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Optical properties of point defects in insulators
and of transition metal dichalcogenides

CHRISTOPHER LINDERÄLV
Department of Physics

Chalmers University of Technology

Abstract

There is a need for new or modified materials, both to improve current devices and to
create novel functionalities. Engineering materials to target specific functionalities re-
quires a better understanding of how microscopic processes impact materials proper-
ties. In this thesis, the effects of defects, mixing of materials, and twisting of parts of
the material are explored via first-principles calculations. In particular, the properties
of defects in a range of technologically important insulators and ofmixing and twisting
of transitionmetal dichalcogenides (TMDs) are addressed, with an emphasis on optical
properties.

In the part of the thesis that pertains to defects, the commonality of oxygen vacancies
is considered. It is shown that oxygen vacancies exhibit properties that extend beyond
specific insulating oxides and that there is a strong interplay between lattice geometry
and oxygen vacancy character. The coupling between defect states and lattice vibrations
is subsequently accounted for and used to identify the contribution of specific defects
to relaxationmechanisms. It is shown that oxygen vacancies may be detrimental to the
performance of the oxidephosphorYAG,playing a key role in a reactionmechanism that
leads to luminescence quenching. The part of this thesis that is concerned with defects
is concluded by an analysis of the optical signatures and phonon sidebands of defects in
h-BN and SiC.

On the topic of TMDs, the properties of twisted bilayers are explored, in particular in
connection to excitons. It is shown that for very small twist angles, excitons become
localized. In addition, the twist-induced potential is dissected and it is shown that the
purely electrostatic component of this potential decays with increasing twist angle. Fi-
nally, a high-throughput study on TMD alloys was performed for which mixing proper-
ties and band edge alignments are presented.

Keywords: wide band gap oxides, oxygen vacancies, charge transition levels, lumines-
cence quenching, color centers, solid state lighting, moiré structures, transition metal
dichalcogenides, monolayer alloys, excitons





LIST OF APPENDED PAPERS
This thesis is partly based on the author’s licentiate thesis (C. Linderälv, Everything is
imperfect: Studies on point defect in insulators (2020)). It consists of 8 introductory chapters
and the following papers:

I A Unifying Perspective on Oxygen Vacancies inWide Band GapOxides
Christopher Linderälv, Anders Lindman, and Paul Erhart
The Journal of Physical Chemistry Letters 9, 222 (2018)

II Luminescence Quenching via DeepDefect States:
A Recombination Pathway via Oxygen Vacancies in Ce-Doped YAG
Christopher Linderälv, Daniel Åberg, and Paul Erhart
Chemistry ofMaterials 33, 73 (2021)

III Photoluminescence Lineshapes for Color Centers
in Silicon Carbide fromDensity FunctionalTheory
Arsalan Hashemi, Christopher Linderälv, Arkady V. Krasheninnikov, Tapio Ala-Nissila,
Paul Erhart, and Hannu-Pekka Komsa
Physical Review B 103, 125203 (2021)

IV Vibrational signatures for the identification
of single-photon emitters in hexagonal boron nitride
Christopher Linderälv, Witlef Wieczorek, and Paul Erhart
Physical Review B 103, 115421 (2021)

V Tunable Phases ofMoiré Excitons in van derWaals Heterostructures
Samuel Brem, Christopher Linderälv, Paul Erhart, and ErminMalic
Nano Letters 20, 8534 (2020)

VI Exciton Landscape in van derWaals Heterostructures
JoakimHagel, Samuel Brem, Christopher Linderälv, Paul Erhart, and ErminMalic
Physical Review Research 3, 18063 (2021)

VII TheMoiré Potential in Twisted TransitionMetal Dichalcogenide Bilayers
Christopher Linderälv, JoakimHagel, ErminMalic, and Paul Erhart
in manuscript

VIII High-throughput Characterization of TransitionMetal Dichalcogenide Alloys:
Thermodynamic Stability and Electronic Band Alignment
Christopher Linderälv, J. Magnus Rahm, and Paul Erhart
in manuscript

v



The author’s contribution to the papers:

I The author performed the majority of the calculations and analysis, and jointly wrote
the manuscript.

II The author performedmost of the calculations and analysis, and wrote the first draft of
the manuscript.

III The author performed a part of the calculations aswell as associated analysis and jointly
wrote the manuscript.

IV The author performed the vast majority of the calculations and analysis, and wrote the
first draft of the manuscript.

V Theauthor performed and analyzed thefirst-principles calculations, and contributed to
the writing of the manuscript.

VI The author performed and analyzed the first-principles calculations.

VII The author performed the majority of the calculations and analysis, and wrote the first
draft of the manuscript.

VIII The author performed the majority of the electronic structure calculations as well as
their analysis and wrote the first draft of the manuscript.

PUBLICATIONS NOT INCLUDED IN THIS THESIS

The following publications are outside the scope of this thesis:

Interlayer exciton dynamics in van derWaals heterostructures
SimonOvessen, SamuelBrem,ChristopherLinderälv,MikaelKuisma,TobiasKorn, Paul
Erhart, Malte Selig, and ErminMalic
Communications Physics 2, 23 (2019)

Impact of strain on the excitonic linewidth in transitionmetal dichalcogenides
ZahraKhatibi,Maja Feierabend,Malte Selig, Samuel Brem,Christopher Linderälv, Paul
Erhart, and ErminMalic
2DMaterials 6, 6669 (2018)

vi



Contents

List of abbreviations ix

1 Introduction 1

2 Background 7
2.1 Defects in wide band gapmaterials . . . . . . . . . . . . . . . . . . 7

2.1.1 Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Carbides and nitrides . . . . . . . . . . . . . . . . . . . . . 12

2.2 Optical and thermodynamical properties of TMDs . . . . . . . . . . . 14
2.2.1 Transition metal dichalcogenides . . . . . . . . . . . . . . . 14
2.2.2 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Bilayers andmoiré superlattices . . . . . . . . . . . . . . . . 17
2.2.4 Binary alloys . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Point defects 23
3.1 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Formation energy . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Configurational entropy . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Charge transition levels . . . . . . . . . . . . . . . . . . . . 26
3.1.4 Chemical potential . . . . . . . . . . . . . . . . . . . . . . 27
3.1.5 Electron chemical potential . . . . . . . . . . . . . . . . . . 27

3.2 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Radiative transitions . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Vibronic transitions involving defect states . . . . . . . . . . 30

4 First-principlesmethodology 35
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 The Hohenberg-Kohn theorems . . . . . . . . . . . . . . . . 36
4.2.2 Kohn-Shammethod . . . . . . . . . . . . . . . . . . . . . . 37

vii



Contents

4.2.3 Exchange-correlation potential . . . . . . . . . . . . . . . . 38
4.2.4 Self-interaction error . . . . . . . . . . . . . . . . . . . . . 39
4.2.5 Charged systems . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.6 Excited states . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.7 Projector augmented wave method . . . . . . . . . . . . . . 41

4.3 Beyond density functional theory . . . . . . . . . . . . . . . . . . . 42
4.3.1 𝐺𝑊 approximation . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Theory of small oscillations . . . . . . . . . . . . . . . . . . 43
4.4.2 Computational method . . . . . . . . . . . . . . . . . . . . 45

5 Oxygen vacancies in wide band gap oxides 47
5.1 Alignment of defect levels . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 The three hallmarks of deep oxygen vacancy levels . . . . . . . . . . . 48
5.3 Luminescence quenching . . . . . . . . . . . . . . . . . . . . . . . 49

6 Color centers in h-BN and 4H-SiC 51
6.1 Color centers in 4H-SiC . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Color centers in h-BN . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Optical properties of TMDs 53
7.1 Excitons in twisted bilayers . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Untwisted bilayers . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Monolayer TMD alloys . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Outlook 57

Acknowledgments 59

Bibliography 61

Papers I–VIII 71

viii



List of abbreviations

CTL charge transition level. 26, 28, 47–51

DFT density functional theory. 1, 4, 5, 16, 17, 36, 38–40, 42, 43, 45, 48, 52, 54–56

GGA generalized gradient approximation. 38

HR Huang-Rhys. 31–33, 51, 52

LDA local density approximation. 38, 39

LED light emitting diode. 10, 11

PCWLED phosphor converted white light emitting diode. 10, 11

TMD transition metal dichalcogenide. 3, 4, 7, 14, 15, 17, 18, 20, 21, 53–56, 58

vdW van-der-Waals. 14, 39

WLED white light emitting diode. 2, 10

XC exchange-correlation. 37–39, 42

YAG yttrium aluminum garnet. 1, 2, 10, 11, 50

ZPL zero phonon line. 14, 33, 51, 52

ix





1
Introduction

All real crystals have flaws. These flaws disrupt the translational symmetry of the crys-
tal, and present themselves as crystallographic irregularities. And as we have been told
symmetries are beautiful, these crystallographic irregularities are called defects. Ruby
for example is simply alumina with some atom sites occupied by chromium instead of
aluminumatoms. But anybodywho has seen a ruby or emerald or another colored gem-
stone would not think of the impurity atoms that provide the color as a shortcoming of
the material.
Diamondwith a specific flaw called theNV−1 center, is investigated as a potential cor-

ner stone in emerging quantum technologies. For example, it has been demonstrated
that two NV−1 centers in the vicinity of each other can be used to form entangled states
[1], which is the fundamental unit required inmany quantum information technologies.
This is only one ofmany systemswhere defects provide a functionality of amaterial that
is absent in the pristinematerial. In fact, defects in solids have emerged to be one of the
most promising platforms for creating and studying quantum phenomena such as sin-
gle photon emission [2]. Over the last century, research and development has proven
that for numerousmaterials it is the defects thatmake thematerial useful in certain ap-
plications with examples including oxides such as yttrium aluminum garnet (YAG) [3],
silicon carbide [2] and hexagonal boron nitride (h-BN) [4]. Therefore, the study of de-
fects inmaterials is of outmost importancewith regard to the development ofmaterials
for future applications.
The size of a point defect is comparable to the size of an atom and such defects are

hence difficult to probe with experiments. First-principles calculations are therefore
crucial in order to understand the impact of specific defects on thematerials properties.
However, first-principles calculations on defects in insulators are very demanding since
large supercells are required to embed the defect. Furthermore, conventional density
functional theory (DFT), which is the most feasible alternative, has several shortcom-
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Chapter 1. Introduction

ings in describing charged defects in insulators [5]. In this regard, it is important to
address the question as to how transferable properties of defects across materials are.
If certain properties are transferable, assessing the impact of defects in different mate-
rialswouldbe easier and screeningofmaterials for certain functionalitieswould require
less resources. It is not expected that any defect in any material exhibits the same be-
havior, yet specific defects across similar materials may. In particular, we focused our
attention on wide band gap oxides and addressed the following question in Paper I.

