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Design of false data injection attack on distributed
process estimation

Moulik Choraria, Arpan Chattopadhyay, Urbashi Mitra, Erik G. Ström

Abstract—Herein, design of false data injection attack on
a distributed cyber-physical system is considered. A stochastic
process with linear dynamics and Gaussian noise is measured by
multiple agent nodes, each equipped with multiple sensors. The
agent nodes form a multi-hop network among themselves. Each
agent node computes an estimate of the process by using its sensor
observation and messages obtained from neighboring nodes, via
Kalman-consensus filtering. An external attacker, capable of
arbitrarily manipulating the sensor observations of some or all
agent nodes, injects errors into those sensor observations. The
goal of the attacker is to steer the estimates at the agent nodes
as close as possible to a pre-specified value, while respecting
a constraint on the attack detection probability. To this end,
a constrained optimization problem is formulated to find the
optimal parameter values of a certain class of linear attacks. The
parameters of linear attack are learnt on-line via a combination of
stochastic approximation based update of a Lagrange multiplier,
and an optimization technique involving either the Karush-Kuhn-
Tucker (KKT) conditions or online stochastic gradient descent.
The problem turns out to be convex for some special cases.
Desired convergence of the proposed algorithms are proved by ex-
ploiting the convexity and properties of stochastic approximation
algorithms. Finally, numerical results demonstrate the efficacy of
the attack.

Index Terms—Attack design, distributed estimation, CPS secu-
rity, false data injection attack, Kalman-consensus filter, stochas-
tic approximation.

I. INTRODUCTION

In recent times, there have been significant interest in
designing cyber-physical systems (CPS) that combine the
cyber world and the physical world via seamless integration
of sensing, computation, communication, control and learning.
CPS has widespread applications such as networked moni-
toring and control of industrial processes, disaster manage-
ment, smart grids, intelligent transportation systems, etc. These
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applications critically depend on estimation of a physical
process via multiple sensors over a wireless network. However,
increasing use of wireless networks in sharing the sensed data
has rendered the sensors vulnerable to various cyber-attacks.
In this paper, we focus on false data injection (FDI) attacks
which is an integrity or deception attack where the attacker
modifies the information flowing through the network [2], [3],
in contrast to a denial-of-service attack where the attacker
blocks system resources (e.g., wireless jamming attack [4]).
In FDI, the attacker either breaks the cryptography of the data
packets or physically manipulates the sensors (e.g., putting a
heater near a temperature sensor).

In this paper, we design an attack algorithm that seeks to
steer the estimates in all estimators towards a target value
in a distributed estimation setting using a Kalman-consensus
filter (KCF, see [5]), under a constraint on the attack detection
probability. Solving this problem is important in understanding
the attack schemes that can be used against a multi-agent
system where the attacker seeks to induce the same control
action on all agents (e.g., to cause accident in a vehicular
system by pushing all vehicles towards one direction), so that
suitable countermeasures can be developed. The attack scheme
is reminiscent of the popular linear attack scheme [6], but
the novelty lies in online learning and optimization of the
parameters in the attack algorithm via Karush-Kuhn-Tucker
(KKT) conditions, multi-timescale stochastic approximation
[7] and simultaneous perturbation stochastic approximation
(SPSA [8]). Convergence result is proved for the KKT-based
algorithms, and the performance is demonstrated numerically.

A. Related literature

The cyber-physical systems either need to compute the
process estimate in a remote estimator (centralized case), or
often multiple nodes or components of the system need to
estimate the same process over time via sensor observations
and the information shared over a network (distributed case).
The area of FDI attack on CPS has received significant at-
tention in recent times [9]. Research on attack design includes
developing conditions for undetectable FDI attack [10], design
of a linear deception attack scheme to fool the popular χ2

detector (see [6]), optimal attack design for noiseless systems
[11], FDI design to penetrate AC-based bad data detection
system [12], etc. The paper [13] designs an optimal attack to
steer the state of a control system to a desired target under a
constraint on the attack detection probability. Stealth attack
design on a quantized networked control system has been
solved in [14]. On the other hand, attempts on attack detection
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include centralized (and decentralized as well) schemes for
noiseless systems [15], coding of sensor output along with χ2

detector [16], comparing the sensor observations with those
coming from from a few known safe sensors [17], the attack
detection and secure estimation schemes based on innovation
vectors in [18], data driven design and detection of FDI [19],
neural network based detection of FDI [20], quickest detection
of time-varying false data injection attacks in dynamic linear
regression models [21], FDI detection in linear parameter
varying CPS [22], Gaussian mixture model based detection
and secure state estimation [23], and quickest detection of
FDI using Markov decision process formulation [24]. Attempts
on attack-resilient state estimation include: [25] for bounded
noise, [26]–[28] for adaptive filter design using stochastic
approximation, [29] that uses sparsity models to characterize
the switching location attack in a noiseless linear system and
state recovery constraints for various attack modes. FDI attack
and its mitigation in power systems are addressed in [30]–
[32]. Attack-resilient state estimation and control in noiseless
systems are discussed in [33] and [34]. Performance bound
of stealthy attack in a single sensor-remote estimator system
using Kalman filter was characterized in [35].

There have also been several recent attempts for attack
mitigation in distributed CPS, such as [36] for attack detection
and secure estimation, [37] for attack detection in networked
control system using a certain dynamic watermarking strat-
egy, the paper [38] for distributed Krein space based attack
detection in discrete time-varying systems, and [39] for attack
detection in power systems. On the other hand, there have
also been several works that seek to design attacks against
distributed CPS. Authors of [40] have designed an attack
scheme to maximize the network-wide estimation error, which
is different from our objective of pushing the estimates across
nodes towards a target value, while respecting the attack
detection constraint. Also, contrary to [40] which adds a
simple Gaussian noise to the attacked node’s observation, we
focus on the class of linear attacks, and provide theoretical
convergence results of our proposed online learning based
attack schemes. Similarly, unlike our work, the authors of [41]
developed conditions for perfect attack in a distributed control
system, and also provided design algorithms for perfect and
non-perfect attacks.

B. Our Contributions

Our contributions in this paper are the following:
1) Under KCF [5] for distributed estimation, we design

a novel attack scheme that steers the estimates in all
estimators towards a target value, while respecting a
constraint on the attack detection probability under the
popular χ2 detector adapted to the distributed setting.

2) The dynamics of the deviation of the estimates from
the target is derived analytically, which is used later to
formulate the optimization problem. The updates turn
out to be iterative in nature, and this was not available
in prior literature.

3) The FDI design problem is cast as an online learn-
ing and optimization problem, and solved via KKT

conditions (alternatively, SPSA) in the faster timescale
to find optimal attack parameters, and by updating a
Lagrange multiplier via stochastic approximation at a
slower timescale to meet the constraint on the attack
detection probability. SPSA is used for online stochastic
gradient descent based learning of attack parameters (see
[42, Chapter 3]).

4) Theoretical convergence results are proved for KKT-
based algorithms. The key challenges in this proof were
handling (i) multi-timescale updates, (ii) Markovian evo-
lution of attack parameters, (iii) certain offset terms.

5) Interestingly, the attack algorithms, unlike the linear
attack scheme of [6], use a non-zero mean perturbation
to modify the observation made at a node, and this non-
zero mean is an affine function of the process estimate at
a node, which was not proposed before in the literature.
Next, it is also shown that the optimal solution requires
the perturbation to be deterministic, which is counter-
intuitive.

6) These works are also extended to the case where the
attacker has access to the FDI alarm at each node.

C. Organization

The rest of the paper is organized as follows. System model
and the necessary background related to the problem are
provided in Section II. Error dynamics expressions under FDI
are calculated in Section III. Attack design algorithms are
developed in Section IV via KKT conditions, and in Section V
via SPSA. Numerical results are presented in Section VI,
followed by the conclusions in Section VII. All proofs are
provided in the appendices.

II. SYSTEM MODEL

In this paper, bold capital letters, bold small letters and
capital letters with caligraphic font will denote matrices,
vectors and sets respectively. The notation || · ||, (·)′ and E(·)
denote 2-norm, transpose and expectation, respectively.

A. Sensing and estimation model: no attack

We consider a connected, undirected, multi hop wireless
network of N agent nodes denoted by N .

