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Abstract

We present the idea and illustrate potential benefits of having a tool chain of closely related regular,
unscreened and screened hybrid exchange—correlation (XC) functionals, all within the consistent
formulation of the van der Waals density functional (vdW-DF) method (Hyldgaard et al (2020 J.
Phys.: Condens. Matter 32 393001)). Use of this chain of nonempirical XC functionals allows us to
map when the inclusion of truly nonlocal exchange and of truly nonlocal correlation is important.
Here we begin the mapping by addressing hard and soft material challenges: magnetic elements,
perovskites, and biomolecular problems. We also predict the structure and polarization for a
ferroelectric polymer. To facilitate this work and future broader explorations, we present a stress
formulation for spin vdW-DF and illustrate the use of a simple stability-modeling scheme. The
modeling supplements density functional theory (DFT) (with a specific XC functional) by
asserting whether the finding of a soft mode (an imaginary-frequency vibrational mode,
ubiquitous in perovskites and soft matter) implies an actual DFT-based prediction of a
low-temperature transformation.

1. Introduction

Modern density functional theory (DFT) calculations seek to describe general matter, ideally with one and the
same exchange—correlation (XC) energy functional for all materials, i.e., under a general-purpose hat. Truly
nonlocal and strong correlation effects, as well as truly nonlocal (Fock) exchange, play important roles in many
systems, where different interaction components compete [1-7]. Some challenges come from the tendency to
overly delocalize orbitals in regular, that is, density-explicit functionals, and some from the need to handle
strong (local) correlation. These problems can be ameliorated by inclusion of a fraction of Fock exchange in
so-called hybrid XC functionals [8—15] or by inclusion of a Hubbard term, in so-called DFT + U [16]. A
further long-standing challenge for DFT is a proper and balanced inclusion of van der Waals (vdW) forces
[2,7,17-25].

It is expected that, at least for now, one must retain both a regular (density-explicit) XC functional, a hybrid
XC functional, as well as an option for a Hubbard-U correction in DFT calculations [6]. However, it is also
desirable to limit the personal DFT tool box to essentially two or three fixed XC choices of related origin.
This is because one can then more easily compare DFT results among different types of materials and more
easily gather experience to seek further development [6, 25, 26]. For example, a popular choice is to use XC
functionals that originate from the constraint-based formulation of the generalized gradient approximation
(GGA) [27-32], by picking PBE [33] as the regular functional, PBEO [9, 11] as an unscreened hybrid, and
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HSE [12] as the range-separated hybrid (RSH) that also secures a screening of the long-range Fock-exchange
component. This XC tool-chain works when the impact of truly nonlocal-correlation effects can be ignored.

The van der Waals density functional (vdW-DF) method [4, 13, 17, 25, 26, 34—38] has a systematic inclu-
sion of truly nonlocal correlation effects. Moreover, as of very recently [15], it also provides an XC tool chain of
closely related consistent vdW-DF [25] XC functionals. That is, the method now has the consistent-exchange
vdW-DF-cx [4, 26, 38] (here abbreviated CX) as a current-conserving density-explicit XC starting point,
the zero-parameter vdW-DF-cx0p [13, 14] (here abbreviated CXOP) as an associated unscreened nonlocal-
correlation hybrid, and the new vdW-DF-ahcx [15] (here abbreviated AHCX) RSH hybrid form. These forms
are deliberately kept free of adjustable parameters.

The vdW-DF method and our consistent-vdW-DF tool chain include a balanced density-based account
of vdW forces, starting from the screening insight that reflects the design of semilocal functionals
[4,15, 22, 25, 26, 38, 39]. It places all of the competing interactions on an equal ground-state DFT foundation,
as all terms directly reflect the variation in the ground state electron density n(r). This is true also for CXOP
and AHCX, because they use the Kohn—Sham (KS) orbitals of the underlying density-explicit CX functional in
the Fock-exchange evaluation [25, 26]. Moreover, the Fock-exchange mixing in CXO0P [14] and (by extension)
in AHCX [15] is set from an analysis of the coupling-constant scaling analysis of the correlation-energy term
[40], which again is completely specified by the electron density variation [14].

In this paper, we illustrate the general-purpose usefulness of the consistent-vdW-DF XC tool chain
(CX/CXOP/AHCX), and we begin work to expand their use for magnetic systems. That is, we provide a for-
mulation of stress in spin vdW-DF calculations [38] and implement it in the planewave-DFT software suite
QUANTUM ESPRESSO [41, 42]. We also illustrate an approach to elucidate stability in the presence of soft
modes, i.e., vibrational modes that have an imaginary frequency when described in a quadratic approxima-
tion to the potential energy variation with local deformations. Our approach is inspired by a quantum theory
of temperature variations of polarization fluctuations above the ferroelectric transition temperature [43]. We
combine Landau-expansion theory [44] with inelastic resonant tunneling [45-50] for a simple, but generic,
discussion of materials characterizations in the presence of soft modes.

Accurate determinations of spin and vibrational effects are central requirements for the usefulness of the
vdW-DF method. A proper spin-vdW-DF formulation for the XC value EY' and for XC-potential components,
vQLz +..(r) is generally needed to accurately describe the atoms, and hence bulk cohesion [51]. Moreover, we
need spin in many materials directly, for example, in magnetic elements and perovskites. For such problemsit is
desirable to have access to spin-vdW-DF stress results to enable consistent structural optimizations. Similarly,
vibrations often directly affect and will at least fine tune material characterizations, as some of us have explicitly
demonstrated for transition-metal and perovskite thermophysical properties [51-55].

A broad test, from hard to soft matter, of usefulness of the consistent-vdW-DF tool chain is needed. Struc-
ture, polarization, and vibrations are seen as strong discriminators of DFT performance as they directly reflect
the electronic structure variation [4, 25, 56—58]. The CX/CX0P/AHCX demonstration and testing goal is pur-
sued by computing material properties using at least two parts of the tool chain (as relevant and possible).
We characterize magnetic elements’ structure and cohesion, structure in a ferromagnetic perovskite, as well as
the elastic response, vibrations, and phase stability in the nonmagnetic SrTiO3. The latter has a known phase
transition and offers an opportunity for contrasting with BaZrOs, which remains cubic all the way down to
zero temperature [54, 55]. We furthermore study biomolecular test cases and intercalation in DNA to docu-
ment that CX is accurate for soft matter, and proceed to predict the structure and polarization response in the
ferroelectric polyvinyl-di-fluoride (PVDF) polymer crystals.

The paper is outlined as follows. In section 2 we present theory, including a formulation of stress calcu-
lations in spin vdW-DF. Section 3 contains an overview of computational methods. Sections 4—6 address a
number of challenges, from hard to soft, that we study and discuss to validate the theory contribution and
to illustrate use of the consistent-vdW-DF tool chain. Finally, section 7 contains an overall discussion and a
summary while appendices A and B gives details on the spin-vdW-DF stress evaluation (on defining a model
of phase stability in cases where XC calculations yield soft modes).

2. Theory

The vdW-DF method is in general well set up as a materials theory tool. It is, for example, implemented in
broadly used DFT code packages such as QUANTUM ESPRESSO [41, 42], VASP [59, 60], WIEN2K [61, 62],
CP2K [63, 64], as well as in GPAW [65, 66] and OCTOPUS [67-69] through our LIBVDWXC library [70].
The code packages come with a full set of vdW-DF versions and variants.

In some code packages the spin effects on energies, forces and stress are approximated by setting the non-
local correlation terms without attention to spin impact on the underlying plasmon-dispersion model. This is
not so in our implementation of spin vdW-DF [38] in QUANTUM ESPRESSO (that also has spin versions of
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CX, CX0P, and AHCX). The code permits users to check if there are relevant spin vdW-DF effects to consider
in their system of interest, for example, in the description of bulk cohesion and molecules [15, 51]. However, to
fully benefit from this QUANTUM ESPRESSO status, we need to enable variable-cell calculations by providing
also a stress description for spin vdW-DF.

2.1. Spin vdW-DF calculations

The vdW-DF method is a systematic approach to design XC functionals that capture truly nonlocal cor-
relation effects. Pure vdW interactions (produced by electrodynamic coupling of electron—hole pairs
[25, 31, 39, 71, 72]) are examples of nonlocal-correlation effects. Another example is the screening (by itiner-
ant valence electrons) that shifts orbital energies as, for example, captured in a cumulant expansion [73]. In
the vdW-DF design we note that both are reflected in an electrodynamics reformulation of the XC functional
[25]. This allows us to treat all XC effects on the same footing in the electron-gas tradition.

In practice, we use a GGA-type functional E to define an effective (nonlocal) model of the frequency-
dependence of the electron-gas susceptibility (). For reasons discussed elsewhere [22, 36, 39], we limit this
input to local-density approximation (LDA) plus a simple approximation for gradient-corrected exchange. We
formally express the internal semilocal functional EI as the trace of a plasmon propagator Sxc(r,r, ),

“du

7 Tr{Sx( =iu)} — Eser. 1)
0

el =
The trace is here taken over the spatial coordinates of Sxc(r,r; ). The term Egys denotes an infinite self-
energy that removes the formal divergence. For spin-carrying systems we work with the spin-up and spin-
down density components ns=; ,(r) of the total electron density n(r) = n,(r) + n,(r). The spin polarization

(r) = [n:(r) — n, ()Y [n;(r) + n,(r)] impacts the GGA-type internal functional EI., and must therefore be
directly reflected in the details of the plasmon propagator Sxc(r,r, ) [38].

The key point is that the model plasmon propagator Sc also defines an effective GGA-level model dielectric
function (iu) = exp(Sxc(iu)) and a corresponding model susceptibility (iu) = ( (iu) — 1)/ 4 . Moreover,
by enforcing current conservation, the dielectrics modeling also defines the full vdW-DF specification of the
XC functional,

[}

du .

EXF = 5 T{InC () G)}— Ear, @)
0

where G denotes the Coulomb Green function. By expanding equation (2) to first order in Sxc, one formally

recoups the internal GGA-type functional equation (1). By further expanding to second order, we obtain the

vdW-DF determination of corresponding nonlocal-correlation effects,

> du

Enl, P — -
C 0 4

Tr{S = ( S+ G 3)
As indicated by superscript ‘sp’, the nonlocal-correlation term depends on the spatial variation in the spin
polarization (r) through Syc(r,r; ) [38].

Functionals of the vdW-DF family are generally expressed as

ELVOR = I, +EDL®, @)

where EQ. = E" + E? contains nothing but LDA and the gradient-corrected exchange while Ef" % is the
nonlocal-correlation term. The Lindhard—Dyson screening logic formally mandates that the cross-over
exchange term EY must vanish, thus setting the balance between exchange and correlation [25]. There are,
however, practical limitations that prevent us from going directly for such fully consistent implementations.
In the consistent-exchange vdW-DF-cx version we have chosen E? so that the nonzero cross-over term does
not affect binding energies in typical bulk and in typical molecular-interaction cases, as discussed separately
in references [4, 25, 26, 74].

