
Towards an information-theoretic framework of intrusion detection for
composed systems and robustness analyses

Downloaded from: https://research.chalmers.se, 2024-03-13 08:07 UTC

Citation for the original published paper (version of record):
Mages, T., Almgren, M., Rohner, C. (2022). Towards an information-theoretic framework of
intrusion detection for composed systems and
robustness analyses. Computers and Security, 116. http://dx.doi.org/10.1016/j.cose.2022.102633

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Computers & Security 116 (2022) 102633 

Contents lists available at ScienceDirect 

Computers & Security 

journal homepage: www.elsevier.com/locate/cose 

Towards an information-theoretic framework of intrusion detection for 

composed systems and robustness analyses 

Tobias Mages a , ∗, Magnus Almgren 

b , Christian Rohner a 

a Department of Information Technology, Uppsala University, Uppsala 752 36, Sweden 
b Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden 

a r t i c l e i n f o 

Article history: 

Received 29 June 2021 

Revised 1 December 2021 

Accepted 29 January 2022 

Available online 2 February 2022 

Keywords: 

Network intrusion detection 

Adversarial robustness 

Data-driven evaluation approaches 

Performance evaluation metrics 

Information theoretic framework 

Composed detection systems 

a b s t r a c t 

Network-based Intrusion Detection Systems (NIDSs) are an important mechanism to identify malicious 

behaviour or policy violations within a network. Such detection systems typically face several challenges, 

among which are the base-rate fallacy and the resilience against adaptive adversaries. These challenges 

are often countered in modern NIDSs by combining multiple detection systems to diversify the used fea- 

ture levels or utilize the advantages of multiple detection methods. However, currently there exists no 

suitable framework for a detailed analysis of such composed systems. Therefore, the contribution of this 

work is an evaluation framework for composed systems, which builds on previous information-theoretic 

approaches and highlights the utility of information-theoretic redundancies for robustness evaluations. 

This framework enables an attribution of the overall system performance to its individual components, 

to fine-tune parameters and to study the dynamics between classifiers. The versatility of the framework 

is demonstrated by designing and evaluating a composed NIDS example based on systems described in 

the literature and using an open data set. Studying the impact of an evasion attempt with adversarial ex- 

amples on this system highlighted the importance of robustness against false-alarms as well as detection 

evasion. Moreover, the framework enables general insights on how to improve the design of composed 

NIDSs: based on the dynamics between classifiers, it can be shown that optimizing the operation point 

of each component individually does not necessarily maximize the overall system performance from an 

information-theoretic perspective. Additionally, it can be shown that existing classification redundancies 

might not be fully utilized during an attack on the NIDS components, due to a static system design. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Network-based Intrusion Detection Systems (NIDSs) are an im- 

ortant mechanism to identify malicious behaviour or policy vio- 

ations within a network. The evaluation of NIDSs is tightly related 

o their design and can focus on a wide variety of aspects, like the 

ystem requirements during operation, its scalability to different 

raffic loads, the ability to detect new attack types or the adaptabil- 

ty to changes over time ( Axelsson, 1999; Mell et al., 2003 ). This

ork focuses on the evaluation of the classification performance, 

hich is often data-driven and relates to a number of design chal- 

enges. 
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One key challenge when designing a NIDS is the base-rate fal- 

acy ( Axelsson, 1999 ). The base-rate p refers to the probability of 

n intrusion P (I) and therefore the ratio of attack samples in the 

est set, while P (A ) refers to the probability of an alarm. For a

IDS, it is desirable to achieve a high True-Positive Rate (TPR, 

 (A | I) ) and a high Positive Predictive Value (PPV, P (I| A ) ) in the

peration environment. Axelsson (1999) demonstrated the issue of 

he base-rate fallacy, where the False-Alarm Rate (FPR, P (A |¬ I) ) 

imits the overall system performance due to the high class im- 

alance at base-rates such as 10 −3 to 10 −7 . 

The second key challenge when designing a NIDS is the re- 

ilience against adaptive adversaries. Similarly to how a sample 

erturbation might be used to evade a matching signature, adver- 

arial examples might be used to evade learning-based detection 

ethods. Adversarial examples aim on finding small perturbations 

o an input sample, which would lead to a misclassification by the 

etection system. While this research area has been mainly driven 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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y the image processing domain ( Carlini and Wagner, 2017; Good- 

ellow et al., 2015; Papernot et al., 2016 ), the techniques are also 

ncreasingly applied to constrained domains such as network traf- 

c. Several works already demonstrated that these methods can 

e adopted for network traffic to evade learning-based NIDSs and 

ighlighted that adaptive adversaries should be considered in sys- 

em evaluations ( Hartl et al., 2020; Hashemi et al., 2019; Sheatsley 

t al., 2020 ). 

Due to these design challenges, modern NIDSs are often com- 

osed of several detection methods or systems. This can enable a 

eduction of false alarms at low base-rates ( Meng and Kwok, 2013 ), 

iversify the used feature levels to increase robustness or enable 

tilizing the advantages of different detection methods ( Gu et al., 

008 ). In this work we consider composed systems constructed by 

haining classifiers. This makes composed systems a subset of en- 

emble classifiers which restrict the aggregation function (1) to be 

xpressible in boolean algebra and (2) to operate on the categorical 

utput of the individual detectors. However, the design of such sys- 

ems is challenging. It is not obvious how the integration of an ad- 

itional classifier would affect the overall risk of evasion or which 

omponent is limiting the system performance. Unfortunately, and 

o the best of our knowledge, currently there exists no framework 

hat would be suitable for a detailed analysis of these systems in 

he area of NIDSs. 

We consider the performance of a detection system to be de- 

ned by the uncertainty reduction about the class of a sample that 

s achieved from knowing the detection outcome, which leads to 

he mutual-information as performance metric ( Gu et al., 2006a ). 

his approach allows us to consider the robustness of composed 

ystems from two perspectives: the classifier robustness and the 

ystem robustness. The robustness of a classifier is determined by 

ts sensitivity to evasion and thus by its performance loss dur- 

ng an adversarial attack. The robustness of the system reflects its 

bility to compensate for the performance degradation of one of 

ts components, which we explore by evaluating the information- 

heoretic redundancies within the system. 

The main contributions of this work are (1) an Information- 

heoretic Framework (ITF) for the analysis of composed NIDSs, 

hich (2) enables the use of information-theoretic redundancies 

or evaluating the robustness of composed systems. Our frame- 

ork builds on the work of Gu et al. (2006b) , which introduced 

he information-theoretic approach for the analysis of an individ- 

al NIDS. 

The proposed framework of this work enables an analysis and 

omparison of composed systems by quantifying the performance 

f their individual components, including multiple feature repre- 

entations, detection methods and their specific arrangement. It 

an be used to study the dynamics between operation points to 

ne-tune parameters or evaluate threat models and attack meth- 

ds by analyzing the robustness dependencies between different 

lassifiers. 

The versatility of the framework is demonstrated by applying 

t to guide the design, fine-tuning and evaluation of a composed 

IDS example based on systems described in the literature and 

tudy the impact of an evasion attempt with adversarial examples. 

n particular we attribute the overall system performance to its in- 

ividual components, show the impact of compositions on their 

peration points and make statements about the system perfor- 

ance at different base rates. Additionally, the analysis provides 

eneral insights on how to improve the design of robust composed 

IDSs. The results indicate that an independent operation point 

ptimizations for each component does not maximize the over- 

ll system performance from an information-theoretic perspective 

nd that composed systems can contain classification redundancies 

hich might not be fully utilized during an evasion attempt due to 

he system design. 
2 
. Background 

Analyzing a composed NIDS requires the comparable evaluation 

f individual components or systems. Therefore, accepted evalua- 

ion methods and metrics of the area will be discussed to iden- 

ify the requirements on an analysis framework. This also high- 

ights which issues the previously proposed information-theoretic 

pproaches solved and provides the required background informa- 

ion for its further extension. Finally, methods for evaluating NIDS 

obustness will be discussed to understand which insights the pro- 

osed framework of this work can provide to improve the design 

f robust systems. 

.1. Evaluation units and metrics 

To better understand what an analysis framework and metric 

hould provide in the area, requirements for comparable system 

valuations will be discussed together with which limitations ex- 

sting metrics, both trade-off based and combined optimization ob- 

ectives, provide in different use cases. 

The evaluation of a NIDS can focus on a wide variety of as- 

ects, like for example the coverage of different attack classes, 

ts ease of use, interoperability, transparency or explainability, the 

daptability to changes over time, its scalability to different traf- 

c loads, the ability to detect new attack types or the system re- 

uirements during operation ( Axelsson, 1999; Mell et al., 2003 ). 

his work focuses exclusively on a data-driven performance evalu- 

tion of the detection system output and therefore its classification 

erformance. 

NIDSs typically utilize features of three distinct classes ( Giacinto 

nd Roli, 2002; Lee and Stolfo, 20 0 0 ), which could restrict the sys-

em’s unit of analysis: Intrinsic features (packet-level) are directly 

xtractable from an individual flow (e.g. duration, flags, used pro- 

ocol). Traffic features (flow-level) are based on aggregated flow 

nformation or statistical information related to past connections, 

hile content features are based on the payload information. Ad- 

itionally, physical-layer features could be considered as a fourth 

lass to utilize properties of the transceiver, channel or environ- 

ent ( Birnbach et al., 2019; Jiang et al., 2013; Yan et al., 2020 ). 

Comparing systems with different unit of analysis is problem- 

tic as the unit of analysis can affect the base-rate and results of 

n evaluation. Therefore, system comparisons should be based on 

he same unit of analysis which might require a conversion from 

he system’s unit of analysis to the desired unit of analysis. As ex- 

mple, Gu et al. (2006a) proposed a conversion from packet- to 

ow-level by defining a flow as malicious if it contains at least 

ne malicious packet. The approach can similarly be applied for 

onverting the results of physical-layer detection systems to flow- 

evel. Assuming that a suitable data set with all required features 

xisted, then these conversions enable a comparable evaluation of 

ifferent detection systems or enable analyzing composed detec- 

ion systems (see Section 3.2 ) which might utilize a variety of de- 

ection units. 

Besides having a specific unit of analysis, many detection 

ethods can operate on a range of detection thresholds, which 

re also known as operation points. This leads to the ques- 

ion of which detection threshold should be used during de- 

loyment and by evaluating the system performance. Therefore, 

ardenas et al. (2006) highlighted that the performance evaluation 

f NIDSs can be viewed as a multi-criteria optimization problem of 

aximizing the TPR and FPR or PPV and Negative Predictive Value 

NPV). Such issues can be approached either by evaluating trade- 

ff curves, which will be discussed first, or by combining the dif- 

erent criteria into a single optimization objective, which will be 

iscussed afterwards. 
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One method for analyzing the classification performance of a 

IDS is the Receiver Operating Characteristic (ROC), which visual- 

zes the trade-off between the TPR and FPR for different opera- 

ion points ( Hancock, 1966 ). The ROC curve can be used to com-

are two detection systems. However, the result is only conclusive 

f one of the systems performs better for all operation points (the 

OC-curves do not intersect). It has also been criticized for being 

ase-rate independent, which does not enable capturing the issue 

f the base-rate fallacy ( Nasr and El Kalam, 2014 ). Therefore it is

mportant to compare ROC-curves in meaningful false alarm ranges 

o avoid misleading results. 

To present the properties of interest, a Precision Recall Curve 

PRC) could be used instead, which is also known as Intrusion De- 

ector Operating Characteristic (IDOC) ( Cardenas et al., 2006 ). It vi- 

ualizes the trade-off between the PPV and TPR and is typically 

hown for several base-rates. While it avoids misleading results 

ue to the base-rate fallacy, it maintains the drawbacks of a trade- 

ff curve with being inconclusive in comparisons if two systems 

ntersect and being unable to recommend an ideal operation point. 

To overcome the issues of a trade-off based analysis, optimiza- 

ion objectives that combine the different criteria can be defined. 

 possible approach would be to view the Area Under the ROC 

AUC) ( Durst et al., 1999 ), the area of a PRC or the area of a

PV/FPR-curve ( Nasr et al., 2012 ). However, each of these mea- 

ures would consider multiple operation points during the evalua- 

ion, which is not accepted in the community since it would prac- 

ically be fine-tuned to a specific detection threshold ( Gu et al., 

006a; Milenkoski et al., 2015 ). Therefore, typical comparisons 

re based on the best operation point or best worst-case perfor- 

ance ( Gu et al., 2006a ). One metric which avoids the issue of

ultiple operation points is the Intrusion Detection Effectiveness 

 E ID ), which evaluates the area of a Critical Sucess Index (CSI)/base- 

ate curve ( Nasr and El Kalam, 2014 ). The definition of E ID consid-

rs however base-rates from a specified threshold up to one, such 

hat the impact of high class imbalances in deployment environ- 

ents may not be reflected in the evaluation result. 

Gaffney and Ulvila (2001) highlighted that it should be consid- 

red to adopt the evaluation to the specific environment of inter- 

st in terms of the assumed cost of a false alarm ( c α) and cost

f a missed intrusion ( c β ). This leads to a cost ratio c = c β/c α
nd two possible optimization objectives. They consider that an 

perator can act contrary to the detection result, which leads 

o the optimization objective: c op 

= min (cβp, (1 − α)(1 − p)) + 

in (c(1 − β) p, α(1 − p)) , where p is the base-rate, α the FPR and 

the False-Negative Rate (FNR). Gu et al. (2006a) demonstrated 

owever that this measure may become independent of the TPR 

nd FPR depending on the selected cost ratio. This issue can be 

voided with the expected cost , which assumes that the operator 

oes not act contrary to the detection result: c exp 

= cβp + α(1 −
p) ( Gaffney and Ulvila, 2001; Meng, 2012 ). 

