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Abstract 

In 2019, more than one million crashes occurred on European roads, resulting in almost 

23,000 traffic fatalities. Although heavy goods vehicles (HGVs) were only involved in 

4.4% of these crashes, their proportion in crashes with fatal outcomes was almost three 

times larger. This over-representation of HGVs in fatal crashes calls for actions that can 

support the efforts to realize the vision of zero traffic fatalities in the European Union. 

To achieve this vision, the development and implementation of passive as well as active 

safety systems are necessary. To prioritise the most effective systems, safety benefit 

estimations need to be performed throughout the development process. The overall aim 

of this thesis is to provide a safety benefit assessment framework, beyond the current 

state of the art, which supports a timely and detailed assessment of safety systems (i.e. 

estimation of the change in crash and/or injury outcomes in a geographical region), in 

particular active safety systems for HGVs. The proposed framework is based on the 

systematic integration of different data sources (e.g. virtual simulations and physical 

tests), using Bayesian statistical methods to assess the system performance in terms of 

the number of lives saved and injuries avoided. The first step towards the 

implementation of the framework for HGVs was an analysis of three levels of crash 

data that identified the most common crash scenarios involving HGVs. Three scenarios 

were recognized: HGV striking the rear-end of another vehicle, HGV turning right in 

conflict with a cyclist, and HGV in conflict with a pedestrian crossing the road. 

Understanding road user behaviour in these critical scenarios was identified as an 

essential element of an accurate safety benefit assessment, but sufficiently detailed 

descriptions of HGV driver behaviour are currently not available. To address this 

research gap, a test-track experiment was conducted to collect information on HGV 

driver behaviour in the identified cyclist and pedestrian target scenarios. From this 

information, HGV driver behaviour models were created. The results show that the 

presence of a cyclist or pedestrian creates different speed profiles (harder braking 

further away from the intersection) and changes in the gaze behaviours of the HGV 

drivers, compared to the same situation where the vulnerable road users are not present. 

However, the size of the collected sample was small, which posed an obstacle to the 

development of meaningful driver models. To overcome this obstacle, a framework to 

create synthetic populations through Bayesian functional data analysis was developed 

and implemented. The resulting holistic safety benefit assessment framework presented 

in this thesis can be used not only in future studies that assess the effectiveness of safety 

systems for HGVs, but also during the actual development process of advanced driver 

assistance systems. The research results have potential implications for policies and 

regulations (such as new UN regulations for mandatory equipment or Euro NCAP 

ratings) which are based on the assessment of the real-world benefit of new safety 

systems and can profit from the holistic safety benefit assessment framework. 

Keywords: Safety benefit assessment, heavy goods vehicle, crash data analysis, driver 

behaviour modelling, Bayesian methods  
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1 Background 

In 2019, more than 1 million crashes occurred on European roads. Although heavy 
goods vehicles (HGVs) were only involved in 4.4% of these crashes, their 
proportion in crashes with fatal outcome was almost three times larger (12%) 
(European Commission Directorate General for Mobility and Transport, 2019a). 
This over-representation of HGVs in fatal crashes calls for action, in order to 
realize the vision of zero traffic fatalities in Sweden (see Kristianssen et al., 2018) 
and the European Union (see European Commission Directorate General for 
Mobility and Transport, 2019b). Improving the traffic safety of HGVs, for their 
occupants and other road users, requires the development and implementation of 
passive as well as active safety systems.  

1.1 The Role of Passive and Active Safety Systems 

The goal of passive safety systems is to mitigate the injury outcome once a crash 
has occurred, while that of active safety systems is to identify possible conflicts 
before they happen and take action, avoiding a collision altogether or reducing the 
severity of the collision (e.g. reducing the impact speed by braking). Seat belts and 
airbags, the best-known passive safety systems, have been in use for a long time. 
They reduce the forces and accelerations on the occupants inside the vehicle 
during a crash (Viano, 1991). In recent years, passive safety systems which absorb 
energy during impact have been developed for the outside of passenger vehicles 
as well. This trend towards increasing protection for vulnerable road users 
(VRUs), such as pedestrians and cyclists, includes bonnet airbags, improved front 
bumper designs, and deployable hoods (e.g. Choi et al., 2014). Since the early 
2000s, minimum VRU protection requirements have been set by lawmakers for 
cars in the European Union (EU). These efforts are supported by consumer rating 
agencies such as European New Car Assessment Program (Euro NCAP). 
Strandroth et al. (2014) investigated how representative the Euro NCAP test 
results are of real-world performance and found a significant negative correlation 
between the scores achieved during testing and the injury outcomes in real-world 
crashes. In recent years, Euro NCAP is increasingly considering active safety 
systems such as Autonomous Emergency Braking and Lane Support Systems 
during their assessment of passenger cars, extending their previous focus on 
injury mitigation to include crash prevention. These active safety systems play an 
important role in enhancing the safety of VRUs in particular, who cannot rely on a 
protective shell around them during a collision. However, all these measures and 
tests are mainly implemented and enforced for passenger cars; similar efforts for 
HGVs (especially through consumer rating agencies such as Euro NCAP) are 
lagging significantly behind. One reason for this disparity is that the data and 
safety systems that are based on passenger cars cannot be easily transferred to 
HGVs. 

While there are ideas and proposals for HGV-specific passive safety systems, such 
as extended front ends with higher energy absorption capabilities (e.g. Perez, 
Porcel and Cordua, 2019), these systems are much less effective in HGV-related 
crashes due to the large mass of the HGV, and therefore high energy transfer 
between the HGV and the crash opponent. These factors lead to severe crash 
outcomes in HGV-involved crashes (Evgenikos et al., 2016), even at low speeds. 
Similarly, run-over crashes in which the HGV rolls over a VRU (Strandroth and 
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Rizzi, 2009), also lead to severe injury outcomes even at low speeds. The main 
injury mechanism is less related to the impact speed and more to the weight and 
design of the HGV, which makes it difficult to mitigate these crashes with today's 
passive safety systems. In addition, the current design of trailers contributes to 
the risk of run-over crashes. Since the area in front of the wheels is not covered by 
appropriate protection, in case of a collision the VRU might not be deflected away 
from the trailer, incurring the risk of being run over by the trailer wheels. A 
protection system specifically designed to prevent running over VRUs might be 
effective (and would likely yield other benefits, such as a decrease in aerodynamic 
drag), but is yet to be implemented. 

For these reasons, active safety systems seem more promising than passive safety 
systems for HGVs (Strandroth and Rizzi, 2009). Active safety systems in the form 
of advanced driver assistance systems (ADAS) are becoming a more essential part 
of the measures required to reach the vision of zero fatalities in road traffic. These 
systems are also increasingly important as the basis for designing autonomous 
vehicles in the future. ADAS functionalities have to cover a wide range of target 
scenarios (e.g. navigating through an intersection, driving on the highway) and 
conditions (e.g. sunny or rainy weather, dry or icy roads). Designing these ADAS 
therefore requires a good understanding of the most common conflict scenarios, 
in particular how they happen and how drivers behave in those situations. It is 
important to understand not only normal driving behaviour (as autonomous 
vehicles would be expected to adhere to the same patterns) but also what drivers 
are doing differently (or not) when certain traffic situations become critical. These 
different situations and target scenarios can be addressed by different design 
approaches (e.g. threat assessment, intervention timing) for ADAS. During the 
development process, it is important to understand which ADAS design shows the 
best performance and can thereby achieve the highest benefit when introduced to 
the market. However, this assessment is a non-trivial challenge, due to the large 
variety of scenarios that need to be evaluated and the heterogeneous evaluation 
methods that are currently available.  

1.2 Safety Benefit Assessment 

Safety benefit evaluations are used to assess how effective safety systems are 
when they are released onto the market. The goal of the assessment is to quantify 
the expected safety benefit of the system, i.e. to estimate the changes to the crash 
and injury distributions in real-world traffic that will result from the introduction 
of the system to the market. 

Typical assessments that are used for the safety benefit estimation can be 
classified as retrospective or prospective. Retrospective methods are based on 
evaluating the performance of the systems in the real world after their 
implementation. For example, crash data from a time period before the 
introduction of a safety system can be compared to crash data from a time period 
after the system has been introduced to the market. Through statistical analysis, 
the change in the crash distribution due to the introduction of the system can be 
quantified.  

Prospective assessment approaches on the other hand aim to predict the system 
performance already during the development process before the system is 
released onto the market. As soon as a model representing the new ADAS is 
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available, it can be tested in virtual simulations in different target scenarios (e.g. 
based on common crash scenarios) to understand the effectiveness of the system 
in avoiding or mitigating crashes in these scenarios. Once prototypes are available, 
prospective assessments can also be performed as physical tests of the system in 
real-world traffic or on test tracks. 

While both approaches have their advantages, they also have disadvantages that 
cannot be addressed easily. Retrospective safety benefit assessment methods can 
only be applied for systems that have been released onto the market, and can 
typically only be performed years later as the assessment requires a widespread 
implementation of the safety system. Additionally, attributing changes in the crash 
distributions to the introduction of a specific safety system is a challenging task in 
itself. On the other hand, prospective methods rely on models and assumptions 
that have a large influence on the output quality. While different assessment 
approaches have been developed over the years, only a few proposals have 
attempted to address the previously mentioned limitations with a combination of 
different approaches - that is, holistically (e.g. Carter et al., 2009; Yves et al., 2015; 
Sander, 2018). Instead, typical state-of-the-art safety evaluation frameworks use 
assessments that are performed independently of each other (see Figure 1), and 
their results are not combined into a common benefit estimation. 

 
Figure 1. State-of-the-art safety evaluation approach, where assessments are conducted independently of each 

other 

For example, Bayly et al. (2007) performed a detailed literature analysis assessing 
the effectiveness of different ADAS, but did not combine the results from the 
different data sources in a common output; rather, they reported all study results 
individually. A compartmentalised analysis of results is insufficient for the 
identification of the overall safety benefit, as each result only shows a fraction of 
the whole picture.  

A new proposed framework can surpass the state-of-the-art assessments by 
combining different assessment approaches in such a way that the disadvantages 
of one method are counteracted by the advantages of another (e.g. combining 
physical and virtual testing). The PEARS initiative (see Yves et al., 2015) has taken 
steps towards a standardized safety benefit assessment framework, but it focusses 
mainly on homogenising the virtual simulations and does not include other 
assessment approaches, for example physical testing. Therefore, there is a need 
for a methodology that allows the inclusion of different assessment approaches 
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and data sources in a common safety benefit assessment framework. 
Furthermore, the timely introduction of effective new safety systems for HGVs 
would greatly benefit from an assessment framework that can be applied and 
updated during the development process. 

