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Let G be an irreducible Hermitian Lie group and D = G/K
its bounded symmetric domain in Cd of rank r. Each γ of the 
Harish-Chandra strongly orthogonal roots {γ1, ⋯, γr} defines 
a Heisenberg parabolic subgroup P = MAN of G. We study 
the principal series representations IndG

P (1 ⊗ eν ⊗ 1) of G
induced from P . These representations can be realized as the 
L2-space on the minimal K-orbit S = Ke = K/L of a root 
vector e of γ in Cd, and S is a circle bundle over a compact 
Hermitian symmetric space K/L0 of K of rank one or two. We 
find the complementary series, reduction points, and unitary 
sub-quotients in this family of representations.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

0. Introduction

In the present paper we shall study composition series and complementary series 
for degenerate principal series representations for an irreducible Hermitian Lie group 
G induced from a Heisenberg parabolic subgroup. Let D = G/K ⊂ Cd be the bounded 
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symmetric domain of G in its Harish-Chandra realization in Cd = p+. Any choice of a 
Harish-Chandra strongly orthogonal root determines a one-dimensional split subgroup 
A = R+ of G and a Heisenberg parabolic subgroup P =MAN of G. We study the induced 
representation I(ν) = IndG

P (1 ⊗eν⊗1) of G from P . We shall find its complementary series, 
the reduction points, explicit realization of certain finite dimensional representations, and 
unitarizable subrepresentations.

The representation I(ν) can be realized on the L2-space on a homogeneous space K/L
of K, L =M ∩K, and G/P =K/L =K ⋅e is an orbit of K in Cd, with the Harish-Chandra 
root vector e as a base point. The vector e is also realized as a boundary point of the 
domain G/K in p+ = Cd where G is acting as rational maps, and the G-orbit G ⋅ e is a 
bundle over K/L =K ⋅ e with fiber being a bounded symmetric domain of rank r− 1; see 
[19]. The orbit K/L is a circle bundle K/L →K/L0 over its projectivization K/L0. The 
space K/L0 itself is a compact Hermitian symmetric space. We can find the irreducible 
decomposition of L2(K/L) by using the Cartan-Helgason theorem for line bundles over 
K/L0. We then study the Lie algebra action of g on L2(K/L).

The induced representations I(ν) = IndGP (ν) from Heisenberg parabolic subgroup 
P can be viewed as the counterpart of the representations IndGQ(ν) from the Siegel 
parabolic subgroup Q, both P and Q being maximal parabolic subgroups. The nilpotent 
part in P is a Heisenberg nilpotent and non-abelian group whereas it is abelian in Q
for tube domains D. The representations IndGQ(ν) and their analogues are well studied 
and are of considerable interests as they are closely related to the holomorphic discrete 
series [23]. The general case of maximal parabolic subgroups with abelian nilradical can 
be put in the setup of Koecher’s construction of Lie algebras and the corresponding 
induced representations have also been intensively studied; see e.g. [10,17,25,30]. The 
analysis is done in [25] by using eigenvalues of intertwining differential operators and 
the tensor product structure of induced representations, and in [10,30] by computing 
differentiations and recursions of spherical polynomials along a torus in the symmetric 
space K/L; in [17] the results for the multiplicity free Sp(p, p)-case are applied to the 
Sp(p, q)-case. In our case the nilpotent group N is non-abelian, K/L is not symmetric 
and the decomposition of L2(K/L) under K is not immediate, so the methods in [25,17]
seem not possible, and we shall adapt the method in [30]. Now the manifold K/L0 is a 
complex manifold and the differentiation involves vector fields in T (1,0)(K/L0), we have 
to develop further the technique in [30]. We consider the differentiation along products of 
copies of the projective sphere SU(2)/U(1) in K/L0 and find the differentiation formulas 
by considering classical spherical polynomials of SU(2). By using Weyl group symmetry 
of spherical functions we find then the required formulas for the Lie algebra actions. This 
then determines the complementary series and the composition series.

The study of induced representations from Heisenberg parabolic subgroups can be 
put in a rather general context. We give a very brief account of some background and 
related works. It is known that in most semisimple Lie groups G there are Heisenberg 
parabolic subgroups P , and these groups have been all classified. Howe [7] studied the 
induced representations from P from the point of view of minimal representations and 
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his notion of ranks of representations. Recently Frahm [3] has studied the intertwining 
differential operators for the induced representations in some non-Hermitian Lie groups. 
When G = SU(p, q) the induced representations can be realized on a homogeneous cone 
in Cp+q and they have been studied by Howe-Tan [8] in greater details. In [2] the authors 
developed a different method to study principal series representations and it might be 
interesting to adapt that method in our setup. The classification of spherical duals of 
classical groups has been studied extensively, and composition series of degenerate princi-
pal series are closely related to theta correspondence; see further [1,13,14,16–18,21]. In a 
forthcoming paper [4] we shall give a different proof for the results in this paper by using 
the non-compact picture of the induced representations and study related intertwining 
differential operators.

We mention also briefly some geometric perspectives of the spaces involved. The 
compact space K/L0 has an interesting geometry, it is the variety of minimal ratio-
nal tangents in a fixed tangent space V = T

(1,0)
0 (D) of the symmetric space D; more 

precisely it is the projectivization P(V ) of all tangent vectors v ∈ V with maximal holo-
morphic sectional curvature. It is also the projectivization of the space K/L of minimal 
tripotents and plays important role in complex differential geometry; see [9,20]. The 
G-orbit G ⋅ e above in the boundary of D = G/K is a bundle

G ⋅ e = G/LAN → G/P = G/MAN = G ⋅ (e +M/L) =K/L

with typical fiber M/L being the bounded symmetric space of M of rank r − 1 in V0
realized as a holomorphic bundary component e +M/L ⊂ e + V0 ⊂ V of D = G/K ⊂ V , 
where V = V2 +V1 +V0 is the Peirce decomposition of V . The minimal nilpotent orbit of 
G in g is the homogeneous space G/MN so that we have K-equivariant fiberations

G/MN → G/MAN =K/L→K/L0

with fibers being R+ and the circle S1 respectively, and it is tempting to put the repre-
sentations studied here into some general context of nilpotent orbits.

The paper is organized as follows. In Section 1 we introduce the parabolic subalgebra 
m +a +n = m +Rξ+n and the principal series (I(ν), πν). In Section 2 we find the irreducible 
decomposition for I(ν)∣K = L2(K/L) under K. The action of πν(ξ) on I(ν) is done in 
Section 3 and it is one of our main results. As consequences we find in Section 4 the 
complementary series, certain unitarizable subquotients, and also realization of certain 
finite dimensional representations of gC in the induced representations. In Section 5 we 
treat the case when g = su(d, 1), sp(r, R) where K/L is the sphere and K/L0 is the com-
plex projective space. We give a simpler proof of the classical result of Johnson-Wallach 
[11]. In Appendix A we compute certain recurrence formulas for spherical polynomials 
over the complex projective line P 1; we need only the leading coefficients in the formulas 
which can be easily proved by other methods, but we present the complete formulas as 
they might be of independent interests in special functions. The complete lists of the 
spaces G/K and K/L0 are given in Appendix B.
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Notation. Hermitian symmetric spaces have rather rich structure and so is the notation. 
For the convenience of the reader we list the main symbols used in our paper.

(1) Real Lie algebras will be denoted by g, h, ..., and their complexifications gC, hC, .... 
The adjoint action in gC will be denoted by adX(Y ) = [X, Y ], X, Y ∈ gC, and the 
adjoint action in G as well as its induced action on g by Ad g(h) = ghg−1, g, h ∈ G, 
Ad g(X) = (Ad g)∗(X), X ∈ g.

(2) D = G/K, bounded symmetric domain of D of rank r realized in the Jordan triple 
system V = Cd with Jordan triple product {x, ̄y, z} = D(x, y)z and Jordan charac-
teristic (a, b) (or root multiplicities); d = r + a

2 r(r − 1) + rb, the dimension.
(3) g = k + p, Cartan decomposition, p = {ξv = v +Q(z)v̄; v ∈ V } as holomorphic vector 

fields on D, 2Q(z)v̄ =D(z, v)z.
(4) gC = p−+kC +p+, Harish-Chandra decomposition with respect to the center element 

Z of k, ad(Z)∣p± = ±i; p+ = V .
(5) e = e1, a fixed minimal tripotent, V = V1 +V1 +V0 = V1(e) +V1(e) +V0(e), the Peirce 

decomposition with respect to e, and {e, v1, w, v2} a Jordan quadrangle.
(6) {e, ̄e, D(e, e)}, standard sl(2)-triple; H0 = iD(e, e).
(7) ξ = ξe = e + ē ∈ p, a = Rξ, g = n−2 +n−1 +m +a +n1 +n2, the root space decomposition 

of g with respect to a, n = n1 + n2, a Heisenberg Lie algebra; ρg = 1 + (r − 1)a + b, 
half sum of positive roots.

(8) M , A, N , the corresponding subgroups with Lie algebra m, a, n, L =M ∩K = {k ∈
K; ke = e} ⊆K with Lie algebra l.

(9) k1 = [k, k], the semisimple part of k, and K1 ⊂K the corresponding Lie group.
(10) S =K/L = G/P , the manifold of rank one tripotents.
(11) S1 = P(S) = K/L0 = K1/L1, the projective space of S, also called the variety of 

minimal rational tangents; L0 = {k ∈ K; ke = χ(k)e, χ(k) ∈ U(1)} the subgroup 
of elements of K fixing the line Ce with Lie algebra l0 = {X ∈ k; Xe = χ(X)e, c ∈
iR}. S1 = K/L0 = K1/L1, compact Hermitian symmetric space of rank two and of 
dimension d1 = dimC V1 = (r − 1)a1 + b1, (a1, b1), the Jordan characteristic of S1;

(12) χl(k) = χ(k)l, character on L0, l ∈ Z.
(13) k = q + l0, k1 = q + l1 Cartan decomposition for the symmetric space S1 = K/L0 =

K1/L1; q = {D(v, e) −D(e, v), v ∈ V1}; l1 = l0 ∩ k1, the semisimple component of k0.
(14) kC = q− + lC0 + q+, kC1 = q− + lC1 + q+, the Harish-Chandra decomposition of kC, kC1

for the Hermitian symmetric space K/L0 = K1/L1; q+ = {D(v, e); v ∈ V1}; q− =
{D(e, v); v ∈ V1}; the Jordan triple product on q+ = {D(v, e); v ∈ V1} is via the Lie 
bracket,

[[D(v, e),D(e,w)],D(u, e)] =D(D(v,w)u, e),

and is isomorphic to the Jordan triple system V1 ⊂ V ; q+ is the holomorphic tangent 
space of S1 =K/L0 =K1/L1 at L0 ∈K/L0.

(15) k∗1 = l1 + iq, the non-compact dual of k1 = l1 + q; hiq ⊂ iq, Cartan subspace.
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(16) ρ ∶= ρk∗1 ∶= ρ1α1 + ρ2α2 = (ρ1, ρ2), ρ1 = 1 + a1 + b1, ρ2 = 1 + b1, half sum of positive 
restricted roots of k∗1 with respect to hiq.

(17) Φλ,l, Harish-Chandra spherical function for the symmetric pair (k∗1, l1) with one-
dimensional character χl, c(λ, l) = c(λ, −l), Harish-Chandra c-function for the 
symmetric space S1 =K/L0 =K1/L1 with character χl; φμ,l spherical polynomial.

1. Preliminaries

We shall use the Jordan triple description of Hermitian symmetric spaces; see [19,28].