Gu et al. (2008) studied the problem of alarm fusion for sys- 

ems of multiple classifiers from a cost perspective. They highlight 

hat the Likelihood Ratio Test (LRT) can be used to derive a com- 

osition function that minimizes the average cost ( Gu et al., 2008; 

oballah and Varshney, 1989 ). For this, Gu et al. (2008) defined the 

verall system output to be an alarm if l( � A ) > τ and no alarm if

( � A ) < τ ( Eq. (1) , where � A refers to the vector containing the binary

utput of each classifier). τ is a constant based on the base-rate 

nd cost ratio, while l( � A ) is the likelihood ratio of the event. This

trategy results in a minimal average cost under the assumption 

hat both, true positives and true negatives, have no cost. More- 

ver, they highlighted that based on Neyman-Pearson theory, τ can 

e used to “maximize[] the probability of detection for a given up- 

er bound on the false alarm rate” if the operation cost and base- 

ate should be unknown. Finally, Gu et al. (2008) proposed the 

ikelihood ratio l( � A ) as measure of suspicion, which enables the 
3 
anking of alarms for the operator. 

( � A ) = 

P ( � A | I) 
P ( � A |¬ I) 

> 

c αP (¬ I) 

c βP (I) 
= τ ⇒ output: A 

( � A ) = 

P ( � A | I) 
P ( � A |¬ I) 

< 

c αP (¬ I) 

c βP (I) 
= τ ⇒ output: ¬ A 

(1) 

Cost analyses are a valuable tool for specific deployments since 

hey enable the comparison of different detection systems and pro- 

ide practical operation point recommendations ( Milenkoski et al., 

015 ). However, the results of any cost analyses follow from spec- 

fying the cost ratio, which often involves subjective estimations. 

herefore, Gu et al. (2006b) introduced the Information-theoretic 

ramework for a more objective analysis approach, which will be 

escribed next. 

.2. Information-theoretic framework 

Gu et al. (2006a) first introduced the abstract Intrusion De- 

ection System (IDS) model with the Intrusion Detection Capa- 

ility and then extended it to the information-theoretic frame- 

ork ( Gu et al., 2006b ). It aims to be a practical theory for an

bjective and data-driven analysis, which captures the most im- 

ortant aspects such as the TPR, FPR, PPV, NPV and base-rate to 

omplement existing evaluation metrics. 

Gu et al. (2006a,b) modeled the operation of a NIDS by three 

andom variables X , Y , Z which generate data streams as shown 

n Fig. 1 a. X represents the true state of the input data stream 

 D = (D 1 , D 2 , . . . ) ), such that an oracle NIDS would assign X i =
 NIDS (D i ) . Z is the state of the intermediate feature representa- 

ion ( Z i = L R (R (D i ) ), where R is the representation algorithm and

 R the feature representation labeling. The variable Y is the out- 

ome of the classification algorithm C ( Y i = C(R (D i )) ). This leads to

he Markov chain X → Z → Y . The possible states of the random

ariables X and Y are { N, A }, where N represents normal and A 

nomalous samples. The possible feature representation states are 

 N, U , A }. U represents undistinguishability for samples of differ- 

nt classes, that are being mapped to the same feature vector. The 

epresentation labeling L R shall therefore only give N and A to fea- 

ure vectors ( F ) which can come from and only from one of the

lasses, while the label U shall be given if the feature vector could 

e from either a normal or anomalous class. Gu et al. (2006b , p.

34) formalized this using the following notation: 

 R (F i ) = N ⇔ ∀ D j , R (D j ) = F i , O NIDS (D j ) = N 

L R (F i ) = A ⇔ ∀ D j , R (D j ) = F i , O NIDS (D j ) = A 

 R (F i ) = U ⇔ ∃ D 1 � = D 2 , R (D 1 ) = F i , R (D 2 ) = F i , 
O NIDS (D 1 ) = N, O NIDS (D 2 ) = A 

(2) 

Information-theoretic measures can be defined based on this 

ormalization for analyzing NIDSs. The Intrusion Detection Capa- 

ility ( C ID ) has been introduced as the normalized mutual informa- 

ion C ID = I(X;Y ) /H(X ) to measure the uncertainty reduction about 

he class of a sample from knowing the detection outcome, or how 

uch ground truth information the NIDS can recover ( Gu et al., 

006a ). This analysis is based on the “abstract model” ( Fig. 1 c), 

hich specifies a NIDS as tuple of its properties (bases-rate, FNR, 

PR). Gu et al. (2006a,b) demonstrated that C ID has a higher sensi- 

ivity to the relevant ranges of base-rates, FPR and TPR compared 

o the PPV, NPV and the probability of error ( Gu et al., 2006a;

006b ). This makes C ID suitable for finding an optimal operation 

oint in objective comparisons by finding the point of the ROC 

urve which maximizes the intrusion detection capability. 

Cardenas et al. (2006) related the intrusion detection capability 

 ID back to the expected cost problem for finding the ideal oper- 

tion point. They demonstrate that the operation point optimiza- 

ion based on the expected cost can be expressed by Eq. (3) , where
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Fig. 1. The Information-Theoretic Framework (adapted from Gu et al., 2006b , p. 532) represents the sample type (X), the feature representations (Z) and the detection 

outcome (Y) as random variables with the states normal/benign (N), anomalous/attack (A) and undistinguishable (U). 
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(X, Y ) is the cost of each position in the contingency table. 

 

∗ = min 

( TPR , FPR ) ∈ ROC 

E [ c(X, Y )] (3) 

qually, the operation point optimization by C ID can be expressed 

y Eq. (4) , as an instance of the expected cost problem with 

(X, Y ) = − log P [ X| Y ] ( Cardenas et al., 2006 ). 

 TPR 

∗
, FPR 

∗) = arg max 
( TPR , FPR ) ∈ ROC 

I(X;Y ) 
H(X ) 

= arg min 

( TPR , FPR ) ∈ ROC 

E [ − log P [ X | Y ]] (4) 

Gu et al. (2006b) extended the analysis approach to the 

nformation-Theoretic Framework for intrusion detection with the 

clustered model” ( Fig. 1 b). The feature representation capability 

 R = I(X; Z) /H(X ) can thus be defined as normalized mutual infor- 

ation between X and Z. Additionally, the classification information 

oss L C = I(X; Z| Y ) /H(X ) can be specified such that C ID = C R − L C .

his directly shows that the feature representation capability of 

 detection system leads to an upper bound on its detection ca- 

ability ( 1 ≥ C R ≥ C ID ≥ 0 and 1 ≥ C R ≥ L C ≥ 0 ) and enables a fine

rained analysis or comparison of different NIDS components. 

In 2013, Meng and Kwok (2013) applied the ITF to false-alarm 

lters in composed detection systems and proposed the False Alarm 

eduction Capability RC F A = I(X FA 

;Y FA 

) /H(X FA 

) as normalized mu- 

ual information between the filter input ( X FA 

) and output ( Y FA 

),

quivalent to the intrusion detection capability C ID . 

By doing so, RC F A is based on applying the ITF to false alarm 

lters as individual component rather than incorporating the false 

larm filter into the ITF. The main drawback is, that RC F A does 

ot directly show how much the overall C ID of the detection 

ystem improves by the additional component and also does 

ot highlight the dependency between the different classifiers. 

hese issues will be addressed further with an alternative ap- 

roach to composed systems in Section 3 , by extending the ITF of 

u et al. (2006b) rather than applying it to additional components. 

.3. Evaluating adversarial robustness 

When deploying a detection system for security applications, 

he adaptive nature of adversaries or the limitations of the sys- 

em evaluation should be considered. This is important since a 

etection system is of limited use if it can easily be evaded or 

oes not perform as suggested. Robustness analyses have been ap- 

roached differently in the literature depending on the research 

ommunity ( Cardenas et al., 2006; Puketza et al., 1996; Sheats- 

ey et al., 2020 ). Approaches refer to the sensitivity analysis , which 

ocuses on the impact of differing assum ptions on the evaluation 

esults, the robustness of the classification method , where perturba- 

ions of a sample without functional impact should not change the 

lassification output (e.g. problem of defining a robust signature) 

r the robustness of the implementation , where the selected algo- 

ithms and resource constrains may impact the detection capabili- 

ies (e.g. problem of building a robust implementation of signature 
4 
atching). This work focuses on the robustness of the classifica- 

ion method, but not the robustness of a specific implementation 

r the impact of resource constraints. Also notice the difference of 

he robustness of the classification method and novelty detection in 

his context. For this work, we define an attack as novel or pre- 

iously unseen, if it can not be derived by the considered set of 

erturbation operations of the threat model and previous samples. 

ovelty detection will not be considered further, since it would re- 

uire a different evaluation approach. 

Most literature on NIDS focuses the robustness analysis on 

dentifying the possible impact of evaluation limitations, differing 

ssumptions and stress testing on the received results ( Cardenas 

t al., 2006; Gu et al., 2006b; Puketza et al., 1996 ). One example 

or stress testing are algorithmic attacks which exploit the differ- 

nce between the average and worst-case time complexity in Skip- 

lgorithms to cause packet drops from overloading ( Zhang et al., 

013 ). However, since the stress testing based on a specific imple- 

entation, in this case for signature matching, is outside the scope 

f this work, it will not be considered further. 

The issue of differing assumptions has been highlighted by 

u et al. (2006b) on the example of the base-rate. They noted that 

he ideal operation point depends on the base-rate, which is under 

dversarial control. The proposed solution was to dynamically ad- 

ust the operation point based on a base-rate estimation from the 

larm rate. 

They also proposed to analyze the impact of evaluation 

imitations by considering uncertainty ranges for parameters 

ike base-rate, TPR or FPR and find the ideal worst-case per- 

ormance using the information-theoretic framework. Similarly, 

ardenas et al. (2006) proposed a (δp , δα, δβ ) -intruder for the ro- 

ustness analysis of a specific system on the IDOC. A (δp , δα, δβ ) -

ntruder can change its base-rate within the bounds of δp = 

 p − δp l 
, p + δp u ] and cause misclassified samples such that the 

erformance is reduced to TPR 

′ = TPR · (1 − δβ ) and FPR 

′ = δα + 

PR · (1 − δα) . This already shows how the parameter ranges of 

u et al. (2006b) are equivalent to a set of (δp , δα, δβ ) -intruders

y Cardenas et al. (2006) and how the maximal parameter uncer- 

ainty leads to a worst-case intruder. 

However, both of these approaches are based on assumptions 

bout the uncertainty in the evaluation and confidence in the spe- 

ific detection system. Therefore, the analysis is subjective and 

ight bias the results based on prior believes. This issue could be 

olved by evaluating specific attacks, like it is commonly done in 

he area of adversarial robustness. 

Recent work focused on evaluating the adversarial robustness of 

IDS from a machine learning perspective on traffic shaping. Ad- 

ersarial examples can be generated by solving the following opti- 

ization problem ( Eq. (5) ). This aims on finding a sample �
 x ∗ with 

inimal distance to the original sample � x , while causing a misclas- 

ification ( T ( � x ∗) � = T ( � x ) ) on the target classifier ( T ) ( Papernot et al.,

017 ). This solution can be approximated by different methods 
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typically gradient-based), while the distance δ�
 x is constrained 

ith an � p norm ( Carlini et al., 2019 ). However, there seems no

onsent which � p constraint would be suitable for the applica- 

ion. Sheatsley et al. (2020) argued for an � 0 norm since only 

imited features in a packet sequence can be perturbed, while 

artl et al. (2020) considers � 1 and � ∞ 

norms as practically rel- 

vant. This issue will be addressed further by relating the distance 

o a practical threat model in Section 3.3 . 

�
 

 

∗ = 

�
 x + δ�

 x = 

�
 x + arg min { � z : T ( � x + 

�
 z ) � = T ( � x ) } (5)

According to Carlini et al. (2019) , adversarial robustness should 

e evaluated using the strongest known attack with adapta- 

ion to the specific countermeasures. Several methods have been 

roposed which adopt the generation of adversarial examples 

o the constraints of network traffic. Hartl et al. (2020) gener- 

ted adversarial examples by restricting the allowed perturbations 

o the inter-arrival time and packet length within logical con- 

traints of the traffic under control. Hashemi et al. (2019) and 

heatsley et al. (2020) additionally considered the relation of 

rimary and dependent features. These dependencies between 

eatures were either explicitly specified ( Hashemi et al., 2019 ) 

r heuristically derived from a data set into firsts-order logic 

 Sheatsley et al., 2020 ). 

The robustness is then typically evaluated based on the 

rade-off between the achievable worst-case performance loss 

nd the required perturbation budget ( Carlini et al., 2019 ). 

ashemi et al. (2019) evaluated the TPR reduction at a speci- 

ed FPR. Similarly, Hartl et al. (2020) evaluated the TPR reduc- 

ion and trade-off between the success-rate and required pertur- 

ation distance. Additionally, they introduced the Adversarial Ro- 

ustness Score (ARS) as the average distance of the 50% adversar- 

al examples with minimal distance. This causes the ARS to be- 

ome infinite, if the attack fails for more than half of all samples. 

heatsley et al. (2020) also evaluated the attack success rate de- 

ending on the allowed perturbation distance and used this to ad- 

itionally study the inter-/intra-transferability of adversarial exam- 

les between classifiers. 