1.3 Aim and Objectives 

Based on these considerations, the overall aim of this thesis is to provide a new 
safety benefit assessment framework that supports the timely introduction of 
effective ADAS for HGVs, in particular for heavy long-haul trucks (i.e. tractor-
trailer combinations with a gross vehicle weight above 16 t, hereafter referred to 
as 16t+ trucks). The following objectives have been set to achieve this aim: 

(a) Develop an initial safety benefit assessment framework beyond state-of-
the-art methodologies by systematically integrating different data sources 
to estimate the system performance during the development process. 

(b) Identify and analyse critical crash scenarios that involve HGVs on European 
roads. Based on the analysis, define target scenarios with a focus on the 
most common crash scenarios and crashes involving VRUs. 

(c) Investigate and describe HGV driver behaviour in the selected target 
scenarios.  

(d) Develop a methodology that can exploit small datasets, in particular to 
provide the data needed for the creation of driver behaviour models. 

1.4 Scope of Thesis 

The thesis addresses the objectives in different steps, from explaining and 
describing the framework to its improvements. The methodologies and results 
presented in this thesis were tested and validated in specific situations with the 
data available (e.g. Sections 3.2 and 6.3 of this thesis). However, the development 
of ADAS and the full implementation of the holistic safety system evaluation 
framework for a specific safety system for HGVs are not part of the work 
presented. 



 

 

CHALMERS, Mechanics and Maritime Sciences, PhD Thesis  5 

 

2 Methodology 

The goal of the new safety benefit assessment framework presented in this thesis 
is to combine different assessment methods into one common estimated safety 
benefit outcome. The creation of the framework, which follows the steps 
illustrated in Figure 2, is based on the appended Papers I to V. The resulting 
holistic safety benefit assessment framework for HGVs is presented in Chapter 7 
of this thesis. 

 
Figure 2. Illustration of this thesis’ methodology and the contribution of the publications to the holistic safety 

benefit assessment framework 

To address Objective (a) of the thesis, Paper I describes and implements a new 
prospective safety benefit assessment framework that uses Bayesian inference to 
combine results from virtual and physical testing into one common output (see 
Figure 3). Real-world data from the European project PROSPECT (see Aparicio et 
al., 2017) are used to demonstrate the application of the framework.  

 
Figure 3. Illustration of a safety benefit assessment framework which combines different testing methods 

The framework further allows the inclusion of extrapolation methods (in order to 
get an estimated safety benefit for the intended target region, e.g. the EU), as well 
as an estimation of market penetration and user acceptance information in the 
final estimated safety benefit. However, the data used in Paper I are based on 
passenger-car target scenarios. Due to differences in vehicle design and usage, 
passenger-car related information (such as target scenarios and driver behaviour 
in these scenarios) cannot be easily transferred to HGV analysis. Therefore, to 
apply the framework to HGV safety systems, two forms of input are required: 
target scenarios based on an up-to-date analysis of HGV-involved crashes and 
information about HGV driver behaviour. 

To obtain the first form of input, Paper II and Paper V combine and analyse three 
different levels of European crash data: general European crash statistics from the 
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community crash database CARE; national crash databases from Sweden, Italy and 
Spain; and in-depth data from the German In-Depth Accident Study (GIDAS). The 
analysis identifies three critical target scenarios that involve HGVs (particularly 
16t+ trucks), addressing Objective (b) of this thesis. The analysis of crash 
scenarios in Paper II is extended to study the factors contributing to crash 
causation in Paper V. 

The second form of input required for applying the framework to HGV safety 
systems is information on HGV driver behaviour, in particular in the target 
scenarios identified in Paper II and Paper V. 

Since this field of research is sparse, Paper III describes a test-track experiment to 
address the two VRU-related target scenarios identified in Paper V and provides 
the necessary data to address Objective (c) of this thesis. The main goal of Paper 
III is to understand how HGV drivers behave in encounters with cyclists during a 
right turn manoeuvre and in encounters with pedestrians crossing in front of the 
HGV. The description of this driver behaviour is an important input for the virtual 
testing performed within the safety benefit assessment framework of Paper I. 
Additionally, these models could be relevant for the development of safety 
systems for VRU protection. 

With a final dataset containing 13 participants, Paper III includes only an analysis 
of exploratory nature. The lack of sufficient data was identified as a problem for 
the development of driver behaviour models, especially for HGV drivers. The goal 
of Paper IV, therefore, is to address Objective (d) and develop an analysis tool that 
can fully exploit small datasets, with a focus on the creation of driver behaviour 
models. Through Bayesian Functional Data Analysis (BFDA), Paper IV proposes a 
methodology to create synthetic populations. Based on the collected data and 
additional external constraints (e.g. physical constraints such as maximum 
deceleration during a braking manoeuvre), the methodology in Paper IV models 
the distribution of plausible driver behaviours in the studied target scenario. From 
the provided distributions, driver braking curves can be created for any required 
population size. 

The following chapters of this thesis describe the work and results in more detail. 
A holistic safety benefit assessment framework based on the papers along with a 
discussion of the results is presented in Chapter 7. The thesis concludes with a 
summary on how the objectives set in Chapter 1 were addressed by this thesis and 
suggestions for how to continue this work in future research. 
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3 Initial Safety Benefit Assessment Framework 

This chapter describes the initial safety benefit assessment framework that was 
developed in Paper I. The new framework presented in Paper I enhances existing 
frameworks by combining different assessment approaches in such a way that the 
disadvantages of one method are counteracted by the advantages of another 
method. The use of this framework is explained in the following sections and has 
been exemplified in Paper I for an Autonomous Emergency Braking and Steering 
System in the EU-project PROSPECT. 

3.1 State-of-the-Art Safety Benefit Assessment 

As introduced in Section 1.2, safety benefit assessments can generally be classified 
as retrospective and prospective methods. Retrospective methods are based on 
evaluating the performance of the systems in the real world after their 
implementation, and are typically based on analysis of crash databases (e.g. 
Persaud et al., 2001; Gårder and Davies, 2006 or Sternlund et al., 2017), insurance 
claims (e.g. Kuehn, Hummel and Bende, 2009; Doyle, Edwards and Avery, 2015; 
Isaksson-Hellman and Lindman, 2016; Cicchino, 2017 or Cicchino, 2018) or 
naturalistic driving data (e.g. van Noort, Faber and Bakri, 2012; LeBlanc et al., 
2013 or Antin et al., 2019). Retrospective methods require a widespread 
implementation of the systems under evaluation in vehicles in real-world traffic 
to see measurable effects. While the result of a retrospective safety benefit 
assessment is generally more accurate and relies on fewer assumptions 
(especially in comparison to prospective methods), it can only be performed after 
a system is fully developed and implemented and is therefore only available years 
after the initial development of the system.  

On the other hand, typical approaches for prospective safety benefit assessments 
rely on real-world testing and virtual simulations of the performance of the safety 
systems. These approaches have an advantage over retrospective methods in that 
they can provide safety benefit estimations in a timely manner. Based on these 
results, better-performing systems can be prioritized and further improved early 
in the development process.  

There are three main approaches for conducting prospective assessments. The 
first is real-world testing, as for example in the work by Edwards et al. (2015), 
where the actual systems (or prototypes thereof) can be tested and their real-
world performance evaluated, either in a safe test track environment or on open 
roads, ensuring high validity of the data recorded. However, due to time and 
budget constraints, only a limited number of tests can be performed, typically with 
dummies and robots replacing drivers (see for example, Euro NCAP testing). 
Furthermore, ethical and safety considerations limit the possibility of creating and 
testing highly critical situations. 

Driving simulators, where human drivers are interacting with the systems in a 
virtual environment, are the second option. Simulators provide a safe 
experimental set-up for data collection, where critical situations can be tested 
with a high grade of experimental control, without subjecting the drivers to risk of 
bodily harm (e.g. Nilsson, 1993; Alm and Nilsson, 1994; Bertollini et al., 1994 or 
Reed and Green, 1999). Very simple fixed-base simulators as well as advanced 
moving-base simulators that represent a more realistic situation can be used (see 



 

 

CHALMERS, Mechanics and Maritime Sciences, PhD Thesis  8 

 

Freeman, 1994 or Reed and Green, 1999). However, even for more advanced 
simulators, the results’ ecological validity (i.e. how realistic the simulator feels for 
a human) have to be investigated and proven in each study (Wynne, Beanland and 
Salmon, 2019). 

The third option for a prospective safety benefit assessment are computer 
simulations, which can be used to run various tests and scenarios within 
reasonable effort and time constraints. While computer simulations can cover a 
wider range of scenarios than the other two options, they rely heavily on models 
and assumptions - which typically simplify complex real-world problems. 
Simulations may therefore have less ecological validity than physical tests. 
Different approaches can be chosen for the assessment: it can be based on 
counterfactual simulations that define and simulate situations based on 
naturalistic data from real traffic (e.g. McLaughlin, Hankey and Dingus, 2008; Van 
Auken et al., 2011; Gorman, Kusano and Gabler, 2013; Rosen, 2013; Bärgman et 
al., 2015 or Bärgman, Boda and Dozza, 2017). Alternatively, the assessment can 
use critical scenarios from traffic simulations (e.g. Dobberstein et al., 2017; Jeong 
and Oh, 2017; Yanagisawa et al., 2017 or Wang et al., 2018). 

In the current state of the art, typical safety evaluation frameworks use 
assessments that are performed independently of each other, and their results are 
not combined into a common benefit estimation.  

3.2 Creation of the Prospective Safety Benefit Assessment 

Framework 

The first step in creating a safety benefit evaluation beyond state of the art was 
the creation of a standardized assessment framework that serves as a reference 
framework that can be improved in further steps. The goal of the framework is to 
provide a safety benefit estimation for a specific ADAS (i.e. to estimate the change 
in crash and/or injury outcome in a geographical region) that is as accurate as 
possible, but can also be performed in a timely and economical manner. In order 
to overcome methodology-specific disadvantages (as mentioned in Section 3.1), 
the framework should be able to incorporate data from different sources (e.g. 
simulations and physical tests). In addition, the framework should allow previous 
results to be updated with new results, so that the assessment phase does not need 
to be completely repeated when new data are available. 