Q1. Is it possible to understand the properties of oxygen vacancies in wide band gap
oxides without having to explicitly study the oxygen vacancy in each new oxide?

In order to be able to follow Paper I, a chapter that is devoted to the general theory of
defects in solids (Chapter 3) is included in this thesis. Additionally, to explain the com-
mon features of the considered oxides in Paper I a section on the electronic structure of
wide bandgapoxides is included (Sect. 2.1.1). It turns out that one characteristic feature
of oxygen vacancies inmanymaterials is a large structural relaxation in connectionwith
a change in charge state. This implies that when the oxygen vacancy gains or looses an
electron, a considerable amount of energy is dissipated in the form of lattice vibrations.
So far the focus has been on positive effects of defects. There are however numer-

ous common adverse processes in materials that are related to the presence of defects.
The chemical nature of the defects is often elusive, which can make it difficult to de-
sign synthesis strategies to prohibit the formation of these defects by othermeans than
trial-and-error. One such adverse process is the thermal quenching in oxide phosphors
seen in, e.g., Ce doped YAG, which is a yellow phosphor widely used in white light emit-
ting diodes (WLEDs) [3]. Here, the thermal quenching has been attributed to defects
without any further specification [6, 7]. With the large energy dissipation potential of
oxygen vacancies in mind we therefore asked the following question in Paper II.

Q2. Canoxygenvacancies provide themissing link in a completemicroscopic descrip-
tion of luminescence quenching in Ce-doped YAG?

InPaper II, we propose a non-radiative charge transfermechanism that involves oxy-
gen vacancies. To provide background for this paper, there is a section on solid state
lighting that covers luminescence quenching (Sect. 2.1.1.3). Additionally in Paper II, we
modeled thefine structure (lineshape) of theoptical transitionson theCeatomusing the
generating functionmethod (Sect. 3.3.2). This is amethod that accounts for the change
in vibrational state upon a change in the electronic state. Themethod was conceived in
the 1950ies [8] but has in recent years experienced a renaissance as it has become easier
to compute the vibrational spectrum of large defective supercells due tomore powerful
computers as well as better methods and algorithms [9–11]. In particular, this method
accounts for the structural distortion associated with a transition on a defect, which
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makes the method a suitable tool for extracting optical fingerprints of defects. This is
especially relevant formaterials such as h-BN and SiC, which are of interest as hosts for
single-photon emitters similar to the case of the NV−1 center mentioned above. In fact,
in Paper III and Paper IVwe worked with the following question.

Q3. Canwemodel the optical lineshapes and identify defects based onobserved emis-
sion lineshapes?

Paper III is concernedwith color centers inSiCand inPaper IVwedirectedour efforts
to identifying defects in 2D h-BN. A more detailed description of these materials and
defects is presented in Sect. 2.1.2. Paper IVmarks the end of the part of this thesis that
is concernedwith defects inwide band gapmaterials and provides a bridge to the realm
of 2Dmaterials, which is the subject of interest in Paper V-Paper VIII.
While defects can add functionality to a material, there are additional ways to mod-

ify and change the materials properties. Some materials that exhibit a layered struc-
ture, e.g., MoS2 and graphite, have been shown to exhibit a profoundly different elec-
tronic structure in the monolayer limit [12, 13]. MoS2 is an indirect semiconductor in
bulk form, which undergoes a transition to a direct band gap semiconductor in the
monolayer limit. In graphite, the band gap vanishes in the monolayer limit (graphene)
and the electronic states around the Fermi energy becomemassless [14]. Graphene has
shortcomings when it comes to optoelectronical applications due to the vanishing band
gap and therefore the semiconducting transitionmetal dichalcogenides (TMDs) such as
monolayer MoS2 are better suited for applications in this field.
The optical properties of TMD monolayers have been extensively studied, both via ex-

periments [15] and theory [16]. Overall, there is a good understanding of the exciton
formation and dynamics inmonolayers. Excitons in bilayers, however, are amuchmore
complex subjectdue to interlayer couplingandpotential bandoffsets between themono-
layers. This gives rise to intralayer excitons that are confined to a single layer and inter-
layer excitons for which hole and electron reside in different layers. The subject is fur-
ther complicated by the presence of combinations of these two types of excitons as well
as the twisting degree of freedom available in moiré structures.
The optical properties of TMDs and in particular twisted bilayers are the subject of

the final part of this thesis. Twisted bilayers have received a lot of attention in recent
years and exhibit peculiar properties that are very distinct from those of their untwisted
counterparts [17]. In Paper Vwe therefore investigated the following question.

Q4. How are the optical properties of a TMD bilayer affected by twisting one of the
constituent monolayers?

In order to understand the concepts in this study, a section on TMDs is included in
Sect. 2.2.1 where general properties of TMDs are introduced. One inherent property
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Chapter 1. Introduction

of unstrained twisted bilayers is that the unit cell gets prohibitively large for low twist
angles. In Paper V, this issue was addressed by using a methodology based on density
matrix theory [18] in combination with DFT+𝐺𝑊 calculations on a model system that
mimics the twisted bilayer in the low angle limit by considering bilayer unit cells with
different stacking orders.
Bilayers with different stacking orders are interesting in themselves. In PaperVI, we

therefore considered excitons in bilayers for different stacking orders. This study was
performed with the outlook of predicting how the exciton properties vary for different
TMDmaterial combinations and stacking orders. Furthermore, an important objective
of Paper VIwas to address the following question.

Q5. Is it possible disentangle the effects of electric potential and level hybridization
on the energy levels of the bilayer?

The importance of this question resides partly in the prospect of creating more com-
plexmodels to enhance the understanding of exciton properties in twisted bilayers. The
model used inPaperV is as already stated limited to low twist angles. In this regard, we
considered explicit moiré supercells in Paper VII and addressed the following question
regarding the twist-induced potential (moiré potential).

Q6. What are the origins of the moiré potential, and how can we access very small
(non-zero) twist angles?

In order to see how the low-angle-limit model is related to twisted bilayers with a fi-
nite twist angle, a section on the construction of explicit moiré supercells is included
here (Sect. 2.2.3). While it was not possible to extract excitation spectra of twisted bi-
layers in Paper VII, additional insights concerning the fundamental properties of the
moiré potential were obtained, namely that the potential arises due to a stacking de-
pendent charge density displacement upon bilayer formation.
While twisting allows one to manipulate a material without changing the chemical

constituents of the material, it has a rather limited effect of the overall electronic struc-
ture. In order to tailor the position of the band edge states over a wider energy range,
which is desirable for applications in , e.g., optoelectronics and catalysis, one requires
more drastic means. In Paper VIIIwe therefore address the following question.

Q7. Besides twisting, what additional ways are there to engineer the optical proper-
ties and in particular the position of the band edges?

Wedirect our focus on alloying and inparticular themixing ability of TMDmonolayer
alloys and the alignment of the band edges. To this end, a section on thermodynamics
of binary alloys is included (Sect. 2.2.4). PaperVIII concludes the studies that have been
performed within the scope of this thesis.
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Most of the data in Paper I-Paper VIII has been generated using first-principles cal-
culations based onDFT.Therefore, a chapter on first-principles calculations (Chapter 4)
is included in this thesis as well.
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2
Background

This chapter provides background for the appended studies. First, defects in wide band
gap materials are introduced (Sect. 2.1), which creates context for Paper I-Paper IV. In
the secondpart (Sect. 2.2), TMDsare introduced,which is relevant forPaperV-PaperVIII.

2.1 Defects in wide band gapmaterials
2.1.1 Oxides
Oxygen forms compoundswith basically every other element in theperiodic table. Wide
band gap oxides is a rather large class of oxides and not uniquely defined. Here, we
define them as oxides with band gaps above ≈3 eV.We furthermore restrict ourselves to
crystallinematerials. The valence electron configuration of oxygen is 2𝑠22𝑝4. In the ionic
limit oxygen occurs as a doubly negatively charged ionwith a closed valence shell 2𝑠22𝑝6
in binarymetal oxides. In the case of a completely depletedmetal valence shell, which is
reflected in the stoichiometry of the oxide, the valence band consists of oxygen 2𝑝 states
and the conduction band of unoccupied metal states.

2.1.1.1 Electronic structure

The type of a semiconductor/insulator can often be classified according to the predomi-
nant character of the valence and conduction bands. While the degree of covalency can
be relatively large, it is still useful to keep the notion of anion and cation, and it is usu-
ally possible to distinguish the main contributions to the valence band and conduction
bands.
An open shell semiconductor or insulator for which the valence band is dominated

by anion states and the conduction band by cation state is said to be a charge trans-
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Chapter 2. Background

fer semiconductor or insulator. Here, the charge transfer refers to the fact that the low-
est electronic excitation involves a charge transfer between anions and cations. When
both valence and conduction band are predominantly composed of cation states, the
semiconductor or insulator is of Mott-Hubbard type and the lowest excitation involves
charge transfer between cations.
In 1985, Zaanen, Sawatsky, and Allen developed a theory in order to qualitatively un-

derstand the electronic structure of transition metal compounds applicable to binary
transitionmetal oxides [19]. In theZaanen-Sawatsky-Allen theory a distinction between
charge transfer and Mott-Hubbard insulators can be made. The theory is simple in the
sense that it is based on only three material specific parameters to describe the type of
insulator. The essence of the Zaanen-Sawatsky-Allen theory is that the electronic prop-
erties of an ionic transition metal oxide are dependent on the charge transfer energy
between the oxygen and metal states (𝛿 ) and the correlation energy between the metal
states (𝑈 ) (Fig. 2.1a). The third parameter entering the Zaanen-Sawatsky-Allen theory is
the oxygen 2𝑝 bandwidth.

