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Electronic transport properties 
of the  Al0.5TiZrPdCuNi alloy 
in the high‑entropy alloy 
and metallic glass forms
Magdalena Wencka1,2, Mitja Krnel1, Andreja Jelen1, Stanislav Vrtnik1, Jože Luzar1, 
Primož Koželj1,3, Darja Gačnik1, Anton Meden4, Qiang Hu5*, Chaomin Wang5, Sheng Guo6 & 
Janez Dolinšek1,3*

High‑entropy alloys (HEAs) are characterized by a simultaneous presence of a crystal lattice and an 
amorphous‑type chemical (substitutional) disorder. In order to unravel the effect of crystal‑glass 
duality on the electronic transport properties of HEAs, we performed a comparative study of the 
electronic transport coefficients of a 6‑component alloy  Al0.5TiZrPdCuNi that can be prepared either 
as a HEA or as a metallic glass (MG) at the same chemical composition. The HEA and the MG states 
of the  Al0.5TiZrPdCuNi alloy both show large, negative‑temperature‑coefficient resistivity, positive 
thermopower, positive Hall coefficient and small thermal conductivity. The transport coefficients were 
reproduced analytically by the spectral conductivity model, using the Kubo‑Greenwood formalism. 
For both modifications of the material (HEA and MG), contribution of phonons to the transport 
coefficients was found small, so that their temperature dependence originates predominantly 
from the temperature dependence of the Fermi–Dirac function and the variation of the spectral 
conductivity and the related electronic density of states with energy within the Fermi‑level region. The 
very similar electronic transport coefficients of the HEA and the MG states point towards essential role 
of the immense chemical disorder.

High-entropy alloys (HEAs) are multi-component ( N ≥ 5) crystalline solid solutions including random solu-
tions and partially ordered  ones1,2. HEAs possess enormous chemical (substitutional) disorder, similar to the one 
encountered in metallic glasses (MGs)3. Due to the simultaneous presence of a crystal lattice and an amorphous-
type chemical disorder, HEA structures exhibit crystal-glass duality and can be conveniently termed as a “metallic 
glass on a crystal lattice”. Formation, stability, micro- and nano-structure and mechanical properties of HEAs 
have been widely investigated in the  past4–6, while physical properties were less investigated, with the exception 
of magnetism and  superconductivity7–17. A scarcely investigated topic of the HEAs is the electronic transport 
properties (electrical conductivity, thermoelectric power, electronic thermal conductivity and Hall coefficient), 
in relation to the crystal-glass duality. Crystallinity of the HEA structure introduces crystal-specific features like 
the electronic band structure with energy gaps between the bands, multi-branch Fermi surface and phononic 
dispersion relation, which largely determine the transport properties of crystalline solids. In MGs, there is no 
lattice and these features are absent. However, chemical disorder that is present to a similar extent in both the 
HEAs and the MGs also importantly influences the electronic transport properties. In this work, we address the 
role of the crystal-glass duality on the transport properties of HEAs by performing a comparative study of the 
transport coefficients of a 6-component metallic alloy  Al0.5TiZrPdCuNi that can be prepared either as a HEA or 
as a MG at the same chemical composition. This has allowed us to unravel the effects of crystallinity and chemical 
disorder, in order to show how similar or different HEAs are from MGs.
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There exists a rare class of near-equiatomic multicomponent alloys that can be prepared either in the crys-
talline state or as a bulk metallic glass (having the smallest dimension larger than 1 mm) at the same chemical 
composition. Such alloys are denoted as high-entropy bulk metallic glasses (HE-BMGs)18–21. The crystalline state 
of these alloys cannot be claimed to be a HEA, because the primary phase to form is always an intermetallic com-
pound, rather than a solid solution phase. Upon crystallization, either during cooling or heating, an amorphous/
intermetallic-compound composite is formed first, converting finally to fully intermetallic compounds (several 
of them) or perhaps a mixture of intermetallic compounds and solid solution phases. The  Al0.5TiZrPdCuNi alloy 
can be also prepared in the crystalline or amorphous states at the same chemical  composition22,23, but is rather 
unique in this class of alloys for two reasons. Firstly, the amorphous state can be prepared as ribbons of some 
10-µm thickness by fast cooling of the spinning melt, which are too thin to be classified as a BMG, but conform 
to a MG. Secondly, the crystalline state of this alloy can indeed be prepared as a single-phase solid solution (HEA) 
with a bcc structure, either as melt-spun ribbons at a slower cooling rate or in the bulk rod form of 1.5 mm 
diameter by conventional Cu-mold casting. According to the available  literature18–23, the  Al0.5TiZrPdCuNi is the 
only composition that can form both the HEA and the MG states.