3.2.1 Bayesian Inference 

Bayesian inference is a mathematically optimal way of updating prior information 
with new observations (Hoff, 2009). This approach is ideally suited to realising 
the objectives of this thesis, since it can be applied for the combination of results 
from different sources in the assessment of ADAS. Bayesian inference is based on 
the fundamental idea of reallocation of credibility across possibilities (Kruschke, 
2015). As a simple example (adapted from Kruschke, 2015), let us imagine a 
situation where we are leaving our house. Once we step outside, we notice that the 
pavement in front of our building is wet and we wonder why. There can be 
multiple reasons for this, e.g. rain, a broken water pipe or a spilled drink. If the 
only knowledge we have at this point is that the pavement is wet, each of these 
reasons (or possibilities) will have a certain probability, based on previous 
knowledge (e.g. rain might be deemed more probable than a broken water pipe 
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based on previous experiences). However, once we step onto the pavement, we 
can make new observations. If not only the pavement, but also cars and trees are 
wet, additional probability will be reallocated towards rain. On the other hand, if 
we see an empty bottle on the pavement and the wetness extends only to a small 
area, more probability would be reallocated towards the spilled drink hypothesis 
(even though it might have had a very low prior probability). This procedure of 
reallocation of probability (or credibility, to use a more everyday term) is the 
essence of Bayesian inference (Kruschke, 2015). The theoretical foundations and 
applications of Bayesian methods are described e.g. in Kruschke (2015) or Hoff 
(2009). 

Bayesian inference has already been used in various contexts in the field of traffic 
safety, e.g. by Gårder, Leden and Pulkkinen (1998), who measure the safety effect 
of raised bicycle crossings or by Hauer (1983a), who estimates the effectiveness 
of safety countermeasures. However, using Bayesian inference to combine 
different safety benefit assessment methods, e.g. by defining a prior distribution 
based on simulation results and updating it with real-world test results, is new. 
This novel application is further explained in the following section. 

3.2.2 Proposed Framework 

To obtain accurate performance information about the ADAS, the proposed 
framework in Paper I combines results from simulations and real-world testing in 
a systematic way (as indicated in Figure 3 in Chapter 2), using a Bayesian inference 
approach. The basis of the proposed, initial framework shown in Figure 4 is an 
analysis of real-world crash data that aims to identify and describe the most 
common critical crash scenarios. These scenarios are used for the selection of the 
target scenarios in which the new ADAS should work and be tested. The developed 
systems can then be tested in these scenarios. Since results from virtual 
simulations are typically available earlier than physical test results, the outcome 
of the simulation is used as the prior distribution in the Bayesian model. Within 
the model, these results are then updated by incorporating results from physical 
testing of the system, e.g. on a test track, to obtain a posterior benefit estimation 
based on both sets of results (see Figure 4). In addition, different degrees of trust 
in the different data types and results can be incorporated into the model by 
weighting prior information and new observations accordingly.  

 
Figure 4. Initial safety benefit assessment framework, adapted from Kovaceva et al., 2020 
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Because simulation results (especially from counterfactual simulations) are 
typically based on regionally limited data (e.g. GIDAS data, used as the basis for 
the simulations, is collected in two specific regions in Germany), the results need 
to be extrapolated to the target population or region (e.g. Europe). This step, 
converting the posterior benefit estimation for a given region to a benefit 
estimation for a (different) target region, is also included in the framework. 
Common extrapolation approaches use a cross-tabulation of variable values or a 
decision tree method (e.g. Kreiss et al., 2015), possibly in combination with an 
iterative proportional fitting procedure (e.g. Niebuhr, Kreiss and Achmus, 2013). 

The results of the framework should describe a realistic implementation and use 
of the system. Therefore, further important factors influencing the real-world 
safety benefit of ADAS, such as market penetration (percentage of vehicles in 
traffic that are equipped with the system) and user acceptance (conditional 
probability that the system is used by the driver if it is installed in the vehicle) 
need to be considered. If information on these factors is available, the ecological 
validity of the extrapolation results (i.e. whether they can be generalized to real-
life settings) can be further increased. If no assumption on market penetration and 
user acceptance is made, the output of the framework is a maximum potential 
safety benefit estimation (corresponding to 100% market penetration and user 
acceptance). In any case, the changes in the crash distribution that result from the 
introduction of the system can be translated into a change in the injury 
distributions through injury risk curves (see Kullgren, 2008). The (potential) 
reduction in injury outcomes achieved by the system can optionally be translated 
into a monetary benefit, incorporating injury related costs such as those described 
in Bühne et al. (2012). 

3.3 Implications 

The proposed framework surpasses state-of-the-art assessment methods 
explained in Section 3.1 by combining different data sources (e.g. physical testing 
and virtual simulations) into a common benefit estimation. Moreover, each data 
source can be weighted against the others. If there are strong indications that real-
world test results are more reliable than simulations, or that the latest generation 
of the prototype will perform in a more realistic manner than the first, this new 
knowledge can be incorporated into the framework. However, the prior 
distributions and weights that are specified should be checked in every study to 
ensure transparency of the obtained results, providing the possibility to retrace 
what was done. In addition, a sensitivity analysis should be part of every study to 
check the influence of the chosen distributions and weights on the results. 

One advantage of the Bayesian framework is that it provides a large amount of 
information regarding the distribution of the modelled parameters, in contrast to, 
for example, classical null-hypothesis significance testing, in which the output is a 
single number (often the p-value) on which a decision is based. Incorporating 
Bayesian inference means that the results can be quantified through distributions 
of the relevant parameters instead. Furthermore, uncertainties in the model 
parameters can be incorporated in the analysis through the chosen distributions 
(e.g. higher or lower variance can be included). The safety benefit is provided in 
the form of a posterior distribution of each modelled parameter, supplying a basis 
for more detailed understanding and more informed decision making.  



 

 

CHALMERS, Mechanics and Maritime Sciences, PhD Thesis  11 

 

3.4 Application of the Framework for Heavy Goods Vehicles 

Adapting the safety benefit assessment framework to the ADAS of HGVs has 
quickly revealed strong limitations. While there are plenty of scenario definitions 
and driver behaviour models available for passenger cars, the same cannot be said 
for HGVs. 

As early as in 2008, Knight et al. had identified a lack of detailed European crash 
data analysis for HGVs. While some information is available from studies in the US 
(e.g. Lee and Abdel-Aty, 2005; Kim et al., 2007; Zhu and Srinivasan, 2011; 
Woodroofe and Blower, 2015), a study by Wang and Wei (2016) shows that the 
results cannot be easily transferred between countries or regions. For example, 
differences in vehicle designs (in particular the HGV’s cab and nose) and 
infrastructure between Europe and the US are likely to result in differences in 
driver behaviour and typical crash patterns.  

In addition, clearly defined target scenarios are needed as input in the framework. 
Newer regulations such as UN regulation No. 151 addressing blind spot systems 
(UN/ECE, 2020) and No. 159 addressing moving off systems (UN/ECE, 2021) 
outline the requirements for information systems in HGVs regarding the safety of 
VRUs. However, additional scenarios could be relevant from a traffic safety 
perspective. With these considerations in mind, the need for a detailed analysis of 
European crash data involving heavy goods vehicles is evident. This need has been 
addressed by Paper II and Paper V and is described in the following Chapter 4. 

When it comes to the ecological validity of the simulation results (upper box third 
from left in Figure 4), the need for detailed driver models arises (see also 
Lundgren and Tapani, 2006; Markkula, 2015 or Bärgman, Boda and Dozza, 2017). 
While plenty of research has been performed on driver behaviour models for 
passenger car drivers, only a few behavioural studies are publicly available for 
HGV drivers. Due to the very different boundary conditions (e.g. private drivers 
for rather short periods in passenger cars vs. professional drivers for multiple 
hours every day in HGVs), passenger car driver models cannot simply be applied 
in a one-to-one manner to HGVs. Certainly, the theory and methodology of the 
safety benefit assessment framework can be adapted for HGVs. However, the data 
used in simulations, tests, and driver models need to be based on HGV drivers’ 
behaviour rather than that of passenger car drivers. Paper III and Paper IV address 
this issue by providing the data and models needed for the driver behaviour 
analysis. Paper III focusses on the data collection itself and the preliminary results 
from a test-track experiment, and Paper IV addresses the problem of small sample 
sizes by providing a new approach for population synthesis in the field of traffic 
safety. 
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4 Multilevel Crash Data Analysis 

A detailed up-to-date analysis of European crash data with a specific focus on long-
haul heavy goods vehicles was performed in Paper II since it was not available in 
the research literature. The analysis was extended by a crash causation analysis 
in Paper V to identify the contributing factors in the most critical scenarios 
involving HGVs. Priority was given to identifying the most common crash types 
among those crashes that involve VRUs due to the expected criticality of these 
crashes. The results of this analysis contribute to the definition of target scenarios 
to be used in the development of ADAS for HGVs and are an important input to the 
safety benefit assessment framework. 

4.1 Data Sources 

The basis of Paper II was an analysis of crash data from three different levels. 
Figure 5 gives an overview of the databases used and some examples of the 
information contained in each. The three different levels were needed to provide 
general crash statistics for the European Union as well as detailed descriptions of 
the identified target scenarios. 

The first level of analysis was performed on European crash data from the 
Community Database on Accidents on the Roads in Europe (CARE), which 
aggregates crash data on a European level. This database contains macroscopic 
crash data from police-reported crashes in all EU member states (European 
Commission Directorate General for Mobility and Transport, 2018), thereby 
providing general estimates for the whole European Union. More details on the set 
of variables contained in CARE are specified in the Common Accident Data Set 
glossary (European Commission Directorate General for Mobility and Transport, 
2019a). This analysis provided the largest crash dataset and a representative 
overview of environmental conditions for HGV-involved crashes on a European 
level. However, as CARE only contains general data (e.g. weather, time of the crash, 
road surface condition), and information such as vehicle weight or crash scenario 
are unreliable and not fully available, the dataset needs to be complemented by 
more detailed data sources.  

 
Figure 5. Overview of databases used in the HGV crash data analysis, adapted from Schindler et al. (2020) 
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In the second level of analysis, further information was obtained from national 
crash databases from Sweden (see Transportstyrelsen, 2019), Italy (see Istituto 
Nazionale di Statistica, 2019) and Spain (see Dirección General de Tráfico, 2019). 
National crash databases have a higher grade of detail than CARE, allowing the 
identification of crashes involving long-haul HGVs. The relevant cases were 
identified based on the gross vehicle weight of the involved HGVs, with the 
analysis focussed on HGVs with a gross vehicle weight above 16 t (16t+ trucks). 
This more refined classification represents the scope of the thesis. We excluded 
lighter and shorter goods vehicles (such as vans), since they have a completely 
different architecture from 16t+ trucks; see also Sandin et al. (2014). Based on this 
analysis, the most common crash scenarios were identified. 