= {1, 2, · · · , N}.
The set of neighboring nodes of node k is denoted by Nk,
and let Nk

.
= |Nk|. There is a discrete-time stochastic process

{x(t)}t≥0 (where x(t) ∈ Rq×1 with process dimension q)
which is a linear process with Gaussian noise evolving as
follows:

x(t+ 1) = Ax(t) + w(t)︸︷︷︸
∼N (0,Q)

(1)

where w(t) is zero-mean i.i.d. Gaussian noise with covariance
matrixQ, andA ∈ Rq×q is the process matrix with its spectral
radius strictly less than 1.

Each agent node is equipped with one or more sensors
which make some observation about the process. The vector
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observation yk(t) ∈ Rnk×1 received at node k at time t is
given by:

yk(t) = Hkx(t) + vk(t)︸ ︷︷ ︸
∼N (0,Rk)

, (2)

where Hk ∈ Rnk×q is an observation matrix, and vk(t) is a
zero-mean Gaussian observation noise with covariance matrix
Rk, which is independent across sensors and i.i.d. across t.
The pair (A,Q

1
2 ) is assumed to be stabilizable, and the pair

(A,Hk) is assumed to be observable for each 1 ≤ k ≤ N .
At time t, each agent node k ∈ N declares an estimate

x̂(k)(t) using Kalman consensus filtering (KCF, see [5]) which
involves the following sequence of steps:

1) Each node k ∈ N computes an intermediate estimate
x̄(k)(t) = Ax̂(k)(t− 1).

2) Each node k ∈ N broadcasts x̄(k)(t) to all j ∈ Nk.
3) Each node k ∈ N computes its final estimate of the

process as:

x̂(k)(t) = x̄(k)(t) +Gk(yk(t)−Hkx̄
(k)(t))

+Ck
∑
j∈Nk

(x̄(j)(t)− x̄(k)(t)) (3)

Here Gk and Ck are the Kalman and consensus gain matrices
used by node k, respectively.

B. The χ2 detector

Let us define the innovation vector at node k by zk(t) :=
yk(t)−HkAx̂

(k)(t−1). Let us assume that, under no attack,
{zk(t)}t≥0 reaches its steady-state distribution N(0,Σk).
Under a possible attack, a standard technique (see [6],
[17]) to detect any anomaly in {zt}t≥0 is the χ2 detec-
tor, which tests whether the innovation vector follows the
desired Gaussian distribution. The detector at each agent
node observes the innovation sequence over a pre-specified
window of J time-slots, and declares an attack at time τ if∑τ
t=τ−J+1 zk(t)′Σ−1k zk(t) ≥ η, where η is a threshold which

can be adjusted to control the false alarm probability. The
covariance matrix Σk can be computed from standard results
on KCF as in [5].

C. False data injection (FDI) attack

At time t, sensors associated to any subset of nodes At ⊂ N
can be under attack. A node k ∈ At receives an observation:

ỹk(t) = yk(t) + ek(t)

= Hkx(t) + ek(t) + vk(t), (4)

where ek(t) is the error injected by the attacker. The attacker
seeks to insert the error sequence {ek(t) : k ∈ At}t≥0 in order
to introduce error in the estimation. If At = A for all t, then
the attack is called a static attack, otherwise the attack is called
a switching location attack. We will consider only static attack
in this paper, though the theory developed in this paper can
be extended to switching location attack. We assume that the
attacker can observe x̂(k)(t) for all 1 ≤ k ≤ N once they are
computed by the agent nodes. We also assume that the attacker
knows the matrices A,Q, {Hk}1≤k≤N , {Rk}1≤k≤N .

D. The optimization problem

The attacker seeks to steer the estimate at each agent node
as close as possible to some pre-defined value x∗, while
keeping the attack detection probability per unit time across
all nodes under some constraint value α. The authors of [6]
proposed a linear injection attack to fool the χ2 detector in
a centralized, remote estimation setting. Motivated by [6], we
also propose a linear attack, where, at time t, the sensor(s)
associated with any node k ∈ A modifies the innovation vector
as z̃k(t) = Tkzk(t) + bk(t), where Tk is a square matrix and
bk(t) ∼ N(µk(θ(k)(t−1)),Sk) is independent Gaussian with
its mean taken as a function of θ(k)(t−1)

.
= x̂(k)(t−1)−x∗.

The bias term µk(θ(k)(t − 1)) is assumed to take a linear
form µk(θ(k)(t − 1)) = Mkθ

(k)(t − 1) + dk for suitable
matrix and vector Mk and dk. This is equivalent to modifying
the observation vector to ỹk(t). If {Tk,Sk,Mk,dk}1≤k≤N is
constant over time t, the attack is called stationary, else non-
stationary.

1) Upper bound on the attack detection probability: The
probability of attack detection per unit time slot under the χ2

detector can be upper bounded as:

Pd = lim sup
T→∞

1

T + 1

T∑
τ=0

P
(
∪Nk=1 {

τ∑
t=τ−J+1

z̃k(t)′Σ−1
k z̃k(t) ≥ η}

)

≤ lim sup
T→∞

1

T + 1

T∑
τ=0

N∑
k=1

P(

τ∑
t=τ−J+1

z̃k(t)′Σ−1
k z̃k(t) ≥ η)

≤ lim sup
T→∞

1

T + 1

T∑
τ=0

N∑
k=1

E(
∑τ
t=τ−J+1 z̃k(t)′Σ−1

k z̃k(t))

η

=
J

η
lim sup
T→∞

1

T + 1

T∑
τ=0

N∑
k=1

E(z̃k(t)′Σ−1
k z̃k(t)) (5)

Here the two inequalities come from the union bound
and the Markov inequality, respectively. Obviously,
lim supT→∞

1
T+1

∑T
t=0

∑N
k=1 E(z̃k(t)′Σ−1k z̃k(t)) ≤ αη

J
will ensure Pd ≤ α.

2) Using the upper bound to formulate the optimization
problem: Motivated by the upper bound (5), the attacker seeks
to solve the following constrained optimization problem:

min
{Tk,Sk,Mk,dk}Nk=1

lim sup
T→∞

1

T + 1

T∑
t=0

N∑
k=1

E||x̂(k)(t)− x∗||2

s.t. lim sup
T→∞

1

T + 1

T∑
t=0

N∑
k=1

E(z̃k(t)′Σ−1
k z̃k(t)) ≤

αη

J

(CP)

This problem can be relaxed by a Lagrange multiplier λ to
obtain the following unconstrained optimization problem:

min
{Tk,Sk,Mk,dk}Nk=1

lim sup
T→∞

1

T + 1

T∑
t=0

N∑
k=1

E(||x̂(k)(t)− x∗||2

+λz̃k(t)
′Σ−1

k z̃k(t))
(UP)

The following standard result tells us how to choose λ.

Proposition 1. Let us consider (CP) and its relaxed ver-
sion (UP). If there exists a λ∗ ≥ 0 and matrices
{T ∗k ,S∗k ,M∗

k ,d
∗
k}Nk=1 such that (i) {T ∗k ,S∗k ,M∗

k ,d
∗
k}Nk=1 is
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the optimal solution of (UP) under λ = λ∗, and (ii) the tuple
{T ∗k ,S∗k ,M∗

k ,d
∗
k}Nk=1 satisfies the constraint in (CP) with

equality, then {T ∗k ,S∗k ,M∗
k ,d

∗
k}Nk=1 is an optimal solution

for (CP) as well.

Proposition 1 says that, if we choose an appropriate value
for λ∗ and solve (UP), we will obtain an optimal solution
to (CP). In this section, we provide an on-line learning algo-
rithm to find ({T ∗k ,S∗k ,M∗

k ,d
∗
k}Nk=1, λ

∗). However, we will
first analytically characterize the dynamics of the deviation
(x̂(k)(t)−x∗) in presence of linear attack, which will be used
in developing the attack design algorithm later.

III. ERROR DYNAMICS UNDER ATTACK

In this section, we will derive iterative updates for the mean
squared deviation of the estimates from the target x∗, which
will be used in formulating the optimal attack design problem
in Section IV.