For actual evaluations, we use a two-pole approximation for the shape of the plasmon-pole propagator
Sxc. This plasmon-pole description, and hence the resulting vdW-DF version, is effectively set by the choice
of the semilocal internal functional Exc via equation (1). This leads to the computationally efficient nonlocal-
correlation determination

1
B =5 n(0n(r)(D; do(r); do(r ), ®)
rr
where D = |r —r |. Itis given by a universal kernel form ®, as discussed in reference [75]. In equation (5), the
values of g, (r) and g, (r ) characterize the model plasmon dispersion.
The above-summarized vdW-DF framework leaves no ambiguity about how to incorporate spin-

polarization effects in DL, Spin enters via the exchange and via the LDA-correlation parts of EIf,, as given
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by the spin-scaling description and by the now-standard PW92 formulation of LDA [76]. This, in turn, deter-
mines the form of Sxc and ultimately equation (5). Specifically, the values of g,(r) and q,(r ) are set from the
local energy density of the internal semi-local functional to reflect the density and spin impact on the under-
lying screening description. Of course, it is imperative to also include spin in the ES. term. This proper spin
vdW-DF formulation [38] is implemented in QUANTUM ESPRESSO [41, 42] and in the LIBVDWXC library
[70], permitting fixed-cell calculations but not (until now) general variable-cell vdW-DF studies.

2.2. The nonlocal-correlation stress tensor
For non-spin-polarized problems, there has since long existed a formulation of stress in vdW-DF calculations
[77]. This allows effective KS structure optimizations as implemented in QUANTUM ESPRESSO. We now
present a spin vdW-DF extension of stress to enhance the KS-structure search part. It is based on the ideas of
Nielsen and Martin [78] and we first summarize the non-spin vdW-DF stress calculations, as derived by Saba-
tini and co-workers [77]. We consider the impact of unit-cell and coordinate scaling, for example, as expressed
in Cartesian coordinates for a position vectorr - T = ( ., + )r,where isthe strain tensor.
This scaling affects the double Jacobian, the total-electron density n(r ), the total-density gradient n(r) and
the coordinate-separation variable D inside @ in equation (5). Details of these different scaling effects are
discussed in appendix A for the spin-polarized case.

In the absence of spin polarization, Sabatini and co-workers [77] derived the nonlocal-correlation stress
tensor contribution

Y= - o) v none-5C . ()
— )26 (), ®)
rr qO
where
C (rr)=(@ —r)r —r)/D, ©)
and
6 = %0 (6 1) ) ©

| n(nl | n(MIl

This stress component is in part given by the nonlocal-correlation contributions, v2'(r) and E', to the XC
potential and XC energy. These contributions are given by local values of an inverse length scale, g,(r), that
determines the local plasmon dispersion. As such, the contributions depend on the density gradients and hence
have an indirect dependence on coordinate scaling, as summarized in equation (8).

For stress evaluations it is important to note that the density gradient will scale both since the density
scales with the unit-cell size and because the formal expression for the spatial gradient scales with coordinate
dilation even at a fixed density. The former effect is incorporated by the term containing v2'(r). The latter
effect is captured by the term in the last row of equation (6). Fortunately, the local variation of g is already
computed as part of any self-consistent (spin) vdW-DF calculation.

The internal functional depends on the variation in the spin polarization (r) and this spin dependence
impacts the plasmon dispersion, and ultimately gl P, through the local g, (r) values. To also compute stresses
in spin vdW-DF we must update equation (6) accordingly; details are discussed in appendix A.

We find that the second line of equation (6) only changes to the extent that the values of the g,’s must now
be evaluated for (r) = 0. For the first line, there is a small modification since separate XC potentials now act
onn;(r)andn,(r).

Finally, for an update of the third line of equation (6), we simply track the variation of the local g, values
on both spin-density gradient terms. Thus, the resulting spin-vdW-DF stress tensor expression becomes

BP= - WP+ i) -oC (@)
- n(r)n(r )i: G (n), ®)
where
GSfT’l(r)Z Go(r) (ns/ r)(nd r ) (10)

| ns(r)] | nl
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As in the non-spin-polarized case, the spin vdW-DF stress contribution, equation (10), is conveniently given
by gquantities that are already computed in a self-consistent determination of the electron density variation in
spin vdW-DF.

Sabatini et al [77] incorporated their non-spin stress result in the QUANTUM ESPRESSO DFT code suite.
We have now completed a full spin vdW-DF implementation by having already contributed our spin-vdW-
DF-stress code extension to this open-source DFT suite. Our public release makes a previous work-around
(available through a compiler flag) obsolete in QUANTUM ESPRESSO: users no longer have to omit the spin
impact on the evaluation of the nonlocal-correlation energy term when performing variable-cell vdW-DF
calculations in spin-polarized systems.

2.3. Functional tool chains with semilocal and with truly nonlocal correlation terms

We use and compare results obtained in PBE- and CX-associated hybrids, both unscreened and in an RSH
form. We see these functionals as tool chains of closely related functionals, having either a semilocal or a
truly-nonlocal correlation term. The former tool chain comprises PBE [33], PBEO [9, 11], and HSE [12].
The latter tool chain is defined by consistent vdW-DFs [25] and is new. It comprises CX [4, 26], CXOP [14],
and AHCX [15].

The PBEO [9, 11, 13] is an unscreened hybrid based on PBE. One merely replaces 25% of the PBE exchange
component with an evaluation based on the KS orbitals. The HSE functional [12] is an RSH extension of
the PBE functional. We use it with 25% Fock exchange and a range separation that is described by a screen-
ing parameter u = 0.2 A=1. This parameter defines an error-function weighting erf(ur)/ r of the Coulomb
interaction [12], thus limiting the Fock-exchange inclusion to short separations.

The vdW-DF-cx0 is an unscreened hybrid class that is formulated in analogy with PBEO [9, 11, 13] but
starting instead with CX. We use the zero-parameter form CXOP [14] in which the extent of Fock exchange
mixing is kept fixed at 20%, following an analysis of the CX coupling-constant scaling [40] that enters the
general hybrid design logic [11, 14].

Finally, the AHCX is the recently launched CX-based RSH [15]. It resembles the CXOP in that we keep the
Fock exchange fraction fixed at 20% and it resembles HSE in that we keep the screening parameter fixed at the
standard HSE value [12]. The screening makes AHCX calculations relevant for metallic systems [15].

3. Computational methods

In total, 15 different functionals were used for our calculations, although half of those were exclusively used
to establish an impression of present status for performance on benchmarks of biomolecular relevance.
For this test, we leverage the full range of nonlocal-correlation functionals in the new, consistent-vdW-DF
tool chain and we compare with vdW-DF1 [17] and vdW-DF2 [37], other members of the vdW-DF family
of nonlocal-correlation functionals [79-84], as well as results obtained by using revPBE + D3 [33, 85, 86]
and HSE + D3 [12, 86]. The revPBE + D3 functional is considered one of the very best overall-performing
dispersion-corrected GGA [87].

We furthermore use and test parts of our nonlocal-correlation tool chain for magnetic elements and cubic
perovskites, using CX-AHCX and CX-CXO0P, respectively. For cubic perovskite studies, we compare with PBE
and HSE as well as with the LDA [76] calculations. We limit the test of stress-based variable-cell structure opti-
mization to (spin) CX, providing illustrations for the Ni and Fe elements and for the noncubic, ferromagnetic
BiMnOj3 perovskite. For ferroelectric polymers we compare CX results to new calculations using vdwW-DF1
and vdW-DF2, while comparing to literature theory and experimental results for structure and spontaneous
polarization.

Our results and comparisons among functionals are obtained using both the (stress-updated) QUANTUM
ESPRESSO DFT-code package [41, 42] and VASP with the setup of projector augmented wave potentials [59,
60]; details are described in the subsections below.

We use the modern (Berry-phase) theory of polarization [89-94] to compute the dielectric constant in
cubic BaZrO; and SrTiO3 and for characterizing the spontaneous polarization in polymer crystals. To this
end, we rely on the VASP and QUANTUM ESPRESSO implementations [95-99], respectively.

In the cubic phase of SrTiO3 we find that DFT calculations predict the presence of soft modes when atomic
displacements are described in a quadratic model. The same likely also applies in a wealth of soft-matter systems
[100]. Additional analysis is necessary to assert whether the specific material characterization (provided for a
given XC functional) constitutes a prediction of an actual phase transition. appendix B presents a simple model
that allows us to navigate the phase-stability question (in the low-temperature limit).
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Figure 1. Cohesive-energy variation with lattice constant for Ni and Fe. Table 1 summarises the resulting bulk structure
characterization. The dots show calculated values while the curves show the variations in fourth order polynomials fitting to this
data. The system-specified lattice-constant reference value, ars, is set as the experimental lattice constant, back-corrected for
vibrational zero-point energy (ZPE) and thermal expansion [88]; these reference values are listed in table 1.

4. Magnetic systems

We can in general compute both the energy Eqom Of an isolated atom and study bulk structure and compress-
ibility properties of the magnetic Ni and Fe elements by mapping the bulk cohesive energy

Econ(a) = Epuk(@) — Eatom (11)

as a function of the assumed lattice parameter a. To that end we provide and compare a set of PBE, CX, and
AHCX calculations in our spin-stress updated version of QUANTUM ESPRESSO. We use optimized norm-
conserving Vanderbilt (ONCV) [101] pseudopotentials (PPs) in the SG15-release [102] with a plane-wave
cutoffat 200 Ry and a 10 x 10 < 10 Monkhorst—Pack [103] k-point sampling. We keep contributions from all
k-point differences in the Fock-exchange evaluation in the AHCX characterization. We fit the PBE/CX/AHCX
results for the energy-versus-lattice constant variation to a fourth-order expansion [104], thus extracting the
optimal lattice constant ag fir, cohesive energy Econ(2o;it), and bulk modulus By.

Figure 1 compares results in PBE, CX and AHCX for the cohesive energy for Ni (left column) and Fe (right
column). The panels track the overall cohesive energy variation with the lattice constants a as computed in
(PBE as well as) CX and AHCX. We fit fourth-order polynomials to these results (shown by the set of dots) to
identify the optimal Born—Oppenheimer (BO) structure, specific to the functional choice and characterized by
optimal values ag. The inserts validate the consistency of these polynomial fits (showing that they go through
the computed minima). We compare our results for Ni and Fe to experimental values that have been back-
corrected to account for zero-point energy (ZPE) and temperature vibrational effects.