The third level of the analysis examined in-depth crash data for 16t+ trucks from 
the German In-Depth Accident Study (GIDAS), which contains even more detailed 
information (e.g. reconstructed pre-crash events and kinematic parameters) than 
the other databases and was used to describe the previously identified crash 
scenarios in more depth (e.g. collision speeds and impact points). The data were 
collected in the German regions around Hannover and Dresden by special 
investigation teams, who are informed about a crash at the same time as the police. 
The teams go out to the crash scene to collect detailed data, including 
measurements inside and outside the vehicle. Trained medical personnel, who 
collect detailed information on injuries (in collaboration with the hospitals) and 
interview the persons involved in the crash, are also part of the team.  

Paper V builds up on this analysis and extends it by including an analysis that is 
based on the Accident Causation Analysis System (ACAS) in GIDAS. During the 
crash investigation, ACAS codes are assigned to each of the participants in the 
crash based on the investigator’s judgement of the situation. The three main 
factors human failure, vehicle failure and environmental influences are broken 
down into different subclassifications, to further specify the identified causes. 
Figure 6 shows an example for the different ACAS classifications.  

 
Figure 6. Example of ACAS classification in GIDAS, adapted from Schindler et al. (2022) 

4.2 General Description of the Crashes 

The analyses of the three different levels of crash data revealed that most of the 
crashes that involve 16t+ trucks occurred in dry, clear weather (76 %-88 %, 
depending on region), in daylight (73 %-78 %), on dry roads (51 %-83 %), outside 
city limits (60 %-87 %), and on non-highway roads (54 %-81 %). There are some 
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variations in percentages between the different countries analysed (e.g. dry roads 
account for 51 % in Sweden and more than 83 % in Spain, or rural cases 
accounting for 87 % in Spain and 60 % in Sweden), but they show similar 
tendencies nonetheless. 

As for injuries on a European level, car occupants accounted for the highest 
number of killed or severely injured (KSI) 1  road users (48 %), followed by 
vulnerable road users (VRUs) with 25 %. It is notable that VRUs account for 16 % 
of injured users across all injuries, but that this share increases to 25 % for KSI, 
see also Figure 7. 

 
Figure 7. Distribution of injured road users in crashes in Europe with HGV involvement, by user type; left all 

road user injuries; right KSI road users, based on CARE, from Schindler et al., 2020 

Figure 8 shows the most frequent crash scenarios involving 16t+ trucks in the 
GIDAS database, based on the number of HGVs involved in each scenario. These 
distributions are similar to the ones obtained from the analysis of the national 
crash databases, but allow a more detailed analysis of the scenario (e.g. it can be 
distinguished whether the HGV was the striking or the struck vehicle in a rear-end 
crash). To avoid repetitions, the national results are not described in this 
summary, but more details can be found in Paper II. 

Overall, there are 1091 16t+ trucks that have been involved in a crash in the GIDAS 
database. Their involvement in the crashes is broken down first by crash opponent 
and then by crash type. Each subcategory’s share of the previous category is 
represented by the given percentages. For example, rear-end crashes between 
16t+ trucks (as the striking vehicle) and cars account for 52 cases, which represent 
4.8 % of all 16t+ truck-involved cases (black rhombus), 10.7 % of the cases 
between a 16t+ truck and a car (blue circle) and 19.1 % of the cases between a 
16t+ truck and a car in longitudinal traffic (red triangle). Overall, rear-end crashes 

 
1 In addition to the injury classification typically used within crash databases (fatal, severe, 
slight), the union of fatal and severe injuries is used in this analysis to combine crashes with 
severe consequences in one category. 
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with cars and commercial vehicles (e.g. buses and HGVs) make up 20.2 % of all 
crashes that involve a 16t+ truck. Although crashes involving cyclists or 
pedestrians have a lower frequency (accounting for 8.8 % and 5.1 % of crashes, 
respectively), their injury outcome (see also Figure 7) is especially severe, due to 
the high mass difference between the HGV and VRU as well as the lack of a 
protective shell around the VRU. 

 
Figure 8. Subsets of the most frequent crash types by crash opponent and crash type from GIDAS (case count 

and percentages per category), adapted from Schindler et al. (2020) 

4.3 Target Scenarios 

As a result of the analysis performed in Paper II and Paper V, three critical 
scenarios were identified which also address three different road user types. 
Scenario 1 is the most frequent overall, and Scenarios 2 and 3 are the most 
frequent crash scenarios with a VRU as the crash opponent. These scenarios 
typically occur in dry, clear weather, in daylight, on dry, non-highway roads 
outside city limits.  

The first scenario includes rear-end crashes, in which the HGV is the striking 
vehicle. In this scenario, the average impact speed of the HGV is 30 km/h when it 
crashes into a stationary lead vehicle. The average speed reduction of the HGV 
from the onset of the conflict to the collision is 20 km/h. The ACAS analysis 
determined that information admission problems (e.g. distraction) were the most 
common contributing factor (present in 72 % of cases). 

The second critical target scenario involves HGVs turning right at an intersection 
while a cyclist is travelling alongside with the intention to go straight through the 
intersection. In this scenario, the collision speed of the HGV is generally quite low, 
around 13 km/h, and the impact point of the cyclist is typically along the first 2 m 
of the HGV side (i.e. around the passenger-side door). In this situation, problems 
with information access by the HGV drivers (e.g. not seeing the cyclist in the blind 
spot) were identified as the most common contributing factor (present in 72 % of 
cases with an ACAS code assigned to the HGV driver). Notably, in 27 % of cases the 
behaviour of the cyclist was identified as a contributing factor to the crash. 

The third critical target scenario involves pedestrians crossing in front of the HGV. 
This scenario can be split in two, depending on whether the pedestrian was run 
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over by the HGV or not. The run-over cases typically happen at low speeds 
(generally below 5 km/h), where the pedestrian crosses in front of a standing HGV 
and is overseen by the drivers when they start to accelerate. In the other case, 
collision speeds are higher (generally above 20 km/h), indicating that the 
pedestrian crosses in front of a moving HGV, is struck, and then deflected to the 
front or side of the HGV and not run over. For the pedestrians, problems with 
information admission (e.g. fatigue or wrong focus of attention) were identified as 
the main contributing factor in 50 % of cases, whereas for the HGV driver 
information access problems (e.g. the VRU was in the blind spot) were identified 
as the main contributing factor in 75 % of cases. 

For all these scenarios, driver behaviour should be investigated further to support 
the development of ADAS that would avoid or mitigate the corresponding crashes. 
As only little information on driver behaviour and pre-crash events is available 
from crash data (since the data collection is based on interviews and post-crash 
measurements), further studies into HGV driver behaviour in the pre-crash phase 
are needed. 

4.4 Discussion  

The results obtained from the crash data analysis and presented in Chapter 4, are 
based on European crash data and are therefore applicable to European traffic. 
However, these results also show similarities to the findings of previous studies in 
the US. For example, Zhu and Srinivasan (2011) identified collisions in 
longitudinal traffic and collisions at intersections as the most common crash types. 
Further, Kockum et al. (2017) identified cars and other HGVs as the most common 
collision partners in Europe, a finding supported by the outcomes of the analysis 
at hand.  

All three analysis levels (CARE, national databases and GIDAS) show similar 
distributions of comparable variables (e.g. environmental conditions, injury 
distributions), although small differences do exist. These differences could 
originate from local effects (different exposure, e.g. weather, driving behaviour, 
vehicle types) or filter criteria in each database (e.g. weight or size restrictions, 
vehicle classification, coding schemes).  

Moreover, the reported numbers represent absolute crash numbers, so no direct 
conclusions about risk can be drawn. For example, the fact that up to three out of 
four crashes occur during daylight does not necessarily mean that it is riskier to 
drive during the day than at night, because this proportion of crashes may result 
from more trips in the daytime (higher exposure) than at night (lower exposure). 
Exposure plays an important role in evaluating risk, but exposure data is very 
difficult to obtain. It is therefore recommended that future research include 
exposure measures in the crash data analysis through, for example, the induced 
exposure methodology (Chandraratna and Stamatiadis, 2009; Keall and 
Newstead, 2009), so that risk can be accurately quantified. 

The causation analysis of this study supplements existing knowledge, providing a 
more detailed picture of how and why the crashes happen. This information is 
useful for system designers and original equipment manufacturers (OEMs), as it 
helps to identify the areas where the drivers might need support, and how designs 
can be improved. For example, redesigning the cab of HGVs to increase direct 
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visibility could be recommended to OEMs, since obstructed vision was often 
identified as an influencing factor in VRU-related crashes. 

Within Paper V, the most critical crash scenarios involving 16t+ trucks were 
identified. These scenarios are the basis for the application of the safety benefit 
assessment framework from Paper I (see also Figure 4). A limitation of this 
application is that a single in-depth data source may not capture all relevant 
aspects of the crash population in the target region. The in-depth database used 
should therefore be supplemented by other in-depth databases (such as the 
Initiative for the GLobal harmonization of Accident Data, IGLAD) and other data 
sources, such as naturalistic driving data (NDD), to allow relevant local differences 
within the target region to be characterised. 

The information provided for the crash scenarios (e.g. speeds and trajectories) can 
guide the collection and analysis of appropriate HGV driver behaviour data, 
facilitating the creation of virtual simulations of the proposed ADAS for the safety 
benefit assessment. The next chapter describes the collection of driver behaviour 
data for the two scenarios involving VRUs. 
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5 Driver Behaviour Analysis 

Driver behaviour models play a significant role in the virtual assessment of every 
ADAS. They can describe the driver’s behaviour (e.g. reaction to a warning or a 
critical situation) in the target scenario the system is designed for. In this way, not 
only the system itself is tested, but also how the system works in combination with 
a human driver. Lundgren and Tapani (2006), Markkula (2015) and Bärgman, 
Boda and Dozza (2017) have shown that the accuracy of driver models (in 
reproducing driver behaviour) has a strong influence on the output quality of the 
simulation; specifically, the lack thereof limits the ecological validity of the 
simulations (Bärgman, Boda and Dozza, 2017). 