U

δ

Charge transfer Mott-Hubbard

a.

occ. anion
occ. metal
unocc. metal

Type I Type II Common
anion rule

b.

Figure2.1: a) Illustrationof the parameters for theZaanen-Sawatsky-Allen theory. Theblue color
indicates the occupied anion band whereas the gray color indicates occupied cation states and
the red color indicates unoccupied cation states. Thedifference between thebandedge character
in charge transfer insulators and Mott-Hubbard insulators is indicated. b) Schematic illustra-
tion of band alignment of two compounds. The two common band alignments; type I and type
II are shown as well as an intermediate alignment corresponding to the common anion rule.

Mott-Hubbard insulatorshave 𝛿−𝑈 > 0,while for charge transfer insulators 𝛿−𝑈 < 0.
Thebinary transitionmetal oxides studied in thepublications that this thesis is basedon
are closed shell oxides. As such, the unoccupied metal states are usually well separated
from the occupied oxide states, i.e., 𝑈 ≫ 𝛿 [20].
The relative band edge positions between differentmaterials are important in any de-

vice that includes a heterojunction of these materials. Therefore, extensive efforts have
beenmade in order to understand how band edges align in heterostructures. There are
two main types of alignment, type I and type II (Fig. 2.1b). In type I aligned materi-
als, both band edges belong to the same material, so that an excitation predominantly
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2.1. Defects in wide band gapmaterials

occurs within the same material, whereas in a type II aligned heterostructure the va-
lence band edge and conduction band edge belong to different materials. In binary
ionic closed shell insulators, the anion valence states are occupied and the cation va-
lence states are unoccupied in the ground state. It has been observed that compounds
with common anions tend to exhibit a much smaller variation of the valence band edge
position in comparison with the conduction band edge [21] (Fig. 2.1b). This observation
is the basis of the so called common anion rule. The common anion rule states that the
valence band edge position is primarily determined by the energy level of the anion va-
lence state, whereas the conduction band edge position is primarily determined by the
energy level of the cation valence state. Wei and Zunger showed that the common anion
rule breaks down when cation states mix with anion valence band edge states [22].

2.1.1.2 Defects

Defects are particularly important in oxides proposed for applications involving elec-
tronic transport. Examples of oxides that fall in this class are ZnO, In2O3, SnO2, 𝛽-
Ga2O3, BaSnO3 as well as CuAlO2 [23–25].
In order to take full advantage of wide band gap oxides, it is necessary to develop 𝑝-

doped oxides, and so far it has been difficult to achieve 𝑝 type doping in binary closed
shell wide band gap oxides. These oxides are generally easier to 𝑛-dope and realizing
𝑝-doped oxides has been a long standing research objective [26]. The origin of the pre-
ferred 𝑛-doping over 𝑝-doping is believed to be related to the formation of oxygen va-
cancies which act as electron donors inmany oxides, though the donor efficiency of the
oxygen vacancy varies betweenmaterials [27].
The main difficulties involved in utilizing 𝑝-doped oxides can be understood by first

considering the O2− ion, which is a closed shell ion and is unlikely to host a free hole.
Secondly, if one manages to form O− (peroxide) ions, hole capture by occupied abun-
dant intrinsic hole killers reduces the hole concentration. And even if an oxide with a
valence band of 2𝑝 states, e.g., ZnO and In2O3, could be easily 𝑝-doped, the effective
mass of the hole is usually very large. As a result, the free hole mobility for the cases
where the valence band edge consists of oxygen 2𝑝 states is very low, which limits the
usefulness in electrical devices [28, 29]. Finally, it has also been shown that holes may
form small polarons (self trapped holes) in the oxides SnO2, Ga2O3, and In2O3, which
further reduces the hole mobility [30] in these materials.
Intrinsic hole killers in oxides have been widely studied. For example, in the case of

ZnO, intrinsic defects have been suggested to be the source of the difficulty in achiev-
ing a 𝑝-doped material [31]. The difficulty arises from an asymmetry between acceptor
and donor defects in terms of formation energy that is independent of the chemical po-
tential [31]. It was shown that hole killers such as VO are abundant while electron killers
are rare, thus achieving 𝑛-type doping is easier based on intrinsic compensating defects.
There are, however, oxides that can be made to exhibit hole conductivity. These oxides
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Chapter 2. Background

generally exhibit states that hybridize with the valence band edge [32]. In CuAlO2, the
cation valence states (Cu 𝑑 states) hybridize significantly with the oxygen 2𝑝 states, ef-
fectively inducing a curvature of the valence band and therefore creating a reasonable
conduction channel for holes [33].

2.1.1.3 Solid state lighting

Solid state lighting in the form light emitting diodes (LEDs) traces its origin to the work
of Losev in the 1930ies [34]. Further research led to the realization of red [35] and green
LEDs in mid 1900ies. Development of the blue GaN and InGaN LED in the 1990ies [36]
was awarded the Nobel prize in 2014 and paved the way forWLEDs. There are a few dif-
ferent design principles of WLEDs and one of the more common is the phosphor con-
verted white light emitting diode (PCWLED) approach [37, 38].

A PCWLED consists of two main parts, a regular LED and a phosphor. The regu-
lar LED emits photons through the phosphor with a fraction of the photons passing
through and the remaining ones being absorbed. The absorbed photons are effectively
down converted (red-shifted) in energy by the creation of phonons in the phosphor and
subsequently emitted at a longer wavelength.
Solid state phosphors consist of a hostmatrix (oxide, silicate, nitride, phosphate etc.)

doped with an activator ion, often from the lanthanide series or the transition metals.
The optical transitions occurs on the activator ion and the efficacy of the phosphor de-
pends on the interplay between the activator ion and the host matrix. The positions of
the activator ion energy levels that partake in the optical transition are one important
aspect, and both the ground state level and the excited state level should be located suf-
ficiently far from the band edges of the host matrix. Furthermore, for the purpose of
doping, it is advantageous if the size mismatch between the dopand and the species it
substitutes is relatively small.
One particular activator ion/host matrix combination is Ce in oxide hosts where the

optical transition occurs between the Ce:4𝑓 ground state and the excited Ce:5𝑑 state.
For Ce-doped yttria and rare earth oxide phosphors it has been shown that the effi-
cacy of the Ce:4𝑓 − 5𝑑 luminescence is mainly governed by the magnitude of the band
gap of the oxide host [39]. For host matrices with band gaps below 5.6 eV-6.2 eV, the
Ce:4𝑓 − 5𝑑 luminescence was shown to be quenched since the Ce:5𝑑 states reside above
the conduction band edge [39]. Ce-doped YAG is one of themost widely used solid state
phosphors [3, 40]. YAG has stoichiometry Y3Al5O12 and crystallizes in the garnet struc-
ture. The formal charge state of Y in YAG is +3 and the valence electron configuration
of Ce is 4𝑓 15𝑑16𝑠2. The isovalent substitution of Y with Ce leaves the 4𝑓 electron and de-
pletes the higher lying (5𝑑 and 6𝑠) Ce states. The absorption band is centered at around
450 nm [7] (blue part of the visible spectrum), which is compatible with the emission
spectrum of certain compositions of In1−𝑥Ga𝑥N. The emission spectrum of Ce:YAG is
centered at around 550 nm[7] (yellow part of the visible spectrum). The blue light from
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2.1. Defects in wide band gapmaterials

the In1−𝑥Ga𝑥N LED and the yellow light from Ce:YAG is then perceived as white light.

2.1.1.4 Thermal quenching

Thermal quenching is the observed decrease in luminescence intensity with increasing
temperature. This can be a severe drawback for PCWLEDs since down conversion of
the absorbed photon inevitably dissipates some of the excitation energy as heat and the
heat losses can reduce the efficacy of the LED by 10-30% [37]. This can lead to high tem-
peratures in the phosphor, specially at high operating power, and also color distortions.
The thermal quenching temperature is quantified by 𝑇𝑥 , where 𝑥 is the fraction of lumi-
nescence intensity relative to the low temperature intensity, and is usually reported for
𝑥 = 0.5.
In principle, allmechanisms that impede radiative recombination at the activator ion

can lead to luminescence quenching and several mechanisms can be at work simultane-
ously. In Fig. 2.2 the main luminescence quenching mechanisms are illustrated. These
include i) landscape crossover, which is a recombination mechanism that proceeds via
(multi)phonon emission, ii) thermally activated concentration quenching, where the ex-
citation energymigrates through the crystal until it reaches a killer center, and iii) ther-
mal ionization, in which the excited electron undergoes a transition to the conduction
band and is subsequently captured at an electron trap.
Due to the technological importance of Ce:YAG, thermal quenching has been widely

studied, mainly experimentally, in order to elucidate the microscopic origin [6, 7, 39].
Ce:YAG has a very high thermal quenching temperature for dilute Ce concentrations.
For Ce concentrations of 0.033%, the quenching temperature was reported to be above
600K, while for heavily doping (3.33%) it was reduced to 440K [7]. Due to the strong
dependence of Ce concentration, the thermal quenching mechanism for moderate and
highly doped Ce:YAGhas been attributed to thermally activated concentration quenching [7].
Thermally activated concentration quenching requires the presence of electron traps

or killer centers (often attributed to point defects) that can either capture the excited
state electron or act as an catalyst for non-radiative recombination. Furthermore, it
has also been suggested that in dilute Ce:YAG (0.5%), the main quenching mechanism
is thermal ionization [6]. The attribution to this mechanism was established by thermo-
luminescence measurements, which showed the presence of electron traps at 0.86 eV
and 1.52 eV below the conduction band. The chemical nature of the electron traps was,
however, not clarified in that study.
While both thermally activated concentration quenching and thermal ionization ulti-

mately rely on the presence of defects, their role might differ. As illustrated in Fig. 2.2,
the defect might act as an electron trap or as a recombination catalyst. In the former
case, theCeatomhas lost anelectronand thus cannothost optical transitionswhereas in
the latter case the electron-hole recombination leaves the Ce atom in its original charge
state.
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Figure2.2: Schematic illustrationofmicroscopicmechanisms thatwould result in luminescence
quenching. Thedotted gray lines indicate trap levels/killer centers and the blue arrows represent
routes the electron (depicted as a red arrow) can take towards luminescence quenching.