In table 1 we summarize the results of our magnetic-element structure characterizations. \We see that while
CX performs very well on structure and cohesion, across the set of nonmagnetic transition metals [51], it leads
to a slight underestimation of the Ni lattice constants and a significant underestimation for Fe. However, we
find that the new AHCX partially corrects the Fe description.

The new stress formulation makes it possible to pursue variable-cell calculations and hence efficient lattice
optimizations even with vdW-DFs; this is essential for complex systems but it is convenient to test our coding
first for the cubic Ni and Fe crystals. We note in passing that variable-cell calculations involving a fraction of
Fock exchange (as in hybrids) are flagged as incompletely tested in the QUANTUM ESPRESSO version that
we used for the AHCX launch [15]; robustness of hybrid stress calculations is a question outside our focus on
stress from nonlocal correlation and we limit variable-cell structure determinations to nonhybrids.

Variable-cell calculations with the spin vdW-DF stress formulation will, in principle, yield different lattice
constants, denoted ag siress, than the results ag fi; obtained with the above-described (one-dimensional) fitting
approach. Comparing our Ni and Fe results for agsiress and agsir permits us to directly test the spin-vdwW-DF
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Table 1. Structure properties of magnetic elements Ni and Fe as obtained in
spin-vdW-DF stress calculations and by fitting to the results of a computational

mapping of the energy variation with an assumed lattice constant a; a subscript on the

resulting determination of optimal-lattice constant a, identifies computational

approach. We compare PBE, CX, and AHCX results for ay, the cohesive energy Eo, and

the bulk modulus By. We furthermore contrast those results with back-corrected

experimental values (as marked by an asterisk), i.e., measurements that are adjusted for
zero-point and thermal lattice effects.

PBE CX AHCX Exp. ?
Ni
aosit (A) 3.524 3.466 3.452 3510
Aystress (A) 3.524 3.466 —
Econ (6V) 4.668 5.217 3.971 4.477
B, (GPa) 197.0 226.3 2271 1925
Fe
aosit (A) 2.839 2.795 2.868 2.855
Aystress (A) 2.840 2.796 —
Econ (6V) 4.905 5.572 4.498 4.322
B, (GPa) 158.1 216.1 184.9 168.3

2Reference [88].

C M Frostenson et al

Figure2. Primitive-cell representation of unit cell and atomic configuration in the ferromagnetic BiMnO; crystal. The unit cell
has a significant distortion from the cubic form. The basis plane is described by a and b lattice vectors. In our schematics of the
atomic configuration we use red (gray) spheres to represent the O (Bi) atoms and magenta spheres to represent the Mn atoms that
carry ferromagnetic ordering. The oxygen-octahedral cages can be seen as encapsulating the Mn atoms.

stress formulation and our implementation. Table 1 shows that for CX there is a near-perfect alignment of the
o stress and ag si¢ values, that is, the variable-cell description concurs with the approach of polynomial fitting
for the minima, figure 1. Hence, we consider our new spin-vdW-DF stress description (and associated coding
in QUANTUM ESPRESSO) validated.

Figure 2 shows schematics of the BiMnQs unit cell and atom configuration: O atoms (red) trap Mn
(magenta) atoms in octahedral cages in a distorted ordering; these Mn atoms carry the ferromagnetic order-
ing. The BiMnOg3 perovskite has a significant structural deformation that arises in concert with a spontaneous
symmetry breaking of the O-metal bond lengths. As such, the system represents another good system for test-
ing the new spin-vdW-DF stress implementation, as well as the CX accuracy for spin systems. Accordingly, we
pursue QUANTUM ESPRESSO variable-cell calculations for CX using a plane-wave cutoff of 160 Ry with the
ONCYV PPs and using a 10 x 10 < 6 Monkhorst—Pack grid [103] to sample the Brillouin zone.
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Table 2. Ground-state structure of the ferromagnetic and ferroelectric
BiMnO;. The volume s reported per formula unit. For structure
parameters we compare to experiments at 20 K, reference [105].

CX Exp.

a(h) 9.49 9.52
b (A) 557 5.59
c(A) 9.62 9.84
©) 90.1 90.0
©) 109.3 110.6
©) 91.62 90.0
A% 59.93 61.40

Table 2 contrasts results of a structure optimization by variable-cell CX calculations with experimental
observations on BiMnOjs, obtained using both x-ray diffraction and neutron diffraction at 5-300 K [106].
The system has a ferromagnetic ordering. We find that the spin-vdW-DF stress description is both numerically
stable and works in the sense that it reliably predicts the optimal structure even for cases with more complex
magnetic structures.

We also find, by comparing to experiments [105], that CX is an accurate functional for this more com-
plex spin system, for example, regarding angles and side lengths. This is especially true for the a and b lattice
constants that define the basis plane in the schematics, figure 2.

5. Cubic perovskites

The top left panel of figure 3 shows schematics of the atomic configuration of the SrTiO; and BaZrO; per-
ovskites in their cubic, high-temperature forms. The top right panel illustrates the anti-ferrodistortive (AFD)
mode that has compensating oxygen (red spheres) rotations. This AFD mode is located at the R position of
the Brillouin zone of the simple-cubic SrTiO3; form [109] and causes a phase transition from the cubic phase
below 105 K in SrTiO3 [107, 108]; a corresponding phase transition does not occur in the similar BaZrOs
system [54, 55]. In SrTiOgz, this AFD- or R-mode competes with a -point ferroelectric-instability mode that
involves shifts of the Sr atoms (yellow spheres), but the R-mode instability suppresses the M-mode softness
[110-115].

The bottom row of figure 3 emphasizes a general motivation factor for testing our CX/CX0P/AHCX tool
chain on perovskites in general and for SrTiO3 and BaZrOg in particular [54, 55]. The point is that the descrip-
tion of the interatomic forces (defining both the I'- and R-mode phonons) differs significantly as we change
between functionals that have semilocal or truly nonlocal correlation descriptions and between functionals that
rely on semilocal or truly nonlocal exchange. Specifically, the bottom-right (bottom-left) panel illustrates—in
color coding for all atom pairs and the Cartesian coordinates of the resulting forces, i.e., 15 by 15 entries in
total—the relative change in forces as we go from CX to CXOP (from PBE to CX). Similarly large impacts
produced by the XC-functional nature was previously documented for BaZrOs, cf figure 4 of reference [55].
Differences (that affect the description of vibrations) exist despite the fact that all functionals accurately predict
the cubic lattice constant.

5.1. Structure and response properties

For the cubic forms, figure 3 (stable above 105 K in SrTiO3 and in general for BaZrO3) we determine the struc-
ture and characterize the quadratic variation of the energy with atomic deformations for a range of functionals.
We focus on the PBE/HSE part of the semilocal-correlation tool chain and the CX/CXOP part of the nonlocal-
correlation tool chain, but also include LDA for a reference. The computed data allow us to in turn make
functional-specific predictions of SrTiO; and BaZrO3 properties, such as the dielectric constant (following
reference [55]) and both the IM;5 and Rys modes. The former reflects a possibility for a ferroelectric transi-
tion while the latter reflects a potential AFD transition. Our survey and comparisons furthermore include
calculations of the BaZrO5 and SrTiOj elastic coefficients.

For our calculations, we use the PAW method and the VASP [59, 60] software. Our BaZrO3 and SrTiO3
studies are converged with respect to the wavefunction energy cutoff. We have previously shown [55] that
the AFD mode is very sensitive to the oxygen PAW potential and the energy cutoff, and thus we use the hard
setup in VASP. For BaZrOs we use an energy cutoff of 1200 eV for LDA and GGA and 1600 eV for HSE, CX,
and CXOP. For SrTiO3 energy cutoffs at 1600 eV are used for all functionals. Convergence turns out to be less
sensitive to the k-point sampling and a 6 < 6 % 6 Monkhorst—Pack [103] grid was deemed sufficient for the
hybrid functionals, while 8 < 8 < 8 was used for non-hybrid studies.
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Figure 3. Conventional unit cell of cubic SrTiO; and BaZrOj; (top left panel), 40-atom (2 % 2 x 2 repetition) model that
captures the oxygen dynamics in the anti-ferrodistortive (AFD) vibrational excitation that is important in SrTiO; (top right
panel), and mappings of functional differences in the SrTiO3; dynamical matrix (bottom panel). The 40-atom model characterizes
the AFD mode at the R point of the Brillouin zone, where it is experimentally known to be soft in SrTiO; and to even drive the
SrTiO; phase-transition at 105 K [107, 108]. The bottom row shows a comparison of relative changes in the SrTiO; dynamical
(Hessian) matrix (evaluated at the  point for the primitive cell) when going from PBE to CX (left) and from CX to CXOP (right).

We also use finite-difference phonopy [116] to determine the vibrational modes and frequencies in the
harmonic approximation that forms the starting point for our discussion of the cubic-SrTiO3 and cubic-
BaZrOj; properties. We compute the Rys and M35 frequencies using the frozen phonon method with the default
displacement of 0.01 A in a 40 atom cell (being a 2 < 2 x 2 repetition of the basic cell).

The present results extend a previous BaZrOs-only characterization [54, 55], by seeking a simple modeling-
based approach to connect DFT calculations (obtained at the BO lattice constants) with measurements.
The modeling is important since the experiments to which we compare are generally obtained at room or
at least elevated temperatures for SrTiOz (which does not remain cubic below 105 K); the measurements will,
in any case, be affected by the expansion that is caused by zero-point vibrational effects [55]. The modeling is,
however, difficult because of the SrTiO3 phase transition: we cannot simply track the thermal impact on struc-
ture like in references [51, 54, 55] and we cannot here make a direct comparison of thermal-expansion results
among functionals or between the two cubic perovskites. Instead, we rely on extrapolation in combination
with an assessment of how the vibrational ZPE impacts a cubic-perovskite structure.