Adversarial examples have also been applied in the context of 

nsemble classifiers. In the image processing domain, Tramér et al., 

020 highlighted that augmenting the training data with adversar- 

al examples (adversarial training) to increase the model robust- 

ess can create misleading results, since the model might remain 

ulnerable to other attack methods. They aimed on reducing this 

ssue by introducing Ensemble Adversarial Training , which addition- 

lly augments the training data for a model with adversarial ex- 

mples that were generated for individual classifiers within a set 

f static pre-trained models (ensemble). Hang et al. (2020) pro- 

osed specific black-box attack methods, which generate ensemble 

ubstitute classifiers for the target to generate adversarial examples 

ased on a boosting structure (selective cascade ensemble strategy) 

r bagging structure (stack parallel ensemble strategy). 

Discussion: One resulting question is, if it is possible to 

pecify an equivalent (δp , δα, δβ ) -intruder for an adversarial ex- 

mple attack method. While both approaches depend on the 

etection system, the approach by Gu et al. (2006b) and 

ardenas et al. (2006) were based on assuming a general unde- 

ectability, while adversarial examples typically reduce the original 

etection score. This implies that the performance of a (δp , δα, δβ ) - 

ntruder is independent of the used operation point, while the per- 

ormance evaluation on adversarial examples is operation point de- 

endent. Therefore, it would be possible to specify an equivalent 

δp , δα, δβ ) -intruder with additional operation point dependence 

or an adversarial attack on a detection system. 

While the evaluation with adversarial examples results in an 

bjective analysis by specifying a threat model and attack method, 

he impact on parameters of interest at low base-rates have not 
5 
een investigated further like by the NIDS literature. The robust- 

ess evaluations were also limited to the classification of attack 

amples, while studying the base-rate fallacy indicates that a de- 

ection system would become equally unusable if an arbitrary 

mount of false alarms could be caused. Therefore it would be im- 

ortant to combine the different evaluation approaches. This will 

e discussed further in Section 3.3 . 

. Information-theoretic framework of intrusion detection for 

omposed systems and robustness analyses 

To avoid the limitations from combining the Intrusion Detection 

apability ( Gu et al., 2006b ) and False Alarm Reduction Capabil- 

ty ( Meng and Kwok, 2013 ) for analyzing composed systems, their 

ombination is briefly discussed to identify the cause of resulting 

ssues. This leads to the introduction of an alternative representa- 

ion for composed NIDSs, which is used to extend the information- 

heoretic framework. Afterwards, the resulting opportunities for 

tudying the system robustness are highlighted and the properties 

f the evaluation metrics are discussed to further increase the in- 

erpretability of results. 

.1. Representing composed classifiers 

Meng and Kwok (2013) applied the information-theoretic 

ramework for the evaluation of false alarm filters. The proposed 

alse Alarm Reduction Capability can be expressed in the context 

f the full detection system as RC F A = I(X;Y F A | Y C = A ) /H(X| Y C = A ) .

ere, X is the input state, Y C the detection system outcome and 

 F A the false alarm filter outcome. However, due to the condition 

f Y C = A , RC F A does not directly relate to its impact of the overall

 ID and the resulting RC F A score has a dependency on both, the pri- 

ary detection system Y C and the specific arrangement. Therefore 

t would be desirable to extend the ITF for composed NIDSs. 

The key challenge by incorporating chained detecting systems 

nto the ITF is that a processing sequence X → Z → Y C → Y F A is not

 valid Markov chain. The false alarm filter Y F A and the feature 

epresentation Z are not conditionally independent given Y C , which 

eads to the contradiction I(X| Y F A ) � I(X| Y C ) that violates the data

rocessing lemma. 

This issue can be addressed by converting the sequential rep- 

esentation of a composed NIDSs into an equivalent parallel rep- 

esentation as shown in Fig. 2 . The sequential representation can 

efer for example to the system architecture, where a firewall fil- 

ers which samples reach following detection methods. The paral- 

el representation on the other hand views the same system as an 

quivalent ensemble of classifiers. Independent of the arrangement 

r representation, each classifier operates on its own feature rep- 

esentation. 

The previous example of a false alarm filter ( Y 1 in Fig. 2 a)

hich determines the transitions of alarms from the prior detec- 

ion method ( C 1 ) to the system output ( Y 1 ), is equivalent to ap-

lying an ∧ -gate as composition function to the output of both 

lassifiers ( Y 1 in Fig. 2 b). Similarly could be viewed for example 

 blocklist ( C 1 ) before a detection system ( C 2 ) as applying an ∨ -

ate as composition function to the output of both classifiers ( Y 2 
n Fig. 2 a/ 2 b). These examples highlight how any arrangement 

f classifiers can be expressed by a Boolean function as shown in 

ig. 2 . This concept can be generalized to any number of composed 

lassifiers. The system is represented as a layer of parallel classi- 

ers generating the state C = (C 1 , C 2 , . . . ) , which is then aggregated

y a single composition function that captures the arrangement of 

he individual classifiers as Boolean equation. This enables a direct 

xtension of the ITF for composed classifiers, since it becomes pos- 

ible to define a valid Markov chain. This will be discussed further 

n Section 3.2 . 
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Fig. 2. Composed system representations: Any system of chained classifiers can be represented as an equivalent ensemble with the respective composition function. 
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.2. Information-theoretic framework for composed classifiers 

The information-theoretic framework can be extended for com- 

osed classifiers as shown in Fig. 3 , which we will simply refer 

o as composed ITF . It considers a random variable X , with nor- 

al samples ( N) and anomalous samples ( A ) from their respective 

ources ( S N / S A ). The samples of X are being processed by n feature

epresentation algorithms , one for each classifier, to the new vari- 

ble Z = (Z 1 , ..., Z n ) , which considers the states Z i = { A, U 1 , ..., U x , N}
f a feature vector. Each label U j represents a distinct set of undis- 

inguishable samples in this feature representation. This definition 

or undistinguishability had to be changed from Eq. (2) to sat- 

sfy the required properties of the Markov chain model, as shown 

n Appendix 1 . This leads to the adaptation of the notation by 

u et al. (2006b , p. 534) which is shown in Eq. (6) . Rather than

ne label for undistinguishability ( U), it allows for multiple U x and 

eyond expecting all feature vectors of the same U x to be equal 

nd contain different classes, it requires the feature vectors of dif- 

erent U x to be different ( ∀ k � = x, ∀ D i ∈ U x , ∀ D j ∈ U k , R (D i ) � = R (D j ) ).

L R (F i ) = N ⇔ ∀ D j , R (D j ) = F i , O NIDS (D j ) = N 

L R (F i ) = A ⇔ ∀ D j , R (D j ) = F i , O NIDS (D j ) = A 

 R (F i ) = U x ⇔ ∃ (D 1 , D 2 ) , R (D 1 ) = F i , R (D 2 ) = F i , 

O NIDS (D 1 ) = N, O NIDS (D 2 ) = A, 

∀ k � = x, ∀ D j ∈ U k , R (D j ) � = F i 

(6) 

he samples of Z are being processed by a set of m classifiers to 

he new variable C = (C , ..., C m 

) , which contains the outcome of
1 

6 
ach classifier C x = { A, N} . The specific arrangement or composition 

f the classifiers can then be represented with a boolean function 

s demonstrated in Section 3.1 , which leads to the final detection 

utcome Y . This approach models a composed NIDS as Markov 

hain X → Z → C → Y . 

Based on this, we can adopt and extend the definitions of the 

lustered model from Gu et al. (2006b) . The Definitions 1 and 3 are

dentical to the definition of Gu et al. (2006b) , while Definition 5 is

djusted from Gu et al. (2006b) to the new Markov chain. 

efinition 1. The intrusion detection capability C ID = 

I(X;Y ) 
H(X ) 

is the 

ormalized mutual information between the input ( X) and output 

 Y ). 

efinition 2. The classification capability C C = 

I(X;C) 
H(X ) 

as normalized 

utual information between the input ( X) and all classifier outputs 

 C). 

efinition 3. The feature representation capability C R = 

I(X;Z) 
H(X ) 

is the 

ormalized mutual information between the input ( X) and the fea- 

ure representations ( Z). 

efinition 4. The composition information loss L Y = 

I(X;C| Y ) 
H(X ) 

as nor- 

alized conditional mutual information between the input ( X) and 

ll classifier outputs ( C) given the final detection outcome ( Y ). 

efinition 5. The classification information loss L C = 

I(X;Z| C) 
H(X ) 

as nor- 

alized conditional mutual information between the input ( X) and 

he feature representations ( Z) given all classifier outputs ( C). 
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Fig. 3. Information-theoretic framework for composed classifiers (only one U shown per feature representation). 
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efinition 6. The classifier gain G C(1 ..n,n +1) = 

I(X;C n +1 | C 1 ..n ) 
H(X ) 

as nor- 

alized conditional mutual information between the input ( X) and 

lassifier C n +1 , if the outcome of the classifiers C 1 ..n are already 

nown. 

efinition 7. The representation gain G R (1 ..n,n +1) = 

I(X;Z n +1 | Z 1 ..n ) 
H(X ) 

as 

ormalized conditional mutual information between the input ( X) 

nd representation Z n +1 , if the representations Z 1 ..n are already 

nown. 

Since the model is a Markov chain, it directly follows from the 

ata Processing Lemma that: 1 ≥ C R ≥ C C ≥ C ID ≥ 0 and C R i ≥ C C i . 

his demonstrates how the feature representation ( C R ) presents an 

pper bound for the intrusion detection capability ( C ID ) and that 

o composition of the given classifiers could achieve a better per- 

ormance than their total classification capability ( C C ). 

Moreover, the definitions lead to additive properties to enable 

n attribution of the overall system performance to its individ- 

al components as shown in Appendix 2 . The intrusion detection 

apability results from the feature representation capability and 

osses from the classifiers and their composition C ID = C R − L C −
 Y = C C − L Y . Adding an additional feature representation or clas- 

ifier increases the respective capability with its gain, such that 

 C (1 , 2) 
= C C 1 + G C(1 , 2) and C R (1 , 2) 

= C R 1 + G R (1 , 2) where C 1 and C 2 are

wo classifiers C = (C 1 , C 2 ) and Z 1 and Z 2 are two feature represen-

ations Z = (Z 1 , Z 2 ) . 

The relations between the used information theoretic metrics 

re visualized for a composed system with two classifiers in Fig. 4 . 

otice that both classifiers could themselves be composed of an 

rbitrary number of classifiers. 

Bringing this back to the example of evaluating a false alarm 

lter, it can be seen that a second classifier can not improve 

he overall system performance by more than G C(1 , 2) ( C ID ≤ C ID 1 + 

 C(1 , 2) ). This highlights that G C(1 , 2) or G C(1 , 2) − L Y could be a suit- 

ble metrics by evaluating and comparing possible false alarm fil- 

ers that complement an individual detection system. Addition- 

lly should be highlighted that the conditional mutual information 

(X;C 2 | C 1 ) of a second classifier C 2 can be both, bigger or smaller,

han its mutual information I(X;C 2 ) . 
4 Therefore, the classification 

ain G C(1 , 2) of classifier C 2 can also be both, bigger or smaller, than 
4 An example of synergy and redundancy can be found in Bossomaier et al. 

2016 , p. 43). 

w

w

c

7 
ts classification capability ( C C 2 ) and individual intrusion detection 

apability ( C ID 2 ). 

By evaluating specific components, it is important to view the 

chieved performance in relation to their limits. A composition loss 

f L Y = 0 is not always possible due to the reduction of states 

etween the random variables. However the achievable minimum 

an often easily be found due to a small number of total states. 

Discussion: Besides the redefinition of the label U , the extended 

efinitions become identical to the work of Gu et al. (2006b) , if 

here exists only one classifier ( Y = C) which leads to L Y = 0 . Like

u et al. (2006b) also noted, the optimal operation point depends 

n the base-rate, which is under adversarial control. The proposed 

olution ( Gu et al., 2006b ) was to dynamically adjust the operation 

oint based on a base-rate estimation from the alarm rate. Since 

n adjustment on the operation point changes the TPR and FPR 

f the classifier, it may also change how to ideally compose the 

ifferent classifiers. Therefore, the thresholds and the composition 

hould be adjusted dynamically to the base-rate, but this needs to 

e done with care since an operation point adjustment based on 

larms could be exploited by adversaries. 

Finally, the robustness approach of Gu et al. (2006b) and 

ardenas et al. (2006) can also be adopted equally, by analyzing 

anges for the base-rate, TPR and FPR or specifying a (δp , δα, δβ ) -

ntruder and selecting the best worst-case performance. However, 

he information-theoretic framework enables a more detailed anal- 

sis as it will be discussed in Section 3.3 . 

.3. Information-theoretic framework for adversarial robustness 

The information-theoretic framework can be used to perform 

ne grained robustness analyses. This leads to the advantage that 

he adversarial robustness can be studied by using metrics out of 

he intrusion detection area and can be applied to both individ- 

al and composed classifiers. Studying composed classifiers might 

e additionally interesting, since the robustness of the composed 

ystem could rely heavily on the performance of individual classi- 

ers. Before highlighting which dynamics between classifiers can 

e identified with the framework, the term ideal robustness will 

e defined further and its relation to the pre-processing in NIDSs 

ill be discussed. However, the analysis first requires to define the 

erm “robustness” in respect to a threat model. 