Let us consider an algorithm that maintains iterates
{Tk(t),Uk(t),Mk(t),dk(t)}1≤k≤N and λ(t) for
{Tk,Uk,Mk,dk}1≤k≤N and λ, where U ′kUk

.
= Sk.

Since it is difficult to maintain Sk(t) positive definite in an
iterative algorithm, we choose to iteratively update Uk(t) and
set Sk(t) = U ′k(t)Uk(t).

Let us define the sigma algebra:

Fτ
.
= σ({x̂(k)(t),yk(t),Tk(t),Uk(t),Mk(t),dk(t),

bk(t), λ(t)}1≤k≤N , λ(t) : 1 ≤ t ≤ τ) (6)

This is the information available to the attacker at time (τ+1)
before a new attack. However, let us assume for the sake
of analysis that the attacker uses constant Tk,Mk,dk,Uk
respectively, for all k ∈ {1, 2, · · · , N}.

Let φ̃(t)
.
= (x̂(t) − x(t)), where x̂(t)

.
=

E(x(t)|{yk(τ)}1≤k≤N,τ≤t) = E(x(t)|Ft) is the
MMSE estimate of x(t) under no attack and can be
computed by the attacker using a standard Kalman
filter. Clearly, φ̃(t) ∼ N (0,R(t)) where R(t) can be
computed by a standard Kalman filter. Hence, given Ft,
x(t) ∼ N (x̂(t),R(t)). Also, conditioned on Ft, the
distribution of φ(t)

.
= (x(t) − x∗) is N (x̂(t) − x∗,R(t)).

Note that, these quantities can be computed by the attacker
via a standard Kalman filter.

Let us also recall that θ(k)(t) .
= x̂(k)(t)− x∗.

Theorem 1 (Error dynamics). Under a constant
{Tk,Mk,dk,Uk}1≤k≤N , the quantity E(||θ(k)(t)||2|Ft−1)
can be expressed as (7) and E(z̃k(t)′Σ−1k z̃k(t)|Ft−1) can be
expresed by (8).

Proof: See Appendix A.
Remark 1. Note that, given {θ(k)(t − 1) : 1 ≤
k ≤ N}, the function

∑N
k=1 E(||θ(k)(t)||2|Ft−1)

and
∑N
k=1 E(z̃k(t)′Σ−1k z̃k(t)|Ft−1) are quadratic in

{Tk,Uk,Mk,dk}1≤k≤N . Hence, the function

ft({Tk,Uk,Mk,dk}1≤k≤N , λ)

.
=

N∑
k=1

E(||θ(k)(t)||2 + λz̃k(t)′Σ−1
k z̃k(t)|Ft−1) (9)

is also quadratic in {Tk,Uk,Mk,dk}1≤k≤N . In case
of non-stationary attack, these results will hold w.r.t.
{Tk(t),Uk(t),Mk(t),dk(t)}1≤k≤N . Hence, Theorem 1 will
allow us to foumulate quadratically constrained quadratic
problems (QCQP) for attack design.

Lemma 1. The function E(z̃k(t)′Σ−1k z̃k(t)|Ft−1) is convex in
{Tk,Uk,Mk,dk}1≤k≤N . For fixed {Tk}1≤k≤N , the functions
E(||θ(k)(t)||2|Ft−1) and ft({Tk,Uk,Mk,dk}1≤k≤N , λ) are
convex in {Uk,Mk,dk}1≤k≤N .

Proof: See Appendix B.
Remark 2. Lemma 1 will allow us in the next section to
formulate the attack design problem as a convex optimization
problem.

1) Stability of {θ(k)(t)}: Let us consider constant
{Tk(t),Uk(t),Mk(t),dk(t)}1≤k≤N over time. Let us define
the matrix M consisting of N2 blocks (each block is a square
matrix) where:
• The (k, k)-th block inM is (A−GkTkHkA−NkCkA).
• For k 6= j and j ∈ Nk, the (k, j)-th block of M is CkA.
• For k 6= j and j /∈ Nk, the (k, j)-th block of M is 0.

Lemma 2. The error dynamics {θ(k)(t)}1≤k≤N is stable if
the spectral radius of M is less than 1.

Proof: See Appendix C.
Remark 3. Clearly, if we choose Tk = I for 1 ≤ k ≤ N , then
the {θ(k)(t) : 1 ≤ k ≤ N}t≥0 process remains stable if the
estimates at various nodes are stable under no attack.

Lemma 3. If the spectral radius of M is less than 1, then
the {z̃k(t)}t≥0 process is also stable for all 1 ≤ k ≤ N .

Proof: We know that z̃(t) = Tk(yk(t) −HkAx̂
(k)(t −

1)) + bk(t). Since the true observation sequence {yk(t)}t≥0
is stable, {bk(t)}t≥0 is i.i.d., and {x̂(k)(t)}t≥0 is stable under
FDI (by Lemma 2), the proof follows.

IV. ATTACK DESIGN VIA DIRECT OPTIMIZATION

In Section III, we derived closed form update equations
for the error dynamics. In this section, we will use those
update equations to formulate the attack design problem as an
optimization problem, and prove its convexity under some spe-
cial cases. Next, we will apply the well-known Karush-Kuhn-
Tucker (KKT) conditions to find {T ∗k ,U∗k ,M∗

k ,d
∗
k}1≤k≤N for

designing the attack at time t, update the Lagrange multiplier
λ iteratively at a slower timescale using stochastic approxi-
mation to meet the constraint with equality, and then prove
convergence of the proposed algorithms to the set of optimal
solutions under convexity.

A. KKT based solution: the LAADE-KKT algorithm
Let us consider the modified constrained problem:

min
{T ∗k ,U

∗
k ,M

∗
k ,d
∗
k}1≤k≤N

N∑
k=1

E(||θ(k)(t)||2|Ft−1)

s.t.
N∑
k=1

E(z̃k(t)′Σ−1k z̃k(t)|Ft−1) ≤ αη

J
(MCP1)
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E(||θ(k)(t)||2|Ft−1) = ||(A−GkTkHkA−NkCkA)θ(k)(t− 1) +CkA
∑
j∈Nk

θ(j)(t− 1)− (I −A)x∗ +Gk(Mkθ
(k)(t− 1) + dk)||2

+Tr(GkTkHkQH
′
kT
′
kG
′
k +GkSkG

′
k +GkTkRkT

′
kG
′
k)

+2

(
(A−GkTkHkA−NkCkA)θ(k)(t− 1) +CkA

∑
j∈Nk

θ(j)(t− 1)− (I −A)x∗ +Gk(Mkθ
(k)(t− 1) + dk))

)′
GkTkHkAE(φ(t− 1)|Ft−1)︸ ︷︷ ︸

=x̂(t−1)−x∗

+ E(||GkTkHkAφ(t− 1)||2|Ft−1)︸ ︷︷ ︸
=Tr
(

GkTkHkA

(
R(t−1)+(x̂(t−1)−x∗)(x̂(t−1)−x∗)′

)
A′H′

k
T ′
k
G′
k

) (7)

E(z̃k(t)′Σ−1
k z̃k(t)|Ft−1) = Tr

(
Σ
− 1

2
k

(
TkHkQH

′
kT
′
k + TkRkT

′
k + Sk + TkHkAR(t− 1)A′H′kT

′
k

+[TkHkAx̂(t− 1)− TkHkAx̂
(k)(t− 1) +Mkθ

(k)(t− 1) + dk]

[TkHkAx̂(t− 1)− TkHkAx̂
(k)(t− 1) +Mkθ

(k)(t− 1) + dk]′
)

Σ
− 1

2
k

)
(8)

Clearly, applying KKT conditions on the relaxed version of
this problem, using a Lagrange multiplier λ, will involve
setting the gradient of ft({Tk,Uk,Mk,dk}1≤k≤N , λ)
w.r.t. the primal variables {Tk,Uk,Mk,dk}1≤k≤N
equal to 0. However, it turns out that, the function
ft({Tk,Uk,Mk,dk}1≤k≤N , λ) is convex (by Lemma 1)
but not strictly convex w.r.t. {Mk,dk}1≤k≤N , and that the
derivative of this function w.r.t. {Mk,dk}1≤k≤N is a function
of {Mkθ

(k)(t − 1) + dk}1≤k≤N , which can lead to many
possible solutions. Hence, we introduce a regularization term
involving the Frobenius norm of {Mk}1≤k≤N :

min
{T ∗
k
,U∗
k
,M∗

k
,d∗
k
}1≤k≤N

N∑
k=1

E(||θ(k)(t)||2|Ft−1) + ξ
N∑
k=1

||Mk||2F

s.t.
N∑
k=1

E(z̃k(t)′Σ−1
k z̃k(t)|Ft−1) ≤

αη

J

(MCP)

Here ξ > 0 is a pre-determined constant. Applying KKT
conditions on the relaxed version of (MCP), using a La-
grange multiplier λ, will involve setting the gradient of
ft({Tk,Uk,Mk,dk}1≤k≤N , λ) + ξ

∑N
k=1 ||Mk||2F w.r.t. the

primal variables {Tk,Uk,Mk,dk}1≤k≤N equal to 0. This
yields a set of linear equations (10), (11), (12), (13) of these
primal variables.