1.1. Hermitian symmetric space D = G/K

Let D be an irreducible bounded symmetric domain of rank r in V = Cd. Let G
be the group of bi-holomorphic automorphisms of D, and K = {k ∈ G; k0 = 0} the 
maximal compact subgroup of G, so that D = G/K. The space V has the structure 
of an irreducible Jordan triple system with triple product {x, y, z} = D(x, y)z with the 
corresponding End(V̄ , V )-valued quadratic form Q(x), Q(x)y = 1

2D(x, y)x, where V̄ is 
the space V with the conjugated complex structure. Note that in [19] D(x, y) is written 
as D(x, y), and to ease notation we write it just as D(x, y) so it is conjugate linear in 
y. Let (a, b) be the Jordan characteristic of V , and b = 0 when D is a tube domain. The 
dimension d = r + a

2 r(r − 1) + rb.
Let g = k + p be the Cartan decomposition of g. Realized as holomorphic vector fields 

on D, i.e., as V -valued functions on D, the space p is

p = {ξv = v −Q(z)v; v ∈ V }. (1.1)

The adjoint action v ↦ Ad(k) v of k ∈ K as well as k on p coincides with its defining 
action on D and will be written just as kv = Ad(k) v, Xv = ad(X)v, k ∈ K, X ∈ k when 
no confusion would arise.

Denote Z ∈ k the central element defining the complex structure of p and gC = p+ +
kC + p− be the Harish-Chandra decomposition, Z ∣p± = ±i. The space p+ is identified with 
V via the identification V ∋ v = 1

2(ξv − iξiv) ∈ p
+ and V = {v; v ∈ V } with {−Q(z)v} = p−. 

The Lie algebra k = k1 ⊕ RZ, where k1 = [k, k] is the semisimple part of k with trivial 
center. Let K1 ⊂K be the corresponding semisimple subgroup of K with Lie algebra k1.

We fix the Euclidean inner product on V so that a minimal tripotent has norm 1, and 
fix the corresponding normalization of the Killing form on gC. All orthogonality in the 
Lie algebra gC below is with respect to the Killing form unless otherwise specified.

1.2. Maximal parabolic subgroup P =MAN of G and induced representation IndGP (ν)

We fix in the rest of the paper a minimal tripotent e = e1 and denote

ξ = ξe, H0 = iD(e, e), a = Rξ ⊂ p. (1.2)
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A Harish-Chandra strongly orthogonal root γ1 for gC can be chosen so that its co-root 
is D(e, e), γ1(D(e, e)) = 2. We shall only need γ1 below.

The Peirce decomposition of V = Cd with respect to the tripotent e is

V = V2 + V1 + V0, Vj = Vj(e) ∶= {v ∈ V ;D(e, e)v = jv}, j = 0,1,2. (1.3)

Furthermore V2 = Ce is one-dimensional, V1 is of dimension d1 = dimC V1 = (r − 1)a + b, 
and V0 is a Jordan triple system of rank r−1 and dimension 1 + 1

2a(r−1)(r−2) +(r−1)b. 
The Jordan rank of V1 is

rankV1 =
⎧⎪⎪⎨⎪⎪⎩

2, g ≄ su(d,1), sp(r,R)
1, g = su(d,1), sp(r,R).

(1.4)

Certain computations have to be done depending on the different cases.
We shall need the description for the root spaces of g under ad(ξ) ∶ X → [ξ, X]. A 

linear functional ν ∈ (aC)∗ will be identified as ν ∈ C, ν = ν(ξ).

Lemma 1.1. The root space decomposition of g under a = Rξ is

g = n− + (m + a) + n, n = n1 + n2, n− = n−1 + n−2, (1.5)

where n±2, n±1, and m + a are the root spaces of ξ with roots ±2, ±1, 0, respectively. The 
subspaces are given by

m = l⊕ {ξv; v ∈ V0}, l = m ∩ k = {X ∈ k;Xe = 0}, (1.6)

n1 = {ξv + (D(e, v) −D(v, e)); v ∈ V1}, (1.7)

and

n2 = R(ξie −H0). (1.8)

The half sum of positive roots is

ρg ∶= ρg(ξ) = 1 + (r − 1)a + b = 1 + dimC V1. (1.9)

Proof. The root spaces are described in [19, Lemma 9.14]. The root space n1 has real 
dimension 2 dimC V1 and thus ρg = 1 + dimC V1 = 1 + (r − 1)a + b. ◻

The nilpotent algebra n is a Heisenberg Lie algebra. Their appearance in general 
semisimple Lie algebras has been classified; see e.g. [3,7].

Let M, A, N , L = M ∩K = {k ∈ K; ke = e}, be the corresponding Lie subgroups and 
P =MAN the parabolic group of G.
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The main object of this paper is the induced representation

I(ν) = IndGP (ν) ∶= IndGP (1⊗ eν ⊗ 1) (1.10)

defined as the space of measurable functions on G such that

f(gmetξn) = e−tνf(g),m ∈M,n ∈ N, t ∈ R,

and f ∣K ∈ L2(K). Any f ∈ I(ν) as function on K is right L-invariant, and thus f ∣K ∈
L2(K/L). The corresponding (gC, K)-representation will also be denoted by I(ν). If 
ν = ρg + iλ, λ ∈ R, λ ≠ 0, then I(ν) is a unitary irreducible representation of G on 
L2(K/L); see e.g. [12].

2. Decomposition of (L2(K/L), K) and spherical polynomials

We assume throughout Sections 2, 3 and 4 that the Hermitian symmetric domain 
D = G/K is irreducible of rank r ≥ 2 and is not the Siegel domain Sp(r, R)/U(n); this 
case and the rank one domain SU(d, 1)/U(d) will be treated in Section 5.

2.1. The homogeneous space S = G/P =K/L as circle bundle over compact Hermitian 
symmetric space S1 =K/L0 =K1/L1

The homogeneous space S ∶= G/P =K/L of K can be realized as the manifold of rank 
one tripotents in V , S = Ke ⊂ V . We shall fix this realization in the rest of the paper 
and use the global coordinates on V for S when needed.

To find the decomposition of L2(K/L) under K we consider the projectivization

S → S1 = P(S) = {[v] ∶= Cv ∈ P(V ); v ∈ S}, v ↦ [v]

of S in the projective space P(V ) of V . Then S1 = K/L0, where L0 = {k ∈ K; ke ∈ Ce}, 
and L ⊂ L0 is a normal subgroup with L0/L being the circle group U(1). The natural 
map S =K/L → S1 = P(S) =K/L0 defines a fibration

S =K/L→ S1 =K/L0 (2.1)

of P(S) with fiber the circle U(1) = L0/L.
The space S1 = P(S) is a compact Hermitian symmetric space of (non-simple) K. 

The complete list of (G, K, L0), D = G/K, S = G/P = K/L → S1 = K/L0 is given in 
Tables 1-2. The space S1 =K/L0 is also the variety of minimal rational tangents (VMRT) 
[9] of the symmetric space D.

The action of L0 on e defines a character χ of L0, namely

χ(k) = c, if k ∈ L0, ke = ce. (2.2)



8 G. Zhang / Journal of Functional Analysis 282 (2022) 109399
Let L1 = {k ∈ K1; ke = χ(k)e} ⊂ L0, then S1 = K/L0 = K1/L1, S = K1/L ∩ L1. The 
fibration (2.1) above becomes a circle bundle S = K/L → S1 = K/L0 = K1/L1 for K1-
homogeneous spaces with the fiber U(1) = L1/L ∩L1.

The element exp(πH0), H0 = iD(e, e) ∈ l0, defines a Cartan involution exp(π adH0)
on k with the corresponding Cartan decomposition

k = l0 + q

with

q = {D(v, e) −D(e, v); v ∈ V1}. (2.3)

We fix now a complex structure on q and the corresponding Harish-Chandra decom-
position of kC. As a convention the complex structure for (k, l0) or (k1, l1) is defined using 
an element in l0 respectively l1.

Lemma 2.1. Define the K-invariant complex structure on S1 = K/L0 by the element 
−1

2H0 = −1
2 iD(e, e) ∈ l0, i.e. by X → −1

2 ad(H0)(X), X ∈ q = T[e](S1), at the base point 
[e] = Ce ∈ S1. The corresponding complex structure for the pair (k1, l1) is defined by 
−1

2H
′
0,

−1
2

ad(H0)∣q = −
1
2

ad(H ′0)∣q, H ′0 =H0 − i
p

d
Z ∈ l1 ⊂ k1. (2.4)

The Harish-Chandra decompositions of kC and kC1 are

k
C = q− + lC0 + q+, k

C
1 = q− + lC1 + q+ (2.5)

with

T
(1,0)
[e]

(S1) = q+ = {D(v, e); v ∈ V1}, T (0,1)[e]
= q− = {−D(e, v); v ∈ V1}. (2.6)

Proof. For any c ∈ R, ad(X) = ad(cZ +X) on k for any X ∈ k, since Z is in the center 
of k. The semisimple component of X in k1 is obtained as X − 1

d
tr ad(X)∣p+ , d = dimV . 

Thus we have (2.4). The Harish-Chandra decomposition is obtained by the commutator 
formula in Jordan triples [19],

[D(u, v),D(x, y)] =D(D(u, v)x, y) −D(x,D(v, u)y). ◻

Here the complex structure on q is chosen so that

v ∈ V1 ⊂ V = p+ →D(v, e) ∈ q+

is complex linear so that the complex structures in p and q match in this sense. The Lie 
algebra structure in kC defines q± as a Jordan triple system, and it is isomorphic to V1. 
To avoid confusion we shall keep the notation q+.
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2.2. Cartan subalgebra hiq ⊂ iq and the restricted root system for the non-compact 
symmetric pair (k∗, l0) = (l0 + iq, l0)

We construct now a split Cartan subalgebra in iq for the symmetric pair (k∗, l0) =
(l0 + iq, l0) and its semisimple part (k∗1, l1) = (l1 + iq, l1), and find the corresponding 
root system. They will be used in the decomposition of L2(K/L) and computation of 
Harish-Chandra c-function. We need the notion of a Jordan quadrangle [22, p. 12, p. 16].

An ordered quadruple (u0, u1, u2, u3) of minimal tripotents is called Jordan quadran-
gle if the following three conditions are satisfied, for all i modulo 4,

(1) ui and ui+1 are in each other’s Peirce V1-space, ui ∈ V1(ui+1), ui+1 ∈ V1(ui);
(2) ui and ui+2 are orthogonal as tripotents;
(3) D(ui, ui+1)ui+2 = ui+3.

Recall that we have assumed in this section that the domain D ≠ IIIn = Sp(n, R)/U(n),
D ≠ In,1 = SU(n, 1)/U(n) (the Type IV domain IV3 = III2 is also excluded). Then 
starting with the fixed minimal tripotent e there are minimal tripotents v1, w, v2 such 
that (u0, u1, u2, u3) = (e, v1, w, v2) is a Jordan quadrangle. This is implicitly in [22] where 
orthogonal bases (called grids) are constructed for Jordan triple systems, and we provide 
brief arguments. The Jordan triple system V is of rank r ≥ 2 so there exists a Jordan 
algebra V ′ as a sub-triple of V of rank two with e1 + e2 as identity element, where 
e1 = e, e2 are the Harish-Chandra strongly orthogonal root vectors; for

D = Ir,r+b, II2r, II2r+1, IVn(n > 4), V, V I

the corresponding D′ is

D′ = I2,2, II4, II4, IV4, IV8, IV10.

In all cases the Jordan algebra M2,2 of square 2 × 2-matrices, D = I2,2 = IV4, forms a 
Jordan sub-triple system, since

I2,2 = IV4 ⊂ II4 = IV6 ⊂ IV8 ⊂ IV10

in the sense of Jordan sub-triple systems. The following standard matrices

E11,E12,E22,E21

form a Jordan quadrangle in M2,2 and in V .
Fix in the rest of the paper the Jordan quadrangle {e, v1, w, v2}. We have

H0v1 = iD(e, e)v1 = iv1, H0v2 = iD(e, e)v2 = iv2, D(v1, v1)e =D(v2, v2)e = e, (2.7)
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and

D(e,w) =D(v1, v2) = 0, D(v1, e)v1 =D(v2, e)v2 = 0,D(e, v1)w = v2, D(v1, e)v2 = w,
(2.8)

which we shall use below. See [22, p. 12, p.16] for further details.
The above construction results in the following two commuting copies of sl(2, C)-

triples in kC1 ,

E+j =D(vj , e) ∈ q+, E−j =D(e, vj) ∈ q−, Hj =D(vj , vj) −D(e, e) ∈ kC, Ej ∶= E+j −E−j ∈ q,
(2.9)

with the canonical relation

[Hj ,E
±
j ] = 2E±j , [E+j ,E−j ] =Hj , j = 1,2.