A threat model shall contain a set of perturbation operations 

hich can be applied to a sample for causing a misclassifications 

ithout affecting the sample’s functionality. In addition, practical 

onstraints can be specified on the adversarial capabilities, like for 
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Fig. 4. Relation between the information theoretic metrics: The system capabilities ( C R (1 , 2) 
, C C (1 , 2) 

) can be broken down to the capabilities and gains of its components. 
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xample a maximal bandwidth, maximal time or which fraction of 

amples at the input are under adversarial control and which sys- 

em knowledge is given. 

The separation of perturbation operations and the attack bud- 

et enables the distinction of an adversarial sample’s distance and 

ost for the adversary. The distance between two samples can be 

xpressed by using an � p -norm or edit distance and is typically 

onstrained by generating adversarial examples. For practical rele- 

ance, it would however be of greater interest to instead constrain 

he cost for the adversary to find samples within a given attack 

udget of the threat model. For the threat model example above, 

his could be the maximal bandwidth and flow duration. 5 

Finally, the information-theoretic framework could consider be- 

ign or adversarial sources as shown in Fig. 5 . While a benign 

ource would directly generate benign samples, an adversarial 

ource can generate both, benign and attack samples, and has the 

dditional capability of perturbing the samples without affecting 

heir functionality by using the operations of the threat model. 

hile it is often only considered how adversarial perturbations 

ould hide an attack, the issue of the base-rate fallacy indicates 

hat the possibility to increase the FPR would equally question the 

sability of the system. 

The framework leads to the definition that a classifier is ideally 

obust against a threat model, if no allowed input perturbations ( P ) 

an lead to a misclassification. Notice that this definition of robust- 

ess does not require the classifier to correctly identify new sam- 

les from the same or other attack classes. Instead it requires a 

onsistent classification output for all allowed perturbations of the 

ame sample. For a meaningful robustness analysis, this would re- 

uire a careful study of the possible perturbation operations for 

ach network layer up to the specific application and attack. 

Ideally robust worst-case performance: The first question 

hich can be studied is how well an ideally robust classifier can 

aximally perform on the given data set , if all attack samples and 

 fraction q of benign samples came from an adversarial source. To 

nswer this question, we need to redefine when two samples are 

ndistinguishable for an ideally robust classifier. 

efinition 8. A sample x of source S x is undistinguishable between 

he sources S x and S y in an adversarial environment, if its fea- 

ure representation is reachable from some sample of S y or if the 

ample can reach the feature representation of some sample of S y 
5 This example is similar to the approach of Hartl et al. (2020) , who constraint 

he � 1 distance by perturbing the packet timing and packet size increase. 

o

q

b

t

8 
hrough the perturbation operations ( P ) of the threat model. 

 R (F i ) = U x ⇔ ∃ (D 1 , D 2 ) , R (P (D 1 )) = F i , R (P (D 2 )) = F i , 

O NIDS (D 1 ) = N, O NIDS (D 2 ) = A, 

∀ k � = x, ∀ D j ∈ U k , R (P (D j )) � = F i 

(7) 

By using this definition of undistinguishability, the resulting 

eature representation capability C ′ 
R 

will be an upper bound on the 

erformance of any ideally robust classifier given this particular 

ata set and threat model. This also implies that there always ex- 

sts an adversarial attack which could at least decrease the perfor- 

ance by max (C ID − C ′ 
R 
, 0) . Since this demonstrates that a classi- 

er can not be ideally robust if C ID > C ′ R , a low C ′ R directly indicates

hat the used feature representation is unsuitable for a robust clas- 

ification; independent of the used detection methods. 

Achieving ideal robustness through pre-processing: The previ- 

us analysis already indicates, that any non-robust classifier can 

e converted into an ideal robust classifier through the use of 

ata pre-processing and normalization. Some typical examples of 

ractical systems would be the case conversion during signature 

atching or a target-based packet reassembly. The aim of this 

re-processing is to map every possibly equivalent sample under 

he given set of operations to an identical feature representation 

 ∀ D j , R (P (D j )) = R (D j ) ). Another equivalent formulation would be

hat the sample x shall receive an identical feature representa- 

ion to every possible sample that would be reachable with the 

erturbation operations of the threat model. This would auto- 

atically lead to C ID ≤ C ′ 
R 

. Moreover, it guarantees ideal robust- 

ess for the classification algorithm against the perturbations of 

he threat model since all derived samples are undistinguishable 

n their feature representation. This highlights how pre-processors 

nd normalizations are useful tools for improving system robust- 

ess against a threat model. 

Evaluating the robustness of detection systems: While the pre- 

ious analyses were purely based on the data set and threat model 

o provide bounds on the achievable performance, the main aspect 

f interest is of course the robustness of the detection method. 

his aims on finding sample perturbations which would lead to a 

isclassification by the system under test. One key difference to 

he analysis before is, that the analyzed samples could be outside 

f the given data set but possible under the threat model. Since 

he feature space is too large for searching, gradient-based meth- 

ds are typically used for approximating a possible sample. This re- 

uires the use of a specific attack method and it should be remem- 

ered that the following results only provide a lower bound on 

he achievable performance degradation as stronger attack meth- 
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Fig. 5. Information-theoretic framework for the robustness analyses (only one U shown per feature representation). 
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ds may exist. To evaluate the overall system robustness, adver- 

arial examples can be generated for all classifiers simultaneously. 

owever, it is also possible to perform further analyses which can 

ypically be found in the area of adversarial robustness, such as the 

ependence on constraints or transferability to other system com- 

onents. 

The key advantage of the information-theoretic framework is 

hat it provides detailed information on how the total performance 

egradation of the attack is split over all system components, such 

s the feature representation, individual classifiers, dependencies 

etween classifiers or the used composition. This makes it a use- 

ul tool for designing robust systems by identifying and attribut- 

ng possible weaknesses to the individual components of the NIDS. 

imilarly can the performance degradation of an adversarial at- 

ack ( C ID − C ′ ID ) be separated into its components which are detec- 

ion method independent ( C R − C ′ 
R 

) and detection method depen- 

ent ( L ′ 
C 

− L C and L ′ 
Z 

− L Z ). 

How the redundancies between classifiers are utilized during 

he attack or how synergies and operation point changes amplify 

he caused damage can be of additional interest in the context of 

omposed systems. For example, a classification gain G C(1 , 2) < C C 2 
ndicates that the classifier C 2 could provide redundancy for the 

lassifier C 1 during an attack, if they were sufficiently independent. 

n this case, an increase of the classification loss L C 1 can lead to an

ncrease in the information gain G C(1 , 2) . This would be a desirable 

ehaviour and can be evaluated with the analysis on an adversarial 

ata set. If the classification redundancy could be utilized during 

he attack, then either the classifiers were sufficiently independent 

r the transferability of the attack method was insufficient - de- 

ending on the perspective. 

On the other hand, an information gain G C(1 , 2) > C C 2 indicates 

 synergy-based performance dependency of classifier C 2 on C 1 . In 

his case, evading only classifier C 1 can additionally decrease the 

nformation gain of classifier C 2 . This highlights that the classifica- 

ion capability C C 1 does not provide an upper bound on the impact 

f its evasion on the overall decrease in classification performance 

 C C − C ′ C ) which can be up to C C 1 + G C(1 , 2) − C C 2 . 

The analysis on an adversarial data set can also be used to iden- 

ify which operation points would maintain the highest C ID while 

eing under attack and how the ideal composition changes. While 

his design approach may limit the performance during normal op- 

ration, it could be used to increase the system robustness. Simi- 

arly, the impact of a different data pre-processing and normaliza- 

ion can be quantified and compared by evaluating how much they 

mprove the robustness of the classification algorithms C ′ 
C 

or C ′ 
C x 

. 
9 
Evaluating the risk of adversarial examples: Not all adversar- 

al samples present a similar risk in practice, since they could be 

estroyed by a given channel with, for example, timing jitters or 

acket errors. Therefore, it could be performed an analysis with 

 specified channel model, that additionally disturbs the samples 

ike a communication channel without control of the adversary to 

valuate the risk from an attack method. 

.4. Properties of the intrusion-detection capability 

Gu et al. (2006b) highlighted that the normalized mu- 

ual information measures the uncertainty reduction about the 

ource of a sample after its classification outcome is known. 

ardenas et al. (2006) noted additionally that this operation point 

election is an instance of the expected cost analysis with c(X, Y ) = 

log P [ X| Y ] . Gu et al. (2006a,b) also demonstrated that the C ID has

 higher sensitivity to the relevant ranges of base-rates, FPR and 

PR compared to the PPV, NPV and probability of error P e . The fol-

owing section will highlight another property of C ID and its rela- 

ionship to P e . 

Towards a skill metric: In the context of evaluating forecast 

ystems for rare events, an area with similar challenges by hav- 

ng high impact events at a strong class imbalance, equitability is 

 desired property that might also be desirable for the evalua- 

ion of NIDSs. Gandin and Murphy (1992) defined a measure as 

quitable if any random or constant classifier receives an identical 

core and combines the elements of the contingency table by a lin- 

ar weighted sum ( Hogan et al., 2010 ). Hogan et al. (2010) noted

owever that the linearity requirement can be omitted, which en- 

bles the definition of measures that avoid vanishing results at de- 

reasing base-rates. An example for a measure that assigns dif- 

erent scores to random or constant classifiers would be the ex- 

ected cost. At a constant cost ratio c and a base-rate p, it would 

ssign c exp 

= cp to a system that never returns an alarm and 

 exp 

= 1 − p to a system that always returns an alarm. In this case, 

here may exist systems with skill that result in a higher cost than 

thers without skill. While this directly relates to their practical 

alue, it can be undesirable in objective comparisons between sys- 

ems. This issue equally applies to the probability of error P e or 

sing the FPR, TPR, PPV and NPV individually. 

In the ITF, any random or constant classifier can be represented 

y an independent random variable as generator of C. In this case 

 C = 

I(X,C) 
H(X ) 

= 

(H(X ) −H(X| C)) 
H(X ) 

= 0 leading to C ID = 0 , since the condi- 

ional entropy is H(X| C) = H(X ) as X and C are independent by the 

efinition of a random or constant classifier. This highlights that 



T. Mages, M. Almgren and C. Rohner Computers & Security 116 (2022) 102633 

Fig. 6. C ID and its lower bound on the probability of error ( × indicates the parameters of Table 1 ): P e is minimized at b = 1 , systems with higher P e can sometimes achieve 

a lower C ID and at low base-rates a higher b might allow higher P e at the same C ID . 
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he normalized mutual information results in a score of 0 for any 

andom or constant classifier, while any system with skill would 

eceive better results since a dependence between X and C would 

educe the conditional entropy H(X| C) ≤ H(X ) . 

Relation of C ID and P e : To further interpret the normalized mu- 

ual information, its relation to the probability of error P e = P (X � =
 ) can be highlighted. Assuming a constant base-rate for the eval- 

ation, the intrusion detection capability only depends on the con- 

itional entropy H(X| Y ) since the entropy of X only depends on 

he base-rate ( H(X ) = −p log 2 (p) − (1 − p) log 2 (1 − p) ). 

 ID = 

I(X, Y ) 

H(X ) 
= 

H(X ) − H(X | Y ) 
H(X ) 

(8) 

he conditional entropy can be related to the probability of 

rror with Fano’s inequality, where H(E) = −P e log 2 (P e ) − (1 −
 e ) log 2 (1 − P e ) is the binary entropy of the error probability and

the number of possible states ( Fano, 1961 , p. 186). 

(X | Y ) ≤ H(E| Y ) + P e log (N − 1) ≤ H(E) + P e log (N − 1) (9)

he case of a binary classification problem (benign/attack, N = 2 ) 

implifies the equation to H(X| Y ) ≤ H(E) . The equality H(X| Y ) =
(E) + P e log (N − 1) holds if the probability of an error given that 

 = y is equal for all y and if all remaining values X = x are equally

ikely in the case of an error ( Massey, 1998 , p. 84) ( Fano, 1961 ,

q. 6.19). The second condition always holds for a binary classifica- 

ion problem since there is only one alternative state in case of an 

rror. The first condition holds if P (X = A | Y = N) = P (X = N| Y = A ) ,

hich applies to systems where the False Omission Rate (FOR) 

quals the False Discovery Rate (FDR). This directly implies that 

 ID can be associate with a minimal error of probability or in other 

ords that the probability of error has a lower bound for all sys- 

ems with identical C ID . 

Fig. 6 visualizes the relation of C ID to the probability of er- 

or in the context of the base-rate fallacy. It presents the proba- 

ility of error as a function of C ID , the base-rate p and the ratio

 = FDR / FOR to represent the missclassification symmetry. This ra- 

io enables that the minimum of the error probability can be found 
10 
t b = 1 for any C ID and p, which is highlighted by a vertical dashed

ine. 

Fig. 6 a demonstrates the impact of the base-rate fallacy and 

lots the function of P e for a constant C ID at decreasing base- 

ates. It can be seen how the symmetry at an equal class balance 

 p = 0 . 5 ) breaks for decreasing base-rates and how a missclassi-

cation symmetry of FOR > FDR leads to diminishing possible in- 

reases in P e at the same intrusion detection capability for lower 

ase-rates. Since C ID is a complementing evaluation metric, it can 

e found a further analysis of marked examples ( × in Fig. 6 ) that

ould achieve C ID = 0 . 8 at a base-rate of p = 0 . 0 0 05 for a ratio b of

0 −3 , 10 3 and 10 5 in Table 1 . As expected, it can be seen that lower 

atios of b relate to systems with higher PPV and that a high PPV at 

ow base-rates requires diminishing FPRs. It can also be seen that 

he higher P e at b = 10 5 is caused by a higher FPR, lowering the

PV and requiring a higher detection rate to maintain C ID . 