Lemma 4. The optimal solution of (MCP) yields U∗k = 0
and hence S∗k = 0 for all 1 ≤ k ≤ N .

Proof: (11) directly shows that U∗k = 0, since G′kGk +
λΣ−1k is a positive definite matrix.
Remark 4. Lemma 4 tells that bk(t) can be chosen to be
deterministic under the optimal attack.

By solving (10), (12) and (13), we can find
{T ∗k (λ),M∗

k (λ),d∗k(λ)}1≤k≤N as a function of λ. Putting
these values in the constraint of (MCP) and equating both
sides yields λ; then {T ∗k (λ),M∗

k (λ),d∗k(λ)}1≤k≤N can be
used for the attack at time t. It is important to note that,
{T ∗k (λ),M∗

k (λ),d∗k(λ)}1≤k≤N depend on the estimates, and
thus on the history of observations as well.

Note that, (MCP) is a quadratically constrained quadratic
problem (QCQP), which is not necessarily convex. Hence,

KKT conditions may not yield the globally optimal solution.
However, for the special case where {Tk}1≤k≤N is fixed,
(MCP) becomes a convex optimization problem by Lemma 1,
and hence the above KKT-based procedure yields globally
optimally solution. This algorithm is called linear attack
algorithm for distributed estimation based on KKT (LAADE-
KKT).

B. Updating λ(t) iteratively: OLAADE-KKT

Note that, solving (CP) will require us to solve a constrained
average-cost Markov decision process (MDP; see [43]) to
find an optimal policy, since the decision obtained by solving
(MCP) at any time will affect the future estimates made at the
nodes, and thus the future cost incurred by the attacker as well.
Obviously, solving (MCP) will always return a myopic policy.
However, due to the complicated structure of the problem,
especially due to the complex process of evolution of the single
stage objective function and constraint function in (CP) over
time, we resorted to solve (MCP) as an alternative to solving
MDP. However, (MCP) is a one-shot optimization problem
where the objective and constraint both are some conditional
expectations given the history Ft−1, while (CP) is a sequential
optimization problem where the objective and constraint are
averaged over independent sample paths.

1) OLAADE-KKT-1: Here we will provide an online ver-
sion of LAADE-KKT, i.e., OLAADE-KKT-1, which will seek
to meet the constraint of (CP). This algorithm maintains a
running iterate λ(t− 1), and computes Tk(t− 1) = T ∗k (λ(t−
1)),Mk(t− 1) = M∗

k (λ(t− 1)),dk(t− 1) = d∗k(λ(t− 1)) to
solve (UP) at time t by using the set of linear equations (10),
(11), (12), (13). Then it makes the following update:

λ(t) = [λ(t− 1) + b(t)(
N∑
k=1

˜̃zk(t)′Σ−1k
˜̃zk(t)− αη

J
)]A0
0 (14)

where ˜̃zk(t) is the innovation at node k at time t, which is
obtained by applying {Tk(t − 1) = T ∗k (λ(t − 1)),Mk(t −
1) = M∗

k (λ(t − 1)),dk(t − 1) = d∗k(λ(t − 1))}1≤k≤N
on an independently generated/simulated state-observation
sequence { ˜̃x(τ), ˜̃y(τ)}0≤τ≤t. Step size sequence {b(t)}t≥0 is
a sequence of non-negative numbers such that

∑∞
t=0 b(t) =
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Differentiation w.r.t. Tk:

G′kGkT
∗
k

[
HkAθ

(k)(t− 1)

(
θ(k)(t− 1)

)′
A′H′k +HkQH

′
k +Rk +HkA

(
R(t− 1) + (x̂(t− 1)− x∗)(x̂(t− 1)− x∗)′

)
A′H′k

−
(
HkAθ

(k)(t− 1)(x̂(t− 1)− x∗)′A′H′k +HkA(x̂(t− 1)− x∗)(θ(k)(t− 1))′A′H′k

)]
−G′k

[
(A−NkCkA)θ(k)(t− 1) +CkA

∑
j∈Nk

θ(j)(t− 1)− (I −A)x∗ +Gk(M∗kθ
(k)(t− 1) + d∗k)

]
(θ(k)(t− 1))′A′H′k

+λΣ−1
k T ∗k

[
HkQH

′
k +Rk +HkAR(t− 1)H′kA

′ +HkA

(
x̂(t− 1)− x̂(k)(t− 1)

)(
x̂(t− 1)− x̂(k)(t− 1)

)′
H′kA

′
]

+λΣ−1
k

(
M∗kθ

(k)(t− 1) + d∗k

)(
x̂(t− 1)− x̂(k)(t− 1)

)
A′H′k = 0 (10)

Differentiation w.r.t. Uk: (
G′kGk + λΣ−1

k

)
Uk = 0 (11)

Differentiation w.r.t. Mk:

G′kGkM
∗
kθ

(k)(t− 1)(θ(k)(t− 1))′

+2G′k

(
(A−GkT ∗kHkA−NkCkA)θ(k)(t− 1) +CkA

∑
j∈Nk

θ(j)(t− 1)− (I −A)x∗ +Gkd
∗
k

)(
θ(k)(t− 1)

)′
+G′kGkT

∗
kHkA

(
x̂(t− 1)− x∗

)(
θ(k)(t− 1)

)′
+ 2λΣ−1

k T ∗kHkA

(
x̂(t− 1)− x̂(k)(t− 1)

)(
θ(k)(t− 1)

)′
+2λΣ−1

k M∗kθ
(k)(t− 1)

(
θ(k)(t− 1)

)′
+ 2ξMk = 0 (12)

Differentiation w.r.t. dk:

G′k

(
(A−GkT ∗kHkA−NkCkA)θ(k)(t− 1) +CkA

∑
j∈Nk

θ(j)(t− 1)− (I −A)x∗ +Gk(M∗kθ
(k)(t− 1) + d∗k)

)

+G′kGkT
∗
kHkA

(
x̂(t− 1)− x∗

)
+ λΣ−1

k

(
T ∗kHkAx̂(t− 1)− T ∗kHkAx̂

(k)(t− 1) +M∗kθ
(k)(t− 1) + d∗k

)
= 0 (13)

∞,
∑∞
t=0 b

2(t) < ∞. The iterations are projected onto a
compact interval [0, A0] to ensure boundedness. The number
A0 is chosen to be sufficiently large so that, if, for any
λ∗ ≥ 0, the constraint in (MCP) is met with equality under
{T ∗k (λ∗),M∗

k (λ∗),d∗k(λ∗)}1≤k≤N , then λ∗ ∈ [0, A0). This
iteration is motivated by the theory of stochastic approxima-
tion [7], where the goal is to meet the constraint in (CP) with
equality. This algorithm is referred to as OLAADE-KKT-1.

2) OLAADE-KKT-2: However, the constraint in (CP) actu-
ally involves an upper bound to the attack detection probability
averaged over time. If the attacker has access to the alarms
raised by the detectors deployed in various nodes, then that
additional information can be used to update λ(t). Let the
indicator that at least one alarm is raised at time t be denoted
by I ′t, which is obtained by applying {Tk(t− 1) = T ∗k (λ(t−
1)),Mk(t − 1) = M∗

k (λ(t − 1)),dk(t − 1) = d∗k(λ(t −
1))}1≤k≤N on an independently generated/simulated state-
observation sequence { ˜̃x(τ), ˜̃y(τ)}0≤τ≤t. Then, λ(t) can be
updated as:

λ(t) = [λ(t− 1) + b(t)(I ′t − α)]A0
0 (15)

Again here A0 is chosen so large that, for any λ∗ ≥ 0 such
that the detection probability Pd(λ∗) = α, we have λ∗ < A0.