Moreover R(iE1) +R(iE2) ⊂ iq is maximal abelian.

Definition 2.2. Let

hq = RE1 +RE2 ⊂ q, hiq = R(iE1) +R(iE2) ⊂ iq, h
C
q = CE1 +CE2. (2.10)

Extend the abelian subalgebra CE1 +CE2 of kC1 to a Cartan subalgebra

h
C
1 ∶= (CE1 +CE2) ⊕ h+, h+ ⊂ lc1 ⊂ kC1 ,

of kC1 , so that

h
C ∶= (CZ +CE1 +CE2) ⊕ h+

is a Cartan subalgebra of kC and gC. Define {α0, α1, α2} to be the dual basis vectors of 
{iZ, iE1, iE2} that are vanishing on h+.

Now

(CZ +CH1 +CH2) ⊕ h+ ⊂ lC0 ⊂ kC ⊂ gC (2.11)

is a Cartan subalgebra of three algebras lC0 , kC and gC.
We shall need the Cartan-Helgason theorem in [26] for line bundles over K/L0 de-

fined by the characters χl = χl; the character in [26] is defined using Cayley transform 
and Cartan subalgebras instead of the geometric definition here. The relevant Cayley 
transform in our setup is

c = ck = exp( − πi ad(E+1 +E+2 +E−1 +E−2 )).
4
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Lemma 2.3.

(1) The subspace hiq is maximal abelian in iq. If g ≠ su(r + b, r), r > 1 then K/L0 is an 
irreducible symmetric space and the restricted root system for the non-compact dual 
k∗ = l0 + iq with respect to hiq is

R(k∗,hiq) = R(k∗1,hiq) ∶= {±2α1, ±2α2} ∪ {±α1 ± α2} ∪ {±α1, ±α2} (2.12)

with root multiplicities (1, a1, 2b1) for the three subsets of roots, a1, b1 being given in 
Tables 1-2. The half-sum of the positive roots with respect to the ordering α1 > α2 > 0
is

ρ ∶= ρk∗1 = ρ1α1 + ρ2α2 = (ρ1, ρ2), ρ1 = 1 + a1 + b1, ρ2 = 1 + b1. (2.13)

The two linear functionals ρk∗1 and ρg are related by

ρg = 1 + ρ1 + ρ2.

If g = su(r + b, r), r > 1 then K/L0 = K1/L1 is reducible, k1 = su(r + b) + su(r), 
k∗1 = su(1, r + b − 1) + su(1, r − 1), and the restricted root system is

R(k∗,hiq) = R(k∗1,hiq) ∶= {±2α1,±α1} ∪ {±2α2,±α2} (2.14)

with root multiplicities (1, r + b − 1), (1, r − 1) respectively. The corresponding ρ is

ρk∗1 = ρ1α1 + ρ2α2 = (ρ1, ρ2), ρ1 = r + b − 1, ρ2 = r − 1 (2.15)

The relation ρg = 1 + ρ1 + ρ2 holds also in this case.
(2) The Cayley transform c exchanges two Cartan subalgebras

c ∶ (CZ +CH1 +CH2) ⊕ h+ → h
C,

c ∶Hj → iEj

and the pullbacks

c∗(2αj), j = 1,2,

are the Harish-Chandra orthogonal roots for (k∗1, l1).

Proof. We have assumed that D is not SU(d, 1)/U(d) nor Sp(n, R)/U(n), so that 
K/L0 = K1/L1 is of rank two; see the Tables 1-2. The rest is a consequence of general 
results on root systems algebra applied to the non-compact Helgason dual k∗ = l0 + iq of 
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k = l0 + iq. It follows also from [19, Lemma 9.14], the Lie algebra g = p + k there being re-
placed by our k∗1 = iq +l1. The abelian subspace in iq is obtained from the Harish-Chandra 
root vectors corresponding to a frame of minimal tripotents in q+, and in the present 
case the frame in q+ is {D(v1, e), D(v2, e)}. Finally the dimension of a general Jordan 
triple system of characteristics (r, a, b) is r + 1

2r(r − 1)a + rb. We have by Lemma 1.1, 
ρg = 1 +dimC V1 and dimC V1 = 2 +a1+2b1 = ρ1+ρ2 since V1 is a Jordan triple system with 
characteristic (2, a1, b1), and thus ρg = 1 + ρ1 + ρ2. The fact about the Cayley transform 
is well-known; see e.g. [26], [19, Proposition 10.6(3)]. ◻

Note that the evaluation of the character χ on H0, H1, H2 is given by

χ(H0) = 2χ(Z) = 2i, χ(H1) = χ(H2) = −i, (2.16)

since H0e = 2Ze = 2ie, Hje = i(D(vj , vj) −D(e, e))e = −ie. Observe also that the geo-
metrically natural choice of the complex structure of S1 =K/L0 =K1/L1 results in some 
discrepancy: For H0 = iD(e, e), ad(−iH0) = ad(D(e, e)), has non-negative eigenvalues 
2, 1, 0 on p+ = V = V2 + V1 + V0, whereas it has negative eigenvalue −1 on q+,

[D(e, e),D(v, e)] = −D(v, e), D(v, e) ∈ q+. (2.17)

2.3. Cartan-Helgason theorem for K/L0

Let L2(K, L0, χl) be the L2-space of sections of the homogeneous line bundle 
K ×(L0,χ

−1
l
) C defined by χ−1l of L0. The space L2(K, L0, χl) consists of f ∈ L2(K)

such that

f(gh) = χl(h)f(g), g ∈K,h ∈ L0, he = χ(h)e. (2.18)

It follows immediately from the definitions of L0 and χ that

L2(K/L) =
∞

∑
l=−∞

L2(K,L0, χl), (2.19)

under the left regular action of K. This is the Fourier series expansion along the fiber of 
K/L →K/L0.

We shall treat extensively functions on K that are transforming under L0 as in (2.18)
and it is convenient to give the following

Definition 2.4. An element f ∈ L2(K) is called (l1, l2)-spherical if

f(h1kh2) = χl1(h1)χl2(h2)f(k), h1, h2 ∈ L0.
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Lemma 2.5.

(1) Let g ≄ su(r + b, r), r > 1. The space L2(K, L0, χl) is decomposed as a sum of 
irreducible representations of K,

L2(K,L0, χl) = ∑
μ

Wμ,l,

where each Wμ,l has highest weight given by

lα0 + μ, μ = (μ1, μ2) = μ1α1 + μ2α2, μ1 ≥ μ2 ≥ ∣l∣, μ1 = μ2 = l,mod2. (2.20)

Moreover each space Wμ,l contains a unique vector (l, l)-spherical element φμ,l up 
to nonzero scalars.

(2) Let g = su(r + b, r), r > 1. The space L2(K, L0, χl) is decomposed as above with

μ1, μ2 ≥ ∣l∣ μ1 = μ2 = l,mod2.

The highest weight vector in Wμ,l can be chosen as

f(x) = zp1zr+bqw
p′

1 wr
q′ , x = zw∗ ∈ S ⊂Mr+b,r(C),

where we have written a rank one projection x ∈ S ⊂ Mr+b,r(C) as x = zw∗, z ∈
Cr+b, w ∈ Cr, ∥z∥ = ∥w∥ = 1, and where (p, q, p′, q′) are subject to the condition

μ1 = p + q, μ2 = p′ + q′, l = p − q = p′ − q′.

The spherical polynomial φμ,l in this case is φμ,l(zw∗) = φμ1,−l(z)φμ2,l(w) where 
φm,l is (l, l)-spherical polynomial on P(Cn).

Proof. The statement for the decomposition of L2(K, L0, χl) as representation of the 
semi-simple group K1 is in [26, Theorem 7.2]; our (k∗1, l1) corresponds to (g, k) there. 
More precisely our character χl is precisely the same as χ−l in [26]. The character χ−l
on K in [26] for the Hermitian symmetric space D = G/K ⊂ Cd = p+ is defined by

X ∈ kC ↦ l

tr ad(D(e, e))∣p+
tr adX ∣p+ ;

equivalently it is determined [26, (5.1)] by χ−l ∶ D(e, e) ↦ l. For our symmetric pair 
(k∗1, l1) the corresponding D(e, e) is H1 = D(v1, v1) −D(e, e) described in Lemma 2.3
and H1e = −le and thus χl(H1) = −l by the definition. (Alternatively we can also prove 
this by using the duality relation in Appendix B.) The results in [26] then determine the 
highest weights of Wμ,l on hiq = R(iE1) +R(iE2) as μ1α1 + μ2α2 in our statement.
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Finally it is trivial to find the weight of Wμ,l on the central element Z. The right 
action of exp(sZ) on φ ∈Wμ,l is, using Ze = ie,

πν(exp(sZ))φ(h) = φ(exp(−sZ)h) = φ(h exp(−sZ)) = exp(−isl)φ(h), h ∈K. (2.21)

Thus πν(Z)φ = −ilφ, and πν(iZ)φ = lφ. Thus the highest weight of Wμ,l as representation 
of kC is lα0 + μ1α1 + μ2α2.

The second part (2) is well-known; see e.g. [8,11]. ◻

Altogether we have now I(ν) is

I(ν) = L2(K/L) =
∞

∑
l=−∞

∑
μ

Wμ,l

with μ being specified above.

Remark 2.6. The exact formulas for the highest weight vectors above in the case g =
su(r+ b, r) are not needed in our paper. However it is possible to prove our Theorem 3.1
below for g = su(r + b, r) by using the weight vectors instead of spherical vectors; see [8]. 
Note also that the parametrization of the spherical polynomials on P(Cn) generated by 
the (p, q)-spherical harmonic polynomial zp1zn

q as φμ1,−l, μ1 = p + q, l = p − q, is due to 
our geometric definition of character χ. Recall that due to (2.16) φμ,l satisfies

φμ,l(keitHj) = e−iltφμ,l(k), j = 1,2. (2.22)

The same parametrization is used in Appendix A.

2.4. Harish-Chandra c-function and expansion of the (l, l)-spherical polynomials

A major technical step in the proof of Theorem 3.1 below is to use the Harish-Chandra 
c-function to compute certain expansions and differentiations involving the spherical 
polynomials φμ,l. We recall that the spherical polynomial φμ,l(h) on K/L = K1/L1 is a 
special case of the Harish-Chandra spherical function Φλ,l(h) for the non-compact pair 
(k∗1, l1) corresponding to the character χl of L1 ⊂ L0; see [26,27].

The precise relation between φμ,l and Φλ,l is

φμ,l(h) = Φ−i(μ+ρ),l(h), h ∈K1, (2.23)

where ρ = ρk∗1 ; see [6,26,27]. The spherical function Φλ,l is invariant with respect to the 
Weyl group W (k∗1, hiq) of the root system R(k∗1, hiq) in (2.12), acting on the parameter 
λ. Eventually we shall replace λ by −i(μ + ρ) and use Weyl group symmetry in μ + ρ. An 
important property is that the leading term of Φλ,l(h) is given by the limit formula

lim e−(iλ−ρ)(H)Φλ,l(exp(H)) = c(λ, l), (2.24)

H→∞
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for H in the positive Weyl Chamber of the root system (2.12), i.e., for H = x1(iE1) +
x2(iE2) ∈ hiq, x1 > x2 > 0, and for Re(iλ) = y1α1 + y2α2, y1 > y2 > 0; see [6, Ch. IV, 
Theorem 6.14; Ch. V, Section 4], [27, Theorem 3.6]. In particular

φμ,l(exp(H)) = Φλ,l(exp(H)) = c(λ, l)e(iλ−ρ)(H) +L.O.T., H ∈ hCq (2.25)

as an expansion of trigonometric polynomial on the complexification exp(hCq )[e] of the 
real torus exp(hq)[e] ⊂K/L0 = P(K/L), [e] = Ce, with lower order terms (L.O.T.) being 
trigonometric polynomials of lower order in the sense defined by the Weyl Chamber. 
Here c(λ, l) = c(λ, −l) is the Harish-Chandra c-function, and in our case it is given by

c(λ, l) = c0 ∏
ε=±1

Γ( i2(λ1 + ελ2))
Γ(1

2a1 + i(λ1 + ελ2))
∏
j=1,2

2−iλjΓ(iλj)
Γ(1

2(b1 + 1 + iλj + l))Γ(1
2(b1 + 1 + iλj − l))

for λ = λ1α1 +λ2α2, where c0 is normalized so that c(−iρ, 0) = 1 for the Harish-Chandra 
c-function c(−iρ, 0) with trivial line bundle, l = 0; see [27]. We observe also that the 
c-function c(λ, l) is positive for λ = −i(μ + ρ).