Fig. 6 b shows the probability of error for several C ID at a low

ase-rate of p = 0 . 0 0 05 . Since the increase in P e is diminishing for

 < 1 , the plot has instead been extended for higher ratios. This 

emonstrates how a reduced intrusion detection capability allows 

 higher probability of error. However, it can also be seen that 

 system with higher P e may achieve the same or better uncer- 

ainty about the input than a system with lower P e , if the ratio of

DR / FOR becomes sufficiently large. This directly implies that us- 

ng Bayes decision rule to derive a composition function will lead 

o a minimal P e , but might not achieve a maximal C ID . An example

cenario for this can be found in Appendix 3 . 

This highlights that C ID can be a suitable measure for detection 

kill , as it avoids vanishing results at decreasing base-rates and as- 

igns a minimal score to any random or constant classifier. More- 

ver, the relation of C ID to P e , TPR and PPV has been discussed 

o increase its interpretability as complementing evaluation met- 

ic and demonstrate their dependencies. 

Relation of C ID and cost analyses in ROC plots: Since 

he relation of C ID and cost analyses has been discussed by 

u et al. (2006a) and Cardenas et al. (2006) , the composed ITF 
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Table 1 

Example systems with C ID = 0 . 8 at p = 0 . 0 0 05 . 

P e b p C ID TPR FPR PPV NPV FOR FDR 

8.27e-5 0.001 0.0005 0.80 0.835 3.45e-11 1 - 8.27e-8 1 - 8.27e-5 8.27e-5 8.27e-8 

1.03e-4 1000 0.0005 0.80 0.859 3.25e-5 0.93 1 - 7.03e-5 7.03e-5 7.03e-2 

6.61e-4 100,000 0.0005 0.80 0.989 6.55e-4 0.43 1 - 5.70e-6 5.70e-6 0.57 

Table 2 

System example with two classifiers. 
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ill now be set into the context of the cost-based alert fusion from 

u et al. (2008) by visualizing them in ROC plots. 

Even though Cardenas et al. (2006) highlighted that maximizing 

 ID is an instance of the expected cost problem (see Section 2.2 ), 

he approach of Gu et al. (2008) with using the LRT ( Hoballah and

arshney, 1989 , Eq. 8) as optimal solution for deriving a com- 

osition function from a cost perspective, is not directly applica- 

le to C ID since it does not have a fixed cost (the cost c(X, Y ) =
log P [ X| Y ] depends on the unknown composition function). Nev- 

rtheless, using the likelihood ratio to derive an ideal composition 

unction from an information-theoretic perspective still provides 

urther insights on their relation, as it will be intuitively explained 

ith an example. 

Consider a system of two classifiers which have the joint prob- 

bilities shown in Table 2 a and all possible composition functions 

hown in Table 2 b. The used base-rate for this example is p = 0 . 2

o simplify the visualization. Fig. 7 a shows the corresponding ROC 

lot containing the result of all composition functions and isolines 

or systems of identical C ID (gray). 
Fig. 7. ROC curve analysis with isoline

11 
As expected, it can be seen that the composition functions f 1 
nd f 16 result in a constant classifier and therefore C ID = 0 . It can

lso be seen that the composition function Y = f (C) always results 

n the same C ID to its inverse Y = ¬ f (C) , for example f 3 and f 14 

r f 4 and f 13 . Assuming a fixed cost analysis, we can compute the 

ikelihood ratio l(C) ( Section 2.1 , Eq. (1) ) for each state of C and

onsider them as possible values of τ to derive the composition 

unction that minimizes the expected cost ( Table 2 a, index of τx 

orted by descending l(C) ) ( Gu et al., 2008 ). Since the base-rate is

onstant, each τ directly relates to a specific fixed cost ratio. More 

mportantly, it is known that all systems, which achieve an identi- 

al expected cost, can be found on a straight line in the ROC plot 

hich has the slope τ ( Cardenas et al., 2006 ). For example, if we 

onsider τ3 = 1 . 11 , the LRT ( Eq. (1) ) results in the two functions

f identical minimal cost, f 4 and f 12 ( Gu et al., 2008 ). All points

hich extend the red line that is marked as τ3 in Fig. 7 a, result

n the identical expected cost at the respective cost ratio; all points 

elow correspond to a higher expected cost ( Cardenas et al., 2006 ). 

valuating the values of the remaining τx or one value of each in- 
s for C ID at different base rates. 
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Fig. 8. Evaluation example system (sequential representation): The allowlist shall increase the effective base-rate at the main NIDS (LSTM) and the false alarm filter (MLP) 

shall increase the PPV at low base-rates. 
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erval (τx , τx +1 ) , leads to the ideal composition functions for any 

xed cost f 3 , f 4 and f 12 , which are shown on the red line that

overs all remaining points ( Gu et al., 2008 ). 

Since we know that the isolines for a fixed cost are straight in 

he ROC plot while the isolines for C ID are always concave if TPR > 

PR for any base-rate, we know that the composition function 

hich maximizes C ID also minimizes some fixed cost ratio. This is 

quivalent to the previous observation of Cardenas et al. (2006) . 

isually, it means that for TPR > FPR the area below the straight 

ine between any two points in a ROC plot corresponds to an 

rea of lower C ID than at least of the two points. Therefore, the 

deal composition form an information-theoretic perspective must 

e one of the functions that results from the LRT approach of 

u et al. (2008) . In this case, the ideal composition function is f 12 

ith C ID = 0 . 196 at the base-rate p = 0 . 2 . 

Since a ROC plot is in itself base-rate independent, the com- 

osition functions of Table 2 maintain their position by consider- 

ng the results for lower base-rates as shown in Fig. 7 b and 7 c.

owever, C ID is base-rate dependent which causes the isolines to 

hange accordingly (notice that the FPR axis has been limited for 

isualizing the isolines of C ID ). It can be seen as expected that the

ame point in a ROC plot corresponds to a lower C ID at lower base-

ates. This changes the ideal composition function at the base-rates 

p = 0 . 001 and p = 0 . 0 0 01 to f 4 with C ID = 0 . 081 and C ID = 0 . 063 ,

espectively. 

This highlights another time the close connection between C ID 
nd the expected cost, even though both metrics have very dif- 

erent properties. It also confirms that the composition function 

hich minimized the composition loss L Y can be found using the 

RT with one value of each interval (τx , τx +1 ) . 

. Evaluation 

This section aims to demonstrate the application of the 

nformation-Theoretic Framework. It will be used to design, fine- 

une and evaluate an exemplary composed NIDS using systems de- 

cribed in the literature and an open data set. The system perfor- 

ance will be analyzed for a variety of base-rates and the opera- 

ion points will be optimized for the composition function. Addi- 

ionally, the system performance will be attributed to its individual 

omponents to better understand the impact of an evasion attempt 

ith adversarial examples. Please notice that the used NIDSs, data 

et, threat model and attack method only serve as simple examples 

or the demonstration of the framework. 

The considered system is composed of four classifiers as shown 

n Fig. 8 . It consists of a blocklist ( C 2 ) and allowlist ( C 1 ), which shall

ncrease the effective base-rate at the primary detection method, 
12 
ue to the high class imbalance in practical environments. The 

rimary detection method is a Long Short-Term Memory (LSTM) 

odel ( C 3 ) that was trained by Hartl et al. (2020) . Additionally,

 Multilayer Perceptron (MLP) will be used as False-Alarm Filter 

 C 4 ) to increase the final PPV at low base-rates. The resulting se- 

uential composition, as shown in Fig. 8 , can be expressed by the 

omposition function Y = C 1 ∧ (C 2 ∨ (C 3 ∧ C 4 )) in the framework of

ection 3 . 

For the analysis, we used the CIC-IDS-2017 data set from the 

anadian Institute of Cybersecurity ( Sharafaldin et al., 2018 ) and 

he pre-processing by Hartl et al. (2020) with an identical split 

f the training and test set to match the setup of the used LSTM 

odel. This provides the feature representation R 1 , which presents 

ach flow as sequence of packets and is used by the classifier 

 3 . The additional classifiers C 1 , C 2 and C 4 use an aggregated fea-

ure representation R 2 of each flow, which is similar to the pre- 

rocessing of Bachl et al. (2019) . We use a second feature represen- 

ation because of both, practical and educational aspects. A variety 

f feature representations is expected to increase the chance of ob- 

erving independent classification redundancies during an evasion 

ttempt and an aggregated feature space specifically could pro- 

ide more robustness against the considered perturbation opera- 

ions in Section 4.2 . An overview of both feature representations 

an be found in Appendix 4 and the used unit-of-analysis in all 

ollowing evaluations is a flow as defined by the used data set. 

ince the used test set has an original base-rate of about 25%, the 

esults will be projected to lower base-rates under the assump- 

ion of a constant TPR and FPR to study the impact of the base- 

ate fallacy in practical environments. This assumption by pro- 

ecting the results to lower base-rates will be discussed further 

n Section 5 . 

To generate a simple rule set that shall serve as block- 

ist and allowlist, a first validation set has been split off the 

raining data (1/3). A decision tree was generated using Scikit- 

earn ( Pedregosa et al., 2011 ) on the feature representation R 2 . The

alidation set was then used to isolate individual decision rules 

ith at least 100 matches and an error-rate below 10 −4 . This re- 

ulted in a naive allowlist of 16 rules ( C 1 ) and a naive blocklist of

0 rules ( C 2 ). 

The MLP ( C 4 ) was generated using Pytorch ( Paszke et al., 

017 ). It has 5 fully connected layers of each 512 neurons 

ith Rectified Linear Unit (ReLU) activation function and 0.2 

ropout probability. It uses the feature representation R 2 and was 

rained with binary cross entropy as loss function using the op- 

imizer Adam ( Kingma and Ba, 2015 ). This resembles a model by 

achl et al. (2019) on the same data set. 
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Fig. 9. System evaluation viewing TPR, PPV and C ID depending on the allowed FPR. The ∧ -composition only achieves a noticeable performance difference for low base-rates 

and FPR ranges. 
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Fig. 10. Operation point analysis of C ∧ C at p = 1 e − 05 . 
.1. System performance analysis 

A second validation set has been split off from the test set (1/3) 

or an operation point analysis and optimization. This subset is ex- 

luded from the later results on the test set. 

Performance overview: The rule-based methods have a single 

peration point, which results in (FPR = 91 . 68 %, TPR = 99 . 995 %) for

he allowlist ( C 1 ) and (FPR = 0 . 001 %, TPR = 25 . 40 %) for the blocklist

 C 2 ) on the validation set. This corresponds to a C ID 1 = 0 . 007 and

 ID 2 
= 0 . 185 at an example base-rate of 10 −5 , respectively. It is ex-

ected that the allowlist has a lower C ID than the blocklist as it 

nly serves to correctly identify a subset of benign samples which 

ave a lower entropy compared to attack samples. 

The performance evaluation of the classifiers C 3 and C 4 on the 

alidation set can be seen for a variety of operation points and 

ase-rates in Fig. 9 . It shows the TPR, PPV and C ID depending on

he selected FPR on a logarithmic scale. It can be seen that both 

lassifiers individually achieve comparable results ( Fig. 9 a and 9 b). 

t can also be seen as expected that the maximal C ID and corre- 

ponding PPV decrease significantly with reducing base-rate. The 

 -composition ( Fig. 9 c) shows an advantage over its components 

ith decreasing base-rates. It outperforms both individual classi- 

ers with a higher TPR, PPV and C ID at FPRs below 10 −4 . 

Operation point analysis: To further visualize the impact of 

omposing C 3 ∧ C 4 the resulting C ID on the validation set is shown 

or a variety of detection threshold combinations at a base-rate of 

0 −5 in Fig. 10 . The maximal C ID for the individual and composed 

ystem have been marked to highlight how the ideal operation 

oint changes as a result of the composition and how the com- 

osed C ID of 0.73 exceeds the maximal 0.70 and 0.67 of its individ- 

al systems. The ideal detection thresholds would change further 

y adding the classifiers C 1 or C 2 and the operation point analysis 

ould be done independent of the specific composition by viewing 

 C (3 , 4) 
− L Y min 

. However, for simplicity of this example, the detec- 
13 
ion thresholds that maximized the operation point of C 3 ∧ C 4 will 

e used for all following analyses at the same base-rate. 

Feature representation analysis: With the adjusted operation 

oints, the test set will be analyzed. To include the feature rep- 

esentation in the performance decomposition, the corresponding 

eature representation capabilities and possible gain will be ana- 

yzed. Since the feature representation R 2 = f (R 1 (x )) can be ex- 

ressed as function of R 1 , it follows from the data processing 

emma that its information gain must be zero ( G R (1 , 2) = 0 ). Both

epresentations contain at least one probabilistic feature, which is 
3 4 



T. Mages, M. Almgren and C. Rohner Computers & Security 116 (2022) 102633 

Fig. 11. System performance decomposition at p = 10 −5 . 
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he inter-arrival time. While it would be possible to estimate a dis- 

ribution for the timing jitter, it is easier to instead specify bounds 

or their feature representation capabilities. The upper bound was 

omputed by specifying two samples as equal if they match ex- 

ctly (including the inter-arrival time) and the lower bound by ig- 

oring any timing deviations between samples. This gave identical 

esults for both feature representations, leading to 0 . 9998 ≤ C R 2 ≤
 R 1 

≤ 0 . 9999 . Most undistinguishable samples to the normal traffic 

re attack classes labeled Denial of Service (DoS), Infiltration and 

eb Attack, which could indicate that the representation may ben- 

fit from additional traffic-features with statistics related to past 

onnections or content features if they were available. 