The single-phase bcc HEA state of the  Al0.5TiZrPdCuNi is a quenched metastable state, because the equilib-
rium state of this system is a multi-phase crystalline state, composed of various intermetallic compounds. The 
multi-phase crystalline state as the equilibrium state can be expected on the basis of binary mixing enthalpies of 
the constituent elements (see Supplementary Table S1), which are highly negative (causing attraction) for most 
elemental pairs, with the most drastic examples of Pd-Zr ( �HPdZr

mix = − 91 kJ  mol–1) and Pd-Ti ( �HPdTi
mix = – 65 

kJ  mol–1)24,25. The corresponding values of the total mixing enthalpy of this alloy �Hmix = – 46.7 kJ  mol–1 and 
the atomic-size-difference (geometric) parameter δ = 8.8% are distinctly outside the ranges of crystalline solid 
solutions in the �Hmix vs. δ phase  diagram22,23,26, indicating that the HEA state in the  Al0.5TiZrPdCuNi alloy is 
of an unconventional type.

Results
Samples preparation and characterization. The HEA and the MG samples of the alloy with the 
nominal composition  Al0.5TiZrPdCuNi were prepared along the steps described in Refs.22,23. The MG sample 
was a ribbon of 20 µm thickness and 1 mm width. Its XRD pattern (Fig. 1a) is typical of amorphous struc-
tures, showing a broad halo at 2θ ≈ 40°. The SEM EDS elemental maps (Fig.  2a) indicate a homogeneous 
distribution of the six constituting elements on the µm scale. The EDS-determined composition (in at.%) is 
 Al7.0Ti21.1Zr15.3Pd14.0Cu21.3Ni21.3. The HEA sample was a rod of 1.3  mm2 cross section. Its XRD pattern (Fig. 1b) 
reveals the presence of two major phases and one minor phase. The two major phases are (1) a bcc with the unit 
cell parameter a = 3.10 Å and (2) a cubic, type  Pd2TiAl (Heusler alloy), space group Fm 3 m, a = 6.20 Å (this 
unit cell edge is exactly twice that of the bcc phase, so that some XRD peaks of the two phases overlap), whereas 
the minor phase is orthorhombic, type  Ni10Zr7, space group Aea2 (No. 41), a = 9.20, b = 9.20 and c = 12.3 Å. 
The SEM BSE image and the elemental maps are shown in Fig. 2b, where the two major phases (one dark and 
one bright) are clearly discerned, each composed of crystallites of µm dimensions. Some small black inclusions 
are also visible at the borders between the two phases. High solid solubility of the elements is evident from the 
elemental maps. Al is mostly concentrated in the dark phase, which contains also all other elements, with a slight 
enhancement of Pd. Its EDS composition is  Al13.9Ti16.4Zr16.4Pd21.3Cu15.0Ni17.0. The dark phase corresponds to the 
 Pd2TiAl-type cubic phase, which is quite far from the ideal, stoichiometric composition due to the high solubility 
of the elements. The bright phase is a solid solution of all elements except Al (a small amount of Al is still dis-
persed in this phase) and corresponds to the bcc phase. Its EDS composition is  Al4.4Ti19.1Zr21.9Pd17.9Cu19.8Ni16.9. 
The minor phase (orthorhombic,  Ni10Zr7-type) cannot be easily identified in the SEM BSE image, very likely 
due to the high solid solubility of the elements. Neglecting the minor phase (of molar fraction less than 10%), 
the bcc (bright) phase occupies about 70% of the sample’s volume, whereas the  Pd2TiAl-type cubic phase (dark) 
occupies about 30%.