While studies that analyse HGV drivers’ behaviour in rear-end situations have 
been conducted (for example, Hanowski, Perez and Dingus, 2005; Bao et al., 2012; 
Engström et al., 2013; Markkula et al., 2016; Piccinini et al., 2017), research into 
their behaviour in the critical VRU-related scenarios is sparse. Of three relevant 
studies identified, the first by Pokorny and Pitera (2019) observed interactions 
and potential conflicts between HGVs and cyclists with cameras mounted at 
different intersections. This methodology limited the analysis to outside 
observations of the interaction, with no detailed analysis of the driver behaviour 
(e.g. gaze behaviour, speed profiles during the approach). Kircher & Ahlström 
(2020) conducted an experiment to study what influences HGV drivers’ gaze 
behaviour in interactions with cyclists. They determined that gaze behaviour 
during the manoeuvre was affected by the infrastructure design at the 
intersections (e.g. traffic lights, cycling-specific infrastructure). However, an 
analysis of their gaze behaviour in situations with no cyclist present is missing, 
making it difficult to identify behavioural changes caused by the presence of the 
cyclist. Jansen et al. (2017) used UDRIVE data (see van Nes et al., 2019 for more 
information on UDRIVE) to analyse safety-critical events between HGVs and 
cyclists, but the very small number of events available (eight near-crashes with 
cyclists in the whole HGV dataset) limited the study to a high-level qualitative 
analysis. Although more safety-critical events involving cyclists are available for 
passenger car drivers from the UDRIVE data, as argued earlier the results cannot 
be easily transferred to HGV drivers. Specifically, the different vehicle design, 
kinematics and pattern of use of the vehicles will result in very different 
behavioural patterns of the drivers (see also Sections 1.1 and 3.4). 

To address the dearth of HGV driver-specific behavioural data in VRU-related 
critical scenarios, the experiment presented in Paper III was planned, executed, 
and analysed. The data collection and analysis are described in more detail in the 
following sections. 

5.1 Data Collection 

As indicated in Section 4.3, three critical scenarios were identified in Paper V: (a) 
rear-end crashes with the HGV as the striking vehicle, (b) right-turn manoeuvres 
of the HGV, crossing the path of a cyclist riding adjacent to the HGV with the 
intention to cross the intersection, and (c) pedestrians crossing in front of the HGV 
perpendicular to the HGV’s direction of travel. The analysis of (a), rear-end 
situations, is planned to be addressed in future work, based on data available from 
Advanced Emergency Braking Systems installed in HGVs (see for example Rost 
and Sällberg, 2019). The experiment in Paper III focussed on (b) and (c) which 
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involve VRUs (see Figure 9). The results of the analysis in Paper V guided the 
design of the experiment as well as the interactions investigated during the 
experiment. 

 
Figure 9. Left: cyclist crossing scenario; right: pedestrian crossing scenario, from Schindler and Bianchi 

Piccinini (2021) 

To collect data for the driver behaviour analysis, a test-track experiment was 
conducted at the City Area of the AstaZero test-track in Sweden (see AstaZero, 
2021). The area mimics an urban environment consisting of four blocks of 
buildings and an intersection. Thirteen participants drove an instrumented 
tractor-semitrailer combination on the test track. Each participant drove six laps 
in the City Area (see the orange line in Figure 10). The laps consisted of a training 
lap, followed by two baseline laps, a lap where the drivers would encounter a 
cyclist2, a lap where they would encounter a pedestrian3, and a final baseline lap. 
A four-leg intersection with one lane in each direction was used for the VRU 
encounters (see Figure 11). Cyclist and pedestrian targets were used to replicate 
the movement of VRUs. The targets were mounted beyond the vision of the 
participants, surprising the drivers when they approached the intersection. The 
participants were naïve to the real purpose of the experiment and did not know 
beforehand what would happen. Two trigger points were set up: one initiating the 
movement of the cyclist target about 66 m before the intersection, and one 
initiating the movement of the pedestrian target about 36 m before the 
intersection. 

The encounters in scenarios (b) and (c) (see Figure 9) were designed to be non-
critical (i.e. the VRUs were not specifically placed in blind spot areas), as the 
purpose of the experiment was to study whether the HGV drivers would alter their 
behaviour when VRUs are visible, and if they would, in what way. The drivers were 
able to see the VRU when approaching the intersection, giving them sufficient time 
to adapt their behaviour to the presence of the VRU. Any adaptations could be 
compared to their baseline behaviour (in laps with no VRU present). In addition 
to the VRU targets, a car approached the intersection at the same time as the 
participants in order to create a more realistic situation. 

 
2 A video of the cyclist interaction can be found in the online version of Paper III. 
3 A video of the pedestrian interaction can be found in the online version of Paper III.  

https://www.sciencedirect.com/science/article/pii/S0001457521003201?via%3Dihub#m0015
https://www.sciencedirect.com/science/article/pii/S0001457521003201?via%3Dihub#m0010
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Figure 10. Route at the AstaZero City Area (orange line: the route the participants drove, S: the start and end of 

the route) 

 
Figure 11. Intersection layout for the experiment at the AstaZero test track (the arrows show the places of the 

interactions seen in Figure 9), adapted from Schindler and Bianchi Piccinini (2021) 

The vehicle driven by the participants was equipped with a CAN-logger (logging 
at 10 Hz), GPS (logging at 20 Hz), as well as two cameras (logging at 25 Hz), one 
facing the driver and one facing the road ahead of the HGV. The data from the 
driver-facing camera (see Figure 12) were the basis for the manual gaze 
annotation. 
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Figure 12. View of the driver-facing camera, used for the gaze annotation 

The annotator was trained with a set of reference images, in line with previous 
studies and following the suggestions of Jansen, van der Kint and Hermens (2021). 
After the training, the annotator coded the gaze direction according to the 
categories in Table 1 and Figure 13 for all participants and all laps shortly before, 
during, and shortly after the two right-turn manoeuvres within each lap. The first 
nine categories in Table 1 describe the in-cab gaze targets seen in Figure 13.  

Table 1. Gaze categories used for the annotation, from Schindler and Bianchi Piccinini (2021) 

Type Explanation 

FC Front centre 

FR Front right 

R Right window 

L Left window 

IC Instrument Cluster 

CC Centre Console 

G Ground/Floor 

B Back (behind the seats) 

T Top (cabinets above the windscreen) 

EC Eyes closed 

TR Transition 

U Unknown 
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Figure 13. In-cab gaze categories, from Schindler and Bianchi Piccinini (2021) 

5.2 Results 

During the data collection, problems with the CAN logger led to the kinematic data 
of the first two participants not being saved, hence their data were not included in 
the related analyses. 

In the overall analysis of the collected data, specific focus was placed on the speed 
profiles and gaze behaviour of the drivers during the braking manoeuvre when 
approaching the intersection for both right turn manoeuvres. The start of the 
braking sequence was defined by a deceleration threshold of 0.5 m/s2, i.e. the 
braking sequence started when the HGV reached a deceleration over this 
threshold. The end of the braking sequence was defined as the time when the HGV 
reached the lowest speed throughout the turning manoeuvre or stopped 
completely. The following two sections give an overview of the main results for 
the cyclist and pedestrian encounters. All reported results are averages across all 
participants unless otherwise noted. 

5.2.1 Cyclist Encounters 

The initial analysis of the cyclist encounters focussed on understanding their 
criticality. The criticality was estimated with a surrogate Time To Collision (sTTC), 
since no exact position information of the cyclist target during the braking 
sequence was available. The sTTC was calculated for each time point based on the 
HGV’s speed and distance from the theoretical conflict point, i.e. where the paths 
of the HGV and VRU would intersect. The lowest calculated sTTC values range 
from 2.7 s to 6.7 s across participants, confirming the relatively low criticality of 
the experimental scenario.  

The next step was to compare the typical driver behaviour for baseline and cyclist 
laps. In baseline laps, drivers initiated the braking sequence about 41.3 m before 
the theoretical conflict point at a speed of 24.7 km/h, and reached the lowest 
speed of 8.0 km/h about 1.3 m before the theoretical conflict point.  
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In the cyclist laps, the initiation of the braking sequence was very similar to that 
of the baseline laps, with a speed of 23.7 km/h 42.3 m before the theoretical 
conflict point. However, the end of the braking sequence showed a significant 
difference from the baseline laps in a paired samples t-test: the drivers reached 
lower end speeds (1.3 km/h, t = 6.339, p < 0.0001) further from the theoretical 
conflict point (9.3 m, t = 10.534, p < 0.000001). These findings are consistent 
across all participants. The initiation of braking may be similar across both 
baseline and cyclist laps as the information available to the drivers was similar at 
that point: the drivers would typically start decelerating so far from the 
intersection that the cyclist target would not yet be visible to the drivers. However, 
once the cyclist became visible to the drivers, they decelerated harder than in the 
baseline laps, as can be seen in Figure 14. The red solid lines start to separate from 
the blue dashed lines at around 33 m before the theoretical conflict point. This 
adaption in behaviour leads to the previously described differences at the end of 
the braking sequence, reaching lower speeds further away from the theoretical 
conflict point. 

 
Figure 14. Speed over distance travelled by HGV drivers in the first right turn manoeuvre (cyclist encounters), 

adapted from Schindler and Bianchi Piccinini (2021) 

The gaze analysis also showed differences between baseline and cyclist laps. 
While the drivers focussed more than 70 % of their gazes towards the front centre 
when approaching the intersection in the baseline laps (see Figure 15), there were 
peaks with up to 60 % of gazes to the front right in the laps with the cyclist target 
present (see Figure 16). The closer the drivers came to the theoretical conflict 
point in the laps where the cyclist target was present, the more their gazes 
focussed on the front right and right categories (at around 15 m before the 
theoretical conflict point, all drivers had their gazes focussed there). In contrast, 
only about 40 % of gazes were directed towards these areas in the baseline laps: 
even close to the theoretical conflict point, most gazes were still directed towards 
the front centre. 
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Figure 15. Glance location probability over distance from theoretical conflict point in baseline laps, adapted 

from Schindler and Bianchi Piccinini (2021) 

 
Figure 16. Glance location probability over distance from theoretical conflict point in cyclist laps, adapted from 

Schindler and Bianchi Piccinini (2021) 

5.2.2 Pedestrian Encounters 

The criticality of the pedestrian encounters was also initially estimated through a 
sTTC, defined analogously to the cyclist case. The lowest calculated sTTC values 
range from 2.8 s to 4.9 s across participants, confirming the low criticality of the 
experimental scenario.  

During the baseline laps, drivers started to brake about 99.8 m before the 
intersection at a speed of 27.3 km/h, and reached the lowest speed of 3.3 km/h 
about 3.7 m before the theoretical conflict point. In the pedestrian laps, the 
initiation of the braking manoeuvre was very similar, at speeds of 27.5 km/h and 
97.5 m before the theoretical conflict point; as with the cyclist laps, the pedestrian 
target was not yet visible for the drivers. However, the end of the braking 
manoeuvre showed a significant difference from the baseline laps in a paired 
samples t-test: the drivers reached lower average end speeds (0.9 km/h, t = 3.920, 
p = 0.003) further from the theoretical conflict point (5.9 m, t = 3.426, p = 0.007).  