System performance decomposition: The system performance 

ecomposition for the test set results can be seen in Fig. 11 , which

hows the different capabilities of the system based on the classi- 

er C 3 . The respective gains and losses can be seen as transitions. 

he classifier C 3 causes an initial classification information loss of 

 C (3) 
= 0 . 370 from the feature representation capability C R 1 . This is

ore than if it would operate at its individually best operation 

oint, but leads to a better overall system performance as indi- 

ated by Fig. 10 . Adding the classifier C 4 creates a classification gain 

f G C(3 , 4) = 0 . 180 . Since this is below its classification capability

ith C C 3 = 0 . 630 , it could provide redundancy for C 3 . Adding the

locklist and allowlist only causes minimal increases in the clas- 

ification capability with gains of 0.016 and 0.0 0 04, providing ad- 

itional redundancy. The composition function Y = C 1 ∧ (C 2 ∨ (C 3 ∧ 

 4 )) of Fig. 8 causes a composition loss of L Y = 0 . 125 , leading to

 final performance of C ID = 0 . 701 . This exceeds the performance

f all individual components. Based on the joint probabilities of 

 C (1 , 2 , 3 , 4) 
, it can be found that the alternative composition func- 

ion Y = (C 1 ∧ C 2 ∧ C 4 ) ∨ (¬ C 2 ∧ C 3 ∧ C 4 ) would lead retrospectively

o the maximal system performance of C ID = 0 . 717 as upper bound

n the achievable performance for these classifiers and thresholds. 

.2. System robustness analysis 

After the performance has been attributed to its individual 

omponents, the robustnuss of the classifiers C 3 and C 4 is analyzed 

n the test set together with its impact on the overall system. It 

ill be considered a minimalistic threat model, which only serves 

s example to demonstrate parts of the analysis out of Section 3.3 . 

he used threat model and attack method are based on the � 1 - 

istance attack by Hartl et al. (2020) , with modification for multi- 

le classifiers. 
14 
The threat model considers that the adversary has knowledge 

f the detection models (white-box scenario) and the allowed per- 

urbation operations only consist of delaying packets and increas- 

ng their size. These perturbations can only be applied to packets 

n the forward direction within logical constraints, such as a max- 

mal inter-arrival time or maximal packet size. This aims on de- 

iving misclassified flows without affecting their functionality. As 

imple attack budget will be considered that the adversary could 

ncrease its bandwidth and attack time by up to 25% compared to 

ts capabilities in the original test set. Additionally will be assumed 

hat the NIDS operates at a constant operation point, since a dy- 

amic adjustment based on the alarm rate could be exploited by 

enerating false alarms. 

Ideal robustness limitations: Based on the perturbation opera- 

ions of the threat model, a reachabiliy analysis can be performed 

o estimate the maximal performance of an ideal robust classifier 

n the test set. However, to simplify the analysis, a lower bound is 

omputed instead by defining two samples as reachable if they are 

dentical while ignoring their timing and packet sizes. The removal 

f the timing and size is the simplest pre-processing which maps 

ll derived samples under the naive threat model to the same 

eature vector, ensuring the lower bound. This analysis leads to 

he new bounds of 0 . 991 ≤ C ′ 
R 2 

≤ 0 . 9999 and 0 . 992 ≤ C ′ 
R 1 

≤ 0 . 9999 ,

here the undistungishable samples are caused by the same attack 

lasses as before. This highlights that a robust oracle would exist 

nd indicates that the evasion can not be independent of the used 

lassifiers. 

Adversarial attack method: The considered attack for eval- 

ating the classifier robustness is based on the Carlini-Wagner 

ethod ( Carlini and Wagner, 2017 ). The adversarial examples are 

enerated based on the optimization objectives of Table 3 , which 

olution is approximated using the Adam optimizer ( Kingma and 

a, 2015 ). It aims to minimize the difference between the logit out- 

ut of the LSTM ( T 3 ) and MLP ( T 4 ) to the desired logit output υi 

hile penalizing increases in time ( �t) and size ( �s ) between the 

riginal sample � x and adversarial sample �
 x ∗ with the trade-off pa- 

ameters ε. As desired output for attack samples has been selected 

n just below the operation points and υ ′ 
n for normal samples just 

bove the selected operation points. 

The ε-parameters have been adjusted such that the average 

nter-arrival time was increased by 23.0% and the average package 

ize by 8.5% to ensure staying within the specified attack budget. 

By using the described method, adversarial examples have been 

enerated for each flow in the test set. Its impact on the individ- 



T. Mages, M. Almgren and C. Rohner Computers & Security 116 (2022) 102633 

Table 3 

Used optimization objectives for generating adversarial examples. 

Targeted error type Optimization objective 

False Negatives max (T 3 (R 1 ( � x ∗)) − υ3 , 0) + max (T 4 (R 2 ( � x ∗)) − υ4 , 0) + ε t · �t( � x , � x ∗) + ε s · �s ( � x , � x ∗) 
False Positives max (υ ′ 

3 − T 3 (R 1 ( � x ∗)) , 0) + max (υ ′ 
4 − T 4 (R 2 ( � x ∗)) , 0) + ε t · �t( � x , � x ∗) + ε s · �s ( � x , � x ∗) 

Fig. 12. Robustness analysis at p = 10 −5 of Y = C 1 ∧ (C 2 ∨ (C 3 ∧ C 4 )) . 
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t  
al classifiers can be seen in Table 4 , which compared the per- 

ormance on the original to the adversarial test set at a base-rate 

f p = 10 −5 . The used attack method has a high success rate by

enerating false-negatives against the used LSTM, but increased 

he detection rate of the used MLP. The MLP was on the other 

and more susceptible to the generation of false-positives than the 

STM. Table 4 also highlights that the performance of the naive 

lock- and allowlist decreased, even though they have not been 

onsidered during the generation of the adversarial examples. This 

esults in a low PPV and C ID for all classifiers. 

Evasion attempt - system performance decomposition: Fig. 12 a 

ttributes the overall system performance to the classifiers in 

able 4 . Fig. 12 a compares the system performance for different 

ssumptions of which part of the traffic are under adversarial con- 

rol and could be perturbed. For attack samples has been consid- 

red that either all of them have an adversarial perturbation (adv. 

ttack = 100%) or none of them (adv. attack = 0%). For the be-

ign samples has been considered that 0%, 1%, 10% or 100% of the 

ormal traffic are under control of the adversary (adv. benign) and 

ould thus be adversarially perturbed to cause false alarms. 
Table 4 

Adversarial attack performance at p = 10 −5 . 

model test set TPR FPR PPV C ID 

Allowlist (C1) normal 99.998% 91.68% 0.001% 0.007 

Allowlist (C1) adversarial 94.54% 90.02% 0.001% 0.001 

Blocklist (C2) normal 25.30% 0.001% 19.55% 0.184 

Blocklist (C2) adversarial 19.72% 0.057% 0.343% 0.078 

LSTM (C3) original 95.94% 0.022% 4.16% 0.630 

LSTM (C3) adversarial 14.21% 0.808% 0.018% 0.023 

MLP (C4) original 84.39% 0.007% 11.48% 0.611 

MLP (C4) adversarial 97.58% 6.58% 0.015% 0.203 

m
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15 
While the performance of C 1 decreases as a result of the ad- 

ersarial attack samples, it can be seen an increase in the infor- 

ation gain of C 2 . This highlights that the redundancy of C 2 could 

e utilized at the right composition function. For example, in the 

ase of adversarially perturbed attacks and normal benign traffic 

adv. benign = 0.0%, adv. attack = 100% in Fig. 12 a), the over-

ll system performance decreased due to the composition loss to 

 

′ 
ID 

= 0 . 24 while an alternative composition would exist that main- 

ains C ′ 
ID 

= 0 . 74 . As also the information gain of C 2 decreases with

ncreasing adversarial perturbations among benign flows, it can be 

een that the information gain of the blocklist C 2 slightly increases. 

nterestingly, this ends in a synergistic affect where C ′ 
C 2 

= 0 . 078 <

 

′ 
C ((4 , 3) , 2) 

= 0 . 137 at the full adversarial test set (100% adv. benign, 

00% adv. attack in Fig. 12 a). These redundancies and synergies 

re however not fully utilized in the detection outcome due to the 

tatic composition function. The retrospectively ideal composition 

unction for the full adversarial test set would result in C ′ 
ID 

= 0 . 206 ,

hich is only slightly above all individual classifiers but higher 

han the resulting C ′ ID = 0 . 101 of Fig. 12 a. That the used LSTM is

ore susceptible to adversarial perturbations than the MLP could 

e expected from the used feature representation, as the aggre- 

ated feature space ( R 2 ) provides a smaller attack surface for the 

perations of the threat model compared to R 1 . 

Fig. 12 b further highlights the impact of adversarial perturba- 

ions from normal traffic on the PPV of the composed system due 

o false alarms. It considers that either all or non of the attack 

amples have adversarial perturbations (adv. attack samples 100% 

nd 0%) and shows the PPV depending on which fraction of the 

ormal traffic can be adversarially perturbed. It can be seen that 

 small percentage of adversarially perturbed benign flows have a 

igh impact on the PPV. These results could be amplified further 

y assuming that the adversary would preferably generate selected 

dversarial benign samples that have a high likelihood of causing 

alse alarms at one, multiple or the composed system. 



T. Mages, M. Almgren and C. Rohner Computers & Security 116 (2022) 102633 

c

v

j

a

t

p

5

e

u

p

m

a

t

n

a

t

p

a

i

d

a

p

v

c

e

t

v

u

s

j

m

l

u

t

j

s

l

s

i

m

o

d

b

d

f

o

m

c

d

p

a

t

r

d

s

d

a

w

i

a

t

s

e

n

w

f

T

v

d

t

2

s

O

F

a

t

t

i

t

H

f

p

b

t

f

t

o

w

u

w

fi

6

i

a

I

t

p

p

p

r

t

o

t

s

d

a

p

p

c

F

A

1

Overall, it can be seen that redundancies between the classifiers 

ould be utilized and possibly improve the robustness of all indi- 

idual classifiers if the composition function was dynamically ad- 

usted based on feedback to the false alarms. However, the results 

lso highlight that both, the specific individual and composed sys- 

em, are vulnerable to the threat model which may render them 

ractically unusable. 

. Discussion 

The ITF provides an objective skill metric with additive prop- 

rties to attribute the overall system performance to its individ- 

al components. The evaluation demonstrated that maximizing the 

erformance of one component individually does not necessarily 

aximize the overall system performance. It could also seen that 

 vulnerable component might require the dynamic adjustment of 

he composition function to maintain the system performance. Fi- 

ally, it has been possible to identify classification redundancies 

nd evaluate their dependence by using an example evasion at- 

empt. This can provide new insights to the robustness of com- 

osed detection systems and by studying the impact of adversarial 

ttacks on complex systems. 

Composed systems can be analyzed from a cost and 

nformation-theoretic perspective. Both approaches are related, 

ata-driven, provide an evaluation metric for system comparisons 

nd enable the fine-tuning of a system by optimizing its operation 

oints or composition function. However, both metrics provide 

ery different properties which gives them complementing use 

ases. 

The expected cost directly provides a practical meaning to the 

valuation results and enables incorporating operational costs into 

he analysis. However, the results can not be attributed to the indi- 

idual components for identifying system limitations and the eval- 

ation metric might rank for example a random classifier over a 

ystem with skill. Moreover, the cost ratio might be estimated sub- 

ectively and bias the analysis results. While some of these aspects 

ight be undesirable in an objective analysis, they also directly re- 

ate to the practical value which the system provides to a specific 

ser. This makes the expected cost a suitable tool to select and op- 

imize a NIDS for a specific and known deployment environment. 

The presented information-theoretic approach provides an ob- 

ective analysis metric, which attempts to measure the skill of a 

ystem rather than the value and can avoid vanishing results at 

ow base-rates. The approach enables an attribution of the overall 

ystem performance to its individual components, which provides 

mportant insights on the system limitations for further improve- 

ents. Moreover, the information-theoretic perspective gives the 

pportunity to find indications of classification synergies and re- 

undancies, as seen during the evaluation of this work. This could 

e especially useful for deriving robustness requirements on the 

ifferent classifiers, since it can indicate which parts of the per- 

ormance rely on which components and might be volatile in case 

f their evasion. Since the framework is based on classical infor- 

ation theory, it does not provide a direct measure of redundan- 

ies about a target variable. However, changes in the system redun- 

ancy can be observed indirectly by the difference between its ca- 

ability and gain (normalized co-information). This highlights that 

pplying a partial information decomposition in future work on 

his framework could provide further insights to understand the 

obustness of a composed NIDS and guide the design of resilient 

etection systems. These properties of the composed ITF make it a 

uitable tool for an objective and fine-grained analysis that is in- 

ependent of a specific deployment, or for studying the dynamics 

nd robustness of composed NIDSs. 