2.1.2 Carbides and nitrides
Carbon and nitrogen based compounds with wide band gaps have been shown to be
able to host defect induced two-level systems where individual defects can be optically
manipulated and used as single-photon sources. Furthermore, diamond, SiC, and h-
BN all consist of light elements with weak spin-orbit coupling. Single photon emis-
sion can be measured with the quantum analogue of the photon correlation function
𝑔(2)(𝜏 ) = ⟨𝐼 (𝑡)𝐼 (𝑡 + 𝜏)⟩/⟨𝐼 (𝑡)⟩2, where 𝐼 is the light intensity [41]. For a single pure two-
level system, this correlation function would tend to zero in the limit of zero time lag.
The reason for this behavior is that the excited state of the two-level system has to be
populated before photon emission and the excited state exhibits a finite lifetime [42]
that depends, among other things, on the transition dipole moment, see Eq. (3.19). The
vanishing amplitude of the correlation function corresponds to photon antibunching in
contrast to photon bunching as 𝜏 → 0 that is expected from a classical light source [43].
Single photon emissionhas been shown for theNV−1 center in diamond [42] and (pre-

sumably) for defects in 4H-SiC [44] and h-BN [4]. In the two lattermaterials, the under-
standing of the origin that gives rise to the single-photon emission is not as advanced
as for the case of the NV−1 center in diamond.
The NV center in diamond consists of a nitrogen atom substituting a carbon atom in

combination with a neighboring carbon vacancy. The charge state of this defect is ei-
ther neutral or negative. In the negative charge state (NV−1), the spin state is 𝑆 = 1 and
several in-gap states are present that form an optical system. The importance of single
photon emitters is predominantly as building blocks in emerging quantum information

12



2.1. Defects in wide band gapmaterials

technologies. Single photons generated by the NV−1 center in diamond nanocrystals
have already beenused in quantumcrypthography [45]. However, theNV−1 center has a
shelving state, which gives rise to a deviation from single photon emission at higher op-
erating power [46]. Although many properties, including single-photon emission, are
well established for the NV center, there are some intrinsic disadvantages with the NV
center. For example, the emission lineshape is rather wide, which makes it difficult to
create identical photons, and the transition energy is above ∼ 1 eV and thus not suit-
able for telecommunication applications [47]. Therefore, it is important to identify and
advance the knowledge of other single-photon sources. Here, SiC and h-BN are two
related materials that can host defects that exhibit single-photon emission.

2.1.2.1 SiC

SiC is a polymorphousmaterial with over 100 different polytypes. One of themore com-
mon polytypes is 4H-SiC with a band gap of 3.2 eV [48]. The NCVSi defect in 4H-SiC is
structurally analogous to the NV center of diamond with a transition energy of 1.0 eV
[49]. The main difference here, apart from the host matrix, is that the vacant species is
silicon instead of carbon. In contrast to the NV center, the NCVSi defect has not been
positively confirmed as a single-photon emitter [50]. However, other defects in 4H-SiC
have been proposed to exhibit single-photon emission including CSiVC [51], and more
recent studies have shown that there is a single-photon emitter with brightness that ex-
ceeds the NV center in diamond [44].

2.1.2.2 h-BN

Boron nitride is isoelectronic to carbon compounds and exists in similar polytypes de-
pending on temperature and pressure. The cubic structure exhibits a similar crystal
structure as diamond and the the hexagonal structure (h-BN) is similar to graphite. At
ambient conditions themost stable polytype of boronnitride is likely the cubic structure
[52], however, the hexagonal formmay be kinetically locked in at these conditions since
it is not uncommon at ambient conditions. Monolayers of h-BN can be exfoliated and
the wide band gap is retained, hence the electronic structure of monolayer h-BN is very
different from the one of graphene.
Thewide band gapmakes h-BN a promising platform for hosting single photon emit-

ters at room temperature. The wide band gap here is important since thermal quench-
ing rates may be enhanced otherwise (see Sect. 2.1.1.4). In particular, the 2D nature
of monolayer h-BN offers significant advantages. It is possible to manipulate surfaces
with very high precision and insert emission centers [53]. Furthermore, the properties
can be adjusted by different substrates, and total internal reflection may be reduced or
even absent [2].
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There have been numerous reports of emission centers in h-BN that exhibit single-
photon emission [4, 54, 55]. In general, emission from point defects consists of a zero
phonon line (ZPL),which is thepure electronic transitionenergy, andphononsidebands
(see Sect. 3.3.2). TheZPLs of emission centers in h-BNare located inmainly two regions,
one band in the visual region between red andgreen (low frequency band) andone in the
near ultraviolet region (high frequency band). The emission in the low frequency band
has been reported to have ZPLs at discrete values between 1.6 eV to 2.3 eV with similar
optical lineshapes [54] suggesting structural similarity between the different emission
sources.

2.2 Optical and thermodynamical properties of TMDs
2.2.1 Transition metal dichalcogenides
Transition metal dichalcogenides (TMDs) is a class of compounds that include a tran-
sition metal and a chalcogenide with stoichiometry MX2 where M = (Mo, W, Pt, Pd,
Zr, Hf, …) and X = (S, Se, Te). These compounds commonly crystallize in hexagonal
(H), trigonal (T) or monoclinic (T’) layered structures (Fig. 2.3 for monolayer side view),
but structures with other symmetries exists as well [56]. The interlayer coupling is due
to van-der-Waals (vdW) interactions, while the in-plane bonds are strong with mixed
covalent0-ionic character. The H type monolayer has mirror plane symmetry, which
the T’ and Tmonolayers lack. The commonality of these structures (H, T, and T’) among
TMDmonolayers is shown in Fig. 2.4.

Figure 2.3: Structures of the hexagonal (H), monoclinic (T’), and trigonal (T) transition metal
dichalcogenides. The atomic structures were visualized with OVITO [57].

2.2.1.1 MX2 with M = Mo, W; X = S, Se, Te

The widely studied TMDs MX2 with M = (Mo, W) and X = (S, Se) crystallize in the H
structure [60]. MoTe2 also exhibits H symmetry whereas for WTe2, the H structure is
metastable and the T’ structure is themost stable polytype. In bulk form, these are semi-
conducting vdW solids with indirect band gaps of around 1 to 2 eV [12, 61]. Individual
TMDmonolayers can be obtained by mechanical exfoliation [62] and perhaps more im-
portantly by chemical vapor deposition [63].

14



2.2. Optical and thermodynamical properties of TMDs
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Figure 2.4: Schematic indicating the structures (restricted toH, T, and T’) proposed for different
TMDmonolayers. Data based onComputational 2DMaterials Database (C2DB) [58, 59], filtered
for systems with stoichiometryMX2 and high stability. A colored entry should be read as there is
at least one TMD based on this transitionmetal with this structure.

The electronic structure of these TMDs depends strongly on the number of layers of
the material. In the bulk and bilayer form there is a strong hybridization of valence
band zone center and conduction band states at the point halfway between the zone
center and 𝐾 (Fig. 2.5). This valley is referred to as the Λ valley. As the number of layers
becomes smaller the electronic structure undergoes a transition from an indirect band
gap to adirect bandgap (Fig. 2.5 for the band evolutionofMoS2). In themonolayer limit,
the valence band and conduction band edges are predominantly composed of transition
metal 𝑑 states (Fig. 2.5).
Since the lattice parameter is almost completely determined by the chalcogen species

[58, 61, 64], heterostructures based on the same chalcogen species exhibit vanishing lat-
tice mismatch. The TMDs based on the same chalcogen species exhibit type II band
alignment [65] (Fig. 2.1b). For a heterostructure, type II band alignment entails that it
is possible to obtain a spatial separation between the valence band and conduction band
since these reside in different parts of the material. In the case of vertical heterostruc-
tures, the type II alignment may lead to excitations where the electron resides in one
layer and the hole in the other.

2.2.2 Excitons
For TMDs, the optical spectra are dominated by excitons [67]. An exciton is a bound
electron hole pair. Due to the Coulomb interaction in a material, the electron and hole
exhibit anattractive interaction that correlates themotionof the electronandof thehole.
The exciton is characterized by a binding energy, which can be understood as the differ-
ence between the quasi-particle band gap energy and the exciton energy. The binding
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Figure 2.5: The PBE band structure of bulk, bilayer, and monolayer MoS2 with the band gaps
shifted to the GLLB-SC [66] band gaps. The conduction band edge in the bulk and bilayer occurs
at the Λ point, i.e., half way between the zone center and the 𝐾-point. Spin-orbit coupling has
not been accounted for.

energy is indicative of the energy required to break up the correlated electron hole pair
to forma free electron and a free hole. The exciton is typically the lowest electronic inter-
band optical excitation and in, e.g., bulk GaN, the exciton binding energy is estimated
to be around 20meV [68], and thus not stable at room temperature, while in hafnia it
has been predicted to be around 570meV [69].
One of the reasons that the exciton binding energy varies so much between materi-

als is that it is strongly dependent on the dielectric screening. In 2D materials, due
to the dimensionality reduction the Coulomb interaction is stronger and the dielectric
screening is weaker compared with bulk materials [16, 70]. It was estimated in another
theoretical study that the monolayer MoS2 exciton binding energy was 40 times larger
than the bulk exciton binding energy [70]. The ground state (1s) exciton binding energy
has been shown to be well approximated within certain limits by the following general
form in 2Dmaterials [16]

𝐸 = 8𝜇
(1 + √1 +

32𝜋𝛼𝜇
3 )