We shall need the spherical polynomials φ(1,1),±1(k) for μ = (1, 1). The corresponding 
representations space of K is p+ = V or p− = V̄ , and the spherical polynomial is the 
matrix coefficient

φ(1,1),1(k) = ⟨ke, e⟩, φ(1,1),−1(k) = ⟨e, ke⟩. (2.26)

Indeed the space p+ = V is a representation of kC1 of highest weight α1+α2 and represen-
tation of kC of highest weight α0 + α1 + α2 since Z acts as i, the corresponding highest 
weight vector is

v0 =
1
2
((v1 − ie) + (v2 + iw)) . (2.27)

In other words, recalling that e is the root vector of the Harish-Chandra strongly or-
thogonal root γ1, we see that α1 + α2 is conjugated to γ1.

3. Lie algebra g-action on I(ν) = IndG
P
(ν)

We compute the Lie algebra action of gC on I(ν). For that purpose we denote the 
right differentiation of Lie algebra elements X ∈ gC on functions f on G by Xf ,

Xf(g) = d

ds
f(g exp(sX))∣s=0. (3.1)

Then X commutes with the left regular action

X(f)(hx) =X(f(h⋅))(x), (3.2)
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and intertwines the right action f(x) → f(xh) = fh(x) as

(Xf)h(x) = (Xf)(xh) = ((Adh(X))fh)(x). (3.3)

First it follows from (1.2) and (2.2) that H0e = 2ie, χl(exp(tH0)) = e2ilt, χl(H0) = 2il. 
Thus any element f ∈ L2(K, L0, χl) is an eigenfunction of the differentiation by H0,

H0f = 2ilf. (3.4)

Theorem 3.1. Let g be a simple Hermitian Lie algebra of rank r ≥ 2 and g ≄ sp(r, R). 
The action of πν(ξ) on φμ,l is given by

23 πν(ξ)φμ,l

= ∑
σ=(σ1,σ2)=(±1,±1)

(ν + σ1(μ1 + ρ1) + σ2(μ2 + ρ2) − (ρ1 + ρ2))

× (cμ,l(μ + σ, l + 1)φμ+σ,l+1 + cμ,l(μ + σ, l − 1)φμ+σ,l−1),

where the coefficients cμ,l(μ + σ, l ± 1) are given by

cμ,l(μ + σ, l ± 1) = c (−i(σ(μ + ρ)), l)
c (−i(α1 + α2 + σ(μ + ρ)), l ± 1) , (3.5)

and σ = (σ1, σ2) is viewed as element in the Weyl group W of the root system (2.12)
such that σ(α1 + α2) = σ1α1 + σ2α2. Moreover all the coefficients are positive.

It is understood here that the term φμ+σ,l±1 = φ(μ1+σ1,μ2+σ2),l±1 will not appear in the 
RHS if (μ1+σ1)α1+(μ2+σ2)α2 is not one of the highest weights specified in Lemma 2.5.

Remark 3.2. It is remarkable that all the coefficients of φμ+σ,l±1 have a rather uniform 
formula. Actually it is relatively easy to find the coefficient of the leading term φμ+(1,1),l±1
and the other coefficients can be obtained from the Weyl group symmetry and by unitar-
ity of πν for ν = ρg+ix, x ∈ R. We shall find all the coefficients independent of the unitarity 
by proving some recursion and differentiation formulas for spherical polynomials, which 
might be of independent interests [31].

Proof. We claim first that for any X ∈ pC,

πν(X)Wμ,l ⊆ ∑
σ=(σ1,σ2)=(±1,±1)

Wμ+σ,l±1.

This follows by considering the tensor product pC ⊗Wμ,l as representation of K. Indeed 
consider the case g ≠ su(r + b, r). The adjoint action of the central element Z ∈ k on p±

is ±i, and its right action on Wμ,l is il. Let X ∈ p+, then πν(X)Wμ,l is of weight i(l + 1)
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under Z for any X ∈ p+. It is also a classical fact that the highest weights in the tensor 
product decomposition of Wμ,l ⊗ p± under kC are of the form μ + lα0 + ν′ where ν′ is 
a weight appearing in p+. The space p+ is of highest weight (1, 1) = α1 + α2 under the 
Cartan subalgebra (hiq)C = CE1 + CiE2 of hC and the only non-zero weights in p± of 
the form c1α1 + c2α2 are c1, c2 = 0, ±1, namely they are of the form

σ1α1 + σ2α2, σ1α1, σ2α2, σ1 = ±1, σ2 = ±1.

However by the Cartan-Helgason theorem, Lemma 2.5, we see that σ1α1, σ2α2 are not 
eligible since the center Z-action is i(l + 1). Thus πν(X)Wμ,l is of the claimed form.

When g = su(r+b, r) the Weyl group for the root system of (k∗, hiq) is (Z2)2 consisting 
of only sign changes instead of all signed permutations (Z2)2 ⋊ S2, but all the relevant 
weights σ1α1 + σ2α2 are still in the orbit of the Weyl group (Z2)2 so the arguments are 
valid for g = su(r + b, r) as well.

Next, the element ξ = ξe is invariant under L ⊂ K, thus πν(ξ)φμ,l is a sum of the L-
invariant vectors in ∑σ1,σ2=±1 Wμ+σ,l±1, and is further by Lemma 2.5 a linear combination 
of φμ+σ,l±1. The rest of the proof is to determine the coefficients. Notice also that each 
function in the linear combination is determined by its restriction on the complex torus 
exp(hCq )e ⊂K/L once the line parameter l is given, so it is enough to find the expansion 
restricted on the complex torus (after the differentiations) as the line bundle parameters 
of each term in the expansion are already fixed.

We have

πν(ξ)φμ,l(k) =
d

ds
φμ,l(exp(−sξ)k)∣s=0 =

d

ds
φμ,l(kk−1 exp(−sξ)k)∣s=0

= d

ds
φμ,l(k exp(−sAd(k−1)ξ))∣s=0 = −((Ad(k−1)ξ)φμ,l)(k), k ∈K,

(3.6)

where ((Ad(k−1)ξ)φμ,l)(k) is right differentiation of the Lie algebra valued vector field
− Ad(k−1)ξ on φμ,l evaluated at k ∈K. The element φμ,l is in the induced representation, 
any differentiation of φμ,l along the Lie algebra m + n is zero, and we need formulas for 
Ad(k−1)ξ = Ad(k−1)ξe = ξk−1e mod m + n.

Lemma 3.3. Let V = V2+V1+V0 = Ce +V1+V0 be the Peirce decomposition with respect to 
the minimal tripotent e and P2, P1, P0 the corresponding projections. Any element ξu ∈ p
has the following decomposition according to (1.5), modm + n,

ξu = Re⟨u, e⟩ξ + Im⟨u, e⟩H0 +D(P1u, e) −D(e,P1u). (3.7)

Proof. Write u = P2u +P1u +P0u = ⟨u, e⟩e +u1+u0 = Re⟨u, e⟩e + i Im⟨u, e⟩e +u1+u0. Then

ξ⟨u,e⟩e = Re⟨u, e⟩ξe + Im⟨u, e⟩ξie,

with
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ξie = (ξie −H0) +H0 =H0, modn

by (1.8). In view of (1.7) we have

ξu1 = (ξu1 +D(e, u1) −D(u1, e)) + (D(u1, e) −D(e, u1)) =D(u1, e) −D(e, u1),modn,

and ξu0 ∈ m. This proves (3.7). ◻

Using Lemma 3.3 and the formula (2.26) we see that Ad(k−1)ξ, mod m + n, is

Ad(k−1)ξ = Re⟨k−1e, e⟩ξ + Im⟨k−1e, e⟩H0 +D(P1(k−1e), e) −D(e,P1(k−1e))
= Re⟨ke, e⟩ξ − Im⟨ke, e⟩H0 +D(P1(k−1e), e) −D(e,P1(k−1e)).

(3.8)

Hence

πν(ξ)φμ,l(k) = I + II + III (3.9)

with

I = −Re⟨k−1e, e⟩(ξφμ,l)(k),

II = Im⟨ke, e⟩(H0φμ,l)(k)

and

III = ([D(e,P1(k−1e)) −D(P1(k−1e), e)]φμ,l)(k).

Using the definition (1.10) of the induced representation we have that the right differ-
entiation of ξ on any element f ∈ L2(K/L) = IndGP (ν) has eigenvalue −ν, ξφμ,l = −νφμ,l, 
and the first term is

I = −Re⟨k−1e, e⟩(ξφμ,l)(k)

= ν Re⟨k−1e, e⟩φμ,l(k)
= ν

2
⟨ke, e⟩φμ,l(k) +

ν

2
⟨e, ke⟩φμ,l(k)

= I+ + I−

with

I+ = ν

2
⟨ke, e⟩φμ,l(k) =

ν

2
φ(1,1),1(k)φμ,l(k)

and

I− = ν
φ(1,1),−1(k)φμ,l(k).
2



G. Zhang / Journal of Functional Analysis 282 (2022) 109399 19
The second term II, in view of (3.4), is

II = Im⟨ke, e⟩(2ilφμ,l)(k)
= l⟨ke, e⟩φμ,l(k) − l⟨e, ke⟩φμ,l(k)
= lφ(1,1),1(k)φμ,l(k) − lφ(1,1),−1(k)φμ,l(k) = II+ + II−.

We proceed to find recursion formulas for φ(1,1),1φμ,l. For that purpose we find explicit 
coordinates for the complex torus exp(hCq )e, exp(hq)e ⊂ S =K/L ⊂ V . We shall treat all 
relevant functions as trigonometric functions on the compact homogeneous space K/L
and on the complex torus exp(hCq )[e].

Lemma 3.4. Recall the Jordan quadrangle {e, v1, w, v2} and E1, E2 in (2.9). If k =
exp(x1E1 + x2E2), x1, x2 ∈ C, then

k−1e = cosx1 cosx2e − (sinx1 cosx2v1 + sinx2 cosx1v2) + sinx1 sinx2w.

Proof. Using (2.8) we find

E1e = (D(v1, e) −D(e, v1))e = v1,E
2
1e = E1v1 = (D(v1, e) −D(e, v1))v1 = −e,

and generally

E2m
1 e = (−1)me, E2m+1

1 e = (−1)mv1.

Therefore

e−x1E1e = cosx1e − sinx1v1,

and also e−x2E2e = cosx2e − sinx2v2. We compute further

E2v1 = (D(v2, e) −D(e, v2))v1 = w, E2
2v1 = (D(v2, e) −D(e, v2))w = −v1,

and in general

E2m
2 v1 = (−1)mv1,E

2m+1
2 v1 = (−1)mw.

This implies that

e−x2E2v1 = cosx2v1 − sinx2w.

