175–191.

Chantal Amrhein and Simon Clematide. 2018. Su-
pervised OCR error detection and correction us-
ing statistical and neural machine translation meth-
ods. Journal for Language Technology and Compu-
tational Linguistics (JLCL) 33(1):49–76.

Sandhya Arora, Debotosh Bhattacharjee, Mita
Nasipuri, L. Malik, M. Kundu, and D. K.
Basu. 2010. Performance comparison of SVM
and ANN for handwritten devnagari charac-
ter recognition. arXiv preprint abs/1006.5902.
https://arxiv.org/abs/1006.5902.

Guillaume Chiron, A. Doucet, Mickaël Coustaty, and
Jean-Philippe Moreux. 2017. ICDAR2017 compe-
tition on post-OCR text correction. 14th IAPR In-
ternational Conference on Document Analysis and
Recognition (ICDAR) 01:1423–1428.

Dana Dannélls and Simon Persson. 2020. Supervised
OCR post-correction of historical Swedish texts:
What role does the OCR system play? In Sanita
Reinsone, Inguna Skadina, Anda Baklane, and Ja-
nis Daugavietis, editors, Proceedings of the Digi-
tal Humanities in the Nordic Countries 5th Confer-
ence, Riga, Latvia, October 21-23, 2020. CEUR-
WS.org, volume 2612 of CEUR Workshop Proceed-
ings, pages 24–37.

Dana Dannélls and Shafqat Mumtaz Virk. 2020.
OCR error detection on historical text using uni-
feature and multi-feature based machine learn-
ing models. In Proceedings of the SLTC
2020. University of Gothenburg, Gothenburg.
https://gubox.app.box.com/v/SLTC-2020-paper-14.

Senka Drobac, Pekka Kauppinen, and Krister Lindén.
2017. OCR and post-correction of historical Finnish
texts. In Proceedings of NoDaLiDa 2017. Linkping
University Electronic Press.

John Evershed and Kent Fitch. 2014. Correcting noisy
OCR: Context beats confusion. In Proceedings of
the First International Conference on Digital Access
to Textual Cultural Heritage. Association for Com-
puting Machinery, New York, NY, USA, DATeCH,
pages 45–51.

Norhidayu Abdul Hamid and Nilam Nur Amir
Sjarif. 2017. Handwritten recognition using SVM,
KNN and Neural Network. ArXiv pre-print
abs/1702.00723. https://arxiv.org/abs/1702.00723.

David Hull and Gregory Grefenstette. 1996. Querying
across languages: A dictionary-based approach to
multilingual information retrieval. In Proceedings
of the 19th Annual International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval. Association for Computing Machin-
ery, New York, NY, USA, pages 49–57.

Gitansh Khirbat. 2017. OCR post-processing text cor-
rection using simulated annealing (OPTeCA). In
Proceedings of the Australasian Language Technol-
ogy Association Workshop. Association for Compu-
tational Linguistics, Brisbane, Australia, pages 119–
123.

Ido Kissos and Nachum Dershowitz. 2016. OCR er-
ror correction using character correction and feature-
based word classification. In Document Analysis
Systems (DAS) 12th IAPR Workshop. IEEE, San-
torini, Greece, pages 198–203.

Okan Kolak and Philip Resnik. 2005. OCR post-
processing for low density languages. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natu-
ral Language Processing (HLT/EMNLP). Associa-
tion for Computational Linguistics, Vancouver, B.C.,
Canada, pages 867–874.

Jie Mei, Aminul Islam, Yajing Wu, Abidalrahman
Mohd, and Evangelos E Milios. 2016. Statistical
learning for OCR text correction. arXiv preprint
abs/1611.06950. https://arxiv.org/abs/1611.06950.

Thi-Tuyet-Hai Nguyen, Mickal Coustaty, Doucet An-
toine, and Nhu-Van Nguyen. 2018. Adaptive edit-
distance and regression approach for post-OCR text
correction. In 20th International Conference on
Asia-Pacific Digital Libraries, ICADL. Springer In-
ternational Publishing, Hamilton, New Zealand.

Thi Tuyet Hai Nguyen, Adam Jatowt, Mickael Cous-
taty, and Antoine Doucet. 2021. Survey of post-ocr
processing approaches. ACM Computing Surveys
54(6). https://doi.org/10.1145/3453476.

Thi-Tuyet-Hai Nguyen, Adam Jatowt, Mickaël Cous-
taty, Nhu-Van Nguyen, and Antoine Doucet. 2019.
Deep statistical analysis of OCR errors for effective
Post-OCR processing. In Proceedings of the 18th
Joint Conference on Digital Libraries. IEEE Press,
Champaign, Illinois, pages 29–38.

Thi-Tuyet-Hai Nguyen, Adam Jatowt, Mickaël Cous-
taty, Nhu-Van Nguyen, and Antoine Doucet. 2019.
Post-OCR error detection by generating plausible
candidates. In International Conference on Docu-
ment Analysis and Recognition (ICDAR). IEEE, Syd-
ney, Australia, pages 876–881.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of machine
learning research 12:2825–2830.

Christophe Rigaud, Antoine Doucet, Mickaël Cous-
taty, and Jean-Philippe Moreux. 2019. ICDAR
2019 competition on post-OCR text correction. In
Proceedings of the 15th International Conference
on Document Analysis and Recognition. Sydney,
Australia, pages 1588–1593. https://hal.archives-
ouvertes.fr/hal-02304334.

https://arxiv.org/abs/1006.5902
https://arxiv.org/abs/1006.5902
https://arxiv.org/abs/1006.5902
https://arxiv.org/abs/1006.5902
https://gubox.app.box.com/v/SLTC-2020-paper-14
https://gubox.app.box.com/v/SLTC-2020-paper-14
https://gubox.app.box.com/v/SLTC-2020-paper-14
https://gubox.app.box.com/v/SLTC-2020-paper-14
https://arxiv.org/abs/1702.00723
https://arxiv.org/abs/1702.00723
https://arxiv.org/abs/1702.00723
https://arxiv.org/abs/1611.06950
https://arxiv.org/abs/1611.06950
https://arxiv.org/abs/1611.06950
https://doi.org/10.1145/3453476
https://doi.org/10.1145/3453476
https://doi.org/10.1145/3453476
https://hal.archives-ouvertes.fr/hal-02304334
https://hal.archives-ouvertes.fr/hal-02304334
https://hal.archives-ouvertes.fr/hal-02304334
https://hal.archives-ouvertes.fr/hal-02304334

1470

Sarah Schulz and Jonas Kuhn. 2017. Multi-modular
domain-tailored OCR post-correction. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Asso-
ciation for Computational Linguistics, Copenhagen,
Denmark, pages 2716–2726.

D Sindhu and B Sagar. 2017. Dictionary based ma-
chine translation from Kannada to Telugu. IOP Con-
ference Series: Materials Science and Engineering
225(1):012182.