The bcc and the  Pd2TiAl-type phases are structurally related. The latter is also based on bcc, but with a 
specific atomic ordering that can be described in an enlarged, 2 × 2 × 2 unit cell (comprising eight bcc cells). 
For the  Pd2TiAl stoichiometric composition, Ti and Al replace each other alternatively in the corners of the bcc 
cells, whereas Pd occupies the bcc cell centers (see Supplementary Fig. S1). Due to the high solubility of the ele-
ments, other elements also partially occupy the corners and the cell centers. In principle, the entire lattice of the 
 Al0.5TiZrPdCuNi HEA phase (neglecting the minor phase) can be loosely viewed as a bcc structure with a unit 
cell parameter a = 3.10 Å, where a larger part of it is chemically disordered and a smaller part is partially ordered 
(approximating rather well a HEA). This is somewhat different from the previous report on the  Al0.5TiZrPdCuNi 
HEA  phase22, which could be, under specific conditions, synthesized as a single-phase, chemically disordered 
bcc solution with a slightly larger lattice parameter a = 3.20 Å (perhaps due to a slightly different chemical 
composition) in the entirety of its volume.

Experimental transport coefficients, specific heat and magnetic properties. The transport 
coefficients, the specific heat and the magnetic properties were measured comparatively for the HEA and MG 
samples under identical experimental conditions, described in the “Methods” section. The electrical resistivity 
between 400 and 2 K is shown in Fig. 3a. Both samples exhibit negative-temperature-coefficient (NTC) resistiv-
ity that increases upon cooling, but there exists a pronounced difference in the magnitude of the resistivity and 
the NTC. For the MG sample, the 400-K resistivity amounts to ρMG

400K = 277 µΩ cm, whereas the 2-K resistivity is 
ρMG
2K = 295 µΩ cm, yielding the increase by NTCMG =

(

ρMG
2K − ρMG

400K

)

/ρMG
400K = 7%. The resistivity of the HEA 

sample is considerably lower, with ρHEA
400K = 157 µΩcm, ρHEA

2K = 162 µΩcm and NTCHEA = 3%. The thermopower 
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(the Seebeck coefficient S ) of both samples is positive (Fig. 3b), increasing roughly linearly with the temperature 
(slight nonlinearity, more pronounced for the HEA sample, can be observed at temperatures below 100 K). The 
thermopower of the HEA sample is a factor of about two larger than that of the MG sample, amounting at 380 K 
to SHEA380K = 7.3 µVK–1, as compared to SMG

380K = 3.2 µV  K–1 of the MG sample. The thermal conductivity in the 
temperature range 1.8–390 K is shown in Fig. 3c, where it is seen that κHEA of the HEA sample is a bit larger than 
κMG of the MG sample in most of the investigated temperature range, but due to a somewhat faster increase of 
κMG at higher temperatures, both samples reach the same 390-K value of κMG

390K = κHEA390K = 8.2 W  m–1  K–1. The 
Hall coefficient RH = Ey/jxBz of both samples, measured in a magnetic field range µ0H = ±9 T, is positive and 
temperature-independent (Fig. 3d), with the Hall coefficient of the MG sample, RMG

H = 3.7 ×  10–11  m3  C–1 only 
insignificantly larger than that of the HEA sample, RHEA

H = 3.2 ×  10–11   m3   C–1. The low-temperature specific 
heat C between 1.8 and 4.5 K in a C/T vs. T2 plot is shown in Fig. 4, where it is observed that CHEA is a bit larger 
than CMG . The fit with the standard expression C/T = γ + αT2 , where γ and α are the electronic and lattice 
specific heat coefficients, respectively, has yielded γHEA = 2.91 mJ   mol–1   K–2 and γMG = 2.28 mJ   mol–1   K–2. 
The Debye temperatures, calculated from α are θHEAD = 251 ± 5  K and θMG