We have then
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k−1e = e−x1E1−x2E2e = e−x2E2(cosx1e − sinx1v1)
= (cosx1(cosx2e − sinx2v2) + sinx1(cosx2v1 − sinx2w) (3.10)

= cosx1 cosx2e − (sinx1 cosx2v1 + sinx2 cosx1v2) + sinx1 sinx2w. ◻

Lemma 3.5. The following recursion formulas hold,

φ(1,1),1φμ,l =
1
4 ∑

σ1,σ2=±1
cμ,l(μ + σ, l + 1)φμ+σ,l+1, (3.11)

φ(1,1),−1φμ,l =
1
4 ∑

σ1,σ2=±1
cμ,l(μ + σ, l − 1)φμ+σ,l−1, (3.12)

where cμ,l(μ + σ, l ± 1) are given in Theorem 3.1.

Proof. Observe again that by general tensor product arguments the product φ(1,1),±1φμ,l

is a sum of φμ+σ,l±1, σ = (±1, ±1). We use the idea in [29] by considering the leading term 
of φ(1,1),1Φλ,l and the Harish-Chandra limit formula (2.24); see also [30]. We recall (2.23)
and consider the expansion

φ(1,1),1Φλ,l = ∑
σ1,σ2=±1

Aλ−iσ,l+1Φλ−iσ,l+1 +L.O.T. (3.13)

(Presumably L.O.T. will not appear for general λ but it will not concern us here.) We 
let h = exp(H), H = x1(iE1) + x2(iE2). First it is clear from (2.26) and (3.10) that

φ(1,1),1(h) = ⟨he, e⟩ = coshx1 coshx2 =
1
4
(ex1 + e−x1)(ex2 + e−x2) = 1

4
ex1+x2 +L.O.T.

(3.14)
The coefficient 1

4 can also be obtained using the general formula (2.24); indeed the 
evaluation of Harish-Chandra c-function is

c((1,1),1) = c(α1 + α2,1) =
1
4
.

Using the limit formulas (2.24) again we see that the coefficient Aλ−i(1,1),l+1 of the leading 
term Φλ−i(1,1),l+1 is

Aλ−i(1,1),l+1 =
1
4

c(λ, l)
c(λ − i(α1 + α2), l + 1) .

Next we use Weyl group symmetry to find Aλ−iσ,l+1. With some abuse of notation we 
view σ = (σ1, σ2) = σ(1, 1) as an element in the Weyl group. The term Aλ−iσ,l+1Φλ−iσ,l+1
in the above expansion is also

Aλ−iσ,l+1Φλ−iσ,l+1 = Aλ−iσ,l+1Φσλ−i(1,1),l+1,



G. Zhang / Journal of Functional Analysis 282 (2022) 109399 21
since Φλ,l is W -invariant in λ and σ2 = 1. But the coefficients are unique in the above 
expansion, thus Aλ−iσ,l+1 is precisely Aσλ−i(1,1),l+1,

Aλ−iσ,l+1 = Aσλ−i(1,1),l+1 =
1
4

c(σλ, l)
c(σλ − i(α1 + α2), l + 1) .

Specifying the result to the case λ = −i(μ + ρ) we prove our claim; (3.12) is proved by 
the same method. ◻

We can now apply the lemma to both terms I and II,

I+ = ν

2
φ(1,1),1(k)φμ,l(k) =

ν

23 ∑
σ1,σ2=±1

cμ,l(μ + σ, l + 1)φμ+σ,l+1(k), (3.15)

I− = ν

2
φ(1,1),−1φμ,l(k) =

ν

23 ∑
σ1,σ2=±1

cμ,l(μ + σ, l − 1)φμ+σ,l−1(k), (3.16)

II+ = lφ(1,1),1(k)φμ,l(k) =
l

4 ∑
σ1,σ2=±1

cμ,l(μ + σ, l + 1)φμ+σ,l+1, (3.17)

II− = −lφ(1,1),−1(k)φμ,l(k) = −
l

4 ∑
σ1,σ2=±1

cμ,l(μ + σ, l − 1)φμ+σ,l−1. (3.18)

The third term III is

III = (D(e,P1(k−1e))φμ,l)(k) − (D(P1(k−1e), e)φμ,l)(k) =∶ III+ + III−.

Lemma 3.6. We have the following recurrence formula for the right differentiations of 
the vector fields D(e, P1(k−1e)) and −D(P1(k−1e), e) on φμ,l,

III+ = (D(e,P1(k−1e))φμ,l)(k) = ∑
σ1,σ2=±1

bμ+σ,l+1φμ+σ,l+1(k), (3.19)

III− = −(D(P1(k−1e), e)φμ,l)(k) = ∑
σ1,σ2=±1

bμ+σ,l−1φμ+σ,l−1(k), (3.20)

where the coefficients bμ+σ,l±1 are given by

bμ+σ,l+1 =
1
23 (σ1(μ1 + ρ1) + σ2(μ2 + ρ2) − (ρ1 + ρ2) − 2l))cμ,l(μ + σ, l + 1),

bμ+σ,l−1 =
1
23 (σ1(μ1 + ρ1) + σ2(μ2 + ρ2) − (ρ1 + ρ2) + 2l)cμ,l(μ + σ, l − 1).

Proof. Denote X the vector field

X(k) =D(e,P1(k−1e)) (3.21)

acting on functions on K by right differentiation, f → (X(k)f)(k). With some abuse of 
notation we abbreviate it sometimes as (Xf)(k), III+ = (X(k)φμ,l)(k) = (Xφμ,l)(k). 
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We prove first that Xφμ,l is (l + 1, l + 1)-spherical. Some care has to be taken as X is 
vector field taking values in the Lie algebra of kC; the transformation rule of Xφμ,l under 
the center of K in L0 is easily checked but we have to prove it for all L0. The space V1
is invariant under the subgroup L0 ⊂K, and

P1((hk)−1e) = P1(k−1h−1e) = χ(h)−1P1(k−1e), hP1((kh)−1e) = P1(k−1e), h ∈ L0.

Also elements h ∈ K act on D(x, y) as Jordan triple automorphisms Ad(h)D(u, v) =
D(hu, hv), D(u, v) is conjugate linear in v, and χ(h) = χ−1(h), h ∈ L0; elements k ∈ L
act as Jordan triple isomorphism as Le = e and L0 as isomorphism up to the character 
χ. Thus the vector field X(k) =D(e, P1(k−1e)) satisfies

X(hk) = χ(h)X(k), Ad(h)(X(kh)) = χ(h)X(k), h ∈ L0.

It follows by the chain rules (3.2) and (3.3) that

(X(hk)φμ,l)(hk) = (X(hk)φμ,l(h⋅)) (k)
= (χ(h)X(k)χl(h)φμ,l(⋅)) (k)

= χl+1(h)(X(k)φμ,l)(k)

and

(X(kh)φμ,l)(kh) = (Ad(h)X(kh))(φμ,l(⋅h))(k) = χ(h)χl(h)(X(k)φμ,l)(k)

= χl+1(h)(X(k)φμ,l)(k).

Thus (X(k)φμ,l)(k) must be of the form (3.19). To find the coefficients we consider 
the subgroup SL(2, C)2 = SL(2, C) × SL(2, C) with the Lie algebra sl(2, C) ⊕ sl(2, C)
generated by (2.9) and the restriction of φμ,l on SL(2, C) × SL(2, C) and its expansion 
in terms of spherical polynomials of SL(2, C), namely we consider the branching of the 
representation (KC, Wμ,l) under SL(2, C) × SL(2, C). (The connected subgroup in GC

with Lie algebra sl(2, C) ⊕ sl(2, C) can be a finite quotient of SL(2, C)2 by a finite 
normal subgroup. But this would not change the arguments below.) The highest weight 
of the representation Wμ,l restricted to SL(2) ×SL(2) is μ = (μ1, μ2) = μ1α1 +μ2α2, and 
thus the representation ⊙μ1 C2 ⊗⊙μ2 C2 of SL(2) × SL(2) appears in (KC, μ), and all 
other representations are of the form (μ′1, μ′2) with μ′1 < μ1, or μ′2 < μ2. Let ψm,l(g) be the 
(l, l)-spherical polynomial for the group SL(2, C) in the Appendix A, (A.3). Comparing 
the leading term of φμ,l(g1, g2) and ψμ1,l(g1)ψμ2,l(g2) we have then

φμ,l(g1, g2) = c(−i(μ + ρ), l)ψμ1,l(g1)ψμ2,l(g2) +L.O.T. (g1, g2) ∈ SL(2,C)2.

The vector field X(k) =D(e, P1(k−1e)) restricted to
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k = (k1, k2) = ( exp(x1E1), exp(x2E2)) ∈ SU(2) × SU(2)

is, by Lemma 3.3, of the form

X(k) = − sinx1 cosx2D(e, v1) − sinx2 cosx1D(e, v2)
= − sinx1 cosx2E

−
1 − sinx2 cosx1E

−
2 .

The vector field X(k) takes values also in the complexification of the Lie algebra sl(2, C) +
sl(2, C). Thus the restriction

(Xφμ,l)∣SU(2)×SU(2) =X (φμ,l∣SU(2)×SU(2)) ,

i.e., the restriction of the differentiation is the same as the differentiation of the restric-
tion. Moreover the Lie algebra differentiations by D(e, v1), D(e, v2) clearly preserve the 
degree. Consequently

(Xφμ,l)(k1, k2) = c(−i(μ + ρ), l)( − sinx1(E−1ψμ1,l)(k1))( cosx2ψμ2,l(k2))

+ c(−i(μ + ρ), l)( − sinx2(E−2ψμ2,l)(k2))( cosx1ψμ1,l(k1)) +L.O.T .

We use now Lemma A.1, (A.6), and obtain

− sinxj(E−j ψμj ,l)(kj) =
1
4
(μj − l)ψμj+1,l+1(kj) +L.O.T., j = 1,2. (3.22)

The leading term of cosx2ψμ2,l(k2), k2 = exp(x2E2), is clearly the same as 1
2ψμ2+1,l(k2). 

Thus

( − sinx1(E−1ψμ1,l)(k1))( cosx2ψμ2,l(k2)) =
1
8
(μ1 − l)ψμj+1,l+1(kj)ψμ2+1,l(k2);

similarly for ( − sinx2(E−2ψμ2,l)(k2))( cosx1ψμ1,l(k1)). We have then

(Xφμ,l)(k1, k2) =
1
8
(μ1 − l + μ2 − l)c(−i(μ + ρ), l)ψμ1+1,l+1(k1)ψμ2+1,l+1(k2) +L.O.T.

= 1
8
(μ1 + μ2 − 2l)c(−i(μ + ρ), l)ψμ1+1,l+1(k1)ψμ2+1,l+1(k2) +L.O.T.

On the other hand the leading term in RHS of (3.19) is

bμ+(1,1),l+1φμ+(1,1),l+1(k1, k2)
= bμ+(1,1),l+1c(−i(μ + (1,1) + ρ), l + 1)ψμ1+1,l+1(k1)ψμ2+1,l+1(k2) +L.O.T.

It follows then that
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bμ+(1,1),l+1 =
1
8
(μ1 + μ2 − 2l)cμ,l(μ + (1,1), l + 1)

where cμ,l(μ + (1, 1), l + 1) is given in (3.5). This proves the formula for the leading 
coefficient.

To find the other coefficients we write

μ1 + μ2 − 2l = (μ1 + ρ1) + (μ2 + ρ2) − (ρ1 + ρ2) − 2l

and use the Weyl group symmetry as in the proof of Lemma above to get

bμ+σ,l+1 =
1
8
(σ1(μ1 + ρ1) + σ2(μ2 + ρ2) − (ρ1 + ρ2) − 2l))cμ,l(μ + σ, l + 1),

for σ1, σ2 = ±1.
To prove (3.20) we consider the vector field Y (k) = −(D(P1(k−1e), e)φμ,l) and its 

restriction to SL(2, C)2. We have

Y = Y (k) = sinx1 cosx2E
+
1 + sinx2 cosx1E

+
2 .