An experiment-based estimate for the zero-temperature value of the lattice constant of (metastable) cubic
SITiOz isar_o = 3.894 A [108] (as listed in table 3). The estimate is based on tracking the temperature varia-
tion from the room temperature value axs = 3.905 A [108, 123] and down to the value 3.898 A at the SrTiO;
phase transition temperature 105 K [107, 108]. Meanwhile, we can use our previous BaZrO3 experience [54, 55]
to extract an estimate of the vibrational ZPE effects: from the BaZrO; calculation we expect that the SrTiO3
lattice constants will expand (off of a given BO result) by about 0.008 A at T - 0 [55]. In other word, for
SrTiO3 we arrive at a back-corrected experimental lattice-constant value a ., = 3.886 A. We can use this value
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Table3. Comparison of equilibrium lattice constant a, (as obtained from a Birch—Murnaghan fit to DFT calculations in the BO
approximation), frequencies of the lowest (and possibly soft) mode at the - and R-point, Landau-model expansion parameters (, ~,
see equation (B3)), characteristic life-time ( ) of the phonon trapped in the double well potential, elastic coefficients, and the
high-frequency (component of the) dielectric constant .. We list results computed in regular and hybrid functionals having either a
semilocal- (PBE and HSE) or a truly nonlocal-correlation (CX and CXOP) description; LDA results and experimental values are included
for reference. All results are obtained for cubic cells at the functional-specific BO lattice constant ag, except —, ~— and g which are
obtained from the set of PES results, i.e., computed by deforming a 40-atom unit cell. Imaginary values in 15 or Rys reflect a possible or
incipient instability in the description of the cubic cell by that functional. Corresponding identifier ‘soft’ in the experimental column
reflects the observation of a low-temperature phase transition.

Exper. LDA PBE CX HSE CXO0P
BaZrO,

a (A) 4,188 4.160 4.237 4,200 4.200 4.183

15 (MeV) 15.2° 13.04 11.97 13.70 13.47 14.85
Rys (MeV) 5.9% i7.17 2.30 i2.53 6.12 5.49
“(meVA-2uT) 8.51° —125 1.27 —1.30 8.54 6.68
T (meVAu?) — 2.55 2.03 2.19 2.32 2.3
R (107125) — 6.0 — — — —
Cy; (GPa) 282°/3324 348 290 324 298 340
C1, (GPa) 88° 88 79 89 84 87
Cus (GPa) 97¢/97¢ 20 85 88 94 97
o 4.928° 4.92 4.88 4.88 4.25 432

SrTiO;

Exper. LDA PBE CX HSE CXO0P

a (A) 3.894 3.862 3.942 3.905 3.900 3.880
15 (MeV) soft 7.16 i17.34 i6.69 i15.52 i1.38
Ros (meV) soft i11.15 i8.34 i8.88 i3.29 i5.56
“(meVA2uT) soft —29.2 —16.3 —18.4 —3.8 —8.9
“(meVA~tuT — 3.36 2.84 3.07 3.17 3.34
R (107125) — 14400 19 36 0.28 0.58
Cy; (GPa) 3189 381 314 348 361 337
C2 (GPa) 1039 109 99 102 112 101
Cus (GPa) 1249 118 111 115 128 123
o 5.35" 6.34 6.34 6.30 5.08 5.20

2 ow temperature neutron measurements extrapolated to 0 K, reference [54].

bReference [117].

Sound velocity measurements at 298 K, reference [118].

dBrillouin scattering at 93 K, reference [119].

¢Reference [120].

fHigh-angle x-ray diffraction measurements, extrapolated to 0 K, reference [108]; back-corrected value is a,; = 3.886 A
9Sound velocity measurements. Values extracted at 273 K, reference [121].

hPermittivity measurements at room temperature, reference [122].

to directly benchmark the accuracy of the set of functional-specific BO (cubic-)structure determinations, ag
(listed in table 3).

Meanwhile, the measured value axs = 3.905 A provides a framework for our discussion of the functional-
specific SrTiO3 response characterizations (table 3). The elastic and dielectric constants are measured at room
temperature, while we compute these properties at ag. We shall, below, assign more trust in a given functional-
specific response characterization when [ag — azgg] is small.

Table 3 reports a summary of the BO characterizations of BaZrO; and SrTiO3; as computed using LDA,
PBE, CX, HSE, and CXO0P. For BaZrO3 we find that the high-frequency (electronic component of the) dielec-
tric constant . is best described by the three non-hybrids, LDA, PBE, and CX, while the low-temperature
data suggests that CX and CXOP provide the best characterizations for elastic constants. The results for o
(here obtained at the BO lattice constants) concur with characterizations reported in our previous BaZrOs;
study (that also tracked the impact of zero-point and thermal vibrational effects [55])—it is when adding the
vibrational contributions in (0), that CX0P gains a performance edge for BaZrOs [54, 55]. For the elastic
constants there are some scatter in the experimental data. However, if we rely on the low temperature mea-
surements [119], we find that CX and CXOP are most accurate; we note that we must expect a lowering of these
dielectric-constant results by the vibrational-driven expansion of the lattice.

For SrTiO3 we find that CXOP provides the best BO characterization of the elastic constants overall but
PBE and CX are also accurate. We repeat that these measurements are done at room temperature (where
ag = 3.905 A) while we compute them at the BO lattice constants. Taking the difference ay — aggg into consid-
eration we expect that the CXOP (PBE) values would soften (harden); the CX characterization can be directly
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compared with room-temperature measurements since they are provided for a cubic unit cell that corresponds

almost exactly to the room-temperature structure (having a vanishirt) apeg difference); this fact increases

the value of the CX accuracy that we have here documented. Meanwhile, we “nd that the characterizations of
are similar among the hybrids and among the non-hybrid functionals (as in the BaZage). For SrTi@

we also “nd that HSE and CXOP are signi“cantly closer to the experimental results {dr23.

5.2. Modeling robustness and accuracy in re”ecting the presence of structural instabilities

Some of us have previously helped to establighcombining experiment and theory) that BaZy@mains

cubic all the way downtd  0[54] and that CXOP stands out (over PBESE and CX) in correctly describ-

ing measurements of the overall temperature variations in BapdrGperties p4, 55. Our additional results

for the BaZrQ Rys and 15 modes (reported in tabl@ at the BO structures), corroborate this conclusion. For
BaZrQ; we also “nd that use of PBE, HSE, and CXOP functismlirectly leads to predictions of both ferro-
electric stability (positive 15 values) and AFD stability (positifs values). LDA and CX characterizations do
identify a potential BaZr@ AFD instability (imaginaryR,s values) at the BO structure. However, the magni-
tude of theR,;s mode value is so small in the CX characterization that zero-point dynamics and thermal effects
stabilize BaZr@at ambient conditions, as documented in referensd.[

We argue that the key to discussing functional success for $igitBe answer to this question: «Which
of the functionals, if any, are consistent with the experimental S§Tiding of an actual low-temperature
instability, driven by the SrTIQAFD mode«? The answer should identig functionals that are robust and
can make the most relevant predictions. The answer hislgecide if we can trust the accuracy that is suggested
in table3.

The SrTiQ results for theRys and 15 modes (in table3) challenge us to pursue a detailed discussion
of phase stability in materials. For the SrEi@FD R-mode and for the modes, we “nd soft modes for all
functionals (except in the LDA-5 description) in their description of the cubic phase. Our PBE and HSE
results for the soft ;5 mode are in fair agreement with the values (PBE at i14 meV and HSE at i9 meV)
reported in referencel24 and with the HSE value (i12.5 meV) value reported in refered&][ We note
that the BaZrQ 15 mode is documented to be sensitive to the energy cuidifdnd that the present SrTi©
results are obtained at considerably larger energy-cutoff values than in those previous studies.

The SrTiQ results for theR,s mode identify incipient instabilities for all investigated functionals. That
is, in all characterizations we “nd that the function&lave modes that could correspond to a possible struc-
tural transformation. The “rst question to address in camalysis is whether those predictions survive in the
presence of the expected vibratadiy-driven lattice expansion.

Figure4 shows calculations of the potentially unstaRIAFD (dashed curves) andmodes (solid curves)
in cubic SrTiQ for different assumed lattice constants for the set of XC functionals LDA, PBE, CX, HSE,
and CXOP. The dotted horizadal line identi“es the zero-? value to delineate stability from a potential for
instability; this is the measure of SrTjGtability that applies in a phonon-level description, i.e., if we can
ignore the stabilization that may emerge with a more complete account of the ZPE dynamics, see appendix
B. The large squares show the position of the optimal BO lattice conagaftr each investigated functional;
the vertical dotted line shows the experimental lattice constant as extrapolated to zero tempéiaifjufedr
comparison, we note that the distance from the HSE (CXO0P) BO lattice constant is about half (twice) the
expected ZPE-lattice expansion 0.008 A.

We “nd, on the one hand, that HSE delivers a description that is close on the lattice constant, but on the
other hand, yields aR-mode 3 value that is barely negative at the optimal BO structure (let alone after
the expected expansion). Quantum "uctuations arerdfiere expected to easily compensate and prevent the
occurance of an AFD-driven phase transition in an HSE-based materials modeling of Griii@he expecta-
tion is substantiated by the discussion we present below for CXOP). Worse, the-ri®He 2 value rapidly
decreases beyond the BO lattice constant so that an HSE-based modeling seems to instead imply a possibl
ferroelectric SrTi@behavior, which is again in con”ict with experimental observatiah$] 110.

Meanwhile, the use of CXOP give$values that are more negative than those for HSE at the native CXOP
lattice constant. It also yields a modal description with an improved resistance towartbde (ferroelectric)
instability, “gure4. However, CXO0P is still in con”ict with experimental observations: when the CXOP input
(for 2) is adjusted to the estimate for the 0 cubic lattice constant (vertical dashed line), it gives again
only a very weak AFD-mode instability. Use of CX0Rslnot lead to the prediction that the AFD mode drives
an actual low-temperature transformation in SrgO

To proceed with checks of general functional performance, we next compute the set of @dBazZrQ)
potential-energy surfaces (PES) for AFD-type defitions, for example, as shown for CX and CXOP in
“gure 5. In practice, we compute (for all chosen functionals) the energy cost associated with making a dis-
tortion in a 40-atom unit (top right panel of “gured) re”ecting a Glazer anglelpg 127 rotation around the
z-axis, in steps of approximately 0.14 degrees.
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Figure 4. Evolution of the ferroelectric ;5 mode (solid) and AFR,s mode (dashed) as function of lattice constant. The vertical
dotted line identi“es an experimentally based estimate for the lattice constant, as extrapoldted ff109.

Figure 5. Potential energy landscape along a distortion coordiqatepresenting th&®,s phonon mode, as computed and
modeled for SrTiQwith CXOP (top panel) and CX (bottom panel). The solid curves show a 4th order “t to frozen-structure DFT
results (marked with large dots) obtained for deformations in the ra@ge[S3,3] A u for a 40-atom cell. The dotted and
dashed parabolae show 2nd-order ‘“ts to the three data points (having atomic displacements of 0.01 A) cpsest &nd for

the displaced minima, denote@, (Q, S 2.5A ufor CX): the latter is discussed as the harmonic approximation (HA) and it
re”ects the dynamics if the speci“c XC functional corresponds poealiction of an actual low-temperature transformation. The
solid and dashed horizontal lines indicate the energy levels obtained from the numeric solution to eqbaYias described in

the full deformation and in the HA potentials, respectively.