2 , (2.1)

where 𝜇 is the exciton effective mass and 𝛼 is the 2D polarizability.
In order to model excitons it is necessary to describe the screened Coulomb interac-

tion between carriers (electrons and holes), which is a computationally demanding task.
TheBethe-Salpeter equation is a first-principlesmethod to compute the optical spectra,
which includes excitonic effects. In the studies connected to this thesis (PaperV andPa-
perVI), however, the exciton properties has been computedusing densitymatrix theory
with certain parameters estimated fromDFT calculations.
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2.2. Optical and thermodynamical properties of TMDs

2.2.3 Bilayers andmoiré superlattices
The main purpose of this section is to introduce twisted (moiré) bilayers, but first the
properties of untwisted 2D bilayers are addressed.
Monolayers can be stacked to form bilayers, with the stacking order determining

much of the properties of the bilayer. A hexagonal system with a basis consisting of
atoms A and B can be stacked in AA or AB order. There is also an additional number of
stacking orders arising from a relative translation ofmonolayer in these two fundamen-
tal stacking orders. There are several ways to refer to specific stacking orders and one
commonly used is based on𝑅𝑋𝑋 ′ (𝐻𝑋𝑋 ′ ), where𝑅 (𝐻 ) refers to the AA (AB) parent stacking
while the superscript 𝑋 and subscript 𝑋 ′ indicate the sites that are vertically aligned
(Fig. 2.6). For example, 𝑅ℎℎ is the bilayer stacking with parent stacking AA and where
the midpoints of the hexagon (denoted ℎ for hollow) are vertically aligned. This is just
parent stackingAA,while𝑅𝐴ℎ wouldmean that the parent stackingAA is subject to a rela-
tive translation such that the atomAof the top layer is vertically aligned to the hexagonal
midpoint of the bottom layer. This bilayer stacking is also referred to as Bernal stacking.

Hh
h Hh

X (HM
M ) HM

h (HX
X ) Rh

h Rh
X (RX

M ) RX
h (RM

X )

Figure 2.6: Side view of atomic registries using a 2 × 2 × 1 supercell for different stacking orders
with𝑀 atoms in blue and𝑋 atoms in yellow. The atomic structures were visualized with OVITO
[57].

Ageneral feature of bilayer formation in TMDs is the stronghybridization that occurs
between the layers, in particular between the valence band zone center states and the
conductionbandΛ states. Thishas the effect that the zone center valenceband is pushed
to larger energies rendering the band gap indirect. Themagnitude of the hybridization
is stacking dependent. The binding energy and interlayer distance are greatly affected
by the stackingorder, seeFig. 2.7 forpredictionsbasedonconventionalDFTcalculations
using the vdW-df-cx exchange correlation functional [71]. TheAB fundamental stacking
is the most stable stacking order for bilayer MoS2 according to calculations using the
vdW-df-cx functional (≈1meV below 𝑅ℎ𝑋 ), there are situations in which other stacking
orders will be present.
Thebilayer systemhas additional degrees of freedom, e.g., a relative rotation. A small

relative rotation of onemonolayerwith respect to the other can result in a structure that
exhibits an interference pattern in the atomic positions, which is also called amoiré pat-
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Figure 2.7: Total energy of theMoS2/MoS2 bilayer in different stacking orderswith respect to the
minimum energy of the𝐻 ℎ

ℎ stacked structure computed in connection to the study in Paper VII
using the vdW-df-cx functional.

tern. These structures can exhibit properties that are vastly different fromtheuntwisted
bilayers. Non-dispersive states have been shown to emerge in twisted graphene [72], h-
BN [73], and TMDs [74]. The emergent flat bands can give rise to strongly correlated
phenomena such as superconductivity and themost famous example of a twist induced
phenomenon is probably the emergence of superconductivity at a twist angle of 1.1∘ in
twisted graphene [72].
In a moiré structure there is an alternating stacking order throughout the system

(Fig. 2.8) and two additional positions in the moiré structure where there is a local 𝐶3
symmetry with stacking corresponding to a relative translation of 1/3 and 2/3 (in units
of the long diagonal) of one monolayer along the long diagonal of the bilayer unit cell.
These two positions exhibit the stacking order shown in Fig. 2.6, where the stacking
orders are separated by domain walls (Fig. 2.8).

2.2.3.1 Derivation of commensurate angles

The construction of a commensurate hexagonal moiré supercell is a purely geometrical
problem [75–77]. The derivation is based on the criterion that translations of the lattice
points in the untwisted and twisted layer must coincide somewhere.
Thederivation follows the approach of Ref. [75] and themain obstacle is solving a non-

linear homogeneous Diophantine equation. The unit cell lattice vectors for a hexagonal
2D system are a1 = 𝑎0(1, 0) and a2 = 𝑎0(−1

2 ,
√3
2 ), where 𝑎0 is the lattice constant. The

position of lattice point (𝑖, 𝑗) is

P𝑖𝑗 = 𝑖a1 + 𝑗a2 = 𝑎0 (
𝑖 − 1

2 𝑗
𝑗 √32

) = 𝑎0 (
1 −1

2
0 √3

2
) (𝑖𝑗) . (2.2)
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Figure 2.8: 𝐻 and 𝑅 stackedmoiré superlattices at a twist angle of 4.41∘ with the high-symmetry
positions indicated. The atomic structures were visualized using the software OVITO [57].

The twisted monolayer has basis positions (𝑖′, 𝑗′) at the following positions

P′𝑖′𝑗′ = R𝜃 [𝑖′a1 + 𝑗′a2] = 𝑎0 (
cos 𝜃 −1

2 cos 𝜃 −
√3
2 sin 𝜃

sin 𝜃 −1
2 sin 𝜃 +

√3
2 cos 𝜃

) (𝑖
′
𝑗′) . (2.3)

For a commensurate twist angle P𝑖𝑗 and P′𝑖′𝑗′ must coincide for some point(s) in order to
maintain periodicity, therefore non-trivial solutions to P𝑖𝑗 = P′𝑖′𝑗′ with the unknowns
𝑖, 𝑗, 𝑖′, and 𝑗′ are required. The inverse of the translation matrix is

𝑎0 (
1 −1

2
0 √3

2
)
−1

= 2
𝑎0√3

(
√3
2

1
20 1) (2.4)

and the equation becomes

P𝑖𝑗 = P′𝑖′𝑗′ ⟹ (𝑖𝑗) = (cos 𝜃 +
1
√3 sin 𝜃 − 2

√3 sin 𝜃2
√3 sin 𝜃 cos 𝜃 − 1

√3 sin 𝜃
) (𝑖

′
𝑗′) = M (𝑖

′
𝑗′) . (2.5)

From the elements of M it is clear that only specific values of 𝜃 will make M rational
valued. We follow the approach of Ref. [75] and set 𝛼 = cos 𝜃 and 𝛽 = 3−1/2 sin 𝜃 and

(𝑖𝑗) = (𝛼 + 𝛽 −2𝛽
2𝛽 𝛼 − 𝛽) (

𝑖′
𝑗′) , (2.6)

with 𝛼, 𝛽 ∈ ℚ. Since the matrixM is an area preserving map, the determinant is 1 and
we get the constituent relation of 𝛼 and 𝛽 as

𝛼2 + 3𝛽2 = 1, (2.7)
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which is the Diophantine equation 𝐴2 + 3𝐵2 = 𝐶2, with 𝛼 = 𝐴/𝐶, 𝛽 = 𝐵/𝐶. This
equation can be solved by looking for rational points on an ellipse (similar to finding
rational points on the unit circle in order to solve for Pythagorean triplets). The solution
can be parameterized as

𝛽 = 𝑢 and 𝛼 = −𝑃
𝑄 𝑢 + 1, 𝑃, 𝑄 ∈ ℤ+.

Insertion of the parameterized solution in Eq. Eq. 2.7 yields

𝑢 = 2𝑃𝑄
3𝑄2 + 𝑃2 . (2.8)

This gives

M = 1
3𝑄2 + 𝑃2 (

3𝑄2 − 𝑃2 + 2𝑃𝑄 − 4𝑃𝑄
4𝑃𝑄 3𝑄2 − 𝑃2 − 2𝑃𝑄) . (2.9)

The commensurate twist angles are then (by substituting𝑀21 or𝑀12) given by

sin(𝜃𝑃𝑄) =
8√3𝑃𝑄
3𝑄2 + 𝑃2 . (2.10)

By choosing 𝑃 = 1 and 𝑄 = 2𝑘 + 1, one obtains the expression for the twist angles [77]
that was used in Paper VII, as was noted in Ref. [75] albeit with a different expression.
The expression here is

𝜃𝑘 = arcsin (√32 [ 2𝑘 + 1
3𝑘2 + 3𝑘 + 1]) . (2.11)

For this choice of 𝑃 and 𝑄, the twist angles that results in commensurate moiré super-
lattices exhibit a rather large angle spacing for twist angles larger than 5∘. However, for
low twist angles the angle spacing becomes much smaller.