This modified algorithm is called OLAADE-KKT-2. It is
interesting to note that OLAADE-KKT-2 is agnostic to the
value of η used by the detectors.

3) Complexity reduction: Note that, in OLAADE-KKT-
1, ˜̃zk(t) is the innovation at node k at time t, when

{T ∗k (λ(t−1)),M∗
k (λ(t−1)),d∗k(λ(t−1))}1≤k≤N is applied

on an independently genereted/simulated state-observation se-
quence { ˜̃x(τ), ˜̃y(τ)}0≤τ≤t. Using an independently gener-
ated/simulated state-observation sequence up to time t is
necessary for the convergence proof of OLAADE-KKT-1,
because a particular noise sequence in the convergence proof
need to be Martingale difference noise sequence. Also, at each
time t, we need to run this operation over the simulated history
over time {0, 1, · · · , t} in order to ensure that an offset term
in the proof remains o(1) instead of O(1). Hence, computing
{˜̃zk(t)}1≤k≤N will require O(t) computations at time t, which
is not practically feasible. However, we can avoid this O(t)
computation by replacing ˜̃zk(t) in (14) simply by z̃k(t) which
is the innovation at node k at time t under the scheme that
applies {T ∗k (λ(τ − 1)),M∗

k (λ(τ − 1)),d∗k(λ(τ − 1))}1≤k≤N
on y(τ) for all τ . This low complexity version of OLAADE-
KKT-1 is denoted by OLAADE-KKT-1-LC.

Similarly, the O(t) computation at time t for OLAADE-
KKT-2 can be avoided by replacing I ′t in (15) by It which is
obtained by applying {T ∗k (λ(τ−1)),M∗

k (λ(τ−1)),d∗k(λ(τ−
1))}1≤k≤N on y(τ) for all τ ; this low complexity version is
henceforth called OLAADE-KKT-2-LC.

While the low-complexity versions are practically feasible,
their convergence proof is technically very challenging. Hence,
we will only prove convergence of OLAADE-KKT-1 and
OLAADE-KKT-2 later in this paper.
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C. Convergence analysis of OLAADE-KKT

Here, we discuss convergence properties of OLAADE-KKT-
1 and OLAADE-KKT-2, where {Tk}1≤k≤N are fixed and
known, so that (MCP) becomes a convex optimization problem
by Lemma 1.

Assumption 1. The matrices {Tk}1≤k≤N are such that the M
matrix of Section III has a spectral radius less than 1.

1) Convergence of OLAADE-KKT-1: Note that, if
OLAADE-KKT-1 uses a fixed λ ≥ 0 all the time, then at
time t, the attacker takes up the history available up to time
(t − 1), and computes {M∗

k (λ, {x̂(j)(t − 1)}1≤j≤N , x̂(t −
1)),d∗k(λ, {x̂(j)(t − 1)}1≤j≤N , x̂(t − 1))}1≤k≤N (which are
sample-path-dependent, i.e., dependent on {y(τ)}0≤τ≤t−1)
which are further used to compute the estimates at time t.

Lemma 5. For a fixed λ ≥ 0 and under OLAADE-KKT-1
and Assumption 1, the distribution of the sequence of iterates
{Mk(t),dk(t)}1≤k≤N,t≥0 reach a steady state distribution
g∗λ(·).

Proof: By Assumption 1 and Lemma 2, {x̂k(t)}t≥0 and
{x̂(t)}t≥0 are stable. Hence, from (12) and (13), the lemma
is proved.

Let us define the distribution of {Mk(t),dk(t)}1≤k≤N,t≥0
under OLAADE-KKT-1 with a fixed λ as gt,λ(·), and the
distribution of {Mk(t),dk(t)}1≤k≤N,t≥0 under OLAADE-
KKT-1 with λ(t) update as gt(·). Also, let µλ,{Mk,dk}1≤k≤N
denote a generic decision rule or policy under OLAADE-KKT-
1 with a fixed parameter set λ, {Mk,dk}1≤k≤N .

Let us define:

Λ
.
= {λ ∈ [0, A0) : lim

t→∞
E{Mk,dk}1≤k≤N∼g∗λ(·)

Eµλ,{Mk,dk}1≤k≤N
[
N∑
k=1

˜̃zk(t)′Σ−1k
˜̃zk(t)] =

αη

J
}

Theorem 2 (First main theorem on convergence). Under As-
sumption 1 and OLAADE-KKT-1, the iterates λ(t)→ Λ almost
surely, and the limiting distributions satisfy limt→∞ ||gt(·) −
gt,λ(t)(·)||TV = 0 almost surely.

Proof: See Appendix D. The proof is based on the theory
of stochastic approximation in [7].

However, it is important to note that the convergence can
be sample-path dependent.

2) Convergence of OLAADE-KKT-2: Let us define:

Λ′
.
= {λ ∈ [0, A0) : lim

t→∞
E{Mk,dk}1≤k≤N∼g∗λ(·)

Eµλ,{Mk,dk}1≤k≤N

(I′t) = α}

Theorem 3 (Second main theorem on convergence). Under
Assumption 1 and OLAADE-KKT-2, the iterates λ(t) →
Λ′ almost surely, and the limiting distributions satisfy
limt→∞ ||gt(·)− gt,λ(t)(·)||TV = 0 almost surely.

Proof: The proof is very similar to that of Theorem 3,
except that we use I ′t instead of

∑N
k=1

˜̃zk(t)′Σ−1k
˜̃zk(t) in this

proof. Hence, we omit details of the proof.

V. ATTACK DESIGN VIA SPSA
In this section, we propose an online linear attack algo-

rithm for distributed estimation using SPSA (OLAADE-SPSA)
that allows us to avoid solving the KKT equations at each
time t. The OLAADE-SPSA algorithm involves two-timescale
stochastic approximation [7], which is basically a stochastic
gradient descent algorithm with a noisy gradient estimate;
(UP) is solved via SPSA in the faster timescale, and λ is
updated in the slower timescale.

A. Description of OLAADE-SPSA

The algorithm (described in the next page) requires
three positive step size sequences {a(t)}t≥0, {b(t)}t≥0 and
{c(t)}t≥0 satisfying the following criteria: (i)

∑∞
t=0 a(t) =∑∞

t=0 b(t) =∞, (ii)
∑∞
t=0 a

2(t) <∞,
∑∞
t=0 b

2(t) <∞, (iii)
limt→∞

b(t)
a(t) = 0, (iv) limt→∞ c(t) = 0, and (v)

∑∞
t=0

a2(t)
c2(t) <

∞. The first three conditions are standard requirements for
two-timescale stochastic approximation. The fourth condition
ensures that the gradient estimate is asymptotically unbiased,
and the fifth condition is required for the convergence of
SPSA.

B. Discussion of OLAADE-SPSA

1) If {Tk}1≤k≤N is kept fixed, then the first update in
step 4 of OLAADE-SPSA is not required.

2) The OLAADE-SPSA algorithm combines the online
stochastic gradient descent (OSGD) algorithm [42,
Chapter 3] with two-timescale stochastic approximation
of [7]. The λ(t) iterate is updated in the slower timescale
to meet either the constraint in (CP) or the exact
attack detection probability constraint with equality. In
the faster timescale, OSGD is used for solving (UP).
Since limt→∞

b(t)
a(t) = 0, the faster timescale iterates

{Tk(t),Mk(t),dk(t)}1≤k≤N view the slower timescale
iterate λ(t) as quasi-static, while the λ(t) iteration finds
the faster timescale iterates as almost equilibriated; as if,
the faster timescale iterates are varied in an inner loop
and the slower timescale iterate is varied in an outer
loop.