These findings were consistent across all participants and showed trends similar 
to the cyclist encounters. There was no difference between baseline and 
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pedestrian laps in the initiation of braking before the pedestrian was visible, but 
once the pedestrian became visible to the drivers, they started to decelerate 
harder than in the baseline laps. This can be seen in Figure 17, where the red solid 
lines start to separate from the blue dashed lines at around 18 m before the 
intersection. However, the differences are less pronounced in this scenario than 
in the cyclist one. In this scenario, the drivers needed to slow down more when 
approaching the intersection - even in the baseline laps - to check for crossing 
traffic (since the crossing traffic had the right of way). Thus the encounters 
happened at lower HGV speeds. 

 
Figure 17. Speed over distance travelled for pedestrian encounters, adapted from Schindler and Bianchi 

Piccinini (2021) 

The gaze analysis revealed a similar trend to that observed in the cyclist 
encounter, although the gazes are directed to different areas: while up to 80 % of 
gazes are directed towards the front centre around 10 to 15 m before the 
intersection in baseline laps (see Figure 18), this percentages increases to 100 % 
in the laps with the pedestrian target present (see Figure 19), showing that drivers 
were more focussed on what was happening in front of the HGV (where the 
pedestrian target was crossing the street) and scanning the surroundings less. 
Most drivers even showed a smooth pursuit movement with their eyes, focussed 
on tracking the movement of the pedestrian. 
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Figure 18. Glance location probability over distance from theoretical conflict point in baseline laps, adapted 

from Schindler and Bianchi Piccinini (2021) 

 
Figure 19. Glance location probability over distance from theoretical conflict point in pedestrian laps, adapted 

from Schindler and Bianchi Piccinini (2021) 

5.3 Discussion 

The results of this study indicate that the presence of a VRU caused behavioural 
changes, both when it comes to the kinematics of the turning manoeuvre and the 
gaze behaviour of the drivers. The results are in line with the results of previous 
studies, such as that of Pokorny & Pitera (2019), who noted that HGV drivers 
would stop further away from red lights when VRUs were present, or Summala et 
al. (1996), who identified that (passenger car) drivers would check the mirrors 
more frequently when VRUs were present. The results can provide input for the 
design of ADAS, which could warn the drivers about the presence of a cyclist 
travelling in a parallel direction - or even intervene if necessary. 

Nevertheless, the extent to which these results can be generalized remains an 
important topic for future research. The effects seen are applicable to the specific 
intersection design in the experiment (a four-way intersection at 90 °). However, 
wider lanes or different angles could lead to different driver behaviour and would 
need to be studied separately. Further, higher traffic volumes may require more 
attentional demand than did the rather low-complexity set-up during the 
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controlled experiment; as a result, gaze distributions (or other driver behaviour 
aspects) could be affected. 

These data were collected during a test-track experiment, and although the 
situation was made as realistic as possible, the use of VRU targets and an artificial 
city block limited the realism, and might have had an influence on how the drivers 
behaved. The recorded data might therefore not be fully representative of real life, 
and future research should compare the recorded test-track data with naturalistic 
driving data (NDD). Although interactions with cyclists and pedestrians are sparse 
in NDD, the baseline data from the experiment can easily be compared to normal 
driving in NDD. 

These driver models (i.e. gaze distributions and speed profiles) can be used to 
improve the quality of simulations (as suggested by Bärgman, Boda and Dozza, 
2017 and Kovaceva et al., 2020, for example), but the small size of the dataset 
(with only 13 participants) makes it difficult to create reliable driver behaviour 
models, as prerequisites and assumptions of classical null-hypothesis testing are 
easily violated. Equipment and track time are particularly expensive resources for 
experiments involving participants, and recruiting HGV drivers posed an 
additional obstacle for this study. 

Based on considerations by Cohen (1988), Dattalo (2018) or Ledolter and Kardon 
(2020), the optimal sample size for detecting a change (here in driver behaviour) 
with a typical significance level of 0.05 (probability of falsely rejecting the 
hypothesis that there is no difference) and power of 0.8 to detect a meaningful 
change was estimated to lie in a range of 25 to 120 observations. However, the 
previously mentioned practical difficulties have limited the sample size in the 
collected test data. In fact, a limited sample size is not only a limitation for this 
specific experiment, but also poses a problem in all areas that rely on data 
collection - such as the safety benefit assessment framework from Paper I. The 
results presented in Paper III are thus only exploratory, and further work is 
needed to quantify changes in driver behaviour. Therefore, the next step is the 
development of a methodology that would address the small sample size issue. 
The creation of synthetic populations improves the safety benefit assessment 
framework by extending the data available for virtual simulations, physical tests 
and driver behaviour modelling. The approach for the creation of these synthetic 
populations is outlined in Paper IV and explained in Chapter 6. 
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6 Creation of Synthetic Populations 

Data on driver behaviour are essential to validate active safety systems and an 
essential input for the safety benefit assessment framework. Collecting these data 
is however expensive and time-consuming, which often limits their availability. 
Moreover, even large datasets - for example naturalistic driving studies such as 
SHRP2 (see Blatt et al., 2015) or UDRIVE (see van Nes et al., 2019) that contain 
data from hundreds of thousands of hours of driving - can only provide limited 
data for studying specific situations and interactions (especially when it comes to 
critical situations involving HGVs). As an example, UDRIVE collected around 
85,000 hours of naturalistic driving data, but there were no interactions meeting 
the criteria of the HGV-cyclist scenario described in Section 4.3 (Jansen et al., 
2017). The small amount of relevant data hinders the understanding of driver 
behaviour and the implementation of the safety benefit assessment framework. 
The creation of synthetic populations, presented in more detail in Paper IV and 
the following sections, could be one way to provide a larger dataset for analysis. 

6.1 Synthetic Populations in Other Research Areas 

In urban planning and travel demand modelling, the creation of so-called synthetic 
populations is widespread. Rather than collecting all the demographic 
information necessary to describe the population, smaller data samples are 
collected and used to synthesize the larger population descriptions and statistics 
(Choupani and Mamdoohi, 2016). In this way, data collection-related costs can be 
kept low, while the essential correlations between different parameters during the 
synthesis process are still maintained. 

Typically, the populations are created using sample-based methods (e.g. Ye and 
Wang, 2018) or iterative proportional fitting (IPF; e.g. Rich and Mulalic, 2012 or 
Zhu and Ferreira, 2014). The latter has also been used in traffic safety-related 
research; for example Kreiss et al. (2015) estimated the crash population on a 
European level. Recently, the focus of research methodologies is shifting towards 
the implementation of Bayesian methods, due to their informative output in the 
form of distributions as well as their ability to include prior beliefs. Bayesian 
methods have been used for driver behaviour modelling (e.g. Lee and Lee, 2019; 
Morando, Victor and Dozza, 2019), crash prediction models (Miaou and Lord, 
2003; Mitra and Washington, 2007; Huang and Abdel-Aty, 2010) and the 
determination of contributing factors in crashes (Xie et al., 2018). However, using 
them to create synthetic populations for the analysis of driver behaviour as 
described in Paper IV is new. 

The general method is based on describing the data (e.g. speed profiles) through 
the parameters of a function. While the initial parameter distributions are defined 
by the data, additional considerations (e.g. physical constraints) can be applied as 
well. The idea is that distributions based on the data and further constrained by 
external factors can enable meaningful new observations. 

6.2 Synthetic Populations in Traffic Safety 

In our proposed model, we use Bayesian Functional Data Analysis (BFDA) for the 
population synthesis process, and the kinematic data collected in Paper III (see 
Chapter 5) was used as an initial sample to illustrate how the model works. 
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In particular, the speed profiles of the participants in the first right turn 
manoeuvre at the test track, i.e. where the interaction with the cyclist target would 
take place, were used. These speed profiles (see Figure 14) between the start and 
end of the braking manoeuvre were modelled with a cubic function, based on the 
travelled distance as the independent variable. A constant speed was assumed 
when approaching the intersection before braking; this was a good approximation 
of the driver’s overall behaviour and made the modelling process quicker and 
more efficient. The function makes use of meaningful mappings of the different 
parameters - namely the start and end points of the braking sequence as well as 
the two coefficients that describe the shape of the curve between these points. 
This mapping of parameters resulted in the following six coefficients: 

Table 2. Functional data coefficients (for the participant data) 

Coefficient Description of Coefficient 

Sx Travelled distance at start of braking [m] 

Sy Speed at start of braking [km/h] 

Ex Travelled distance at end of braking [m] 

Ey Speed at end of braking [km/h] 

d2 quadratic term [-] 

d3 cubic term [-] 
 

Figure 20 shows the speed profiles for all laps using the participant data as input 
to the fitting procedure. For cosmetic purposes, the speeds after the end of braking 
are visualized as constant as well. The graph can be directly compared to the 
participant raw data in Figure 14.  

 
Figure 20. Fitted speed over distance travelled for first right turn manoeuvre (cyclist encounters), adapted 

from Schindler et al. (2021) 
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Before the coefficients are implemented in the BFDA, further external constraints 
can be applied. In our case, the following physical limits of the braking sequences 
were imposed on the coefficients: 

- the end speed of the braking sequence should be lower than the start speed, 
- the speed should be monotonically decreasing, 
- all speed and distance values should be greater than 0, and 
- the end distance should be larger than the start distance. 

To simplify the mathematical implementation of these constraints on the 
coefficients into the Bayesian model, the coefficients were re-parameterized. In 
particular, the end speed Ey is replaced by the total speed reduction Ty, the 
distance at end Ex is replaced by the total distance travelled Tx and d2 and d3 were 
re-parameterized to lie in a (0,1)-(0,1) unit space. Different combinations of these 

two re-parameterized and transformed parameters 𝑑2̃ and 𝑑3̃ represent different 
deceleration styles. Based on the visual observation of the speed curves, higher 

values of 𝑑2̃  and 𝑑3̃  represent hard early braking and lower values of 𝑑2̃  and 𝑑3̃ 
result in hard, later braking manoeuvres. Table 3 shows the resulting six 
parameters that were implemented in the BFDA. 

Table 3. Re-parameterized functional data coefficients (for the BFDA) 

Parameter Description of Parameter 

Sx Travelled distance at start of braking [m] 

Sy Speed at start of braking [km/h] 

Tx Total distance travelled during braking manoeuvre [m] 

Ty Total speed reduction during braking manoeuvre [km/h] 

𝑑2̃  quadratic term (as proportion of the available range) [-] 

𝑑3̃  cubic term (as proportion of the available range) [-] 
 

The mean priors for the first four parameters used in this Bayesian model were 
based on the following ideas and observations: 

- Sx was centred around the distance travelled by the HGV when the cyclist 
appeared to the drivers during the experiment, 

- Sy was selected to be slightly lower than the set speed limit during the 
experiment, 

- Tx was set so that, together with Sx, the braking manoeuvre would end 
shortly after the theoretical conflict point, that is the point where the 
trajectories of the HGV and cyclist intersected (i.e. Tx was set as a slightly 
longer distance than Sx), 

- Ty was set at a value of Sy – 5 km/h (i.e. the speed at the end of the braking 
manoeuvre would be around 5 km/h). 