The analysis of the ITF is based on a data driven approach 

hich leads to a number of limitations since the evaluation inher- 
16 
ts all shortcomings of the used data set. For example, the results 

re not expected to generalize to other networks or changes over 

ime. Similarly, the attacks and background traffic of the used data 

et may not be representative for the targeted application or its 

nvironment. The direct analysis as done in Section 4 also does 

ot indicate any anomaly or novelty detection capability, since this 

ould require leaving out attack classes during training or per- 

orming additional benchmarks from the anomaly detection area. 

his work focused on a binary detection problem, but the random 

ariables of the framework could be extended for incorporating 

ifferent attack classes. It will be part of future work to analyze 

he framework results for multiple data sets and models. 

Since the original base-rate of the used data set was at about 

5%, the results have been projected to lower base-rates to con- 

ider the impact of the base-rate fallacy in the system evaluation. 

ne key assumption for studying this effect was that the TPR and 

PR are base-rate independent. While this holds at first sight, it 

lso implies that the distribution of attack classes would stay iden- 

ical and that the attacks would have no side-effects on the fea- 

ures of other flows which are impacted by the base-rate scal- 

ng. To which extent both of these assumptions hold depends on 

he specific application, data set, and used feature representation. 

owever, scaling the base-rate can provide meaningful estimations 

or the expected system performance that are closer to their de- 

loyment scenario. 

Finally, the performed robustness analysis only provides a lower 

ound on the achievable performance degradation, since stronger 

hreat models, attack methods or parameters might exist. For per- 

orming meaningful robustness evaluations, it would be required 

o further study different attack classes and which perturbation 

perations can be performed on the different layers of the net- 

ork stack without affecting a flow’s functionality. Nevertheless, 

sing adversarial examples provides an objective analysis approach 

hich does not require subjective estimations that could bias the 

nal results based on prior beliefs. 

. Conclusion 

Composed detection systems might gain increasing importance 

n the future, since they can address the rising challenge from 

dversarial machine learning with the system diversification. The 

nformation-Theoretic Framework of Gu et al. (2006b) provided 

he key advantage of an objective evaluation metric with additive 

roperties, but has not been suited for the analysis of such com- 

osed NIDSs. The presented framework resolves this limitation and 

rovides deeper insights on how to improve the performance and 

obustness of a specific design. 

The information-theoretic analysis of composed detection sys- 

ems enables identifying the importance of each component on the 

verall performance, which can be used to derive requirements for 

he robustness and dependencies between classifiers for a resilient 

ystem design. Similarly, it can be used for investigating how to 

esign a resilient NIDS based on the available detection methods 

nd known evasion approaches or to understand the detailed im- 

act of adversarial attacks on complex systems. This makes the 

resented framework a valuable tool for the design, analysis and 

omparison of modern NIDSs. 
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ppendix A. Undistinguishability definition example 

The following example shall highlight how the data processing 

emma of the ITF could be violated and motivate the intuitive mod- 

fication of the definition for undistinguishability. Consider twenty 

amples of which eleven are attacks (A) and nine are benign (N). 

ssume a feature representation under which three benign sam- 

les have an identical feature vector to one attack sample and as- 

ume that five other attack samples have an identical feature vec- 

or to one other benign sample. This leads to the joint probabilities 

hown in the Tables A.1 at the original base-rate. 

Table A.1 a provides a possible oracle classifier for the feature 

epresentation which leads to C ID ≈ 0 . 53 . Table A.1 b uses the def-

nition for undistinguishability of Eq. (2) , leading to C R ≈ 0 . 51 . This

auses the unexpected contradiction that C R � C ID , which would vi- 

late the data-processing lemma of the ITF. Table A.1 b uses the 

efinition of Eq. (6) , leading to C R ≈ 0 . 64 and maintaining C R ≥ C ID .

Also notice that changing the definition of undistinguishability 

hanges the classification loss - in this case from L C ≈ −0 . 02 � 0 to

 C ≈ 0 . 11 ≥ 0 . 

ppendix B. Additivity of the evaluation metrics 

The definitions the composed ITF lead to the additive properties 

hat C ID = C R − L C − L Y = C C − L Y , C R (1 , 2) 
= C R 1 + G R (1 , 2) and C C (1 , 2) 

=
 C 1 

+ G C(1 , 2) , which will be shown below: 

heorem 1. C ID = C R − L C − L Y = C C − L Y . 

roof. Similarly to the proof by Gu et al. (2006b) , the properties 

f a Markov chain can be utilized. The random variable Y is condi- 

ionally independent from X given Z or C, such that I(X;Y | C, Z) = 

(X;Y | Z) = I(X;Y | C) = 0 . Similarly the random variable C is condi-

ionally independent from X given Z, leading to I(X;C| Z) = 0 . 

Mutual information can be expanded in different ways by using 

he chain rule. 

(X ; Z, C, Y ) = I(X ;C) + I(X ; Z| C) + I(X ;Y | C, Z) 

= I(X ;C) + I(X ;Y | C) + I(X ; Z| C, Y ) 
(B.1) 
Table A.1 

Undistinguishability example. 

17 
y setting both versions equal and knowing the conditional inde- 

endence, it directly follows that I(X; Z| C, Y ) = I(X; Z| C) 

Moreover can mutual information be expanded to: 

(X ; Z, C, Y ) = I(X ; Z) + I(X ;C| Z) + I(X ;Y | C, Z) 

= I(X ;Y ) + I(X ;C| Y ) + I(X ; Z| C, Y ) 
(B.2) 

gain by setting both versions equal, knowing the condi- 

ional independence and that I(X; Z| C, Y ) = I(X; Z| C) , it directly 

ollows that I(X;Y ) = C ID · H(X ) = I(X; Z) − I(X; Z| C) − I(X;C| Y ) =
C R − L C − L Y ) · H(X ) . 

By expanding mutual information one last time to,... 

(X ; Z, C) = I(X ; Z) + I(X ;C| Z) 

= I(X ;C) + I(X ; Z| C) 
(B.3) 

.. setting both versions equal and knowing the conditional inde- 

endence, it follows that I(X;C) = C C · H(X ) = I(X; Z) − I(X; Z| C) = 

C R − L C ) · H(X ) �

heorem 2. C C (1 , 2) 
= C C 1 + G C(1 , 2) and C R (1 , 2) 

= C R 1 + G R (1 , 2) where 

 1 and C 2 are two classifiers C = (C 1 , C 2 ) and Z 1 and Z 2 are two fea-

ure representations Z = (Z 1 , Z 2 ) 

roof. Both cases directly follow from expanding the mutual infor- 

ation: 

 ( X ;C 1 ..C n ) = I ( X ;C 1 ..C n −1 ) + I ( X ;C n | C 1 ..C n −1 ) (B.4) 

his demonstrates that I(X;C 1 ..C n ) = C C (1 ..n ) 
· H(X ) = 

(X;C 1 ..C n −1 ) + I(X;C n | C 1 ..C n −1 ) = (C C (1 ..n −1) 
+ G (1 ..n −1 ,n ) ) · H(X ) . 

he example above uses only two classifiers such that n = 2 and 

he approach can equally be applied to the definitions of the 

eature representation capability and gain. �

ppendix C. Composition function example 

The following example shall highlight that C ID is not necessar- 

ly maximized by minimizing P e . Consider two classifiers which re- 

ult in the joint probabilities shown in Table C.1 a at a base-rate 

p = 0 . 0 0 05 . Using Bayes decision rule to define the composition

unction Y 1 would result in a minimal P e but only C ID ≈ 0 . 15 as

hown in Table C.1 b. However, an alternative composition Y 2 with 

orse P e can achieve a higher C ID ≈ 0 . 75 as shown in Table C.1 c. 

Another example can be generated by modifying Table C.1 a 

uch that P (X = N| C = (A, A )) > P (X = A | C = (A, A )) . In this case,

he composition of lowest P e would be equivalent to a constant 

lassifier and receive the worst score of C = 0 . 
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Table C.1 

Composition function examples. 

Table D.1 

Used feature representations in the system example. 

R 1 R 2 

representation level packet sequence aggregated flow 

number of features 15 per packet 40 

Source port � � 

Destination port � � 

Protocol ID � � 

Packet length � Min/Max/Mean/Std - forward/backward 

Inter-arrival time � Min/Max/Mean/Std - forward/backward 

Direction � count - forward/backward/total 

Flags ∗ � count - forward/backward 

Flags ∗ = (SYN, FIN, RST, PSH, ACK, URG, ECE, CWR, NS) 

A

t

t

H

r

A

s

ppendix D. Feature representations of the evaluation 

Table D.1 gives an overview the two feature representations 

hat are used by the classifiers in the evaluation. The represen- 

ation R 1 directly follows from the pre-processed data set by 

artl et al. (2020) and the representation R 2 resembles the rep- 

esentation used by Bachl et al. (2019) . 
Table E.1 

List of symbols. 

Symbol Description 

Fundamental evaluation metrics: 

p base-rate, P(I) 

α, FPR false positive/false alarm rate, P(A |¬ I) 
β , FNR false negative/missed alarm rate, P(¬ A

TPR true positive/detection rate, P(A | I) 
TNR true negative rate, P(¬ A |¬ I) 
PPV positive predictive value, P(I| A ) 
NPV negative predictive value, P(¬ I|¬ A ) 
FDR false discovery rate, P(¬ I| A ) 
FOR false omission rate, P(I|¬ A ) 

P e error probability, P(X � = Y ) 

b ratio of false discovery rate to false om

Cost analysis and likelihood ratio test: 

c α cost of a false positive/false alarm 

c β cost of a false negative/missed intrusio

c op cost objective of Gaffney and Ulvila (2

c exp expected cost 

c cost ratio c β/c α
l( � A ) likelihood ratio, P( � A | I) / P( � A |¬ I) 

τ decision threshold for the likelihood ra

18 
ppendix E. List of symbols 

Table E.1 provides an overview of the used symbols with de- 

cription. 
 | I) 

ission rate, FDR/FOR 

n 

001) 

tio, c α(1 − p) / (c β p) 

( continued on next page ) 
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Table E.1 ( continued ) 

Symbol Description 

Information-Theoretic Framework: 

{N,U,A} possible states: normal/benign (N), undistinguishable (U), anomalous/attack (A) 

D i input data stream i 

F i feature representation of data stream i , R (D i ) 

O NIDS oracle NIDS 

X FA state of the sample (label) at the false alarm filter input 

Y FA state of the false alarm filter output 

RC FA false alarm reduction capability, I(X FA ;Y FA ) /H(X FA ) 

X state of the sample (label), O NIDS (D i ) 

Z state of the feature representation, L R (F i ) 

C state of the classification outputs 

Y state of the system output 

C ID intrusion detection capability, I(X;Y ) / H(X ) ; under adversarial attack C ′ ID 
C C classification capability, I(X;C) / H(X ) ; under adversarial attack C ′ C 
C R feature representation capability, I(X; Z) / H(X ) ; under adversarial attack C ′ R 
L Y composition information loss, I(X;C| Y ) / H(X ) ; under adversarial attack L ′ Y 
L C classification information loss, I(X; Z| C) / H(X ) ; under adversarial attack L ′ C 

G C(1 ..n,n +1) classification information gain, I(X;C n +1 | C 1 ..n ) /H(X ) ; under adversarial attack G ’ 
C(1 ..n,n +1) 

G R (1 ..n,n +1) representation information gain, I(X; Z n +1 | Z 1 ..n ) /H(X ) ; under adversarial attack G ’ 
R (1 ..n,n +1) 

Adversarial robustness: 

(δp , δα, δβ ) -intruder base-rate interval ( δp ), false alarm success rate ( δα ) and evasion probability ( δβ ) 

�
 x original data sample 

�
 x ∗ adversarial perturbed version of sample x 

δ�
 x adversarial sample perturbation, � x ∗ − �

 x 

� p distance measure between samples 

υn targeted (logit) output for false negatives at classifier n 

υ ′ 
n targeted (logit) output for false positives at classifier n 

ε s weight of the size increase in the optimization objective 

ε t weight of the time increase in the optimization objective 

T n logit output of classifier n 

R i (x ) feature representation i of sample x 

C

i

i

o

R

A

B

B

B

C  

C

C

D

F

G

G

G

G

G  

G  

G  

H
H

H

H

H

H

J  
RediT authorship contribution statement 

Tobias Mages: Conceptualization, Methodology, Software, Writ- 

ng – original draft. Magnus Almgren: Writing – review & edit- 

ng, Supervision. Christian Rohner: Conceptualization, Methodol- 

gy, Writing – review & editing, Supervision. 

eferences 

xelsson, S., 1999. The base-rate fallacy and its implications for the difficulty of 

intrusion detection. In: Proceedings of the 6th ACM Conference on Computer 
and Communications Security. Association for Computing Machinery, New York, 

NY, USA, p. 17. doi: 10.1145/319709.319710 . 

achl, M., Hartl, A., Fabini, J., Zseby, T., 2019. Walling up backdoors in intru- 
sion detection systems. In: Proceedings of the 3rd ACM CoNEXT Workshop on 

Big DAta, Machine Learning and Artificial Intelligence for Data Communication 
Networks. Association for Computing Machinery, New York, NY, USA, p. 813. 

doi: 10.1145/3359992.3366638 . 
irnbach, S., Eberz, S., Martinovic, I., 2019. Peeves: physical event verification in 

smart homes. In: Proceedings of the ACM SIGSAC Conference on Computer and 

Communications Security. Association for Computing Machinery, New York, NY, 
USA, p. 14551467. doi: 10.1145/3319535.3354254 . 

ossomaier, T., Barnett, L., Harré, M., Lizier, J.T., 2016. An Introduction to 
Transfer Entropy. Cham: Springer International Publishing doi: 10.1007/ 

978- 3- 319- 43222- 9 . 
ardenas, A .A ., Baras, J.S., Seamon, K., 2006. A framework for the evaluation of in-

trusion detection systems. In: Proceedings of the IEEE Symposium on Security 

and Privacy (S P’06), pp. 15pp.–77. doi: 10.1109/SP.2006.2 . 
arlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J., Tsipras, D., Goodfellow, I., 

Madry, A., Kurakin, A., 2019. On evaluating adversarial robustness. 1902.06705. 
arlini, N., Wagner, D., 2017. Towards evaluating the robustness of neural networks. 