3) Steps 1−4 of OLAADE-SPSA are basically using SGD,
but via simultaneous perturbation stochastic approxima-
tion (SPSA; see [8]). SPSA allows us to avoid coordinate
wise perturbation for gradient estimation of the function
under consideration, by providing a zero-mean random
perturbation to all coordinates (entries) of a vector
or matrix variable simultaneously and independently.
Steps 1 − 4 of OLAADE-SPSA is equivalent to one
iteration of SGD by using SPSA, where the time-varying
function to optimize is

∑N
k=1 E(||θ(k)(t)||2 + λ(t −

1)z̃k(t)′Σ−1k z̃k(t) + ξ||Mk||2F |Ft−1).
4) All iterates are projected onto various large but compact

intervals to ensure boundedness.

VI. NUMERICAL RESULTS

We consider a distributed system with N = 6 agent
nodes and consider two different network topologies: the 3-
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The OLAADE-SPSA algorithm
Input: {a(t)}t≥0, {b(t)}t≥0, {c(t)}t≥0, α, η, J , A0.
Initialization: Tk(0), Mk(0), dk(0) for all k ∈ N , λ(0), {x̂(k)(0)}1≤k≤N , x̂(0)
For t = 1, 2, 3, · · · :

1) For each 1 ≤ k ≤ N , the attacker generates random matrices ∆(k)(t), Π(k)(t) and β(k)(t) having same dimensions as
Tk(t − 1), Mk(t − 1) and dk(t − 1) respectively, whose entries are uniformly and independently chosen from the set
{−1, 1}.

2) The attacker computes T+
k

.
= Tk(t−1) + c(t)∆(k)(t), T−k

.
= Tk(t−1)− c(t)∆(k)(t), M+

k
.
= Mk(t−1) + c(t)Π(k)(t),

M−
k

.
= Mk(t− 1)− c(t)Π(k)(t), d+k

.
= dk(t− 1) + c(t)β(k)(t), d−k

.
= dk(t− 1)− c(t)β(k)(t), for all 1 ≤ k ≤ N .

3) The attacker computes:

κ+t
.
=

N∑
j=1

E
(

(||θ(j)(t)||2 + λ(t− 1)z̃j(t)
′Σ−1j z̃j(t) + ξ||M+

k ||
2
F |Ft−1, {T+

k ,M
+
k ,d

+
k }1≤k≤N

)
using (7) and (8) under {T+

k ,M
+
k ,d

+
k }1≤k≤N . The attacker computes κ−t in a similar way using {T−k ,M

−
k ,d

−
k }1≤k≤N .

4) The attacker updates each element (i, j) of Tk(t− 1), Mk(t− 1) and dk(t− 1) for all 1 ≤ k ≤ N as follows:

Tk(t)(i, j) =

[
Tk(t− 1)(i, j)− a(t)×

(κ+t − κ
−
t )

2c(t)∆
(k)
(i,j)

(t)

]A0

−A0

Mk(t)(i, j) =

[
Mk(t− 1)(i, j)− a(t)×

(κ+t − κ
−
t )

2c(t)Π
(k)
(i,j)

(t)

]A0

−A0

dk(t)(i, 1) =

[
dk(t− 1)(i, 1)− a(t)×

(κ+t − κ
−
t )

2c(t)β
(k)
(i,1)

(t)

]A0

−A0

(16)

5) The sensors make observations {yk(t)}1≤k≤N , which are accessed by the attacker.
6) The attacker calculates zk(t) = yk(t)−HkAx̂

(k)(t− 1) for all k ∈ {1, 2, · · · , N}.
7) The attacker calculates z̃k(t) = Tk(t)zk(t) + bk(t) for all k ∈ {1, 2, · · · , N}, where bk(t) = Mk(t)θ(k)(t− 1) +dk(t).

The observations are accordingly modified as ỹk(t) = z̃k(t) +HkAx̂
(k)(t− 1) and sent to the agent nodes.

8) The attacker updates the Lagrange multiplier as follows:
If η is known to attacker: OLAADE-SPSA-1

λ(t) = [λ(t− 1) + b(t)(

N∑
k=1

z̃k(t)′Σ−1k z̃k(t)− αη

J
)]A0
0 (17)

If η is unknown to attacker but alarms are observable: OLAADE-SPSA-2

λ(t) = [λ(t− 1) + b(t)(It − α)]A0
0 (18)

9) The agent nodes compute the estimates locally, using (3) and the modified {ỹk(t)}1≤k≤N . The agent nodes broadcast
their estimates to their neighboring nodes.

end

regular hexagon and the line topology. The underlying pro-
cess is q-dimensional, with q = 2, while the observations
recorded at each node yk(t) ∈ R3×1. The system parame-
ters A,Q, {Rk}1≤k≤6, {Hk}1≤k≤6 are chosen randomly and
independently for the two different topologies. The KCF
parameters {Gk,Ck}1≤k≤6 are computed using a technique
from [5], and {Σk}1≤k≤6 are computed by simulating the
KCF under no attack.

For FDI attack, we set x∗ = [2, 2]′, η = 300, χ2 window
size J = 10 and λ(0) = 4 and regularization constant ξ = 0.5.
To maintain the convexity of the problem, we fix Tk(t) = I ,
∀ 1 ≤ k ≤ 6 and ∀ t ≥ 1. We then allow the algorithm to run
until convergence of λ(t). The χ2 detector raises alarms for
FDI.

For the attack variants OLAADE-KKT-1 and OLAADE-
SPSA-1, the adversary does not have access to the alarms. In
this case, we notice that the Markov inequality based upper
bound to the detection probability Pd as in (5) is too loose
in practice, which in turn leads to a higher than necessary
penalty in λ update equation (14). To alleviate this problem,
we introduce a hyper-parameter c to be multiplied to the term
αη
J , which is tuned to get closer to the detection probability

upper bound. For the KKT-2 and SPSA-2 variants, since the
attacker has access to alarm triggers at the nodes, such a hyper-
parameter is not required.

Motivated by the ADAM algorithm [44], we implement
an adaptive step size optimization variant for λ(t) for faster
convergence. However, to be able to reasonably observe the
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effect of changing λ on the detection probability, we update λ
at a lower timescale of 0.1×, i.e., for each iterative update of
λ, we let the underlying process be simulated for 10 iterations
before the next update.

A. OLAADE-KKT

Let us recall that, for OLAADE-KKT, we seek to obtain the
value of λ for optimizing the MSE from target vs detection
probability trade-off. Once the λ(t) iterate converges to λ∗, we
simulate multiple sample paths under this fixed λ∗, and calcu-
late the deviation from target, i.e., 1

T

∑T
t=1

∑N
k=1 ||x̂(k)(t)−

x∗||2 for each sample path.
In Fig 1, we demonstrate the effectiveness of the attack

along one sample path, by plotting the deviation of the state
estimates from the specified target across the nodes, under
attack and no attack cases. The broader simulation results
for OLAAD-KKT-1-LC are summarized in Fig 2 and Fig 3.
The mean performance of 10 sample runs is reported, and
standard deviation values are highlighted as error bars. Similar
results for OLAAD-KKT-2-LC are reported in tabular form in
Appendix E. For OLAAD-KKT-1-LC, we report the results
for that particular choice of hyper-parameter which allowed
us to achieve the detection probability closest to the target,
based on a grid-search.

Fig. 1: OLAADE-KKT-1-LC: Average MSE from x∗, 3-
regular topology, α = 0.3

Fig. 2: N = 6, 3-regular topology, OLAADE-KKT-1-LC

As mentioned previously, it is important to note that the
underlying process parameters were different for the two
topologies. This can be seen from the fact that the detection
probability under the no-attack case varies slightly for the two
settings. In fact, the nature of these underlying parameters

Fig. 3: N = 6, line topology, OLAADE-KKT-1-LC

often determines how well the attack can drive the estimates
to the target value, while keeping the detection rate under α.

B. OLAADE-SPSA

We repeat the same set of experiments, with the same set
of attack parameters for the OLAADE-SPSA attack scheme.
Note that in this case, we want to estimate the values of M , d
for mounting an effective attack. As before, we report the mean
performance of the attack, averaged over ten sample runs. It
is again observed that OLAADE-SPSA is able to push all
estimates closer to the target, while respecting the detection
constraint.