We use then (A.5) to find the leading term of the expansion Y φμ,l and obtain all the 
coefficients by Weyl group symmetry. ◻

Hence

III+ = (D(e,P1(k−1e))φμ,l)(k)

= ∑
σ1,σ2=±1

1
23 (σ1(μ1 + ρ1) + σ2(μ2 + ρ2) − (ρ1 + ρ2) − 2l)cμ,l(μ + σ, l + 1)φμ+σ,l+1(k),

III− = −(D(P1(k−1e), e)φμ,l)(k)

= ∑
σ1,σ2=±1

1
23 (σ1(μ1 + ρ1) + σ2(μ2 + ρ2) − (ρ1 + ρ2) + 2l)cμ,l(μ + σ, l − 1)φμ+σ,l−1(k).

Altogether we find πν(ξ)φμ,l = (I+ + II+ + III+) + (I− + II− + III−),

(I+ + II+ + III+) = 1
23 ∑

σ1,σ2=±1
(ν + σ1(μ1 + ρ1) + σ2(μ2 + ρ2) − (ρ1 + ρ2))φμ+σ,l+1,

(I− + II− + III−) = 1
23 ∑

σ1,σ2=±1
(ν + (σ1(μ1 + ρ1) + σ2(μ2 + ρ2) − (ρ1 + ρ2))φμ+σ,l−1.

This finished the proof. ◻

Remark 3.7. We have used restrictions to subgroups in our expanding the differentia-
tion πν(ξ)φμ,l of spherical polynomials. It might be important to note that generally 
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differentiations and restrictions are not commuting and restrictions are not injective. 
Here we have proved in apriori that there is an expansion of πν(ξ)φμ,l in terms of spher-
ical polynomials φμ+σ,l±1 each of them being uniquely determined by their restriction 
on exp(ηCq ), and eventually we used the fact that right differentiations by Lie algebra 
elements commute with left multiplications by Lie group elements.

Remark 3.8. It is remarkable that in the formula the line bundle parameter l disappears
due to the cancellation of 2l in the sum II + III. When g = su(r + b, r), r > 1, k =
s(u(r + b) + u(r)), the action of π on I(ν) has been studied in details in [8]. In this case 
the parameter l indeed does not appear in affine term ν+σ1(μ1+ρ1) +σ2(μ2+ρ2) −ρ1−ρ2)
for the action; also the coefficients −A±,± in [8, Lemma 4.1] can be formulated, writing 
μ1 = (μ1 + ρ1) − ρ1, μ2 = (μ2 + ρ2) − ρ2, as

ν ± (μ1 + ρ1) ± (μ2 + ρ2) − ρ1 − ρ2,

with our ν being their −a = −(α+β), μ1 =m1+m2, μ2 = n1+n2, ρ1 = p −1, ρ2 = q−1, and 
our l their m1 −m2 = n2 −n1; see further [8, (4.10)-(4.11)]. The Weyl group symmetry is 
again manifest here.

4. Reductions points, complementary and composition series

4.1. Reduction points and finite dimensional subrepresentations

We study now the existence of intertwining operators between representations I(ν)
and I(ν′), and we find certain finite dimensional representations at the reduction point 
of I(ν).

Theorem 4.1. Let g ≄ sp(r, R) be a simple Hermitian Lie algebra of rank r ≥ 2.

(1) There exists an intertwining operator between the induced irreducible representations 
I(ν) and I(ν′) if and only if ν = ν′ or ν + ν′ = 2ρg.

(2) I(ν) is reducible if and only if ν is an even integer, ν ≥ 2ρ1 + 2 or ν ≤ 2ρ2 − 2. 
Moreover at the point ν = −2k, k ≥ 1, the irreducible submodule in symmetric tensor 
product Sk(gC) generated by ⊗kE0 is realized as finite-dimensional subrepresentation 
of I(ν) via

T ∶ Sk(gC) → I(ν),X ↦ f(g) = (⊗k Ad(g)(E0),X), g ∈ G, (4.1)

where E0 = ξie − iH0 ∈ n2 is the basis vector of the center n2 of the nilpotent algebra 
n = n1 + n2 and (⋅, ⋅) is the Killing form in gC extended to Sk(gC).

Proof. The first part and the second part on reductions points are done similarly as in 
[8,25,30]. Now let ν = −2k be an negative even integer. We prove that T above is an 
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intertwining operator from Sk(gC) into I(ν), ν = −2k. The functions f = fX transform 
under P =MAN as

f(gm) = (⊗k Ad(gm)(E0),X) = (⊗k Ad(g)Ad(m)(E0),X)
= (⊗k Ad(g),X) = f(g), m ∈M,

since M centralizes E0, f(gn) = f(g), n ∈ N , as E0 is in the center of N , and

f(getξ) = (⊗k Ad(g)Ad(etξ)(E0),X) = (⊗k(e2t Ad(g)(E0),X)
= e2ktf(g) = e−νtf(g), m ∈ N,

since ad(ξ)E0 = 2E0, Ad(etξ)(E0) = e2tE0.
Thus f ∈ I(ν). The intertwining property of T is obvious by its definition. This 

completes the proof. ◻

4.2. Complementary series

We determine the complementary series i.e., that case when ν is real and the whole 
module (gC, K)-module I(ν) is unitary and irreducible.

Theorem 4.2. The complementary series I(ν) appears precisely in the range ν = ρg + δ, 
∣δ∣ < δ0,

δ0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + b, g = su(r + b, r),
3, g = so∗(2r),
n − 3, g = so(2, n), n ≥ 4,
3, g = e6(−14),
5, g = e7(−25).

Proof. The abstract arguments in determining the complementary series here are the 
same as in [8,25,30], so we will only present some brief computations. Let ν be real. 
Suppose the (gC, K)-module I(ν) is irreducible with invariant Hermitian inner product 
⟨⋅, ⋅⟩ν . By Schur’s Lemma we have ⟨f, f⟩ν = S(μ, l)∥f∥2 for all f ∈Wμ,l, where ∥f∥2 is the 
norm square in L2(K/L) and S(μ, l) = S(ν, μ, l) is the Schur proportionality constant. 
Then πν(ξ) is skew symmetric and in particular

⟨πν(ξ)φμ,l, φμ+σ,l+1⟩ν = −⟨φμ,l, πν(ξ)φμ+σ,l+1⟩ν .

Write the expansion of πν(ξ)φμ,l in Theorem 3.1 as

πν(ξ)φμ,l = ∑ A(ν,μ, l;μ + σ, l + 1)φμ+σ,l+1 + ∑ A(ν,μ, l;μ + σ, l − 1)φμ+σ,l−1.

σ1,σ2=±1 σ1,σ2=±1
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Thus the invariance of the Hermitian form above becomes

A(ν,μ, l;μ + σ, l + 1)S(μ + σ, l + 1) = −A(ν,μ + σ, l + 1;μ, l)S(μ + σ, l),
A(ν,μ, l;μ + σ, l − 1)S(μ + σ, l − 1) = −A(ν,μ + σ, l − 1;μ, l)S(μ, l).

That I(ν) is unitary and irreducible is equivalent to all Schur proportionality constants 
S(μ, l) being positive. It implies that A(ν, μ, l; μ +σ, l + 1) and A(ν, μ +σ, l + 1; μ, l) have 
opposite signs, as well as A(ν, μ, l; μ + σ, l − 1) and A(ν, μ +σ, l − 1; μ, l). This determines 
the range of ν, given by the condition

∣δ∣ <min{ρ, ρ − 2ρ2,2ρ1 − ρ + 2}.

By case computations we get the range as claimed. ◻

Remark 4.3. The complementary series for SU(p, q) has been found before in [13, (ii)(b), 
p. 49; 5.2, p. 69], [8, 4.4].

4.3. Composition series and unitarizable subrepresentations

The composition series for I(ν) at reducible points ν is a bit involved. We shall only 
determine the unitary subrepresentations at the reduction points ν = −2k in Theorem 4.1
(2) for g ≄ su(p, q); the case of g = su(p, q) is studied in [8]. Note that the formulas for the 
K-type (μ1, μ2, l) in the composition series for g ≠ su(p, q) are somewhat simpler than 
su(p, q). This is because there is a constraint μ1 ≥ μ2 if g ≄ su(p, q) whereas it disappears 
for g = su(p, q).

The proof of the following result is done by examining the signs of the coefficients 
ν + σ1(μ1 + ρ1) + σ2(μ2 + ρ2) − ρ1 − ρ2 in Theorem 3.1.

Theorem 4.4. Suppose ν = −2k, k ≥ 1, is an even integer. Then there is a composition 
series of I(−2k) with K-types,

0 ⊂M1 = {(μ, l);μ1 + μ2 ≤ 2k} ⊂M2 = {(μ, l);μ1 − μ2 ≤ 2k + 2ρ2} ⊂ I(−2k).

The quotient I(−2k)/M2 is unitarizable, sub-representation M1 and the sub-quotient 
M2/M1 are not unitarizable.

Remark 4.5. The anonymous referee raised the question of whether some sub-quotients 
of I(ν) are unitarizable highest weight representations. Indeed for the rank-one group 
SU(p, 1) some unitarizable highest weight representations can appear as sub-quotients of 
I(ν); the same is true for Siegel parabolic Q =MAN with non-trivial representations of 
Levi component M [23]. However it seems that for higher rank groups and for Heisenberg 
parabolic P =MAN one has to take infinite-dimensional unitary highest weight repre-
sentations of M and study the induced representations from P =MAN to G in order to 
realize the unitarizable highest weight representations; indeed M is a Hermitian Lie group 
and has unitary highest weight representations. See e.g. [13,14] for the case of SU(2, p).
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5. The cases of g = su(d, 1) and g = sp(r, R)

We treat the remaining cases when g = sp(r, R), su(d, 1) where the space K/L0 is the 
complex projective space P r−1, Pd−1, respectively.

5.1. g = su(d, 1)

This case is already treated in [11] by using rather explicit differentiation of hyper-
geometric functions. We shall give somewhat easier proof of their results by using our 
method above; this avoids explicit computations involving special functions and gives 
conceptual expression for the action of πν(ξ) in terms of Harish-Chandra c-functions.

The Cartan decomposition is g = k + p = u(d) + Cd, with kC = gl(d). The Jordan 
triple system V = Cd with {x, y, z} = D(x, y)z = ⟨x, y⟩z + ⟨z, y⟩x. We fix the tripotent 
e = e1, the standard basis vector of Cd and ξ ∶= ξe. The half-sum ρg is ρg = d. The space 
S = K/L is the sphere S in Cd with L the isotropic subgroup of e ∈ S, and S1 = K/L0
the projective space P(Cd) with S → S1 as a circle bundle over P(Cd) by the defining 
map z ↦ [z]. The tangent space of S1 is realized as T (1,0)

[e]
S1 = {D(v, e); v ∈ V1 = Cd−1}, 

T
(0,1)
[e]

S1 = {D(e, v); v ∈ V1}. We fix an sl(2)-subalgebra in k as

E+ =D(e2, e), E− =D(e, e2),E = E+ −E− ∈ T[e](K/L0).

Put H = [E+, E−] = D(e2, e2) −D(e, e). The element iE generates a Cartan subalgebra 
for the non-compact dual (k∗1, l1), and positive roots are {2α1, α1} with α1 the dual 
element of iE, and the half-sum is ρk∗1 = d − 1.

The decomposition of L2(K/L) is well-known,

L2(K/L) = ∑
m≥∣l∣,m=lmod2

Wm,l.

Each space Wm,l is generated by z1
pz2

q, with

p = m + l
2

, q = m − l
2

, m ≥ ∣l∣,m = l mod 2.

Now the coefficients in the expansion of πν(ξ)φm,l can be written as (ν±(m +d −1) +c)
for some constants c as in Theorem 3.1. We write them explicitly.

Theorem 5.1.

(1) The action of πν(ξ) on φm,l is given by

22πν(ξ)φm,l = (ν +m + l)cm,l(m + 1, l + 1)φm+1,l+1
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+ (ν −m − 2d + 2 + l)cm,l(m + 1, l + 1)φm−1,l+1

+ (ν +m − l)cm,l(m + 1, l − 1)φm+1,l−1

+ (ν −m − l − 2d + 2)cm,l(m − 1, l − 1)φm−1,l−1.