Landau-expansion theory}f] offers a natural framework for discussing DFT-based predictions of phase
stability, for example in SrTi® That is, the difference between “ndirgpotential AFD instability (identi“ed
by having a < 0 value) and predicting an actual instability (with a chosen functional) can be resolved by
analyzing the nature of the deformation mode witharfourth-order Landau model. The model is de“ned
by equation B3 in appendixB and its use was illustrated for pressure-induced transitions Ba#r@ef-
erences4, 55. The Landau parameters, and , are set from “tting to the underlying DFT results, for
example, “gure5 for SrTiO;. We obtain such descriptions for each perovskite and functional investigated,
as also reported in tabl& the quality and the consistenof the Landau modeling (given by and ) is
con“rmed by checking against tHRmode description that arises in a harmonic approximation (as listed in
table3) using the approximation 3~ ~. The Landau model is cast in a Hamiltonian form (appeng@)and
we reveal the nature of the relevant deformation mode by solving the one-particle Schrédinger equation in the
potential given by the PES, using the “nite difference method.

The top (bottom) panel of “gures shows CX0OP (CX) results for the total energy variation that occurs in
SrTiO; when we track the AFD-type distortion while keeping the unit-cell lattice constants “xed at the optimal
CXOP (CX) value (in line with the BO approximation). We note that large negatiwalues of the Landau
description correlate with deep double-well potentials. This is the case that emerges for the LDA and CX (and
to some extent for the PBE) characterizations of SgTi@bwever, the total-energy variation (and hence the
potential for the effective AFD-model Hamiltonian, appendéixs shallow for CXO0P.
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Importantly, the panels of “guré show the eigenlevels that emerge in our AFD-mode Landau modeling
for SrTiO;, as based on CXOP and CX input, see appeBdikhe dashed horizontal lines depict the results
for the eigenlevels as obtained under the assumption that the system is actually deformed; in this case the
AFD dynamics occurs as trapped in one of the twaptthced harmonic oscillators describedy + Q, (as
illustrated by dashed parabolae). The pair of solid horizontal lines,in each panel,show the eigenlevels for
the AFD-modal dynamics as described under the assumption that there is no relevant dephasing of the modal
double-well dynamics46, 47, 49. That is, this double-well eigenvalue description of the vibration is provided
under the condition that the mode retains coherence and thus exists on both sides of the central barrier at
Q o

To set up a simple stability criterion, we consider the Sglf@nd general incipient-instability) case as
an inelastic tunneling problen¥p..50. We interpret the 2 splitting of the eigenmodes for the AFD modal
dynamics as arising from a hybridization characteci$tir each of the functionals, as further discussed in
appendixB. The computed magnitude of re”ects the rate of interwell taneling and sets the scale of the
characteristic dwell or tunneling time:

rR= | E (12)

We compare these functional-speci“c results with an assumed inelastic-scattering or dephasingime
crude indicator for actually predicting® 0 phase transition is then

R scat (13)

In essence, this criterion expresses the competitawben the phase-coherence life time and the tunneling
dynamics of the mode that could possibly drive a transformation. The criterion equati®ngfurther dis-
cussed in appendig. This appendix also motivates the use gf; 1 ps as a natural delineation between the
presence or absence of an actual instability in a given DFT-based modeling.

In table3we list the tunneling timesg as extracted for the set of functionals, using equatidi).(We “nd
that LDA is characterized by very long (ns) dwell or tunneling times, while CX and PBE give moderately long
times (36 and 19 ps, respectively). Finally, the tablentspithat CXOP and HSE are characterized by short dwell
times (less than 0.6 ps). With an assumed dephasing time on the order of 1 ps, our stability analysis suggests
that the CX-based (CX0P-based) modeling petsl{does not predict) an actual distortion®dt 0.

In summary, we “nd that the CX provides the best overall description for S§T@ir conclusion is based
on the observations that CX has a strong overall pentonice for properties that we can directly assertin DFT
(table3) andthat the CX predictions for the AFD-mode behavior are consistent with experimental observa-
tions, unlike for CXOP. The “nding of a CX penfmance edge over CXOP for modeling Sr7i®in contrast
to what we recently documented for Bazy(»4, 55].

6. Soft-matter examples

The study of DNA fragments and their assembly from &gy blocks is a rich research “eld. It is a goal of the
overall vdW-DF method and long-term research progranndalize accurate computationally ef“cient studies
of structure, of defects and intercalatiohdq, and of "uorescence-marker base substitution&§ 130. It is
furthermore a program goal to pursue molecular-dynamics studies and thus explore entropic effects from “rst
principles [L31. All of these problems are interesting for bi@rhistry in their own right. Meanwhile, there are
also potential health-technology bene“ts from real@iiexible materials (polymers) with a large polarization
response]37. One can, for example, envision incorporatianbandages to allow a simple electric detection
of swelling associated with infection. Such indirediedéon could reduce the need for traditional, periodic
visual inspections. This idea, however, hinges on (1) the possibility of synthesizing a ferroelectric polymer
with a suf‘cient per-monomer polarization response, and (2) achieving a suf‘cient polymer crystal ordering
so that the local response also serves to de“ne a suf‘ciently large net electric-signal output (in connection
with deformations). Consistent vdW-DF calculatiocannot directly aid synthesis, but they can predict the
structure of perfect crystals and then assert if the ideal polarization response is suf‘ciently large, for any given
soft-ferroelectrics candidate.

To succeed with a broad-scale computational apprdackoft matter, CX (and ultimately the CX-based
tool chain) must earn trust. This can be done by documenting an ability to reliably make accurate charac-
terizations and predictions of structure and resporneeluding ferroelectric polarization. Fortunately, the
richness of the DNA and biochemistry “eld means tlitaiffers many benchmarkig opportunities. By “rst
documenting CX accuracy and usefulness, we motivate leverage for subsequent use in biochemistry and in
polymer physics10Q 128 133.149.

Figure6 schematically shows a class of DNA intercalation problems (top and middle rows) that we use to
test the predictability of the CX version on biomolésusystems. In fact, we include two method-validation
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Figure 6. Structure model for DNA intercalation of the molecule with PDB code 1Z3F (also called ellipticine, top panel),

alternative intercalants with PDB codes 1DL8 and 1K9G (the latter also called cryptolepine, middle panels), and the ferro-electric
as well as ;4 forms of PVDF (bottom row of panels). Brown, red, big/small blue, green, and white spheres identify C, O, P/N,

F, and H atoms. Our CX tests are based on refereh2g feference geometries and CCSD(T) energies and we use their notation:

the DNA-structure model shown in the (top panel) is denoted *Be and involves a protonated backbone; there are also results for a

model <A« that omits the backbone. The intercalant in the (top panel) (1Z3F, henceforth denoted «3¢) is also studied in a modi“ed

form «3" « where a proton is added at the nitrogen identi“ed by a red circle. The alternative intercalants shown in the (middle left

and right panels), 1DL8 and 1K9G, are denoted «2¢ and *1+ respectiz@lyinally, the PVDF forms (bottom row) are studied

in crystals forms, see “guiebelow, and tablé&.

checks for soft-matter accuracy and performance, namely a selection of benchmark sets from the GMTKN55
suite [87] and the DNA intercalation problems. Both focus on the CX energy description and thus supplement
prior documentation of CX performance for structuradphonons in polyethylene and in oligoacene crystals

[25 56,100 148 15(. The bottom panels of “gur& show schematics of the application study that completes
our survey of CX usefulness for soft-matter systems: predicting structure and response of the ferroelectric
PVDF polymer.

For all soft-matter testing and application work we use the ONCV-SG15RRs104 at 160 Ry energy
cutoffin QUANTUM ESPRESSO. For the molecular probdeme control spurious electrostatic (and disper-
sion) interaction contributions arising among thepeated images of the molecules. This is done by compen-
sating for the mono- and di-polar couplingd§1 (and by having at least 10 A of vacuum padding in the
unit-cell description P5]).

6.1. Biomolecular interaction energies
The GMTKNS55 is a suite of benchmarks of broad molacyroperties that also contain a range of DNA-
relevant benchmark sets. For a “rst test of the CX, CX0OP and AHCX performance on molecules it is relevant
to consider the S66 set within the GMTKN55 suif&][ The S66 is a set that broadly re’ects noncovalent
interactions and contains samucleobase interactions.

More biorelated checks can be extracted by also computing MADs of our XC functional descriptions (rel-
ative to coupled-cluster CCSD(T) valuesT]) for the PCONF21 set of peptide conformers, the amino20X4
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Figure 7. Performance assessment of the consistent-vdW-DF tool chain, CX-CX0P-AHCX, on 6 benchm&iK eétsdy

bio-chemistry relevance, comparing relative molecule energies in: «S66¢ (a balanced set), PCONF (tri- and tetra-peptide
conformers), amino20X4 (amino-acid conformers), UPU23 (RNA backbone conformers), SCONF (sugar conformers), and
WATER27 (binding energies of water complexes, including some cases with proton transfers). We show mean-absolute deviation
(MAD) values (expressed in kcal mé) from quantum-chemistry CCSD(T) reference calculatio®g] noting that the

performance of the unscreened hybrid CXOP (turquoise curve) is almost on par with that of the RSH AHCX (dark green curve).
We also include a performance overview of the original vdW-DF1 versidrtiat shares the nonlocal-correlation energy

formulation. Use of the consistent-vdW-DF tool chain on the WATER27 benchmarking yields larger MAD values, (around

2.85 kcal mol?), table4.

set of amino-acid interaction energies, the UPU23 set of RNA backbone conformer energies, the SCONF set
of sugar conformers, and the WATER27 set. We note that the sugar behavior also helps de“ne the DNA back
bone. Overall, we have thus extracted (from GMTKN55)lzset that focuses on biochemistry-related systems:
nucleobases, amino acids, peptides, as well as RNA (and in part DNA) back bone properties.

Our testing setup is similar to that used in referentg| [ but here we include also the WATER27 bench-
marking set by computing the energy of the ©ktn in a smaller 12 A cubic cell. This allows us to circumvent
adverse convergence impact of self-inteacérrors in this negatively charged radicah[157.

Figure7 shows a performance comparison for the CXs&a consistent-vdW-DF tool chain, CX, CXOP,
and AHCX. The performance of the consistent-vdWsXEX/CX0P/AHCX) is strong overall on molecules
[15 and very strong for most of the here-investigated bio-relevant problems. The performance is clearly better
than, for example, that of the vdW-DF1 versioh/].