D = 262 ± 5  K. The electronic spe-
cific heat coefficient is directly proportional to the electronic DOS at the Fermi energy g(εF) via the relation 
γ =

(

π2/3
)

k2Bg(εF) , which can also be written as γ = 2.358 g(εF) , where γ is given in units [mJ  mol–1  K–2] and 
g(εF) is then obtained in units [states/(eV · atom)]27. From this relation we obtain gHEA(εF) = 1.23 states/(eV 
· atom) and gMG(εF) = 0.97 states/(eV · atom), with their ratio gHEA(εF)/gMG(εF) = 1.27. The field-cooled 
magnetic susceptibility χ = M/H of both samples, measured between 400 and 2 K in several magnetic fields 
between 1 and 7 T (Fig. 5) is positive, field-independent and also practically temperature independent (a small 
Curie upturn due to extrinsic magnetic impurities can be observed at low temperatures). The isothermal mag-
netization cures, M(H) , are shown in the inset of Fig.  5, exhibiting linear paramagnetic behavior up to the 
highest field of 7  T. These results demonstrate that Ni is in a non-magnetic state and both structural forms 

Figure 1.  XRD patterns of the  Al0.5TiZrPdCuNi alloy in (a) the MG state and (b) the HEA state.
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(HEA and MG) of the  Al0.5TiZrPdCuNi alloy exhibit Pauli spin paramagnetism of the conduction electrons. 
The magnetic susceptibility is a sum of the Pauli paramagnetic susceptibility and the Larmor diamagnetic sus-
ceptibility of closed atomic shells, χ = χP + χL (the Landau orbital diamagnetic contribution can be neglected 
due to theenormous chemical and structural disorder in the samples), where χP and χL are of the same order of 
magnitude. An estimate of the Larmor susceptibility from literature  tables28, using different ionization states of 
the elements yields the range χL = − [0.127, 0.153]×  10–9  m3  mol–1, which is to be contrasted with the total sus-
ceptibility values (e.g., at 300 K) χHEA = 0.98 ×  10–9  m3  mol–1 and χMG = 0.89 ×  10–9  m3  mol–1. The comparison 
shows that |χL| accounts for about 15% of the total susceptibility, wherefrom we can make a rough estimate of 
the Pauli susceptibility ratio of the HEA and MG samples as χHEA

P /χMG
P ≈ 1.1. The Pauli spin susceptibility has 

a simple relation to the electronic density of states at the Fermi energy, g(εF) , via the relation χP = µ0µ
2
Bg(εF) , 

where µ0 is the permeability of vacuum and µB is the Bohr magneton. The susceptibility analysis then yields the 
ratio gHEA(εF)/gMG(εF) ≈ 1.1, which is in fair agreement with the value 1.27 determined from the specific heat 
(where the latter should be considered as more precise).

Theoretical analysis of the transport coefficients. The electronic transport coefficients (electrical 
conductivity σ = 1/ρ , thermopower S , electronic thermal conductivity κel and Hall coefficient RH ) were ana-
lyzed analytically by the spectral conductivity model, using Kubo–Greenwood  formalism29,30 and the assump-
tions that (1) the HEA and MG structures are both spatially isotropic (for the HEA structure, this follows from 
the average cubic symmetry of the lattice), so that the tensorial transport coefficients reduce to scalars and (2) 
the effect of phonons is minor, so that the temperature dependence of the electronic transport coefficients origi-
nates predominantly from the temperature dependence of the Fermi–Dirac (FD) function. The second assump-
tion follows from the fact that the immense chemical (substitutional) disorder and the associated topological 
disorder (lattice distortions) due to different atomic sizes in the HEA structure or complete absence of the lattice 
in the MG structure represent quenched defects, which break translational periodicity of the system. This causes 
elastic scattering of the conduction electrons at an extremely rapid rate at any temperature, providing the main 
scattering mechanism for the electronic transport phenomena.