2.2.4 Binary alloys
In this section, the thermodynamics of TMD alloys is outlined. TMDs is a class of mate-
rials with stoichiometryMX2, whereM is a transitionmetal andX is a chalcogen. These
(presumably) do not substitute easily with each other and therefore it is possible to have
substitutional alloys on either one of the M sublattice or X sublattice. For alloys with
mixing on theM sublattice, there could in principle bemixing of transitionmetals from
different groups of the periodic table.
For TMD alloys, one can distinguish between three different types of mixing behav-

ior at 0 K. These are i) ordered mixing systems, ii) non-mixing systems, and iii) Janus
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systems. The Janus phase is only possible for alloys with mixing on the X site and con-
sists at 𝑥 = 0.5 of a structure with chalcogen layers with different species. The mixing
behavior is determined by the free energy.
A binary substitutional alloy exhibits mixing of two elements on one sublattice. For

the caseof aTMDthat exhibits stoichiometryMX2withmixingon theMsite, themixing
energy is

Δ𝐸mix(𝑥) = 𝐸(M𝑛M’𝑚X2(𝑛+𝑚)) − 𝑛𝐸(MX2) − 𝑚𝐸(M’X2), (2.12)

where 𝑥 = 𝑛/(𝑛 + 𝑚). Disregarding the changes in vibrational entropy, the mixing free
energy is

Δ𝐺mix(𝑥) = Δ𝐸mix(𝑥) − 𝑇Δ𝑆conf(𝑥). (2.13)

The configurational entropy of a random solution can be approximated by a mean field
model as [78]

Δ𝑆conf(𝑥) = −𝑘[𝑥 ln 𝑥 + (1 − 𝑥) ln(1 − 𝑥)]. (2.14)

More accurate predictions of themixing entropy can be realized by sampling viaMonte
Carlo simulations using a suitable lattice model such as an alloy cluster expansion [79].
Now Eq. 2.13 is only valid in the case of a homogeneous concentration throughout

the alloy, something that may not be the case. If the sample consist of two regions with
concentrations 𝑥1 and 𝑥2 such that the average concentration is ̄𝑥 = 𝛾𝑥1 + (1 − 𝛾)𝑥2, the
free energy is

Δ𝐺mix( ̄𝑥) = 𝛾Δ𝐺mix(𝑥1) + (1 − 𝛾)Δ𝐺mix(𝑥2), (2.15)

where 𝛾 can be expressed in the concentrations as

𝛾 = ̄𝑥 − 𝑥1
𝑥1 − 𝑥2

. (2.16)

For each temperature, the common tangent of two minima of Δ𝐺mix(𝑥) can be used to
assess the range of concentrations for which mixing does not occur. If the tangent falls
below Δ𝐺mix(𝑥) the system can attain a lower free energy by phase separation.
In order to predict a quantity 𝑄 as a function of composition, e.g., the lattice param-

eter, band edge positions, or band gap, the following expression is often used

𝑄(𝑥) = 𝑥 𝑄(𝑥 = 0) + (1 − 𝑥) 𝑄(𝑥 = 1) − 𝑏 𝑥 (1 − 𝑥), (2.17)

where 𝑏 is thebowingparameter. If thebowingparameter canbeneglected the resulting
expression is referred to as Vegard’s law.
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3
Point defects

There are different notation schemes for defects. The convention adopted throughout
this thesis isA𝑞B, whereA is thedefect andB is the site and 𝑞 indicates the charge state. In
the caseof a substitutional defect, A is the chemical symbol of the introducedatomandB
is the chemical symbol of the atom that is replaced. For a vacancy, the defect is denoted
by V and for an interstitial the site is labeled with I. The charge state is with respect
to the atom and not the ion, e.g., a vacant O2− is denoted by V+2O . This notation differs
from theKröger-Vinknotation (used inPaper II)wherepositive charges are labeledwith
•, negative charges with ′ and neutral defects with ×. For example V+2O is denoted as
V••O in Kröger-Vink notation. Zero-dimensional defects that cannot be described within
this notation are, e.g., topological defects such as Stone-Walls defects, which causes the
atomistic connectivity to change and the notion of sites becomes ambiguous.

Figure 3.1: Illustration of point defects including (a) vacancy defect, (b) interstitial, (c) double
anti site defect, and (d) substitutional defect.

A few types of point defects are illustrated in Fig. 3.1. In addition to the point defects
that affect a single site such as vacancies, interstitial and substitutional defects, there
are more complex defects such as vacancy-substitutional complexes that are composed
of several point defects. Vacancies, interstitials, and substitutional atoms are likely to
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Chapter 3. Point defects

bemore common (since these are constituents ofmore complex defects) thanmore com-
plex defects but the overall prevalence in equilibrium is mainly governed by the forma-
tion energy of the defect, which depends on the environment of the crystal.

3.1 Thermodynamics
The formation energy is the most central quantity associated with a defect since it gov-
erns the equilibrium concentration of said defect. It is a measure of the energy cost to
create the defect. The formation energy provides ameans to analyze charge state stabil-
ity regions and can be used to quantify transition energies.

3.1.1 Formation energy
The formation of a defect is analogous to a chemical reaction in which several reactants
form a final product. As such the change in Gibbs free energy Δ𝐺 = Δ𝐻 − 𝑇Δ𝑆 gov-
erns the formation of defects. A general reaction for the formation of a defect can be
expressed as

ideal crystal −→ defect crystal + net exchange of particles with reservoir, (3.1)

where the particles are both ions and electrons. The internal energy difference for a
single defect in charge state 𝑞 is then

Δ𝐸 = 𝐸𝑞defect − 𝐸ideal −∑
𝑖
𝜇𝑖Δ𝑁𝑖, (3.2)

where Δ𝑁𝑖 is referenced to the ideal crystal, e.g., Δ𝑁 = −1 for a vacancy.
The total enthalpy difference in the case of formation of 𝑛 non-interacting identical

defects in charge state 𝑞 is

Δ𝐻 = 𝑛[𝐸𝑞defect − 𝐸ideal −∑
𝑖
𝜇𝑖Δ𝑁𝑖] + 𝑝Δ𝑉 , (3.3)

whereΔ𝑉 is the change in volumeby the incorporationof 𝑛 defects. Theentropy increase
originates from vibrational and configurational contributions. If the defect concentra-
tion is low enough, the defect induced difference in the vibrational degrees of freedom
is independent of other defects. The changes of the vibrational entropy is then a local
quantity associated with a defect while the configurational entropy is a global quantity,
i.e., Δ𝑆 = 𝑛Δ𝑆vib + Δ𝑆conf. The change in Gibbs free energy is then

Δ𝐺 = 𝑛[𝐸𝑞defect − 𝐸ideal −∑
𝑖
𝜇𝑖Δ𝑁𝑖 − 𝑇Δ𝑆vib] + 𝑝Δ𝑉 − 𝑇Δ𝑆conf. (3.4)
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3.1. Thermodynamics

In an insulator the chemical potential of the electron is usually positioned within the
band gap but can also be located within the band manifolds in the case of degenerately
doped semiconductors at low temperatures. The electron chemical potential is 𝜇𝑒. The
dominating quantity ofΔ𝐻 is the formation energy, which for a defect in charge state 𝑞 is
defined as [80]

Δ𝐸𝐹 = 𝐸𝑞defect − 𝐸ideal −∑
𝑖
𝜇𝑖Δ𝑁𝑖 + 𝑞(𝜀VBM + 𝛿𝜇𝑒), (3.5)

where 𝑖 runs over ions only. At equilibriumΔ𝑆conf balances the number of defects so that
Δ𝐺 = 0. A positive formation energy indicates that the ideal crystal is thermodynami-
cally stable with respect to formation of the specific defect at 0 K.TheGibbs free energy
Δ𝐺 is then

Δ𝐺 = 𝑛[Δ𝐸𝐹 − 𝑇Δ𝑆] + 𝑝Δ𝑉 − 𝑇Δ𝑆conf. (3.6)

3.1.2 Configurational entropy
The configurational entropy in Eq. 3.4 for a system with 𝑛 identical non-interacting de-
fects distributed over𝑁 available lattice sites canbe expressed asΔ𝑆conf = 𝑘B log𝑊 with
𝑊 = 𝑁!

𝑛!(𝑁 − 𝑛)! . The change in entropy is then found by using Stirling’s approximation

as both 𝑛 and𝑁 are very large. The result is

Δ𝑆conf = 𝑘B[𝑁 log (1 − 𝑛
𝑁 ) − 𝑛 log (𝑁𝑛 − 1) ]. (3.7)

The change in configurational entropy with respect to the number of defects is

𝑑Δ𝑆conf
𝑑𝑛 = 𝑘B log (𝑁𝑛 − 1) . (3.8)

Theentropydifference tends to+∞as𝑁/𝑛 tends to+∞, whichmeans that the entropyof
the system increases spectacularly by the formation of defects and at anyfinite tempera-
ture it is very difficult to fabricate defect-freematerials. The equilibrium concentration
of defects can be found from

𝑑Δ𝐺
𝑑𝑛 = 0 ⇔ 𝑛

𝑛 + 𝑁 = exp (−Δ𝐸𝐹𝑘B𝑇
) exp (Δ𝑆vib𝑘B

) exp (− 𝑝
𝑘B𝑇

𝑑Δ𝑉
𝑑𝑛 ) . (3.9)

If 𝑁 ≫ 𝑛 and the vibrational entropy and change in volume are small (≈ 0) the equilib-
rium defect concentration is

𝑛
𝑁 ≈ exp (−Δ𝐸𝐹𝑘B𝑇

) . (3.10)
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Figure 3.2: Equilibrium concentration of defects as a function of temperature for a set of differ-
ent formation energies.

Thedefect concentration fora rangeofdifferent formationenergies is shown inFig. 3.2.
For example, for a defect formation energy of 0.5 eV at 600K one can expect that around
one in ten thousand sites to be a defect in equilibrium.
Forvery largedefect concentrations thedefectsmaynotbeevenly/randomlydistributed

in thematerial. In the cases of highoxygenvacancy concentration in somewidebandox-
ides, the vacancies tend to aggregate and form so-called Magnéli phases instead where
the vacancies are located in a shear plane [81].