(2) The complementary series is in the range ν = ρg + δ, ∣δ∣ < d = ρg.

Proof. We follow the computations of πν(ξ)φm,l in the proof of Theorem 3.1 and indicate 
the necessary changes. We find first the coefficient of φm,l and the other coefficients will 
be found by general arguments. We have πν(ξ)φm,l = I + II + III, I = I+ + I−,

I+ = ν

2
φ1,1(k)φm,l(k)

and the spherical polynomial φ1,1(k) is

φ1,1(k) = φ1,1(z) = ⟨ke, e⟩ = z1, z = ke ∈ S,

as a function on the sphere S = K/L. For k = exp(tE) we have φ1,1(k) = cosx and its 
complexification is coshx = 1

2(e
x+e−x). The expansion (3.14) now has coefficient 12 . Thus 

the leading term in I+ is

ν

4
cm,l(m + 1, l + 1)φm+1,l+1

where cm,l(m + 1, l + 1) is a quotient of two Harish-Chandra c-functions.
The term II+ in (3.17) in the present case becomes II+ = lφ1,1φm,l and has the leading 

term

l

2
cm,l(m + 1, l + 1)φm+1,l+1.

The third term III+ is treated similarly as in Lemma 3.6, and (3.22) gives that the 
leading term of III+ is m−l4 cm,l(m +1, l+1)φm+1,l+1. Altogether terms involving φm+1,l+1
in πν(ξ)φm,l are

ν + 2l +m − l
4

cm,l(m + 1, l + 1)φm+1,l+1 =
ν +m + l

4
cm,l(m + 1, l + 1)φm+1,l+1

with

ν +m + l
4

=
ν + (m + ρk∗1) − ρk∗1 + l

4

in terms of the Weyl group invariant parameter m +ρk∗1 . Observe again that the highest 
weight with respect to E is mα1 so the Weyl group symmetry is with respect to (m +
ρk∗)α1. The coefficient of φm+1,l+1 involving ν is
1
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ν +m + l = ν + (m + ρk∗1) − ρk∗1 + l.

Thus φm−1,l+1 has coefficient

ν − (m + ρk∗1) − ρk∗1 + l = ν −m − 2ρk∗1 + l = ν −m − 2d + 2 + l.

The other two coefficient φm±1,l−1 is found by the unitarity of πν(ξ) at ν = ρg + ix, x ∈ R
and by the Weyl group symmetry.

The rest on the complementary series is obtained as in [11]. ◻

Remark 5.2. The statement of [11, Theorem 4.1] for the group SU(n, 1) is (their d = 2)

πν(H)em,l = am+1,l+1(ν +m + l)em+1,l+1 + am−1,l+1(ν −m + l − 2n + 2)em−1,l+1
+ am+1,l−1(ν +m − l)em+1,l−1 + am−1,l+1(ν −m − l − 2n + 2)em−1,l−1

where am±1,l±1 are certain positive constants independent of ν. The important coefficients 
are ν+m + l for em+1,l+1 and ν+m − l for em+1,l−1, which have rather simple form, and the 
rest is obtained by Weyl group symmetry. This coincides with our formula. As mentioned 
above in Remark 3.2 it is enough to determine the leading coefficient am+1,l+1(ν +m + l).

5.2. g = sp(r, R), r ≥ 3

The Jordan triple system here is V =Ms
r = {v ∈Mr(C); v = vt} of complex matrices 

with the triple product D(u, v)w = uv∗w + wv∗u. This case is rather special and we 
provide all details. The normalization of the Euclidean norm in p+ is as before with 
minimal tripotents having norm 1. The group K = U(r) acts on V by A ∈K ∶ Z → AZAt. 
To avoid confusion with various realizations we recall that all Lie algebra elements are 
realized via Jordan triple products as in Section 1, in particular Lie algebra elements 
of kC = gl(r, C) appear as D(u, v) ∶ w → D(u, v)w; D(u, v) are identified with usual 
matrices uv∗ if we still want matrix realizations.

We fix the minimal tripotent the diagonal matrix e = diag(1, 0, ⋯, 0) ∈ V and ξ = ξe ∈ p
in (1.2). The functional ρg is now ρg = r. A subtle point here is that the group L =
M ∩K ⊂K is

L = Z2 ×U(r − 1) = {h = diag(h0, h1);h0 = ±1, h ∈ U(r − 1)}.

Let

L0 = U(1) ×U(r − 1) = {h = diag(h0, h1);h0 ∈ U(1), h ∈ U(r − 1)}.

Thus S = K/L ⊂ V is the real projective space P(R2r) ⊂ V and S1 = K/L0 is again the 
complex projective space P(Cr) ⊂ P(V ).
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The Peirce decomposition V = V2 + V1 + V0 with respect to e is the block (1 + r − 1) ×
(1 × r − 1)-partition of V . We fix

v = [0 1
1 0] ∈ V1, w = [0 0

0 1] ∈ V0,

v is a tripotent of rank two and w of rank one. The Cartan decomposition of k is k =
u(r − 1) + q where elements in q = {D(u, e) −D(e, u); u ∈ V1} = Cr−1 as real spaces.

We fix also the following sl(2) elements,

E =D(v, e) −D(e, v) = E+ −E− ∈ q, H = [E+,E−] =D(v, v) − 2D(e, e) (5.1)

with [H, E+] = 2E+. As matrices D(e, v) = E12 ∈ gl(r, C). (Note the difference between 
this case and (2.9), and this has been studied in greater details in [22].) The symmetric 
pairs (k∗, l0) = u(r − 1, 1), u(r − 1) + u(1)), (k∗1, l1) = (su(r − 1, 1), s(u(r − 1) + u(1))), and 
the roots of (k∗1, iE) are 2 and 1 with ρk1∗ = r − 1, and ρg = 1 + ρk∗1 .

Lemma 2.5 in the present case is

L2(K/L) = ∑
m≥∣l∣

W2m,2l.

Here each space W2m,2l is generated by z1
(m+l)z2

(m−l) and contains the spherical poly-
nomial φ2m,2l; it is the space of (p, q)-harmonic polynomials of even degree 2m, p =m + l, 
q =m − l.

Theorem 5.3.

(1) The action of πν(ξ) on φ2m,2l is given by

23πν(ξ)φ2m,2l = (ν + 2m)cm,l(m + 1, l + 1)φ2m+2,2l+2

+ (ν − 2m − 2r + 2)cm,l(m − 1, l + 1)φ2m−2,2l+2

+ (ν + 2m)cm,l(m + 1, l − 1)φ2m+2,2l−2

+ (ν − 2m − 2r + 2)cm,l(m − 1, l − 1)φ2m−2,2l−2

+ (ν − r)cm,l(m, l + 1)φ2m,2l+2 + (ν − r)cm,l(m, l − 1)φ2m,2l−2

(2) There is no complementary series in the family I(ν).

Proof. First we find the irreducible components in the action X ⊗ φ ↦ πν(X)φ, X ∈ p±, 
φ ∈ W2m,2l as representations of U(r). In the realization above W2m,2l is the space of 
(p, q) = (m +1, m − l)-spherical harmonics on the sphere in Cn of highest weight pε1−qεr, 
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with p+ of highest weight 2ε1. The tensor product p+⊗W2m,2l, written in terms of highest 
weights, is generically

2ε1 ⊗ (pε1 − qεr) = (p + 2)ε1 ⊕ ((p + 1)ε1 − (q − 1)εr) ⊕ (pε1 − (q − 2)εr) ⊕REST

with the term REST containing those summands which are not of the form W2m,2l
and irrelevant to us. The linear term in ν in πν(X)φ involves the pointwise product 
p+ ⋅W2m,2l =W2,2 ⋅W2m,2l of polynomials in W2,2 and in W2m,2l. It is a general fact [24, 
Theorem 12.4.4] that for r ≥ 3,

W2,2 ⋅W2m,2l =W2m+2,2l+2 +W2m−2,2l+2 +W2m,2l+2

whenever each term makes sense. Thus πν(ξ)φ2m,2l is a sum of six terms

a1,1φ2m+2,2l+2 + a−1,1φ2m−2,2l+2 + a1,−1φ2m+2,2l−2 + a−1,−1φ2m−2,2l−21

+ a0,1φ2m,2l+2 + a0,−1φ2m,2l−2.

Next we follow the earlier computations in Section 4 and consider the linear terms I±

in ν, with

I+ = ν

2
⟨ke, e⟩φ2m,2l(k).

The matrix coefficient ⟨ke, e⟩ = φ2,2(k), and its restriction on the torus exp(RE)e is

exp(xE)e = [ cos2 x cosx sinx
cosx sinx sin2 x

] = cos2 xe + cosx sinxv + sin2 xw. (5.2)

Thus φ2,2(k) = (cosx)2 and it has an expansion

φ2,2(k) = (cosx)2 = 1
4
(e2ix + 2 + e−2ix).

The leading term in I+ is
ν

8
cm,l(m + 1, l + 1)φ2m+2,2l+2

where cm,l(m + 1, l + 1) is the quotient Harish-Chandra c-functions for φ2m+2,2l+2 and 
φ2m,2l.

In the second term II we have II+ = lφ2,2φ2m,2l, which has the leading term

l

4
cm,l(m + 1, l + 1)φ2m+2,2l+2.

The vector field X(k) =D(e, P1(k−1e)) in (3.21) has restriction

X(exp(xE)) =D(e,P1(exp(−xE)e)) = − cosx sinxD(e, v),
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by (5.2). The leading term of the expansion − cosx sinxE−φ2m,2l is obtained, using the 
proof of Lemma A.1 in Appendix A, as

− cosx sinxE−φ2m,2l(exp(xE)) = 2m − 2l
8

ei2mx +L.O.T.

Altogether we find

I+ + II+ + III+ = ν + 2l + 2m − 2l
8

cm,l(m + 1, l + 1)φ2m+2,2l+2 +L.O.T.

= ν + 2m
8

cm,l(m + 1, l + 1)φ2m+2,2l+2 +L.O.T.

By the same considerations using Weyl group symmetry we can find the first 4 coefficients 
of a’s.

Finally to find the coefficients a0,1 and a0,−1 we use the results in [15]. It is proved there 
that (I(ν), πν) for ν = r = ρg (in our parametrization) is reducible with two irreducible 
components consisting of W2m,2l, m + l = 0 or m + l = 1 (mod 2), respectively. The 
coefficient a0,1 is affine linear in ν, hence a0,1 = 0 for ν = r since the parity of m +l changes 
from W2m,2l to W2m,2l+2. Consequently a0,1 = (ν − r)c for some scalar constant c. This 
constant c is the coefficient of ν in the expansion of the product ν2 ⟨ke, e⟩φ2m,2l(k) of two 
spherical polynomials on the projective sphere K/L. The polynomial ⟨ke, e⟩ = z2

1 , with 
kL ∈ K/L being represented by z on the sphere. Thus ν2 ⟨ke, e⟩φ2m,2l(k) = ν

2 z
2
1φ2m,2l(z)

can be found by repeatedly using the elementary expansion of z1φm′,l′(z), and we find 
the coefficient c of φ2m,2l+2 is positive whenever m ≥ ∣l + 1∣. The same argument applies 
also to a0,−1.

The rest is done as in the proof of Theorem 3.1 above. ◻

Remark 5.4. Even integers ν = −2m are reduction points for I(ν) in both cases above, 
g = su(d, 1), sp(r, R). The map (4.1) realizes the leading component in Sm(gC) as a 
subrepresentations of I(ν). The coeffcient (ν + 2m) in the above theorem can also be 
obtained using this result.

As mentioned above it might be interesting to study induced representations 
IndGMAN(τ ⊗ eν ⊗ 1) with τ being a unitary highest weight representation of M =
Z2 × Sp(r − 1, R).
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Appendix A. Recursion formulas for differentiations of spherical polynomials

Let

SU(2) = {g = [ a b
−b̄ ā

] ; ∣a∣2 + ∣b∣2 = 1}

and fix the following Lie algebra sl(2, C) elements,

H = [1 0
0 −1] , E

+ = [0 1
0 0] ,E

− = [0 0
1 0] ,E = E

+ +E− ∈ isu(2).