Within the spectral conductivity model, the coefficients σ(T) , S(T) and κel(T) can all be derived from a 
single, material-dependent quantity, the spectral conductivity σ(ε) , which is related to the electronic DOS g(ε) 
via the Einstein relation

Figure 2.  SEM EDS elemental maps of the  Al0.5TiZrPdCuNi alloy in (a) the MG state and (b) the HEA state. 
The upper left panel shows the SEM BSE image.
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where D(ε) is the electronic spectral diffusivity and V  is the sample volume. We shall further use the approxi-
mation that the energy dependence of D(ε) can be neglected in the vicinity of the Fermi level εF , by taking 
D(ε) ≈ D(εF) , so that the shape of σ(ε) within the Fermi-level region is the same as the shape of the DOS g(ε) 
(to a constant multiplicative factor).

Within the above model, the electrical conductivity σ(T) , the Seebeck coefficient S(T) and the electronic 
thermal conductivity κel(T) are calculated from

(1)σ(ε) =
(

e2/V
)

g(ε)D(ε),

Figure 3.  Transport coefficients of the  Al0.5TiZrPdCuNi alloy in the HEA and MG states: (a) electrical 
resistivity, (b) thermopower, (c) thermal conductivity, and (d) Hall coefficient. Solid curves in the panels (a) and 
(b) are fits obtained with the spectral conductivity model, described in the text. In panel (c), the experimental 
data represent the total thermal conductivities κHEA and κMG , whereas the solid curves are the calculated 
electronic thermal conductivities κHEAel  and κMG

el .

Figure 4.  Low-temperature specific heat of the HEA and MG samples in a C/T vs. T2 plot. Solid lines are fits 
with the expression C/T = γ + αT2 , and the fit parameters are given in the text.
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and

with

The parameter e in the above equations is the electric charge of the carriers (its sign distinguishes between 
electrons and holes), f =

{

exp[(ε − µ)/kBT]+ 1
}−1 is the FD function and µ is the chemical potential. At low 

temperatures (such as room temperature), µ can be expressed  as31

Within the D(ε) ≈ D(εF) approximation, we can replace g(ε) in Eq. (5) by σ(ε) , which allows to relate the 
parameter ξ to the Seebeck coefficient using Mott’s formula

as

The experimental thermopower S(T) data can hence be used to set the starting value of the ξ fit parameter. 
In practical terms, the theoretical analysis of the transport coefficients is done by assuming a specific functional 
form of the spectral conductivity σ(ε) and then performing simultaneous fitting of the quantities σ(T) and S(T) . 
After satisfactory fits are obtained, κel(T) is calculated theoretically, because this quantity is not available experi-
mentally, but only the total thermal conductivity κ(T) (that includes the phononic contribution) is measured. A 
comparison of the theoretical κel(T) and the experimental κ(T) is then used to estimate the residual phononic 
thermal conductivity of the HEA and MG phases.

Regarding the Hall coefficient, the magneto-transport is less understood. A positive Hall coefficient, RH > 0 , 
has been reported for many amorphous transition metals and amorphous alloys containing transition  metals32–34, 
which made the sign of RH in disordered materials a well-known  problem35–37. Within the Kubo formalism, the 
Hall coefficient in the weak-field limit is given by

where the magnetic field B points along the z direction, whereas the external electric field and the Hall field point 
along the x and the negative y direction, respectively. σxy denotes the off-diagonal element of the conductivity 

(2)σ(T) =

∫

dεσ(ε)
(

−∂f /∂ε
)

,

(3)S(T) = [eTσ(T)]−1

∫

dεσ(ε)(ε − µ)
(

−∂f /∂ε
)

,

(4a)κel(T) =
[

L22(T)/e
2T

]

− Tσ(T)S2(T),

(4b)L22(T) =

∫

dεσ(ε)(ε − µ)2
(

−∂f /∂ε
)

.