Table4 summarizes our full comparison of biomolecule performance. The top three rows quantify the
“gure 7 performance overview for the CX-based toblain, reporting MAD values (in kcal mot) for the
speci“c benchmark sets as well an average MAD measure (obtained by assuming equal weights among the
6 benchmark results for every functional). The &bplermits a quantitative comparison of CX, CX0P, and
AHCX performance with benchmarking results obtained for other members of the vdW-DF family and for
two dispersion-corrected functionals, revPBID3 [33, 85, 86 and HSE+ D3 [12, 86]. The latter are closely
related to the PBE-based semilocal tool chain and we note that revHBHSs identi“ed as the top performer
ofthe Grimme-D3 corrected GGAST]. revPBE+ D3 is a generalist that also does well for the here-considered
biomolecular subset of the full GMTKN55 molecular testing suitd.[The CX has a similar generalist status
[15 25|, and table4 shows that CX matches the revPBID3 performance also in this more targeted survey.
Moreover, we “nd that the hybrid forms, CXOP and AHCX, improve the accuracy for biomolecular problems,
as asserted in this test.

Interestingly, table identi“es the vdW-DF2 as the best overall performer, primarily because of its ability
to accurate describe the energies involved in the WATER27 processes. From our broader molecular surveys
summarized in references’, 25, we “nd that vdW-DF2 is only a fair competitor to the CX performance on
noncovalent interactions, but it is exceptionally strong in a select few benchmarks, such as WATER27. This
fact deserves a separate exploration, that we geneedbly. dHowever, for the ferroelectric polymer-crystal
characterization (below), we include results for bothWV-DF2 and CX, comparing also with previous theory
results [L47, 149.
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Table 4. Comparison of functional performance on the biomolecule-relevant subset of the GMTKN55 benchmarlgguitég

columns identify the here-selected benchmark sets that are introduced and discussed indgdri the text. We list mean-absolute
deviations (MADs) in kcal méit, for process energies as asserted relative to coupled-cluster calculations (at “xed coordiipfes) [

the CX-based tool chain, for other members in the vdW-DF family of nonlocal-correlation functionals (identi“ed by citations when not
previously discussed), and, lastly, for dispersion-correctedmeesitlosely related to the PBE-based tool chain. The *Avg.s column
reports an average of MAD, obtained by summing the benchmark MADs and dividing by 6. Boldface entries identify a strong
performance, i.e., cases where the functional is found to have an average MAD value below 13daltiislbiomolecular

benchmarking.

Functional S66 PCONF21 Amino20X4 uUPU23 SCONF WATER27 *Avg.e
CX 0.283 0.746 0.254 0.472 0.808 2.906 0.911
CXO0P 0.302 0.421 0.218 0.602 0.350 2.880 0.795
AHCX 0.267 0.400 0.215 0.585 0.319 2.841 0.771
rvWie* 0.428 0.734 0.332 0.427 1.077 11.245 2.374
vdW-DF1 0.693 0.599 0.526 0.545 1.041 7.721 1.854
vdW-DF-C09 0.383 0.944 0.346 0.643 1.386 8.015 1.953
vdW-DF-optB88 0.361 0.746 0.227 0.643 0.754 5.384 1.353
vdW-DF-optB86 0.346 0.772 0.245 0.655 0.871 5.720 1.435
vdW-DF2 0.315 0.390 0.380 0.532 0.524 1.655 0.633
vdW-DF2-b86f 0.361 0.679 0.222 0.367 0.763 5.175 1.261
revPBE+ D3 0.251 1.009 0.345 0.598 0.505 2.579 0.881
HSE+ D3 0.392 1.337 0.294 0.704 0.211 5.881 1.470

aReferences/p, 80.
bReferencesi[/, 81].
‘Referencesl[/, 87).
dReferencesl[7, 83.
*Referencesd[/, 84).
fReferences3p, 85, 86].
9Referenceslp, 86].

The WATER27 benchmark set constitutes a challenge for most XC functi@aats/]. Even here we “nd
that the consistent-vdW-DF tool chain delivers dbust description, with a MAD value of 2.8 kcal rmdffor
AHCX and almost as good for the nonhybrid CX form.

Overall, this survey suggests that CX and its tool chain are useful for determining interaction energies in
biochemistry and, we expect, in both bio- and synthetic polymers.

6.2. DNA-intercalation energies

Additionally, we test the CX performance and robustness against recent higher-level calculational results on
DNA intercalation [L2§. That study identi“es a set of relevant frozen (reference-coordinate) geometries,
“gure 6, for which it also provides coupled cluster CCSD(T) reference energies of the energy gain by molecule
insertion (ignoring elastic-energy costs). We use those results for an extra test of the CX performance, because
the applied DNA modeling circumvents the need for a detailed study of the effects of counter ions and water:
we can directly compare our DFT results against listed reference energies at speci“ed coortiidates [

The basic idea is to consider two models of a DNAebpair segment, namely erwhere the backbone is
protonated (effectively placing one extra electron pleosphor group on the back bone structure), and one
where the back-bone is further eliminated. In referent2d the atomic positions of the three intercalants,
along with those of the immediate surrounding DNA wtture, were extracted from the protein database
(PDB) [153. The structures used for the CCSD(T) results were truncated to the base pairs above and below
the intercalant, plus the part of the sugar-phosphate backbone that connects them (model *Be, top panel of
“gure 6), or without the backbone (model *A¢). The interact energies were calculated using the focal point
approach [L.54 for extrapolated CCSD(T) results. There are reference energies (and structures) for both mod-
els with 3 intercalants, that are all effectively nearly "at, “gjror the parts that are inserted in the DNA; in
addition, there are also reference energies for a variant process, where the intercalant is itself protonated.

Table5 summarizes our CX results for the energy gains by DNA intercalation for the three intercalants and
in model A+ and <Be. The comparison is made agdiesCCSD(T)-extrapolated results from referenta,
and with their B3LYP-D3, and HF-3c results. The three intercalants have PDB codes 1K9G, 1DL8 and 1Z3F
and are here (and in referenceqd) denoted ¢1¢, <2+, and 3+ (see top and middle panels of @uiie latter
molecule includes a nitrogen atom that can be protodaded this is also included in the set of calculations,
the protonated molecule is denoted «3

Inspecting the numbers in table we see that CX yields results that are close to those from the CCSD(T)
calculations, also for the protonated molecul€e’ (8 This holds regardless if the DNA backbone is included
(model *Be) or not (model ¢Ae). The largest deviation for CX is seen for molecule ¢1¢ (in both DNA mod-
els), with a 1.8...2.4 kcal fbbifference from the CCSD(T)-energies. All other deviations are less than
0.7 kcal mot?, and MAD is 0.82 kcal m8f for CX with respect to CCSD(T). This can be compared to the
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Table 5. Comparison of CX intercalation energies, in kcal ffoith CCSD(T), B3LYP-D3, and HF-3c

results from referencelpPg. All structures are computed at the experimentally motivated reference
geometries, considering two DNA models, denoted *Ae and *Be, that both have two base pairs; model *As and
model «B+ excludes and includes a (protonated) backbone, respecti2glyq set of CCSD(T) reference

energies exist for three intercalating molecules, here labeled ¢1e, <2+, and 3+, as well as for a protonated
molecule variant, denoted*3. The comparison with dispersion-corrected B3LYP results are for results
obtained with the def2-TZVP basis set, using the Becke...Johnson damping furicom the

semi-empirical Grimme-D3 correction tern8f, 87). The MADs from the CCSD(T)-calculations are given

for CX, B3LYP-D3, and HF-3c.

System CX CCSD(T) B3LYP-D3 HF-3c
1A $39.65 $41.99 S41.1 $40.3
2A $39.51 $39.52 $39.9 S$35.7
3A $34.09 $34.57 §34.4 $32.4
3 A S$47.04 S47.74 S47.9 S445
1B $43.60 $45.44 §45.2 $44.3
2B $45.25 $45.25 S45.7 S425
3B $39.86 $39.39 $40.2 $39.1
3B $61.86 $62.55 $63.8 S$61.6
MAD 0.82 ) 0.54 2.00

B3LYP-D3 deviations from CCSD(T), that show a slightly smaller MAD (0.54 kc&non the set of inter-
calate structures. However, B3LYP-D3 (and HF-3c) are hybrid calculations, and in plane-wave codes molecular
hybrid calculations are found to be up to 30 times slowanpared to regular functionals, like CX, for similar
system sizesi .

Turning to a comparison with results for the minimal-basis method HF-B2q, we see that the MAD
value for HF-3c, at 2.00 kcal nidi, is more than double that for CX. In other words, CX competes well with
the best hybrid results of reference?f, and offers a path to acceleration that gives improved predictability
compared to the HF-3¢c minimal-basis-set approach.

6.3. Predicting properties of the ferroelectric PVDF polymer crystal
Finally, for our soft-matter applicatiostudy, we characterize primarily thecrystalline form of the PVDF
system, while also comparing with the so-callddrms, “gure6. We predict the relaxed structure and ferro-
electric response of perfect crystals end -PVDF, while comparing with experiments and other theory
results when possible. Both forms can be synthesized but, to the best of our knowledge, large single-crystal
samples, with long-range order, do not yet exist. Tle¢ioal predictions are thus motivated and we here seek
to provide primarily a CX characterization in @22 x 8 Monkhorst-Pack grid sampling of the Brillouin zone.
We compute the single-chain energy.in in a unit-cell that has twice the lateral (non-chain) extensions than
what holds in the experimental characterizations.

In analogy with equation(1), we compute the polymer-crystal cohesive energy,

8:1(‘1 b, = Ecrystalé 2Echain (14)

for a series of unit-cell lattice constants in thé®?VVDF form as well as for the motifs of thePVDF form. We
use the stress-vdW-DF implementation in QUANTUM ESPRESSO, although we did not have to here rely on
the new spin-stress extension.

Figure8 shows an overview of the structure search and potential-energy landscape for deformations of

-PVDF that we have computed using CX (as well as in vdW-DF1 and vdW-DF2). We “rst establish the energy
dependence of the along-chain lattice constant (using constrained variable-cell calculations) as shown in the
left panel. Then, at the optimal valug we can extract the overall structure characterization, identi“ed by
the star shown in the right panel. In this panel, wethermore report computed CX results for the energy
variation E'ég:](q), a,b) and a contour mapping of a fourth-order polynomial “t, tracking the energy variation
in the soft interchain directionaandb[104 139 144.