Fig. 4: N = 6, 3-regular topology, OLAADE-SPSA-1

Fig. 5: N = 6, line topology, OLAADE-SPSA-1
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C. Scalability of the algorithms for large N

It is to be noted that the faster timescale optimization
in OLAADE-KKT can be decomposed into multiple sub-
problems, one for each agent node. The KKT conditions
(10)-(13) can be solved for each node k ∈ N separately.
Hence, the computational complexity per slot encountered by
the attacker in the faster timescale is O(N), and the λ(t)
update in the slower timescale requires a summation of N
terms. Similar complexity analysis applies to OLAADE-SPSA.
However, large N may result in very slow convergence for
these algorithms. In the numerical work, we consider N = 6
only to demonstrate the efficacy of the proposed algorithms
and not the convergence rates.

D. Comparison with a naive Alternative: attack with con-
strained energy

While the literature lacks a competing algorithm with which
we can compare the performance of our algorithms, we
propose a reasonable alternative. In order to highlight the
importance of the chi-squared penalization term in the cost
objective, we consider an alternative attack strategy that con-
strains the energy budget of the injected error. More explicitly,
we consider a myopic attack which, at each time t, solves the
following problem:

min
{ek(t)}1≤k≤N

N∑
k=1

E(||x̂(k)(t)− x∗||2 + ζ||ek(t)||2|Ft−1) (19)

The possible advantages of such a formulation include a
low-complexity closed form solution and no memory costs
for parameters. The multiplier ζ can be tuned to control the
energy budget as well as the attack detection probability.
However, such a formulation fails to produce effective attacks
for feasible values of detection probability by the detector, as
demonstrated in Figure 6. This justifies the chi-squared penalty
term.

Fig. 6: Comparison of OLAADE-KKT-1 with Energy Con-
straint formulation for varying ζ.

E. Discussion

We highlight some key takeaways from the simulation re-
sults. Firstly, the OLAADE-KKT attack variants are always at
least as good or better than their OLAADE-SPSA counterparts,
depending on the underlying process parameters. This matches
our intuition, since the KKT variants are indeed provably
optimal for the convex formulation. However, it is important
to note that the KKT algorithms require us to solve a family
of matrix equations at each iteration, which requires matrix
inversion; this makes the computational complexity of the
KKT variants per slot higher than that of the SPSA variants.

The second observation is that, the performance of the
respective variants of KKT and SPSA when the adversary does
not have direct access to alarms does not alter much even if
access is made available. In practice, however, this will seldom
be the case, since the true values of η, J and α are not directly
available to the attacker apriori, and will therefore need to be
assumed. Therefore, any conservative attacker without access
to alarms would tend to lower the estimate for the detection
threshold in order to avoid detection, and consequently, the
performance of the attack without access to alarms will be
worse.

VII. CONCLUSIONS

In this paper, we designed an optimal linear attack for
distributed cyber-physical systems. The problem was posed
an a constrained optimization problem. The parameters of
the attack scheme were learnt and optimized on-line, using
tools from KKT, two-timescale stochastic approximation and
SPSA. Numerical results demonstrated the efficacy of each
of the proposed attack scheme. It is important to note that,
OLAADE-KKT based attacks require an active adversary
in the sense that, while the attack parameters converge in
distribution, they have to be updated in each iteration to remain
effective. On the other hand, while OLAADE-SPSA does not
have that particular bottleneck, it can often require more effort
to tune its parameters for convergence.

It is to be noted that we have only proved convergence of
the proposed algorithms, and these results do not depend on
the network topology so long as we have a connected graph.
Of course, convergence rates will depend on the topology
as well as the Kalman and consensus gain matrices, and
characterizing the impact of the topology and gain matrices
on the convergence rate is an interesting research problem
for future. Also, in future, we seek to extend this work for
unknown process and observation dynamics.

APPENDIX A
PROOF OF THEOREM 1

Under this FDI attack, we have:

x̂(k)(t)

= Ax̂(k)(t− 1) +Gkz̃k(t) +Ck
∑
j∈Nk

(x̄(j)(t)− x̄(k)(t))

= Ax̂(k)(t− 1) +Gk(Tk(yk(t)−HkAx̂
(k)(t− 1)) + bk(t))

+ CkA
∑
j∈Nk

(x̂(j)(t− 1)− x̂(k)(t− 1)) (20)
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Now,

θ(k)(t)

= (A−GkTkHkA)x̂(k)(t− 1)

+GkTk yk(t)︸ ︷︷ ︸
.
=HkAx(t−1)+Hkw(t−1)+vk(t)

+Gkbk(t)

+CkA
∑
j∈Nk

(x̂(j)(t− 1)− x̂(k)(t− 1))− x∗

= (A−GkTkHkA)θ(k)(t− 1) +GkTkHkAφ(t− 1)

+CkA
∑
j∈Nk

(θ(j)(t− 1)− θ(k)(t− 1))− (I −A)x∗

+GkTkHkw(t− 1) +Gkbk(t) +GkTkvk(t)

= (A−GkTkHkA−NkCkA)θ(k)(t− 1)

+CkA
∑
j∈Nk

θ(j)(t− 1)− (I −A)x∗ +GkTkHkAφ(t− 1)

+GkTkHkw(t− 1) +Gkbk(t) +GkTkvk(t) (21)

Clearly, E(||θ(k)(t)||2|Ft−1) can be expressed as (7); in this
expression, we have used the fact that, for a column vector a,
||a||22 = Tr(aa′) where a′ is the transpose of a.

On the other hand, given Ft−1, x(t − 1) ∼ N (x̂(t −
1),R(t − 1)) where (x̂(t − 1),R(t − 1)) can be computed
by a standard Kalman filter. Now,

z̃k(t) = Tkzk(t) + bk(t)

= Tkyk(t)− TkHkAx̂
(k)(t− 1) + bk(t)

= Tk(Hkx(t) + vk(t))− TkHkAx̂
(k)(t− 1) + bk(t)

= TkHkAx(t− 1) + TkHkw(t− 1) + Tkvk(t)

−TkHkAx̂
(k)(t− 1) + bk(t) (22)

which, given Ft−1, is distributed as N (TkHkAx̂(t− 1)−
TkHkAx̂

(k)(t− 1) +Mkθ
(k)(t− 1) + dk,TkHkQH

′
kT
′
k +

TkRkT
′
k + TkHkAR(t − 1)A′H ′kT

′
k + Sk). Hence,

E(z̃k(t)′Σ−1k z̃k(t)|Ft−1) is given by (8).

APPENDIX B
PROOF OF LEMMA 1

The proof uses the fact that the function ||
∑n
i=1 civi + c||22

for any arbitrary real known coefficients {ci}1≤i≤n and c
and scalar variables {vi}1≤i≤n is convex in {vi}1≤i≤n, since
Hessian of this function will be [c1, c2, · · · , cn]′[c1, c2, · · · , cn]
which is a positive semi-definite matrix. Hence, the first term
in the R.H.S. of (7) is convex in the arguments. Just as an-
other example, let us consider another term Tr(Σ−

1
2

k SkΣ
− 1

2

k )

from (8); this can be rewritten as Tr(Σ−
1
2

k UkU
′
kΣ
− 1

2

k ) =

||Σ−
1
2

k Uk||2F which is convex in Uk since Σ
− 1

2

k Uk is a linear
function of Uk. Convexity of other terms can be proven in a
similar way.

APPENDIX C
PROOF OF LEMMA 2

Let us consider the evolution of θ(k)(t) in (21), and let
θ(t) be the vertical concatenation of the column vectors
{θ(k)(t)}1≤k≤N . Hence, the evolution of θ(t) is given by:
θ(t) = Mθ(t− 1) + ζt where ζt is a stable Gaussian proces
since φ(t) is a stable process. Hence, {θ(t)}t≥0 is a stable
process if the spectral radius of M is less than 1.

APPENDIX D
PROOF OF THEOREM 2

Note that, the {Mk(t),dk(t)}1≤k≤N update and hence the
evolution of gt(·) runs in a faster timescale, while the λ(t)
update runs in a slower timescale. Also gt,λ(·) and g∗λ(·)
are continuously differentiable in λ over a compact interval
[0, A0], and hence are Lipschitz continuous. Clearly, by an
argument similar to [7, Chapter 6, Lemma 1], we claim that
limt→∞ ||gt(·)− gt,λ(t)(·)||TV = 0 almost surely. This proves
convergence in faster timescale.