(5)µ(T) ≈ εF − (kBT)
2
(

π2/6
)[

dlng(ε)/dε
]

εF
= εF − ξT2.

(6a)SMott(T) =
(

π2/3
)(

k2B/e
)

[dlnσ(ε)/dε]εF T

(6b)ξ = (e/2)
[

SMott(T)/T
]

.

(7)RH = (1/B)σxy(B)/σ
2
xx ,

Figure 5.  Magnetic susceptibility χ = M/H of the HEA and MG samples in magnetic fields 1, 3, 5 and 7 T (for 
each sample, the curves in different fields are indistinguishable on the graph, except in the T → 0 limit). The 
inset shows the isothermal magnetization curves, M(H) , at 300 K.
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tensor and σxx is the diagonal element. Their analytical expressions for amorphous structures can be found e.g. 
in Ref.38. Both tensor elements are proportional to the square of the electric charge, σxx , σxy ∝ e2 , and hence do 
not distinguish between electrons and holes, i.e. the sign of the charge carriers does not determine directly the 
sign of RH . It was then  conjectured39 that the sign of the Hall coefficient is correlated with the negative sign of 
the derivative of the electronic DOS at the Fermi energy, RH ∝ −

(

dg/dε
)

εF
 . This consideration was supported 

by other literature  reports34,37,38, including a numerical re-examination of the  problem40. In our analysis of the 
Hall coefficient of the HEA and MG samples, we shall check the validity of the  RH ∝ −

(

dg/dε
)

εF
 relation, i.e. 

whether the sign of the Hall coefficient equals the sign of the negative DOS derivative within the Fermi level 
region. An independent check here is that the sign of RH should be in agreement with the sign of the thermo-
power S , which also depends on the DOS derivative at εF , in a product with the sign of the charge carriers e (as 
can be seen from Eq. (6a)).

In a measurement of the electronic transport coefficients, the experimentally observable part of the spectral 
conductivity σ(ε) is determined by the position and width of the symmetric, bell-shaped FD function derivative, 
−df /dε , which is centered at the chemical potential µ . Its full width at half maximum (FWHM) �f = 3.5 kBT 
amounts at room temperature to �300K

f = 90 meV, whereas at T = 2 K it narrows to �2K
f = 0.6 meV. In the T → 0 

limit, −df /dε converges to a delta function δ(ε − εF) and Eq. (2) yields the relation between the zero-temperature 
residual resistivity ρ(0) and the spectral conductivity at εF as ρ(0) = 1/σ(εF) . Due to the temperature depend-
ence of µ according to Eq. (5), the experimentally observable part of σ(ε) is shifting with temperature on the 
energy axis, so that different parts of σ(ε) and the DOS g(ε) contribute to the integrals in Eqs. (2), (3), (4b) and 
(7). An estimate of ξ from the thermopower data shown in Fig. 3b via Eq. (6b) gives for the HEA sample ξHEA = 
–9.6 ×  10–9  eVK–2, yielding at 380 K a tiny shift of the chemical potential from εF by µHEA

380K − εF ≈ 1.4 meV. An 
estimate of ξ for the MG sample gives ξMG = –4.2 ×  10–9  eVK–2 and µMG

380K − εF ≈ 0.6 meV. The shift of µ on the 
energy scale is very small, so that the electronic transport coefficients are sensitive to a narrow portion of σ(ε) 
(and the DOS g(ε) ) in the energy interval of about ± 100 meV around εF . Significant temperature dependence 
of the transport coefficients can be expected when the DOS changes with energy substantially on this scale.