Table6 summarizes the CX structure characterization along with those obtained using vdW-DF1 and vdW-
DF2 and those found in literature. We note that thelattice constant is set by covalent interactions and
that all functionals are overall in fair agreement@fThe functional characterizations differ primarily by the
predictions of the soft lattice constardgsndb. It is therefore natural to use the contour plot to illustrate the
functional variations on PVDF structure determinations, as also done in the (right panel) of &ure

We “nd that CX results obtained with the above-described constrained-“t procedure align with those
obtained in a constraint-free variable-cell optimization. However, that is true only when we start the system
description of the polymer crystal close tetactual ground-state structure. In talileve give an extra decimal
in the reporting to facilitate this comparison.
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Figure 8. PVDF energy dependence on lattice parameters generateseltpBCX calculations (dots). The (left panel) shows the
cohesive energy for a constrained optimization, the (right panel) shows contours for the energy variation along unit-cell
directionsa andb. This contour plot is generated from a mesh of fully relaxed calculations in frozen unit cells (having structures
identi“ed by the set of dots). The energy landscapes are given relative to the energy of the optimal crystal structure (marked by the
star in right panel). The black triangle and square are the relaxed results using vdW-DF and vdW-DF2, respktfyellile

the black cross shows relaxed result for PBEG][ The red cross shows the results from x-ray diffraction on a sample drawn at

323 K [133 while the red square is x-ray diffraction from referend&{].

Table 6. Calculated lattice parameters for thePVDF crystal. We compare with literature
calculational results and data from room-temperature experiments.

a0 (A) bo (A) @A) GY)
PBEG 8.64 4.82 2.64 109.2
PBE 8.95 5.00 2.59 115.7
LDAP 7.97 4.46 2.56 9P
PBE+ D2° 8.27 4.55 2.58 97.0
vdW-DF 1 8.62 4.80 2.60 107.5
vdW-DF2 8.40 4.66 2.60 101.8
vdW-DF1 8.61 4.79 2.60 107.1
vdW-DF2 8.38 4.67 2.59 101.5
CX, constrained “t 8.581 4.763 2.575 105.3
CX, ve-relax 8.585 4.745 2.575 104.9
X-ray diffractiorf 8.47 4.90 2.56 106.2
X-ray diffractiorf 8.58 4,91 2.56 107.8
aReferencel4.
PReferencel49; dispersion correction «D2e from referendcesp.
‘Referencel33.
dReferencel34.

We also “nd that CX provides a highly accurate prediction of the optiolattice constant for the -form
relative to experiments; that is, the description oftucell extension along the polymer chains is almost spot-
on the experimental observation. In the other directions, we “nd an overestimation di thitice constant
but an underestimation of thb lattice constant. The PBEO and vdW-Difesults are in closer agreement with
theb lattice constant, but there thelattice constant is signi“cantly overestimated.

The study of the -PVDF crystal offers additional opportunities for a theory-experiment comparison.
These crystal forms are only nearly orthorhombic, characterized by a tilt angle betweserbthasis plane
and thecaxis that is (as for -PVDF) aligned with the polymer strainshe comparison is complicated by the
fact that there are two conformers, denotegdand , see “gurés.

Table7 shows the results of a vdW-DF1, vdW-DF2, and @Xicture characterization, along with exper-
imental observations for-PVDF [157. These reference values are obtained at room temperature in systems
that are known to contain a mixture of the two motifs, i.e., bothand 4. Thus, one would expect the volume

, the tilt-angle, and the lengths of the set ofitdcell vectors to be a linear combination of and 4 values.
Moreover, polymers are known to exhibits a signi“cant temperature expansio. [Consequently, a good
description should have a predicted volume that is smaller than the volume measured at 300 K.
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Table 7. Unit-cell parameters for -phases of PVDF. We compare present results as well as literature values. The
experimental values rely on a sample that contains a mixture of the up and down con*“gurations, characterized at
T = 300 K. The unit cell is nearly orthorhombic, with a small tilt of the along-strain aaisd thea..b basis plane.

Functional a(A) b(A) (A) (A3) aq )
4 phase
PBE+ D2* 9.09 4.96 9.33 420.2 89.9
vdW-DF 1 9.38 5.16 9.46 457.0 90.0
vdW-DF2 9.12 5.04 9.45 434.3 89.8
vdW-DF1 9.41 5.08 9.50 455.0 90.0
vdW-DF2 9.17 4.99 9.43 431.9 90.2
CX 9.31 5.02 9.60 449.3 90.0
. phase
PBE+ D2* 9.38 4.78 9.24 414.2 93.3
vdW-DF* 9.71 4.95 9.34 447.7 94.4
vdW-DF2 9.41 4.85 9.33 424.8 94.5
vdW-DF1 9.60 4.98 9.31 444.3 96.5
vdW-DF2 9.34 4.86 9.31 421.4 96.0
CX 9.36 4.84 9.32 421.8 94.6
Experiment
& g 9.67 4.96 9.20 440.65 93

2Referencel49; dispersion correction D2« from referencesp.
bReferencel57.

We “nd that the computed structures for the; motif differ from the room-temperature experimental char-
acterization, for all vdW-DF functionals. The tilt argliiffers and so does the prediction for the along-chain
extension (length of). The CX characterization of the; motif is overall not as close to the measurement as
vdW-DF2. On the one hand, this is noteworthy because CX is in related systems found accurate on molecular-
crystal bonding and structure, as exempli“ed fofPVDF, tables, and in referencessp, 15(. On the other
hand, it is not clear that the sample in the experiment contained a large componegptudtif.

Assuming instead that the structure of the polymer sample is dominated by, tinetif, the set of vdW-DF
predictions are closer to the measured data. Here, CX describes a unit-cell tilt angle that is in good agreement
with the measured data. Also, both vdW-DF2 and CX are now found to give a unit-cell description that is 5%
smaller than the room-temperature measurements and the CX lattice constant is now in good (within 1%)
agreement with the measuregxis extension.

Overall, the CX is found accurate on structure forPVDF and consistent with the mixed-motif
measurements.

For predictions of the PVDF polarization, we follow the ideas presented by Johnsson and co-workers
[147 149 while using the QUANTUM ESPRESSO implertaion of the modern theory of polarization
[89..94]. That is, we use a modi“ed cell with one PVDF chain rotated 18%establish nonpolar forms for
boththe and phases and proceed with calculations thatértiee effects of electron displacements in the
bandstructure description of the polymer crystéld][ For the ;4 phases, the nonpolar nature of such refer-
ence states is discussed in referendé]{ here we focus on describing the steps that are needed to accurately
determine the (larger) spontaneous polarization that results in tipbase.

First, we determine the lateral position of the axislming-chain rotation (for each of the two chains in the
unit cell) by projecting the carbon atoms onto the lateral plane de“ned byathedb lattice vectors. Second,
we rotate one chain around its axis and con“rm the patar nature of the resulting reference structuie f];
speci“cally, we use QUANTUM ESPRESSO to computpttherization that we “nd to be an integer times the
so-called polarization quant®{] (in this cased ag for the response along tHedirection. Third, we track
the evolution of the computed polaration as we incrementally rotate the chain back toward the actual PVDF

-phase structure, noting shifts among multiple brangleé the polarization description in the Berry-phase
formulation [89, 90, 93. Finally, we extract the spontaneous patation result, correcting for the impact of
these polarization-branch jump84j.

Table8 summarises the outcome of these polarization-response surveys comparing also to previous vdW-
DF1 and vdW-DF2 resultslp7, 149 for the and phases. We note that our calculations are performed
under the assumption of having a perfect crystal at the optimal structure (as computed for each of the vdW-
DFs). We provide these theoretical characterizatinat as a performance assessment but as an application
example.

We “nd that CX characterizations are consistent with those provided with vdW-DF1 and vdW-DF2 for
all three phases of PVDF. We also “nd that our vdW-Di#fid vdW-DF2 results in turn are in fair agreement
(at least for the phase) with previous theory characterizatiofig |, 149. Comparison with experimental
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Table 8. Results for spontaneous polarisation of the three PVDF phases, studied using different
vdW-DF releases and in experiments and listed in unigs@tm>2. We list present predictions as
well as (in parenthesis) those obtained in previous vdW-DF1 and vdW-DF2 studies.

Phase vdW-DF1 vdW-DF2 CX Exp.
19.6 (1987 22.5 (226" 19.3 10
" 7.9 (84°) 11.4 (69) 8.3 Q2.
d 6.9 (107°) 13.3(58°) 7.3 02...3
aReferencel47.
bReferencel39.
‘Referencel49.
dReferencel59.

results (also listed) is dif“cult because of the challeim securing fully crystalline samples, and polarization
measurements will be affected by compensating responses arising in different sample regions. Nevertheless
we con“rm that the -PVDF form has the highest limit on the palaation response of the investigated
phases.

In summary, we “nd that with a realization of aPVDF single crystal form, this ferroelectric polymer has
a spontaneous polarization that is signi“cantyger than what is seen in present measuremer§ [ The
phase may eventually serve as a good organic ferroelectrics.

7. Discussion and summary

An overall goal of this theory, code, validation and apgion paper was to illustrate potential materials-
theory advantages of having a tool chain of related consistent-vdW-DF XC functionals, namely CX, CXOP,
and the new AHCX. Our range-separated AHCX hybrid is very new, but we have been able to include a few
examples that nevertheless identify application gftiesibeyond those discussed in the AHCX launching work
[15. By providing a CX-based set of related XC tools, we have the option of including both truly nonlocal
correlation and truly nonlocal exchange (to an incregsétent) all within the electron-gas tradition. As such

it provides the same advantages for vdW-dominated problems (and hard and soft matter in general) that the
PBE-PBEO-HSE chain provides in the framework of semilocal-correlation descriptions. It provides a platform
for developing a systematic analysis, asthesistent-vdW-DF application range grows.

More speci“c goals were to upgrade the proper spiiWwDF formulation with a stress description and
to illustrate a simple framework for understandingistlity in a given DFT-based modeling. We sought the
goals to facilitate modeling from hard to soft matter (inside our new XC tool chain). Here we have (1) coded
the spin-vdW-DF stress result in QUANTUM ESPRESSénable variable-cell vdW-DF calculations in spin
systems and (2) used a simple stability condition to discuss soft modes insSagién example. Having access
to a simple, generic, stability gauge means that DFTijpi@wers have the option of seeking the most relevant
DFT input (controlled by the XC choice) bafe proceeding with advanced modeling.

We have documented the spin-stress method contribution for magnetic elements as well as for a magnetic
perovskite. In addition, we have also provided hard- amit-satter illustrations by using the new tool chain
of consistent-vdW-DF XC functionals on benchmarisew test of CX performance on DNA intercalation,
and a ferroelectric-polymer application of the CX version.

Overall, we “nd that we will in general need moreathjust the CX part of the new nonlocal-correlation
XC tool chain to cover materials from hard to soft. The AHCX improves the description of the magnetic Fe
element over CX and both CXOP and AHCX are strong performers in our bio-relevant molecular benchmark-
ing. However, hybrid vdW-DFs are not universally imging descriptions either, as discussed for SgTihe
perovskites provide examples where more studiesmaeded to assert when we can systematically leverage
hybrid advantages in combination with truly nonlocalroglations. For the perovskites we must also explore
whether to rely on the screened AHCX formulation instead of the unscreened CX0P form, at least in cases with
an actual or incipient ferroelectric transition and hergigni“cant vibrational contributions to the dielectric
constant.