3.1.3 Charge transition levels

Theformationenergy canbeused toassess the charge state stability regionswith respect
to the electron chemical potential. Equating Δ𝐸𝐹 (Eq. 3.5) for a defect in two different
charge states 𝑞1 and 𝑞2 results in

𝛿𝜇𝑒 =
𝐸𝑞1defect − 𝐸𝑞2defect

𝑞2 − 𝑞1
− 𝜀VBM. (3.11)

The equilibrium formation energy as a function of electron chemical potential can
exhibit a kink at the relative electron chemical potential on the left hand side of Eq. 3.11.
This kink indicates the charge transition level (CTL) between charge states 𝑞2 and 𝑞1.
The position of the CTL with respect to the band edges is an important characteristic of
a defect since it determines much of the influence the defect has on the electronic and
optical properties of the system.
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3.1. Thermodynamics

3.1.4 Chemical potential
The chemical potentials of the atomic species that occurs in, e.g. Eq. 3.5 are subject
to several constraints. The chemical potential of species 𝑖 is limited from above by the
elemental phase [82]

𝜇𝑖 ≤ 𝜇0𝑖 . (3.12)

For amonoatomic crystal, the only phase boundary is the elemental solid/molecule. For
compound crystals, the equilibrium stability of the crystal couples the chemical poten-
tials of the constituent species and thereforeadditional constraints are imposeddepend-
ing on the stoichiometry of the compound. In binary compoundswith stoichiometry of
AB the chemical potentials are coupled as [82]

𝜇AB = 𝜇A + 𝜇B. (3.13)

Using the upper bound (Eq. 3.12) of 𝜇A and 𝜇B one finds the range of chemical potentials
for A and B as

𝜇AB − 𝜇0B < 𝜇A < 𝜇0A (3.14)

𝜇AB − 𝜇0A < 𝜇B < 𝜇0B. (3.15)

The limit where 𝜇A → 𝜇0A is called the A-rich limit and 𝜇A → 𝜇AB−𝜇0B is called the A-poor
limit and similarly for B.The elemental chemical potentials of A and B are related to 𝜇AB
and the formation enthalpy Δ𝐻𝑓 (AB) as [80]

Δ𝐻𝑓 (AB) = 𝜇AB − 𝜇0A − 𝜇0B, (3.16)

which makes it impossible to choose both 𝜇A and 𝜇B as the elemental phases, i.e., there
cannot be both an A-rich and a B-rich environment simultaneously.
For a gas phase reservoir the chemical potential depends on pressure and tempera-

ture of the gas. For a gas phase dimer such as O2 the chemical potential is [80]

𝜇O = 𝜇0O + 𝑘B𝑇
2 (log [ 𝑃𝑉𝑘B𝑇

] − log[𝑍rot] − log[𝑍vib]) , (3.17)

where 𝑉 = [ℎ2/(2𝜋𝑚𝑘B𝑇 )]3/2 and 𝑍 is the partition function.

3.1.5 Electron chemical potential
The formation energy of a charged defect is linearly dependent on the electron chemical
potential 𝜇𝑒. However, the electron chemical potential is in turn dependent on the for-
mation energy via the connection between defect concentration and formation energy
(in the case of 𝑛 identical non-interacting defects see Eq. 3.10).
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Chapter 3. Point defects

In equilibrium𝜇𝑒 is determinedbychargeneutrality conditionswhere the charge states
of several different types of defects balance the free electron and hole concentrations.
The free charge carrier concentration is a result of ionized defects. In principle, one
could fully self-consistently solve for the 𝜇𝑒 if the formation energy of all defects in the
relevant charge states are known. However, for large defect concentrationsEq. 3.10may
not be a satisfactorily relationbetween formation energy and concentration and the con-
figurational entropy may need to be sampled through, e.g., Monte Carlo simulations.

3.2 Electronic structure
A defect in a band gap material can exhibit multiple thermodynamically stable charge
states, where the equilibrium charge state is determined by the electron chemical po-
tential. This is a fundamentally important concept that underpins much, if not all of
semiconductor industry and is important in insulators as well since it is related to fun-
damental material properties such as the doping ability.
The fact that that defects can exhibit different stable charge states canbeutilized to in-

crease the electrical conductivity of a bandgapmaterial bydopingwith suitable dopants.
The position of the (𝑛 + 1/𝑛) CTL for electron donor defects and the (𝑛 − 1/𝑛) CTL for
electron acceptor defects determine how easily a defect can be ionized. A shallow defect
state is a defect state for which the (𝑛 + 1/𝑛) CTL ((𝑛 − 1/𝑛) CTL) is located sufficiently
close to the conduction (valence) band edge, whereas a deep defect state exhibits a CTL
that is located deeper in the band gap. In Fig. 3.3a, the formation energy diagram for
the nitrogen vacancy in AlN is shown. There are several CTLs that correspond to deep
defect states. Deep defects in principle cannot donate or accept electrons from the band
edges at moderate temperatures via thermal ionization. Deep defect states are usually
confined to an environment in the close proximity of the defect.
Furthermore, due to the confinement of the single particle wave function for a deep

defect state, the local geometry may differ significantly between different charge states
of the defect due to charge localization. This is rather defect specific, for example theCN
defect inmonolayer h-BN exhibits only aminor local geometry variation upon a charge
state transition whereas the oxygen vacancy in MgO exhibits a large local geometry dif-
ference between the stable charge states. The local geometry distortion upon charge
state change may be more prominent for anion vacancies in ionic solids due to the free
volume associatedwith the vacancy in combinationwith the localization of charge com-
pared with charge state transitions on substitutional defects.
Transitions that involve defect states may be of two different types that require dif-

ferent modeling approaches. The different transitions are schematically illustrated in
Fig. 3.3b. The first transition is the transition where one of the states is a band state.
This is a charged transition and ismodeled using formation energies of charged defects
(Sect. 3.1.1). The second type of transition is a charge neutral transition where an elec-
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Figure 3.3: a) Illustration of the appearance of deep defect states in a formation energy diagram.
Thepresent case is for thenitrogenvacancy inhexagonalAlNcomputedwithPBEsol [83], a4×4×3
supercell and omission of image charge corrections. b) Schematic illustration of two different
transitions (red arrows) involving defect states. In one transition, a valence band state is excited
to the empty in-gap defect state. In the other transition a defect bound electron is excited to an
empty in-gap defect state.

tron bound to the defect is excited to an empty defect state and the modeling of this
transition is also performed using total energy differences. The energy of the excited
state can be computed using the ΔSCFmethod (Sect. 4.2.6).

3.3 Optical properties
Electronic transitions involving defects can be divided into two major types of transi-
tions. These are interband and intraband transitions. Examples of intraband transition
are the scattering of hot electrons and holes on defects. This section is concerned with
interband transitions, which are either coupled to photons and phonons.

3.3.1 Radiative transitions
Radiative transitions can be further divided into different types, depending on the char-
acter of the involved electronic states (Fig. 3.3). The localized to delocalized transition
involves a band edge state as the initial or final state, which is delocalized while the
localized-localized transition involves two localized defect states. Another type of tran-
sition is the donor-acceptor pair transition, which involves defect states from different
defects. The possibility of a radiative transition is dependent on a non-zero transition
dipolemoment between the initial and final state. The donor acceptor pair transition is
unlikely in the case of very deep acceptor and donors unless the donor and acceptor are
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located in close vicinity of each other due to the confinement of the defect state wave
functions. The rate of absorption and spontaneous emission are given by the Einstein 𝐵
and 𝐴 coefficients. For the case of spontaneous emission, the number of emitted pho-
tons is proportional to the number of excited electrons 𝑛, i.e.,

𝑑𝑛
𝑑𝑡 = −𝐴 𝑛 ⟶ 𝑛 = 𝑒−𝐴𝑡 . (3.18)

The quantity 𝐴 is the radiative transition rate and it is called the Einstein 𝐴 coefficient.
The Einstein𝐴 coefficient can be expressed as [84]

𝐴 = 𝑒2𝜔3
ZPL|𝜇|2

3𝜋𝜀0ℏ𝑐3
, (3.19)

where 𝜇 is the transition dipole moment. The transition dipole moment is defined as

𝜇𝑖𝑗(R) = ∫ 𝑑r r𝜓𝑖(r,R)†𝜓𝑗(r,R), (3.20)

where R denotes the set of ionic coordinates.

3.3.2 Vibronic transitions involving defect states
Radiative vibronic transitions are transitions that involve both a vibrational transition
and an electronic transition, i.e.,

𝜀𝑖 +∑
𝑖
𝑛𝑖ℏ (𝜔𝑖 + 1

2) → 𝜀𝑗 +∑
𝑗
𝑛𝑗ℏ (𝜔𝑗 + 1

2) . (3.21)

Fig. 3.4 shows the potential energy landscapes of the initial and final states that par-
take in the transition for the case of a single vibrational degree of freedom. In this re-
gard, transitions involving the creation of 0, 1, and 2 phonons are indicated. The gov-
erning equation for the optical lineshape is Fermi’s golden rule

𝐼 (𝜔) = 𝐶𝜔𝑘 ∑
𝑓
⟨Ψ𝑖|𝜇|Ψ𝑓 ⟩𝛿(𝐸𝑓 − 𝐸𝑖 ± 𝜔), (3.22)

where 𝐶 is a constant and 𝑘 = 1 for absorption and 𝑘 = 3 for emission [85]. Ψ are
wave functions: Ψ = 𝜓𝜒 . Here, 𝜓 is the electronic component and 𝜒 is the vibrational
component.
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3.3. Optical properties

3.3.2.1 Franck-Condon approximation

From Eq. 3.20 and Eq. 3.22, the transition dipole moment carries a dependence on the
ionic coordinates and it is difficult to account for this dependence. Thefirst order series
expansion is

𝜇𝑖𝑗(R) ≈ 𝜇𝑖𝑗(R0) + 1
2 ∑ ∇𝜇𝑖𝑗(R)|R0

⋅ (R − R0). (3.23)

Keeping only the constant term corresponds to the Franck-Condon approximation [86].
In this approximation the transition dipole moment can be factored out so that 𝐼 (𝜔) ∝
𝜔𝑘𝐹(𝜔)where 𝐹 is the lineshape function

𝐹(𝜔) = ∑
𝑓
⟨𝜒𝑖|𝜒𝑓 ⟩ 𝛿(𝐸𝑓 − 𝐸𝑖 ± 𝜔). (3.24)

The remaining probability distribution depends only on the overlaps of the vibrational
wave functions. The relative displacement of the potential energy surfaces (Fig. 3.4) is
therefore an early indicator for how likely certain transitions are. Including the first
order term in Eq. 3.23 corresponds to the so called Herzberg-Teller approximation [86].