Modeling the spectral conductivity σ(ε) can be performed via different trial functions, a common property 
of which should be a substantial variation within the experimentally observable energy range. We shall use the 
model by Landauro and Solbrig, originally developed for  quasicrystals41–45. A common feature that quasicrys-
tals share with the HEAs and MGs is the low contribution of phonons to the transport coefficients, because 
phonon propagation in a non-periodic quasicrystalline structure is strongly hindered. Within this model, the 
spectral resistivity (the inverse spectral conductivity) ρ(ε) = 1/σ(ε) is constructed as a superposition of two 
Lorentzians (the details are given in the Supplementary Information). Choosing proper positions and widths of 
the Lorentzians on the energy axis within the Fermi-level region allows constructing σ(ε) that exhibits either 
simple monotonous, positive- or negative-slope behavior, or a minimum (like the pseudogap in the DOS at εF 
in quasicrystals) or a maximum, with possible fine structure on the scale of a few meV. The actual shape of σ(ε) 
is then adjusted by a simultaneously fitting of the ρ(T) and S(T) experimental data.

The fits of σ(T) and S(T) of the HEA and MG samples with Eqs. (2) and (3) are shown by solid curves in 
Fig. 3a,b. Excellent fits were obtained by the spectral conductivity functions presented in Fig. 6 (the sets of fit 
parameters determining σHEA(ε) and σMG(ε) are given in Supplementary Table S2). For converging results, the 
integrations had to be performed over an energy interval of ± 10 kBT around εF , which amounts to ± 0.17 eV at 
400 K. This value defines the experimentally observed portions of the σ(ε) and g(ε) quantities. For both the HEA 
and the MG samples, the spectral conductivity is a negative-sloping function within the Fermi-level region, with 
a small dip at εF . The σHEA(εF) is by a factor of 1.8 larger than σMG(εF) , accounting for the fact that ρHEA(0) is 
smaller than ρMG(0) by the same factor. The final values of the fit parameters that shift the chemical potential on 
the temperature axis are ξHEA = –15.0 ×  10–9  eVK–2 and ξMG = –4.6 ×  10–9  eVK–2, very close to the starting values 
determined from the Mott formula of Eq. (6b). In Fig. 6, the function −∂f /∂ε is also shown at the temperature 
of 400 K, where the shift of the maximum relative to εF due to the temperature-dependent chemical potential is 
unobservable on this energy scale.

The negative-sloping σ(ε) within the Fermi-level region and the assumption of negatively charged carriers, 
e = −|e| (electrons) reproduce quantitatively the NTC electrical resistivity and the positive thermopower with all 
their nonlinear features in the entire measured temperature range 2–400 K for both samples. Knowing σ(T) and 
S(T) , the electronic thermal conductivity κel(T) was calculated from Eqs. (4a,b) and is presented by solid lines in 
Fig. 3c. It is observed that the calculated κHEAel (T) and κMG

el (T) account for the majority part of the experimental 
total thermal conductivities κHEA(T) and κMG(T) , supporting the assumption that the phononic thermal con-
ductivity κph is small for both samples. The negative derivative dσ/dε < 0 and the associated dg/dε < 0 within 
the Fermi-level region also consistently explain the positive sign of the Hall coefficient RH and hence support the 
relation RH ∝ −

(

dg/dε
)

εF
 for the investigated chemically and topologically disordered HEA and MG samples.

Discussion and conclusions
The electronic transport coefficients of the HEA and MG states of the  Al0.5TiZrPdCuNi alloy reveal certain 
similarities as well as differences. The two states have in common the enormous chemical disorder, but dif-
fer in the presence/absence of a crystal lattice. In both cases, the contribution of phonons to the transport 
coefficients is small. While phonons cannot propagate in the amorphous state due to the absence of a crystal 
lattice, the lattice in the HEA state is unsuitable for the phonon propagation because of the topological distor-
tion and random distribution of masses (different chemical elements) on the lattice sites. An exception are 
long-wavelength acoustic phonons, which “see” both structures as an elastic continuum and still contribute 
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to the transport phenomena. Due to the weak phonon contribution, the temperature dependence of the elec-
tronic transport coefficients originates predominantly from the temperature dependence of the FD function 
and the variation of the spectral conductivity σ(ε) and the related electronic DOS g(ε) with energy within the 
Fermi-level region. For the  Al0.5TiZrPdCuNi alloy, σHEA(ε) and σMG(ε) are both decreasing functions in that 
energy range, with some fine structure on the 10-meV scale very close to εF . Under the realistic assumption that 
the spectral diffusivity D(ε) does not change significantly within the Fermi-level region, the electronic DOSs 
gHEA(ε) and gMG(ε) show the same shape as their respective spectral conductivities. Knowing the DOS at εF 
values from the specific heat measurements (recall that their ratio is gHEA(εF)/gMG(εF) = 1.27), while the T → 
0 resistivities yield  σHEA(εF)/σ