The corresponding variance parameters used values recommended by Gelman et 
al. (2013). The modelling of all parameters also included a hierarchical part to 
represent individual behaviours in the model. 

The remaining two parameters 𝑑2̃ and 𝑑3̃  were modelled through a mixture of 
independent Beta distributions, which differ for the baseline and cyclist-present 
conditions as well as for each individual driver. The mixed components represent 
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the individual driver behaviour, and different combinations of 𝑑2̃ and 𝑑3̃ 
correspond to different braking strategies. Since no prior information was 
available, the priors were chosen - through prior predictive checks - to be as flat 

as possible (i.e. evenly spread across the possible values of 𝑑2̃ and 𝑑3̃ ), as we 
wanted to avoid influencing the results by our choice of priors. Prior predictive 
checks generate an output of the model that is only dependant on the priors in the 
model. They represent the design of the model and do not contain any of the 
collected participant data yet (see also Section 6.3.1). 

6.3 Resulting Population Models 

In this section, both the prior predictive and posterior predictive draws are 
explained, and their results shown. Prior predictive checks are used to confirm 
that the model was set-up properly and that the priors we chose, in particular the 
specific values explained in Section 6.2, produced reasonable distributions and 
results. Braking curves were produced that were based solely on values obtained 
from the prior distributions. The posterior predictive draws were analysed after 
the collected participant data were included in the model, to verify that it still 
produced reasonable distributions and results (e.g. that the resulting deceleration 
profiles did not violate physical boundary conditions). The goal of the 
methodology is to produce draws of reasonable braking sequences that describe 
the population behaviour in the situations studied. 

6.3.1 Prior Predictive Draws 

The priors were used to draw values for the six parameters (Sx, Sy, Tx, Ty, 𝑑2̃ and 

𝑑3̃ ). The resulting total distances travelled and the speed reductions were 
compared to the initial distances and initial speeds respectively, to ensure that the 
drawn values were not unreasonably high. 

Figure 21 shows the distributions for the first four parameters Sx, Sy, Tx and Ty. 
Slight differences between baseline and cyclist laps can be observed (which are 
the result of the additional variable, and thereby variance, for the cyclist condition 
in the model), but the curves are quite similar and produce reasonable 

distributions. Figure 22 shows that the distributions of 𝑑2̃ and 𝑑3̃ are generally as 
intended - evenly spread across the range of possible values. 

When these different parameter draws are combined to create braking curves, an 
average deceleration of 1 to 2 m/s2 is achieved (with maximum potential 
decelerations up to 6 to 8 m/s2 reached in very rare cases). The decelerations 
cover a very plausible range of values; overall, it was judged that the chosen priors 
were appropriate for our application. 
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Figure 21. Prior predictive draws for Sx (travelled distance from trigger point, at start of braking), Sy (speed at 
start of braking), Tx (total distance travelled during braking manoeuvre) and Ty (total speed reduction during 

braking manoeuvre), from Schindler et al. (2021) 

 

Figure 22. Prior predictive draws of 𝑑2̃ and 𝑑3̃ in beta space, from Schindler et al. (2021) 

6.3.2 Posterior Predictive Draws 

For the posterior predictive draws, we wanted to compare the curves resulting 
from our model (with the participant data included) to the raw data collected 
during the experiment. Since the model contains both a hierarchical part and a 
distinction between baseline and cyclist laps, specific draws for specific 
participants and conditions can be compared to the raw data that was used in the 
model for the same situations. Figure 23 shows an example of this comparison for 
one participant. The solid black curves represent the raw data in the different 
baseline laps (left) and cyclist laps (right), as collected during the experiment. The 
light blue curves on the left, which show 20 random draws from the posterior 
distribution for the baseline condition, follow the same trend as the raw data, but 
show reasonable variations in the braking sequence. In the cyclist condition on the 
right, the red curves show higher variation, due to the lower number of samples 
(only one lap per participant). The braking profiles and braking strategies are very 
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similar between posterior draws and raw data, ptoviding confidence in the 
performed parameterization of the model. 

 
Figure 23. Posterior predictive checks for baseline (light blue, left) and cyclist (light red, right) conditions, 

plotted against the raw data from the experiment (solid black curves) 

The check of the first four individual parameters Sx, Sy, Tx and Ty in Figure 24 
shows that the initial conditions (upper two graphs) show a lower variance than 
the priors (Figure 21), and that baseline and cyclist laps are very similar. The end 
conditions also show lower variances than the priors, but in this case there is a 
clear difference between baseline and cyclist laps. This difference is also 
represented by the µβ parameters used for the cyclist condition; see Table 4. While 
the µβ values for the start condition are close to zero, the values for the end 
condition are not centred around zero and show a tendency towards less distance 
travelled (value of -5.93 for Tx) and greater speed reduction (value of 4.75 for Ty). 
Together, Tx and Ty illustrate a larger deceleration further away from the 
intersection, which is in line with the observations and analysis made during the 
experiment and in Paper III. 

 
Figure 24. Posterior predictive draws for Sx (travelled distance from trigger point, at start of braking), Sy 

(speed at start of braking), Tx (total distance travelled during braking manoeuvre) and Ty (total speed 
reduction during braking manoeuvre), from Schindler et al. (2021) 
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Table 4. Descriptive statistics for four 𝜇𝛽𝑗
 parameters, from Schindler et al. (2021) 

Parameter Mean 
95% Credible Interval 

(2.5th,97.5th percentile) 

μβ1
 (related to Sx [m]) -0.818 (-4.283, 2.648) 

μβ2
 (related to Sy [km/h]) 0.046 (-1.249, 1.351) 

μβ3
 (related to Tx [m]) -5.926 (-9.708, -2.071) 

μβ4
 (related to Ty [km/h]) 4.752 (2.658, 6.933) 

 

The parameters 𝑑2̃ and 𝑑3̃ show a difference in driver behaviour between baseline 
and cyclist laps, indicating that drivers use different braking strategies in the two 

situations. While the values of 𝑑2̃ seem to cluster around 0.1 in the baseline laps 
(Figure 25, left), they cluster more around 0.5 in the cyclist laps (Figure 25, right). 

For 𝑑3̃, the values seem to be widespread across the whole range in the baseline 
laps, but more clustered between 0.1 to 0.5 in the cyclist laps. When these values 
are compared to those of the curve shape analysis in Paper IV (see Fig. 6 in Paper 

IV), it is apparent that curves with 𝑑2̃ values around 0.1 tend to have a constant 

deceleration throughout the manoeuvre. In contrast, 𝑑2̃ values of around 0.5 and 

𝑑3̃ values around 0.3 show greater deceleration in the middle of the curve, which 
could be interpreted as a reaction to the appearance of the cyclist. 

 

Figure 25. Posterior predictive draws of 𝑑2̃ and 𝑑3̃ in beta space, from Schindler et al. (2021) 

6.4 Discussion and Implications 

In this study, the approach of population synthesis was applied to traffic safety-
related data using Bayesian methods in the synthesis process for the first time.  

A sensitivity analysis of the results was performed by changing the variance of the 
endpoint-related parameters, to check how much the choice of priors influenced 
the resulting distributions. This analysis, described in detail in Paper IV, showed 
that the results were mainly data-driven (i.e. low influence of the priors on the 
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posterior distributions), although especially towards more extreme values at 
either end of the distribution a higher influence of the chosen priors can be seen. 

Furthermore, the results have been validated against available population data 
following the methodology of Ma and Srinivasan (2015). For our purposes, 
maximum decelerations from the generated populations were compared against 
typical deceleration values observed in the real world. The maximum 
decelerations between 6 to 8 m/s2 are well in line with the braking capabilities of 
modern HGVs. 

The model used in this study also included a hierarchical part. In this study, the 
hierarchical part was used to distinguish between the different drivers of the base 
data sample. However, if larger datasets (with more variance among the 
participants) were available, the hierarchical design would allow the model to 
represent more individual driving behaviours - by including demographic 
variables, such as age or gender for example.  

A further benefit of the developed methodology is that the resulting driver 
behaviour models can be easily updated when new information is available. This 
information could come from a variety of sources, e.g. a second run of the test-
track experiment or naturalistic driving data. As long as the driving scenarios are 
comparable, the analysis does not need to be performed all over again, but can 
simply be updated (similar to the process in Paper I). 

As a result of this analysis, speed profile boundary curves can be created (such as 
in Figure 26 for example, showing the 1st and 3rd quartiles of the speed profiles). 
These boundary curves can be used for the simulations in the benefit assessment 
framework. The system can be tested with different driver behaviours based on 
these curves, and the system performance can be evaluated in these different 
situations. The curves could also be useful for physical testing: a robot could drive 
the vehicle and exhibit different behaviours in a reproducible manner. 

 
Figure 26. Modelled speed curve with 25th and 75th percentiles for baseline and cyclist manoeuvres, from 

Schindler et al. (2021) 
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Additionally, the results can also be used to support the design of active safety 
systems. A potential system for detecting the presence of a cyclist could use the 
results of this study to assess the driver’s behaviour, and determine whether the 
driver has noticed, and reacted to, the cyclist. The system could suppress a 
warning in situations where the driver has reacted to the presence of the cyclist, 
e.g. by slowing down. The system’s ability to determine whether or not the driver 
has noticed the cyclist could be strongly improved if information about the gaze 
behaviour were available as well. 

In a further step, the driver behaviour can also inform the design of automated 
vehicles, by describing typical driving patterns in different situations. This would 
benefit the occupants, as previous research by Abe, Sato and Itoh (2017) has 
shown that occupants feel more comfortable when the system mimics the 
behaviour of human drivers in the same situation.  