Then the sl(2)-algebras sl(2) = CHj+CE+j +CE−j , j = 1, 2, defined in (2.9) are isomorphic 
to the present sl(2) via the identification

Hj ←→H,E±j ←→ E±;

as well as the identification of the compact su(2)-real forms

su(2) = RiHj +REj +R(i(E+j +E−j )) ←→ RiH +RE +R(i(E+ +E−)).

Let

U(1) = {uθ = [e
iθ 0
0 e−iθ

] = eiθH} .

Recall χl(Hj) = −l and the transformation rule (2.22) of φμ,l under exp(itHj). Accord-
ingly we let χl(H) = −l, and the spherical polynomials φm,l in the present case satisfy 
φm,l(eiθHg) = φm,l(geiθH) = e−ilθφm,l(g). Consider the representation of SL(2, C) on the 
symmetric tensor Sm ∶= ⊙mC2 of the defining representation C2, and write the action 
simply as g → gv, v ∈ SmC2, as well as the Lie algebra action. Let −m ≤ l ≤ m, m = l

mod 2. The l-spherical polynomial is given by the matrix coefficient

φm,l(g) = (
m

k
)⟨g(ek1em−k2 ), ek1em−k2 ⟩,0 ≤ k ≤m, l =m − 2k, (A.1)

where the tensor ek1em−k2 is as usual viewed as polynomial on the dual space of C2, namely 
the polynomial zk1 zm−2 on the dual space. This is verified by

φm,l(guθ) = φm,l(geiθH) = ⟨geiθH(ek1em−k2 ), ek1em−k2 ⟩ = ei(2k−m)θφm,l(g)
= e−ilθφm,l(g) = χl(uθ)φm,l(g),

(A.2)

also φm,l(uθg) = χl(uθ)φm,l(g) along with the normalization φm,l(I) = (mk )∥e
k
1e

m−k
2 ∥2 = 1. 

For our purpose in Section 3 it is more convenient to consider the spherical polynomial
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ψm,l(g) =
2m

(m
k
)
φm,l(g) = 2m⟨g(ek1em−k2 ), ek1em−k2 ⟩, l =m − 2k, (A.3)

which has the normalization the leading term of ψm,l(exp tE) being eimt, i.e.

ψm,l(exp tE) = eimt +L.O.T .,

where L.O.T. is a trigonometric polynomial of lower order. The following lemma is used in 
the proof of Lemma 3.6. Actually we need only to find the leading term of the trigonomet-
ric polynomials ⟨ge1, e2⟩(E−φm,l)(g) and ⟨ge2, e1⟩(E+φm,l)(g) for g = exp(tE), which is 
elementary.

Lemma A.1. The following recurrence formulas hold,

⟨ge1, e2⟩(E−φm,l)(g) =
1
4
(m − l)(m + l + 2)

m + 1
(φm+1,l+1 − φm−1,l+1) , (A.4)

⟨ge2, e1⟩(E+φm,l)(g) =
1
4
(m + l)(m − l + 2)

m + 1
(φm+1,l−1 − φm−1,l−1) . (A.5)

When restricted to g = exp(xE) = [ cosx sinx
− sinx cosx] and written in terms of ψm,l they are

− sinx(E−ψm,l)(g) =
1
4
(m − l)ψm+1,l+1 −

1
4
(m + l + 2)(m − l)2

m(m + 1) ψm−1,l+1, (A.6)

sinx(E+ψm,l)(g) =
1
4
(m + l)ψm+1,l−1(g) −

1
4
(m − l + 2)(m + l)

m(m + 1
ψm−1,l−1(g). (A.7)

Proof. We prove (A.5) and (A.4) is proved by similar computations. First we find 
the weight of f(g) = ⟨ge2, e1⟩(E+ψm,l)(g) under the regular left and right actions of 
exp(iθH). We have E+ is of weight 2 under ad(H). Also the matrix coefficient ⟨ge2, e1⟩
transforms as ⟨geiθHe2, e1⟩ = e−iθ⟨ge2, e1⟩, thus it is of weight −1 under the right regular 
action of H. The character χl is defined by χl(H) = −l thus f(g) = ⟨ge2, e1⟩(E+ψm,l)(g) is 
of weight −l+2 −1 = −(l−1) = χl−1(H) in the sense f(g exp(iθH)) = χl−1(exp(iθH))f(g). 
Similarly ⟨exp(iθH)ge2, e1⟩ = eiθ⟨ge2, e1⟩ and the right differentiation by E+ commutes 
with the left action. Thus f(exp(iθH)g) = e−i(l−1)θf(g), and f(g) is a linear combination 
of φm+1,l+1 and φm−1,l+1 as it is the matrix coefficient of C2 ⊗ Sm = Sm+1 ⊕ Sm−1C2,

f(g) = Aφm+1,l−1 +Bφm−1,l−1, (A.8)

with some unknown constants A, B.
We have φm,l(g) = (mk )⟨g(e

k
1e

m−k
2 ), ek1em−k2 ⟩, and

(E+φm,l)(g) = (
m)⟨g(E+(ek1em−k2 )), ek1em−k2 ⟩ = (m)(m − k)⟨g(ek+11 em−k−12 ), ek1em−k2 ⟩,

k k
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since E+ek1e
m−k
2 = (m − k)ek+11 em−k−12 . Its inner product with ⟨ge2, e1⟩ is

⟨ge2, e1⟩⟨g(ek+11 em−k−12 ), ek1em−k2 ⟩ = ⟨g(e2 ⊗ ek+11 em−k−12 ), e1 ⊗ ek1e
m−k
2 ⟩.

Both e1⊗ek1em−k2 and e2⊗ek+11 em−k−12 are of weight i(1 +2k−m) under H, the correspond-
ing weight vector in the space Sm+1 respectively Sm−1 is ek+11 em−k2 resp. ek1em−k−12 with 
matrix coefficient ⟨g(ek+11 em−k2 ), ek+11 em−k2 ⟩, ⟨g(ek1em−k−12 ), ek1em−k−12 ⟩. In view of (A.1) the 
formula (A.8) becomes

(m
k
)(m − k)⟨g(e2 ⊗ ek+11 em−k−12 ), e1 ⊗ ek1e

m−k
2 ⟩

= A(m + 1
k + 1

)⟨g(ek+11 em−k2 ), ek+11 em−k2 ⟩ +B(m − 1
k
)⟨g(ek1em−k−12 ), ek1em−k−12 ⟩.

(A.9)

Evaluating at g = I we get B = −A. Next we specify the equality to the self adjoint 
element

g = [chx shx
shx chx] = [

ch x
2 sh x

2
sh x

2 ch x
2
]
2
=∶ h2

and look for the coefficients of e(m+1)x. We have

⟨g(e1 ⊗ ek1e
m−k
2 ), e2 ⊗ ek+11 em−k−12 ⟩ = ⟨h(e1 ⊗ ek1e

m−k
2 ), h(e2 ⊗ ek+11 em−k−12 )⟩,

and its leading term is

e(m+1)x

22(m+1) ⟨(e1 + e2)m+1, (e1 + e2)m+1⟩ =
e(m+1)x

2m+1
,

and the LHS has leading term (m
k
)(m − k) e(m+1)x2m+1 . The term e(m+1)x appears only in the 

first summand in the RHS which has leading term A(m+1
k+1)

e(m+1)x

2m+1 . Thus

A =
(m
k
)(m − k)
(m+1
k+1)

= (m − k)(k + 1)
m + 1

= (m + l)(m − l + 2)
4(m + 1) .

This proves (A.5). ◻

Remark A.2. In terms of ψm,l they become

⟨ge1, e2⟩(E−ψm,l)(g) =
1
4
(m − l)ψm+1,l+1 −

1
4
(m + l + 2)(m + l)2

m(m + 1) ψm−1,l+1, (A.10)

⟨ge2, e1⟩(E+ψm,l)(g) =
1(m + l)ψm+1,l−1 −

1 (m + 2 − l)(m + l)2
ψm+1,l−1. (A.11)
4 4 m(m + 1)
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Table 1
Non-compact Hermitian symmetric spaces D = G/K.

D = G/K G K (a, b)

Ir+b,r SU(r + b, r)) S(U(r + b) ×U(r)) (2, b)
II2r SO∗(4r) U(2r) (4,0)
II2r+1 SO∗(4r + 2) U(2r + 1) (4,2)
IIIr Sp(r,R) U(r) (1,0)
IVn, n > 4.(r = 2) SO(n,2) SO(n) × SO(2) (n − 2,0)
V (r = 2) E6(−14) Spin(10) × SO(2) (6,4)
V I(r = 3) E7(−25) E6 × SO(2) (8,0)

Table 2
The compact Hermitian symmetric spaces P(S) = K/L0 = K′/L′. For 
type I domain Ir,r+b, r ≥ 2, P(S) is a product Pr−1×Pr+b−1 of projective 
spaces with the corresponding (a1, b1) being (0, r + b − 2), (0, r − 2) for 
each factor.
D = G/K P(S) =K/L0 =K1/L1 (a1, b1)

Ir+b,r I∗r+b−1 × I
∗
r−1 (0, r + b − 2), (0, r − 2)

II2r I∗2,2r−2 (2,2r − 4)
II2r+1 I∗2,2r−1 (2,2r − 3)
IIIr I∗r−1 (0, r − 2)
IVn, n > 4 IV ∗n−2 (n − 4,0)
V II∗5 (4,2)
V I V ∗ (6,4)

The spherical polynomial φm,l is a special case of the spherical function Φλ,l with 
λ = −i(m + ρ) = −i(m + 1) in our case, and Φλ,l is invariant with respect to the Weyl 
group action λ → −λ. Namely, the pair of the coefficients

±1
4
(m − l))(m + l + 2)

m + 1
= ±1

4
((m + 1) − (l + 1))((m + 1) + (l + 1))

m + 1

in the lemma is invariant by the change m + 1 → −(m + 1) and this symmetry is indeed 
obvious here. These formulas are all classical trigonometric identities and can be obtained 
by other methods.

Appendix B. Table of Hermitian symmetric spaces G/K and their varieties of 
minimal rational tangents K/L0. Duality relation for (dim(X), genus(X)) for 
X =G/K, K/L0

B.1. Tables

We give a list of G/K and the corresponding projective space S1 = P(S) = K/L0 =
K1/L1 as compact Hermitian symmetric space; see [5,19,9]. The compact dual of a non-
compact Hermitian symmetric space D is denoted by D∗.
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B.2. Duality between (d, p) and (d1, p1) for G/K and K/L

Let d = dimC D = r + 1
2ar(r − 1) + rb, p = 2 + a(r − 1) + b, the dimension and the genus 

of D. In terms of Lie algebra actions they are

(d, p) = (tr ad(−iZ)∣p+ , tr ad(D(e, e))∣p+)

where D(e, e) is the Harish-Chandra co-root of γ1, γ1(D(e, e)) = 2. Similarly let

(d1, p1) = (dim(K∗1 /L),genus(K∗1 /L))

if D ≠ SU(r, r + b)/S(U(r) ×U(r + b)). Put

d′ = dim(P r−1) = r − 1, p′ = r;d′′ = dim(P r+b−1) = r + b − 1, p′′ = r + b

when D = SU(r, r + b)/S(U(r) ×U(r + b)).
The following duality between the pairs (dim(D), genus(D)) and (dim(K/L0),

genus(K/L0)) is mentioned in Lemma 2.5 and might be of independent interest. It can 
be proved by trace computations or by case-by-case computations of the tables above.

Lemma B.1.

(1) Let D be of rank r ≥ 2 and is one of the domains II, IV, V, V I. Then

p

d
+ d1

p1
= 2.

(2) Let D be of Type I with r ≥ 2. Then

p

d
+ d′

p′
+ d′′

p′′
= 2.

(3) Let D be the Siegel domain II. Then

p

d
+ 2d1

p1
= 2.
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