MG(εF) = ρMG(0)/ρHEA(0) = 1.8, the Einstein relation of Eq. (1) yields the 
ratio of the spectral diffusivities DHEA(εF)/D

MG(εF) = 1.4. By assuming that the electronic diffusion constant 
can be described by the Einstein formula D = µekBT/e , valid for an electrically charged Brownian particle 
of charge e in an electric field E with mobility µe (defined as the ratio of the electronic drift velocity vd to the 
magnitude of the electric field, µe = vd/E ), we can estimate the ratio of the electronic mobilities in the HEA 
and MG phases to be µHEA

e /µMG
e ≈ 1.4, i.e. the mobilities are about the same. This number is independently 

confirmed from the Hall coefficient and the conductivity using expression µe = σRH , which yields a very similar 
value µHEA

e /µMG
e =

(

σHEA(εF)/σ
MG(εF)

)

·
(

RHEA
H /RMG

H

)

≈ 1.5, pointing toward the essential role of chemical 
disorder in determining the electronic transport coefficients of both the HEA and the MG states, whereas the 
presence/absence of the (topologically distorted) crystal lattice is of minor importance, but still experimentally 
observable. The enormous chemical and topological disorders represent quenched defects in the structure, which 
scatter the electrons elastically at an extremely rapid rate at any temperature and strongly reduce the transport 
phenomena relative to the chemically ordered crystals. The order of magnitude of the relaxation time τ0 (the 
mean time between two elastic scattering events) can be estimated from the Einstein conductivity of Eq. (1), by 
considering that the diffusion constant is given by D = l20/τ0 , where l0 is the mean free path. Due to the immense 
disorder, it is reasonable to consider that the mean free path in the HEA lattice assumes its limiting (constant) 
value l0 ≈ a , where a = 3.1 Å is the unit cell length. For the MG sample, l0 can be taken as the nearest-neighbor 
distance, again about 3 Å. Taking the experimental g(εF) and ρ2K values, we obtain τ0 ∼  10–15 s for both structural 
forms of the material. This is to be contrasted with pure metals near absolute zero, where τ0 ∼  10–9 s is typical 
and l0 is on the order of  106 atomic distances (becoming τ0 ∼  10–14 s and l0 about 100 atomic distances at room 
temperature). From the transport-properties point of view, HEAs appear very similar to MGs, but are quite dif-
ferent from translationally periodic, chemically ordered crystals.

Figure 6.  Spectral conductivities σHEA(ε) and σMG(ε) , determined from simultaneous fitting of the electrical 
resistivity ρ(T) and the thermopower S(T) (the sets of fit parameters are given in Supplementary Table S2). The 
bell-shaped derivative of the FD function, −∂f /∂ε , at 400 K is shown at the bottom of the graph (its vertical 
scale does not conform to the σ(ε) scale).
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Methods
XRD patterns were recorded on a PANalytical X’Pert PRO MPD X-ray powder diffractometer using Cu Kα1 
radiation ( � = 1.54056 Å). SEM BSE imaging and EDS measurements of the chemical composition and elemental 
mapping were conducted on a focused ion beam scanning electron microscope FEI HeliosNanolab 650, equipped 
with EDS system from Oxford Instruments with X-max SDD detector. Electrical resistivity, thermoelectric 
power, thermal conductivity, Hall coefficient and specific heat were measured by a Quantum Design Physical 
Property Measurement System (PPMS 9 T). Magnetic properties were recorded on a Quantum Design MPMS3 
SQUID magnetometer.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 29 November 2021; Accepted: 25 January 2022
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