Now we will prove convergence in the slower
timescale. Note that, using the fact that λ(t) ∈ [0, A0]
for all t ≥ 0, and using Assumption 1 and Lemma 3,
we can easily say that {˜̃zk(t)}1≤k≤N is stable
under µλ(t−1),{Mk(t−1),dk(t−1)}1≤k≤N . Also, note that
{x(t), x̂(k)(t),yk(t), ˜̃zk(t),Mk(t),dk(t)}1≤k≤N}t≥0
is a stable Markov chain under any
µλ(t−1),{Mk(t−1),dk(t−1)}1≤k≤N with λ(t − 1) ∈ [0, A0].
Hence, the λ(t) iteration can be written as:

λ(t+ 1) = [λ(t− 1) + b(t)(

N∑
k=1

Eµλ(t−1),{Mk(t−1),dk(t−1)}1≤k≤N(
˜̃zk(t)Σ−1

k
˜̃zk(t)

)
−
αJ

η
+ ζ1(t))]A0

0

where ζ1(t)
.
=

∑N
k=1

˜̃zk(t)Σ−1k
˜̃zk(t) −∑N

k=1 Eµλ(t−1),{Mk(t−1),dk(t−1)}1≤k≤N

(
˜̃zk(t)Σ−1k

˜̃zk(t)

)
is a zero-mean Martingale difference noise. Now,

N∑
k=1

Eµλ(t−1),{Mk(t−1),dk(t−1)}1≤k≤N

(
˜̃zk(t)Σ−1

k
˜̃zk(t)

)

= lim
τ→∞

N∑
k=1

Eµλ(t−1),{Mk(t−1),dk(t−1)}1≤k≤N(
˜̃zk(τ)Σ−1

k
˜̃zk(τ)

)
+ o(1)

=
N∑
k=1

Eµλ(t−1),{Mk(t−1),dk(t−1)}1≤k≤N

(
˜̃zk(∞)Σ−1

k
˜̃zk(∞)

)
+ o(1)

=

N∑
k=1

E{Mk,dk}1≤k≤N∼gt,λ(t−1)(·)Eµλ(t−1),{Mk,dk}1≤k≤N(
˜̃zk(∞)Σ−1

k
˜̃zk(∞)

)
+ o(1) + ζ2(t)

=

N∑
k=1

E{Mk,dk}1≤k≤N∼g∗λ(t−1)
(·)Eλ(t−1),µ{Mk,dk}1≤k≤N(

˜̃zk(∞)Σ−1
k

˜̃zk(∞)

)
+ o(1) + o(1) + ζ2(t)

where the first equality follows from the stability of the
above Markov chain, and the second equality follows from
the dominated convergence theorem. The third equality uses
the fact that X = E(X) + X − E(X), with ζ2(t) being
a Martingale difference noise. The fourth equality follows
from the fact that limt→∞ ||gt,λ(·) − g∗λ(·)||TV = 0 and the
dominated convergence theorem.

Hence, the λ(t) iteration can be rewritten as:

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on February 17,2022 at 14:06:03 UTC from IEEE Xplore.  Restrictions apply. 



1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3146078, IEEE
Transactions on Information Forensics and Security

λ(t+ 1) =

[
λ(t− 1) + b(t)(

N∑
k=1

E{Mk,dk}1≤k≤N∼g∗λ(t−1)
(·)

Eµλ(t−1),{Mk,dk}1≤k≤N(
˜̃zk(∞)Σ−1

k
˜̃zk(∞)

)
+ ζ1(t) + ζ2(t) + o(1)

]A0

0

Now, since g∗λ(·) is continuous in λ, we can say that

E{Mk,dk}Nk=1
∼g∗

λ(t−1)
(·)Eµλ(t−1),{Mk,dk}1≤k≤N

(˜̃zk(∞)Σ−1
k

˜̃zk(∞))

is continuously differentiable in λ(t− 1) ∈ [0, A0] and hence
Lipschitz continuous. Also, the offset o(1) goes to 0 as t→∞.
Hence, by the theory of basic stochastic approximation [7,
Chapter 2], two-timescale stochastic approximation [7, Chap-
ter 6] and projected stochastic approximation [7, Chapter 5],
we can say that λ(t)→ Λ almost surely.

APPENDIX E
MORE SIMULATION RESULTS

Permissible Detection Detection Deviation Deviation
detection probability probability from x∗ from x∗

probability (α) (no attack) under FDI (no attack) under FDI

0.2 0.044 +/- 0.003 0.186 +/- 0.01 2.062 +/- 0.002 1.793 +/- 0.002
0.3 0.044 +/- 0.005 0.286 +/- 0.011 2.063 +/- 0.004 1.738 +/- 0.003

TABLE I: N = 6, 3-regular topology, OLAADE-KKT-1-LC

Permissible Detection Detection Deviation Deviation
detection probability probability from x∗ from x∗

probability(α) (no attack) under FDI (no attack) under FDI

0.25 0.047 +/- 0.004 0.235 +/- 0.009 2.045 +/- 0.007 1.289 +/- 0.003
0.4 0.05 +/- 0.005 0.389 +/- 0.013 2.038 +/- 0.008 1.196 +/- 0.003

TABLE II: N = 6, Line topology, OLAADE-KKT-1-LC

Permissible Detection Detection Deviation Deviation
detection probability probability from x∗ from x∗

probability (α) (no attack) under FDI (no attack) under FDI

0.2 0.046 +/- 0.003 0.178 +/- 0.008 2.063 +/- 0.005 1.799 +/- 0.004
0.3 0.044 +/- 0.003 0.287 +/- 0.013 2.062 +/- 0.002 1.741 +/- 0.002

TABLE III: N = 6, 3-regular topology, OLAADE-KKT-2-LC

Permissible Detection Detection Deviation Deviation
detection probability probability from x∗ from x∗

probability(α) (no attack) under FDI (no attack) under FDI

0.25 0.05 +/- 0.004 0.223 +/- 0.01 2.048 +/- 0.012 1.305 +/- 0.005
0.4 0.049 +/- 0.003 0.355 +/- 0.016 2.046 +/- 0.009 1.211 +/- 0.004

TABLE IV: N = 6, Line topology, OLAADE-KKT-2-LC

Permissible Detection Detection Deviation Deviation
detection probability probability from x∗ from x∗

probability (α) (no attack) under FDI (no attack) under FDI

0.2 0.043 +/- 0.005 0.189 +/- 0.012 2.062 +/- 0.003 1.804 +/- 0.003
0.3 0.044 +/- 0.005 0.28 +/- 0.013 2.062 +/- 0.002 1.75 +/- 0.002

TABLE V: N = 6, 3-regular topology, OLAADE-SPSA-1

Permissible Detection Detection Deviation Deviation
detection probability probability from x∗ from x∗

probability(α) (no attack) under FDI (no attack) under FDI

0.25 0.052 +/- 0.006 0.232 +/- 0.014 2.042 +/- 0.014 1.491 +/- 0.010
0.4 0.049 +/- 0.006 0.385 +/- 0.008 2.041 +/- 0.009 1.381 +/- 0.005

TABLE VI: N = 6, Line topology, OLAADE-SPSA-1

Permissible Detection Detection Deviation Deviation
detection probability probability from x∗ from x∗

probability (α) (no attack) under FDI (no attack) under FDI

0.2 0.043 +/- 0.004 0.184 +/- 0.01 2.064 +/- 0.003 1.805 +/- 0.002
0.3 0.045 +/- 0.006 0.292 +/- 0.013 2.061 +/- 0.004 1.746 +/- 0.004

TABLE VII: N = 6, 3-regular topology, OLAADE-SPSA-2

Permissible Detection Detection Deviation Deviation
detection probability probability from x∗ from x∗

probability(α) (no attack) under FDI (no attack) under FDI

0.25 0.049 +/- 0.006 0.234 +/- 0.011 2.04 +/- 0.009 1.426 +/- 0.005
0.4 0.054 +/- 0.007 0.385 +/- 0.012 2.042 +/- 0.012 1.323 +/- 0.007

TABLE VIII: N = 6, q = 2, Line topology, OLAADE-SPSA-
2
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