This study demonstrated a specific application of the methodology, which merely 
illustrates a single use case in traffic safety research. The methodology can be 
applied to other scenarios (e.g. rear-end conflicts) and other variables of interest 
(e.g. gaze behaviour). As indicated above, the results can be used in the design and 
validation process of active safety systems. Specific information such as braking 
boundary curves (Figure 26) can be used by the system when evaluating a 
potential conflict situation on the road, and the general behaviour data can be used 
in simulations to test different (but reasonable) driver behaviours in conjunction 
with the system (see Figure 4). 
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7 Holistic Safety Benefit Assessment Framework 

In this thesis, a framework using Bayesian inference as a way of combining 
simulation and test results was proposed for the safety benefit estimation of ADAS 
for heavy goods vehicles. Bayesian methods have been used in various fields 
before and have proven their effectiveness; see for example Miaou and Lord 
(2003), Mitra and Washington (2007), Huang and Abdel-Aty (2010) or Xie et al. 
(2018), including research on traffic safety by Hauer (1983a), Hauer (1983b), 
Gårder, Leden and Pulkkinen (1998) and Morando (2019). The research in this 
thesis has shown that the application of Bayesian inference can be extended from 
incorporating multiple outcomes of one data source (e.g. the quantitative expert 
judgement model; see Gårder, Leden and Pulkkinen, 1998) to a novel combination 
of the outcomes of different, independent data sources into one common output. 
Paper I showed how the framework can be applied to the safety benefit estimation 
in traffic safety research and its use for active safety systems development was 
illustrated in the European project PROSPECT (although this particular 
application addressed passenger car safety systems). 

The other papers in this thesis (Papers II to V) address the steps needed to 
improve the framework and adapt it for a HGV-related application. In particular, 
the inclusion of driver behaviour models has been identified as essential for 
further improving the ecological validity of virtual testing - and thus the quality of 
the framework’s output. As a result of this work, the holistic safety benefit 
assessment framework in Figure 27 is proposed for future work. 

 
Figure 27. Holistic safety benefit assessment framework 

More data sources are included in this holistic framework than in the original 
version in Paper I, to address the limitation of a single in-depth data source, which 
may not capture all relevant aspects of the crash population in the target region. 
The input data used should therefore be supplemented by other databases (such 
as the Initiative for the GLobal harmonization of Accident Data, IGLAD) and other 
data sources such as naturalistic driving data (NDD), to allow the characterisation 
of relevant local differences within the target region. While crash data still plays 
an important role, other data sources such as naturalistic driving data and 
experimental data are needed especially when it comes to driver behaviour 
modelling. The latter sources now also have their place in the framework, and 
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connections to the other parts of the framework, mainly the virtual and physical 
testing, are highlighted. 

Although this framework can incorporate different information sources and 
provide a detailed assessment, the quality of the output is strongly dependent on 
the quality of the input. If the data input is of poor quality (e.g. prior benefit 
estimations based on simulation results which are not representative of the 
system or the real world), the framework is not able to fully compensate for this 
limitation. It would require a very large sample of new performance data, such as 
test results from physical testing, to compensate for the low quality of the previous 
data, which may not be feasible to obtain. Although the framework has some 
potential to compensate with the use of weighting parameters (e.g. giving physical 
test results more weight when they are deemed more representative of the actual 
system performance), providing high-quality input (in terms of data sources and 
models in Figure 27) is much more beneficial. Therefore, incorporating detailed 
driver models into the framework for the different target scenarios (as seen in 
Figure 27) is essential to increase reliability and provide a more trusted input for 
the framework (see also Lundgren and Tapani, 2006 or Markkula, 2015).  

However, system development and driver behaviour modelling for HGVs have 
typically lagged behind those for passenger cars, and in fact detailed driver models 
for HGV drivers were not available at the beginning of this thesis. Papers III and IV 
provide the first steps towards detailed driver models for HGV drivers.  

An advantage of the holistic framework in that regard is that the data within the 
framework can be continuously updated, either when new information becomes 
available, or when a new type of input is provided. The posterior distributions 
obtained after an application of the framework can become the prior assumptions 
for the next application, providing an easy, straightforward way to include 
previous knowledge in future research. 

Market penetration and user acceptance of the evaluated systems depend on 
several factors, such as the design of the system itself, laws and regulations, the 
results of consumer testing protocols (such as Euro NCAP), and the 
implementation strategy of the manufacturers (e.g. whether the system is 
provided as basic equipment or optional, and whether it is possible to turn it off) 
and their marketing. The assumed linear increase of user acceptance and market 
penetration over time, and thus the resulting linear decrease in the number of 
casualties assumed in Paper I, may be an oversimplification. Future applications 
of the framework should consider more elaborate models, like the one described 
in Sander (2018) for market penetration. 

The holistic safety benefit assessment framework, presented in this thesis can be 
used in future studies and in the development process of ADAS. The results can 
improve our understanding of the real-world benefits of new safety systems, with 
potential implications for policies and regulations. For example, the framework 
can be of particular relevance for the creation of a customer rating organization 
for HGVs (similar to Euro NCAP for passenger cars) pushing for higher safety 
standards in HGVs. The combination of virtual and physical test results enables a 
safety benefit assessment that is quicker and cheaper, yet more accurate, than one 
based purely on physical testing. 
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8 Conclusion 

As a result of the work and papers within this thesis, a holistic safety benefit 
assessment framework for HGVs was presented in Chapter 7. This thesis made 
major contributions to the field of safety benefit assessment methods, focussing 
on heavy goods vehicles, through the implementation of Bayesian methods and 
the collection and modelling of driver behaviour data. In particular, this thesis has 
met its aims and advanced the knowledge for the research objectives stated in 
Section 1.3 as described below: 

(a) Develop a framework for safety system evaluation beyond state-of-the-art 
methodologies by a systematic integration of different data sources to 
estimate the system performance during the development process. 

This objective was addressed by the initial framework developed in Paper I. The 
framework is based on Bayesian inference and can combine different data inputs 
into a common safety benefit assessment. The approach of defining priors based 
on initial information of low reliability and updating them with more reliable 
results as presented in Paper I is new and has great potential to be used for other 
studies and applications - within the field of traffic safety and beyond. The holistic 
framework can be used in future studies and the development process of ADAS, 
and the results have potential implications for policies and regulations in 
understanding the real-world benefit of new safety systems. 

(b) Identify and analyse critical crash scenarios that involve HGVs on 
European roads. Based on the analysis, define target scenarios with a 
focus on the most common crash scenarios and VRUs. 

This objective was addressed by the crash data analysis in Paper II and Paper V. A 
comprehensive crash data analysis was conducted simultaneously on three levels 
of data (European crash statistics from CARE, an analysis of national crash 
databases and in-depth data from GIDAS) and was supplemented by a crash 
causation analysis. This approach created a representative overview as well as a 
deep understanding of the most common crash scenarios involving heavy goods 
vehicles in Europe. As a result of this, three critical target scenarios were identified 
and described in detail: rear-end crashes with the HGV as the striking vehicle, 
crashes between a right-turning HGV and adjacent cyclist, and crashes between a 
HGV and a pedestrian crossing in front of the HGV. For these scenarios, different 
parameters such as collision speeds and impact points as well as the most 
common crash causation factors have been reported. 

(c) Investigate and describe HGV driver behaviour in the identified target 
scenarios.  

The experiment described in Paper III addressed this objective. Thirteen 
participants encountered either a cyclist or pedestrian dummy in situations based 
on the two target scenarios involving VRUs identified in Paper V. The results 
revealed changes in vehicle kinematics and gaze behaviour when the VRUs were 
present (compared to the same situations without the VRUs). However, it was not 
possible to identify further statistically significant differences, due to the small 
sample size available for this analysis. 
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(d) Develop a methodology that can exploit small datasets, in particular to 
provide the data needed for the creation of driver behaviour models. 

To address the problem of a small sample size in the experimental data, a new 
methodology based on Bayesian Functional Data Analysis was proposed in Paper 
IV. This methodology uses small samples of collected raw data (e.g. the speed 
profiles collected in Paper III) to create a synthetic population (with the goal of 
mimicking the true population’s behaviour). The distributions of this synthetic 
population allow more profound conclusions about behaviours within the whole 
population. It was discussed how this information can be used for both regulatory 
bodies as well as safety system designers. 
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9 Future Work 

In future work, the safety benefit assessment framework should be implemented 
for a specific HGV ADAS. While the initial version of the framework has been 
applied to ADAS for cars, the improved framework presented in this thesis has not 
yet seen a full implementation. Applying the framework with all the inputs 
provided in this thesis is an obvious topic for future research. 

In addition, an expansion of the crash data and driver behaviour analysis would 
further strengthen the results from the framework. The scope of the crash data 
analysis could be expanded with access to more national crash databases and 
naturalistic driving data, which would extend our understanding of the crash 
scenarios and contributing factors on a European level. In addition, 
complementing the GIDAS data with other in-depth databases (e.g. IGLAD) would 
widen the scope of the analysis and obtain more detailed crash data from different 
regions. 

Furthermore, the driver behaviour in the target scenarios should be studied in 
different boundary conditions. The results in this thesis depended on the very 
specific intersection design and encounters that were set up for the data 
collection. The scope should be widened to include different intersection designs 
and traffic situations, to get more generalizable results. Further, the observed 
driver behaviour from the experiment should be compared to driver behaviour 
from naturalistic driving data (NDD). It is important to verify that the experiment 
records actual real-world driving behaviour rather than some artificial behaviours 
that result from the characteristics of the data collection method. While it is 
particularly difficult to verify driver behaviour in critical situations (as they are 
sparse in NDD), this thesis’s approach (recording baseline laps during the 
experiment) at least allows a comparison with “normal”, non-critical driving 
behaviour in NDD. 

Work has already started on the use of NDD to analyse critical situations for the 
rear-end scenario. This analysis will provide the data and driver models required 
for the analysis of HGV-specific safety systems addressing rear-end crashes, 
providing the preliminary data for the last of the three target scenarios identified 
in this thesis. 

Finally, future research should refine the methods used to model user acceptance 
and market penetration (by, for example, incorporating collected market 
penetration or user acceptance data from similar systems through statistical 
modelling), in order to further improve the quality of the framework’s output. 
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Popular Science Summary 

 

Crashes in traffic are still one of the leading causes of death worldwide, particularly when heavy 

trucks are involved. A large part of these crashes can be mitigated or avoided altogether by active 

safety systems. While modern passenger cars are already equipped with these systems, they are 

less common in the heavy truck fleet. The physical features (heavier and longer) as well as the 

driver behaviour (professional drivers vs. casual drivers) of heavy goods vehicles are very different 

than those of passenger cars; thus active safety systems cannot simply be transferred from one 

to the other. The systems for cars need to be re-developed and adapted to trucks. This thesis 

provides a framework for analysing these new systems, so that developers get an understanding 

of how well their systems perform while still under development, before they are implemented in 

heavy trucks. To facilitate this analysis, typical crash patterns involving heavy goods vehicles from 

different European crash databases are studied. In addition, detailed driver behaviour information 

is collected and analysed, to facilitate the safety benefit assessment of specific active safety 

systems in the most relevant crash scenarios. To further support the assessment, a new 

methodology was developed that creates an artificial population of drivers, thereby increasing the 

sample size available for the analysis and allowing a more detailed and reliable analysis of small 

data samples. 
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