In: Proceedings of the IEEE Symposium on Security and Privacy (SP), pp. 39–57. 
doi: 10.1109/SP.2017.49 . 

urst, R., Champion, T., Witten, B., Miller, E., Spagnuolo, L., 1999. Testing and 
evaluating computer intrusion detection systems. Commun. ACM 42 (7), 5361. 

doi: 10.1145/306549.306571 . 

ano, R.M. , 1961. Transmission of Information: A Statistical Theory of Communica- 
tions. The MIT Press . 

affney, J.E., Ulvila, J.W., 2001. Evaluation of intrusion detectors: a decision theory 
approach. In: Proceedings of the IEEE Symposium on Security and Privacy S P 

2001, pp. 50–61. doi: 10.1109/SECPRI.2001.924287 . 
19 
andin, L.S., Murphy, A.H., 1992. Equitable skill scores for categorical forecasts. 

Mon. Weather Rev. 120 (2), 361–370. doi: 10.1175/1520-0493(1992)120 < 0361: 
ESSFCF > 2.0.CO;2 . 

iacinto, G., Roli, F., 2002. Pattern Recognition for Intrusion Detection in 
Computer Networks. Springer US, Boston, MA, pp. 195–218. doi: 10.1007/ 

978- 1- 4613- 0231- 5 _ 8 . chapter 3 

oodfellow, I. J., Shlens, J., Szegedy, C., 2015. Explaining and harnessing adversarial 
examples. 1412.6572. 

u, G., Cárdenas, A .A ., Lee, W., 2008. Principled reasoning and practical applications
of alert fusion in intrusion detection systems. In: Proceedings of the ACM Sym- 

posium on Information, Computer and Communications Security. Association 
for Computing Machinery, New York, NY, USA, p. 136147. doi: 10.1145/1368310. 

1368332 . 

u, G., Fogla, P., Dagon, D., Lee, W., Skori ́c, B., 2006a. Measuring intrusion detection
capability: an information-theoretic approach. In: Proceedings of the ACM Sym- 

posium on Information, Computer and Communications Security. Association 
for Computing Machinery, New York, NY, USA, p. 90101. doi: 10.1145/1128817. 

1128834 . 
u, G. , Fogla, P. , Dagon, D. , Lee, W. , Skoric, B. , 2006b. Towards an information-the-

oretic framework for analyzing intrusion detection systems. In: Gollmann, D., 
Meier, J., Sabelfeld, A. (Eds.), Proceedings of the Computer Security – ESORICS 

2006. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 527–546 . 

ancock, J.C. , 1966. Signal Detection Theory. McGraw-Hill . 
ang, J., Han, K., Chen, H., Li, Y., 2020. Ensemble adversarial black-box attacks 

against deep learning systems. Pattern Recognit. 101, 107184. doi: 10.1016/j. 
patcog.2019.107184 . 

artl, A., Bachl, M., Fabini, J., Zseby, T., 2020. Explainability and adversarial ro- 
bustness for RNNs. In: Proceedings of the IEEE Sixth International Conference 

on Big Data Computing Service and Applications (BigDataService), pp. 148–156. 

doi: 10.1109/BigDataService49289.2020.0 0 030 . 
ashemi, M.J., Cusack, G., Keller, E., 2019. Towards evaluation of NIDSs in adver- 

sarial setting. In: Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, 
Machine Learning and Artificial Intelligence for Data Communication Networks. 

Association for Computing Machinery, New York, NY, USA, p. 1421. doi: 10.1145/ 
3359992.3366642 . 

oballah, I., Varshney, P., 1989. Distributed Bayesian signal detection. IEEE Trans. Inf. 

Theory 35 (5), 995–10 0 0. doi: 10.1109/18.42208 . 
ogan, R.J., Ferro, C.A.T., Jolliffe, I.T., Stephenson, D.B., 2010. Equitability revisited: 

why the “equitable threat score” is not equitable. Weather Forecast. 25 (2), 710–
726. doi: 10.1175/2009WAF2222350.1 . 

iang, Z., Zhao, J., Li, X., Han, J., Xi, W., 2013. Rejecting the attack: source authenti-
cation for Wi-Fi management frames using CSI information. In: Proceedings of 

the IEEE INFOCOM, pp. 2544–2552. doi: 10.1109/INFCOM.2013.6567061 . 

https://doi.org/10.1145/319709.319710
https://doi.org/10.1145/3359992.3366638
https://doi.org/10.1145/3319535.3354254
https://doi.org/10.1007/978-3-319-43222-9
https://doi.org/10.1109/SP.2006.2
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1145/306549.306571
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0009
https://doi.org/10.1109/SECPRI.2001.924287
https://doi.org/10.1175/1520-0493(1992)120<0361:ESSFCF>2.0.CO;2
https://doi.org/10.1007/978-1-4613-0231-5_8
https://doi.org/10.1145/1368310.1368332
https://doi.org/10.1145/1128817.1128834
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0017
https://doi.org/10.1016/j.patcog.2019.107184
https://doi.org/10.1109/BigDataService49289.2020.00030
https://doi.org/10.1145/3359992.3366642
https://doi.org/10.1109/18.42208
https://doi.org/10.1175/2009WAF2222350.1
https://doi.org/10.1109/INFCOM.2013.6567061


T. Mages, M. Almgren and C. Rohner Computers & Security 116 (2022) 102633 

K
L  

M
M  

M

M

M

N  

N  

P

P

P  

 

P  

 

 

P

S  

S

Y

Z  

T

T
T

b

B
m

H
i

M
i

g

U
S

T
a

t

C
w

E
a

c

ingma, D. P., Ba, J., 2015. Adam: a method for stochastic optimization. 1412.6980. 
ee, W., Stolfo, S.J., 20 0 0. A framework for constructing features and models for

intrusion detection systems. ACM Trans. Inf. Syst. Secur. 3 (4), 227261. doi: 10. 
1145/382912.382914 . 

assey, J. L., 1998. Applied digital information theory I. Lecture Notes, ETH Zurich. 
ell, P., Hu, V., Lippmann, R., Haines, J., Zissman, M., 2003. An overview of issues

in testing intrusion detection systems. In: NIST Interagency/Internal Report. Na- 
tional Institute of Standards and Technology, p. 121. 

eng, Y. , 2012. Measuring intelligent false alarm reduction using an ROC 

curve-based approach in network intrusion detection. In: Proceedings of the 
IEEE International Conference on Computational Intelligence for Measurement 

Systems and Applications (CIMSA). IEEE, pp. 108–113 . 
eng, Y., Kwok, L., 2013. Towards an information-theoretic approach for measuring 

intelligent false alarm reduction in intrusion detection. In: Proceedings of the 
12th IEEE International Conference on Trust, Security and Privacy in Computing 

and Communications, pp. 241–248. doi: 10.1109/TrustCom.2013.33 . 

ilenkoski, A., Vieira, M., Kounev, S., Avritzer, A., Payne, B.D., 2015. Evaluating com- 
puter intrusion detection systems: a survey of common practices. ACM Comput. 

Surv. 48 (1). doi: 10.1145/2808691 . 
asr, K. , El Kalam, A .A . , 2014. A novel metric for the evaluation of IDSs effectiveness.

In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El Kalam, A., Sans, T. 
(Eds.), ICT Systems Security and Privacy Protection. Springer Berlin Heidelberg, 

Berlin, Heidelberg, pp. 220–233 . 

asr, K. , Kalam, A .A .-E. , Fraboul, C. , 2012. Performance analysis of wireless intrusion
detection systems. In: Xiang, Y., Pathan, M., Tao, X., Wang, H. (Eds.), Internet and 

Distributed Computing Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 
pp. 238–252 . 

apernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A., 2017. Practical 
black-box attacks against machine learning. In: Proceedings of the ACM on Asia 

Conference on Computer and Communications Security. Association for Com- 

puting Machinery, New York, NY, USA, p. 506519. doi: 10.1145/3052973.3053009 . 
apernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A., 2016. The 

limitations of deep learning in adversarial settings. In: Proceedings of the IEEE 
European Symposium on Security and Privacy (EuroS P), pp. 372–387. doi: 10. 

1109/EuroSP.2016.36 . 
aszke, A. , Gross, S. , Chintala, S. , Chanan, G. , Yang, E. , DeVito, Z. , Lin, Z. , Des-

maison, A. , Antiga, L. , Lerer, A. , 2017. Automatic differentiation in PyTorch. In:

Proceedings of the 31st Conference on Neural Information Processing Systems 
(NIPS 2017) . 

edregosa, F. , Varoquaux, G. , Gramfort, A. , Michel, V. , Thirion, B. , Grisel, O. , Blon-
del, M. , Prettenhofer, P. , Weiss, R. , Dubourg, V. , Vanderplas, J. , Passos, A. , Cour-

napeau, D. , Brucher, M. , Perrot, M. , Duchesnay, E. , 2011. Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 . 
20 
uketza, N.J., Zhang, K., Chung, M., Mukherjee, B., Olsson, R.A., 1996. A methodology 
for testing intrusion detection systems. IEEE Trans. Softw. Eng. 22 (10), 719–729. 

doi: 10.1109/32.544350 . 
harafaldin, I. , Lashkari, A.H. , Ghorbani, A.A. , 2018. Toward generating a new intru-

sion detection dataset and intrusion traffic characterization. In: Proceedings of 
the 4th International Conference on Information Systems Security and Privacy 

(ICISSP), pp. 108–116 . 
heatsley, R., Papernot, N., Weisman, M., Verma, G., McDaniel, P., 2020. Adversarial 

examples in constrained domains. 2011.01183. 

an, W., Hylamia, S., Voigt, T., Rohner, C., 2020. Phy-ids: a physical-layer spoofing 
attack detection system for wearable devices. In: Proceedings of the 6th ACM 

Workshop on Wearable Systems and Applications. Association for Computing 
Machinery, New York, NY, USA, p. 16. doi: 10.1145/3396870.340 0 010 . 

hang, Y. , Liu, P. , Liu, Y. , Li, A. , Du, C. , Fan, D. , 2013. Attacking pattern matching
algorithms based on the gap between average-case and worst-case complexity. 

J. Adv. Comput. Netw. 1 Number 3, 228–233 . 

ramér, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P., 2020. 
Ensemble adversarial training: attacks and defenses. 1705.07204. 

obias Mages is currently pursuing a Ph.D. degree in the Department of Information 
echnology, Division of Computer Systems at the Uppsala University. He received a 

achelor’s degree in Electrical Engineering/Communications Engineering from the 

aden-Wuerttemberg Cooperative State University (DHBW), Germany in 2017 and a 
aster’s degree in Embedded Systems from the Uppsala University, Sweden in 2019. 

is research interests are in network-based intrusion detection systems (NIDS) and 
nternet-of-things (IoT) security. 

agnus Almgren is an Associate professor in cyber-physical systems at Chalmers 
nvestigating security properties of systems with a large societal impact. Dr. Alm- 

ren has been a Fulbright Scholar and holds an MS in Engineering Physics from 

ppsala University, an MS in Computer Science with distinction in research from 

tanford University, and a Ph.D. in Computer Science from Chalmers University of 

echnology. His expertise is in application-based intrusion detection systems (IDS) 
nd reasoning about conflicting information from several detectors in a larger sys- 

em. 

hristian Rohner is Professor in computer systems at Uppsala University working 
ith wireless communication and security. Dr. Rohner holds an M.Sc. in Electrical 

ngineering and Ph.D. in Computer Science from ETH Zürich. His research interests 
re related to resource constrained wireless systems, in particular ultra-low power 

ommunication and wireless security. 

https://doi.org/10.1145/382912.382914
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0028
https://doi.org/10.1109/TrustCom.2013.33
https://doi.org/10.1145/2808691
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0032
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1109/EuroSP.2016.36
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0036
https://doi.org/10.1109/32.544350
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0038
https://doi.org/10.1145/3396870.3400010
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00032-3/sbref0042

	Towards an information-theoretic framework of intrusion detection for composed systems and robustness analyses
	1 Introduction
	2 Background
	2.1 Evaluation units and metrics
	2.2 Information-theoretic framework
	2.3 Evaluating adversarial robustness

	3 Information-theoretic framework of intrusion detection for composed systems and robustness analyses
	3.1 Representing composed classifiers
	3.2 Information-theoretic framework for composed classifiers
	3.3 Information-theoretic framework for adversarial robustness
	3.4 Properties of the intrusion-detection capability

	4 Evaluation
	4.1 System performance analysis
	4.2 System robustness analysis

	5 Discussion
	6 Conclusion
	Funding
	Declaration of Competing Interest
	Appendix A Undistinguishability definition example
	Appendix B Additivity of the evaluation metrics
	Appendix C Composition function example
	Appendix D Feature representations of the evaluation
	Appendix E List of symbols
	CRediT authorship contribution statement
	References