We present these results by looking at a number afitend soft material cases, in the hope that they
may stimulate further work and analysis. Studies using different,but closely related, regular/hybrid vdW-
DFs are interesting not only because they give usefultsesnd, overall, accuraf@edictions. The closeness
in the XC nature of our tool chain means that variations in performance may teach us to better weigh the
balance (and screening) ofdly nonlocal exchange in combination Wwibur truly-nonlocal-correlation vdW-

DF framework. We therefore intend to use of the catsint-vdW-DF tool chain more broadly to continue to
gather performance statistics. Ultimately we aim to learn to better ideatibyjori, the best DFT tool for a
given material challenge.
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Appendix A. Coordinate transformations and stress

We consider small deformations, such that the displacements can be expressed in terms of the strain tensor
. This tensor describes coordiearansformations or scaling

r = ( + r. (A1)

Here the subscripts, or , identify Cartesian coordinates of the position veatoWe seek to express the
resulting stress that arises from the spin formulatiEh of the nonlocal-correlation energy. This stress is
formally given as a strain derivative
I,
nl, sp é 1 Eg S

RV (A2)

whereV denotes the unit-cell volume.

We therefore aim to track every way that the coordinate scaling affects equajtifor @xample, through
the double spatial integrations, from the spin-density componeats (r), and from the kernel dependence
on coordinate separatioD. We also need to track the stress that arises because the local inverse length scale
0o(r) (inside ) depends on the spin-density gradientsis- | (r). These gradients change with coordinate
scaling because scaling implies both a density chartye elmange in taking the derivative with positions. The
approach is simply to apply the chain rule for derivatives with strain.

The transformation Jacobian is to lowest order

dr

J= dr =1+ 9 (A3)

and corresponds to the strain derivativd . = . Since=l involves a double integration, this volume
effect alone produces the stress contributi&l'2 ~ in equations €) and (9).

The kernel in equation §) contains a term that depends explicitly on the separafiohetween two
positions of the electron spin-density distributions. That term resembles the Hartree (or mean-“eld Coulomb)
energy and gives a stress component de“ned by the second row of equaiamsl (7). Of course, for the
spin-polarized case, one must evaluate the kernel derivative D at inverse length scale valugg(r) and
0o(r ), for the actual spin-density distributions- | (r). However, that information is already available from
any computations of the spin vdW-DF descripti of the nonlocal XC energy and XC potential.

In reciprocal space, the scaling is given by the transpoSe of. For example, a reciprocal lattice vector
scales as

G= (. S )G. (A4)

It can readily be shown that with a planewave basis for wavefunctipns Gq((%G expSi(k S G) -r)there

are cancellations of strain effects in all but the normalization facfifs The spin-density components- |
will therefore scale with derivatives given by the volume factor

ns(r) _ «

- g . ng(r). (A5)
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However, following the logic of the original Nielsen and Martin analy&i the volume scaling of the densities
can be summarized in terms of the relevant (spin-resolved) compon@]g(ts) of the XC potential. The stress
term S s Ng(r)v{r)dr in equations 6) and (9) summarizes all of the density-volume scaling effects
for the spin-balanced and spinefarized cases, respectively.

This “nally brings us to the third row of equatiortj. Here we capture the effects of strain scaling of the
spin density gradient ns(r), by assuming a “xeds(r) variation:

) on() o ndn) o ns(r) (A6)
r r r L

For the length of this derivatives we have

| n(l _ s 1 Ns nNs

I nn)l ¢t (A7)

because we have handled the volume scaling of the density sepat&telng third row of the spin-vdW-DF
stress description equatiof)(follows by a simple application of the chain rule.

Appendix B. Navigating phase transformations

Hard and soft matter come in different crystal forms, as well as meta-stable variants, and there is often a need
for a concerted theory-experiment analysis to resolveuarttbrstand phase stability. This is true, for example,

even in simpler (compact-unit-cell and nonmagnetic) perovskifes.p5 90, 111..113 115 159..177 and in

both nonpolar and ferroelectric polymers(Q 132..136 14Q 144..149 159. The structural transformations

may be driven by temperature, electric “elds, or strain; there can also be a release from meta-stable states tha
may have been locked in under synthesis or by usag@.[

Effective modeling beyond DFT calculations of sture and modes is important. First-principle cal-
culations may help in the analysis with volume-conistea variable-cell calculations and by determina-
tion of the phonon spectra, as well as calculations efgnetic, elastic, polarization, and strain response
[89 90, 10Q 115 116 125 14Q 144 146 147, 149 171..179. For a given XC functional, we can rely on
the BO approximation to determine what we call the native structure. We can also compute the phonon spec-
tra at the native structure or at the experimental structure and, for example, check for soft nigfes][
However, “nding of an imaginary frequency in a BO description simply says that there is an incipient insta-
bility for the chosen XC functional. We must track zeemmperature and thermal "uctuations to assert if that
XC functional predicts an actual phase transformati®i 115 171] or facilitates a polymer breakdown of
long-range phase ordet (J. For the compact-structure perovskites (like Sr§jthere exists both Monte-

Carlo simulation frameworksl[12 113 166 167 and a phonon Green function formulationiL5 125 171].
However, something simpler is, in general, desirédblanit the computational load in complex systems.

Here, we illustrate the use of a model analysis of quantum effects on transformations. The approach is
generic to stability problems. Our model is inspired by a quantum theory of "uctuations above the phase-
transition temperature43] but it also takes tunneling-induced vibiiahal-mode-level splitting into account.

We focus the discussion on the SrEi®FD mode, and compare DFT characterizations obtained for a string
of XC functionals.

The important step is to set up a size-consistent description of the vibrational mode that may drive dis-
tortions. The Hamiltonian for the ionic motion irgeneralised canonical coordinates (dendfgg), can be
written

1
H:T+V:2 QuQq *+ V. (B1)
9

The band index is, andq denotes the phonon momentum. The set@f;ss re”ect the atomic displacements
qu and the phonon eigenvecteig, through the relation

By Qavh e (B2)
9
where denotes the Cartesian coordinate. Héreis the number of assumed Born-von Karman repetitions,
while R, andM,, denote the position and mass of theh atom in the unit cell. For studying the stability of the
AFD mode in the cubic structure only the phonon wavevector aiRlp®int is needed. Also, as illustrated in
“gure 3, the AFD modes exclusively express oxygen rotations, leaving only oxygen-related t&#nsiihys
we can seM, = M 15999 atomic mass units (which we denote u).
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For a non-interacting singl&phonon mode, the potential energy variation can be approximated to the
fourth order in the AFD displacememnt, or equivalently in the canonical coordinate in the speci“‘c ma@Qe,
[44). The resulting Landau expansion is

Q" (B3)

Here, and  are effective material-speci“c constants of the Landau expansion for the AFD mode, re”ecting
both the effective interatomic couplings and inertia of the atoms involved in the dynawisThe overbar
is used to distinguish these parameters from those dbarizing a (related) expansion of the PES expressed
in terms of AFD-type distortions (here denotelji[ 54, 55, rather than phonon-mode coordinai®.

The potential energy in equatiorB@) scales properly with respect to the chosen size of the supercell or
Born...von Karman representation, i.e., WithA doubling of the simulation cell in every directioN( 8N)
yields the coordinate rescaling, 8Q, and the potential-energy rescaling

1 1_
T+V=_Q*+ 2+
2Q 2 Q 4N

- 2. o Jpe - Of =
V= 2Q + 4NQ 82Q + 4-864 Q" = 8Vv. (B4)

Size consistency also holds for the kinetic-energy part and for the set of vibrational frequeticE#emerge
as solutions to the eigenvalue problem de“ned by tandau-expansion Hamiltonian, equatida3). These
frequencies characterize the model dynamics and will, in principle, re”ect tunneling wikier®.

For our parameter “ttings, we note that “gure shows the total-energy variation (in a single cell of 40
atoms) as a function of the scaled AFD mode coordifatdhe AFD mode in SrTi@exclusively involves 16
identical oxygen and the same values de“ne the magnitudes of the relevant oxygen displadeandrttse
relevant eigenvector components, denotetlormalization mandates tha® = 1/ 16 and, in this simpli“ed
description, equation&2) formally reduces t@@ = MNd/v. We useN = 1 for de“ning the coordinate
scalingQ, aswe “t ~ and " to the 40-atom PES shown in “gufe The relation among quadratic coef‘cients
( and ") inthe related PES expansiohs, d%/2= "Q%2,is” = / 16M.

The computed value of the coef“cient in the Landau expansion identi“es the presence of an incipient
instability for cubic SrTiQ (the con“guration described b® = 0) in all of the LDA, PBE, CX, HSE, and CX0P
functionals. However, we must also consider the fourth-order term. The double-well shapes produce instead
vibrational-mode eigenvalues with a splitting, denoted 2 . The splitting is inversely related to the depth of
the double well: it is very small for LDA, fairly large for CXOP and large for HSE. However, a negatlee
does not necessarily imply a prediction of an actual deformation. Instead the question of stability comes down
to a competition between the speed of the inter-well tunneling and the rate of which we can expect dephasing,
as further discussed in sectiér.

We motivate the stability condition, equatiofd®) of section5.2, as follows: tunneling, as well as thermally
activated "uctuations, will connect the dynamics in both wells. The tunneling might be so slow that dephasing
scattering occurs, preventing the mode from maintaining the coherence that exists in an isolated quantum-
mechanical double-well problem. In that case the inter-well dynamics is instead exclusively caused by thermal
activation and there will (af = 0) be alock-ininto one of the wells. We &rjpret this lock-in as corresponding
to an actual low-temperature transformation®s 0, and such transformation occurs in an LDA description
of SITiG; and BaZrQ. It will also happenin CX, butitis not a result that emerges in our CXOP study of $rTiO
section5.2

The overall idea is perhaps best illustrated by an analogy to “rst-principle-theory-based analysis of
addimer diffusion on metals, a problem that also provides a measured estimatggor 1 ps [L80. In the
adatom/addimer-diffusion problems, for example, explored in refereric&s [L87, the dynamics eventually
rolls over to a tunneling regimelBJ. A scanning-tunneling microscopy study documents that the addimer
dynamics will never freeze out§d. The roll over to quantum-tunneling transport occurs bel@wss= 5K,
corresponding tdgTeross 1 meV. This energy scale sets the time scalefgri= /ksTcross 0.7 ps. The
low-temperature dynamics of Cu(111) addimers cannetseen as thermally activated hopping. Rather, the
dynamics maintains phase coherence and no actual lock in or trapping od@&iid B3.
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