3.3.2.2 Electron phonon spectral function

The vibrational wave function overlaps ⟨𝜒𝑖|𝜒𝑗⟩ are difficult to compute so in order to be
able to account for the coupling to the vibrational degrees of freedom a set of approxi-
mations has to be imposed to arrive at a computationally feasible scheme. First, there
is the Franck-Condon approximation and then the additional approximations are i) the
harmonic approximation, ii) the approximation that the vibrational modes of the ex-
cited and ground state are the same, usually called the parallel mode approximation, and
finally iii) that the transition occurs at low temperatures. Under these approximation
the electron phonon spectral function can be obtained from the (semi-classical) transi-
tion energy difference

Δ𝐸(𝑄) = Δ𝐸ZPL + 1
2 ∑𝜈

𝜔2𝜈 [(𝑄 − 𝑄𝜈,𝑓 )2 − (𝑄 − 𝑄𝜈,𝑖)2], (3.25)

where𝑄 are normalmode coordinates. The low temperature approximation is such that
absorption occurs from 𝑄 = 𝑄𝑖 (and analogously, emission would occur from 𝑄 = 𝑄𝑓 )
and the mode decomposed vibrational transition energy is then

Δ𝐸𝜈 = 1
2𝜔

2𝜈Δ𝑄2𝜈,𝑖𝑓 . (3.26)

The strength of the coupling between a transition and phonon mode 𝜈 is quantified in
the dimensionless partialHuang-Rhys (HR) factor 𝑠𝜈 obtained in this case as

𝑠𝜈 =
Δ𝐸𝜈
ℏ𝜔𝜈

=
𝜔𝜈Δ𝑄2𝜈,𝑖𝑓

2ℏ . (3.27)
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Figure 3.4: The ground and excited electronic state with vibrational levels included illustrated
for the case of a single coordinate. Electronic transitions associated with photon and phonon
emission are indicated. The indicated transitions occur from the vibrational ground state of the
excited electronic state corresponding to the low temperature approximation.

The partial HR factor 𝑠𝜈 is the mean number of phonons with frequency 𝜔𝜈 involved in
the transition. From the partial HR factors, the electron-phonon spectral function is
defined as [9]

𝑆(𝜔) = ∑
𝜈
𝑠𝜈𝛿(𝜔 − 𝜔𝜈). (3.28)

Finally, the (total) HR factor is

𝑆 = ∑
𝜈
𝑠𝜈 = ∫

∞

0
𝑑𝜔 𝑆(𝜔). (3.29)

The magnitude of 𝑆 has a significant influence on the phonon sidebands. It is possible
to distinguish between two limiting regimes, weak coupling (𝑆 ≲ 5) and strong coupling
𝑆 ≳ 5. For the case of a single vibrational mode with a HR factor of 𝑆, the probability for
emission of 𝑛 phonons at low temperatures follows the Poisson distribution [87]

𝑃(𝑛) = exp(−𝑆)𝑆
𝑛
𝑛! . (3.30)
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In Fig. 3.5, the distribution is shown for different values of the HR factor. In the strong
coupling regime, thephononsidebandbecomeswideand theprobabilityof azerophonon
transition vanishes. Here, the probability of a zero phonon transition is just exp(−𝑆).
The center and width of the sideband is related to the HR factor since the mean and
variance of the Poisson distribution in Eq. 3.30 is 𝑆. It is, however, still possible that an
optical lineshape possesses a ZPL even in the strong coupling regime [88].
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Figure 3.5: Poisson distribution for different values of the HR factor. The zero phonon line is
indicated with a dotted black line.

3.3.2.3 Generating function method

The generating functionmethod is amethod to compute the intensity in Eq. 3.24 [8, 86,
88–90]. Here, the 𝛿 function is transformed to the time domain by the integral repre-
sentation 𝛿(𝜔) = 1

2𝜋 ∫ 𝑑𝑡 exp(𝑖𝜔𝑡). The lineshape function becomes

𝐹(𝜔) = (2𝜋)−1 ∫ 𝑑𝑡 ∑
𝑓
⟨𝜒𝑖|𝜒𝑓 ⟩ exp[𝑖(𝐸𝑓 − 𝐸𝑖 ± 𝜔)𝑡]. (3.31)

It hasbeenshownthatunder theapproximations specified inSect. 3.3.2.2 the emission
lineshape function takes the following form [9, 88]

𝐹(𝜔ZPL − 𝜔) = (2𝜋)−1 ∫𝑑𝑡 exp(𝑖𝜔𝑡)[ exp (∫ 𝑑𝜔𝑆(𝜔) exp(−𝑖𝜔𝑡) − 𝑆) ]. (3.32)

3.3.2.4 Broadening

Broadening of the emission lineshape can be divided into two classes. Homogeneous
broadening, which arises due to increased temperature, and inhomogeneous broaden-
ing. Inhomogeneous broadening is the broadening that results, e.g., from measuring
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on an ensemble of defects with slightly different local environments such that the tran-
sition energy is slightly different [91]. These differences in local environments could
caused by the presence of other types of defects or interfaces.

3.3.2.5 Inverse participation ratio

The inverse participation ratio is defined as [9]

IPR𝜈 = [∑
𝑎
⟨𝜂𝑎,𝜈 |𝜂𝑎,𝜈⟩]

−1
. (3.33)

It measures the number of atoms that participate in the vibrational motion. Here, 𝜂𝑎,𝜈
is the displacement of atom 𝑎 in phonon mode 𝜈. The value of the inverse participation
ratio may vary between 1 and the number of atoms in the computational supercell.

34



4
First-principles methodology

4.1 Background
TheHamiltonian for a system composed of electrons and nuclei is

𝐻({r}, {R}) = −12 ∑𝑖
∇2𝑖 − 1

2 ∑𝑗
𝑀−1𝑗 ∇2𝑗 −∑

𝑖
∑
𝑗

𝑍𝑗
|r𝑖 − R𝑗 |

+∑
𝑖
∑
𝑗>𝑖

1
|r𝑖 − r𝑗 |

, (4.1)

where 𝑖 runs over electrons, 𝑗 runs over ions and 𝑍𝑗 (𝑀𝑗 ) is the nuclear charge (mass)
of ion 𝑗. The solutions to Eq. 4.1 are many-body wave functions accounting for both
electronic and ionic degrees of freedom. It is infeasible to compute the wave function
for any realistic system, with the exception of the simplest molecular systems, due to
the many degrees of freedom.
A standard approximation in order to simplify Eq. 4.1 is the Born-Oppenheimer ap-

proximation. In the Born-Oppenheimer approximation the nuclear and electronic de-
grees of freedom are separated. This separation is justified by the large mass differ-
ence between nuclei and electrons. The separation of variables yields the following two
Hamiltonians for electronic and ionic degrees of freedom

𝐻electron({r}; {R}) = −12 ∑𝑖
∇2𝑖 −∑

𝑖
∑
𝑗

𝑍𝑗
|r𝑖 − R𝑗 |

+∑
𝑖
∑
𝑗>𝑖

1
|r𝑖 − r𝑗 |

, (4.2)

𝐻ion({R}; 𝑛) = −12 ∑𝑗
𝑀−1𝑗 ∇2𝑗 + 𝜀𝑛({R}). (4.3)

Here, 𝐻 electron depends parametrically on the ion coordinates and 𝐻 ion depends para-
metrically on the electron state as indexed by 𝑛.
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Methods to solve for the eigenvalues and eigenvectors of 𝐻electron were developed al-
ready in the 1930ies in the form of the Hartree and Hartree-Fock methods. Hartree-
Fock is a wave function based method in the sense that the nonlinear Hamiltonian is
constructed via an approximate many-body wave function. The Hartree-Fock method
attempts to solve the Schrödinger equation with the Hamiltonian 𝐻electron by explicitly
including the exchange energy but completely neglecting the electron correlation en-
ergy. In general, the Hartree-Fock method is both expensive and inaccurate due to the
lack of correlation energy, but elements of themethod are still present inmodern state-
of-the-art electronic structure methods. For larger systems density based methods are
more feasible due to the very large computational cost of wave function basedmethods.

4.2 Density functional theory
DFT is an in principle rigorous theory concerning the relation between the electron den-
sity and the observables (predominantly the total energy) of an electronic system ex-
posed to an external potential. It is an establishedmethod, conceived in the 1960ies [92].
DFT offers a very good accuracy–cost ratio and is very popular in the field of condensed
matter physics where it is habitually applied in studies of phenomena pertaining to the
electronic structure. In practice, the method suffers from several inherent limitations
such as the band gap problem but due to the popularity of the method, many of these
shortcomings have been explored and are relatively well understood [5, 93].

4.2.1 The Hohenberg-Kohn theorems
From the nuclear arrangement, the many-body wave function is determined, which
in turn determines the electronic density of all electronic states and in particular the
ground state. Hohenberg and Kohn showed in 1964 [92] that the ground state electron
density uniquely determines the external potential, i.e., the total energy is a unique
functional of the electron density.
This can easily be shown in the case of non-degenerate ground states by considering

twodifferent external potentials 𝑣1 and 𝑣2 (middle term inEq. 4.2) that give rise toHamil-
tonians 𝐻1 and 𝐻2, which otherwise would be the same. Let 𝜙1, and 𝜙2 be the ground
state many-body wave functions. Now, assume that the electron density derived from
both 𝜙1 and 𝜙2 gives the same external potential. The variational principle states that

⟨𝜙1|𝐻1|𝜙1⟩ < ⟨𝜙2|𝐻1|𝜙2⟩ = ⟨𝜙2|𝐻2 + 𝑣1 − 𝑣2|𝜙2⟩ = 𝐸2 + ∫𝑛2(r)[𝑣1(r) − 𝑣2(r)]𝑑r. (4.4)

Now we have the following two inequalities since there is nothing special about the in-
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dices

𝐸1 <𝐸2 + ∫𝑛2(r)[𝑣1(r) − 𝑣2(r)]𝑑r (4.5)

𝐸2 <𝐸1 − ∫𝑛1(r)[𝑣1(r) − 𝑣2(r)]𝑑r. (4.6)

Summing them gives

0 < ∫[𝑛2(r) − 𝑛1(r)][𝑣1(r) − 𝑣2(r)]𝑑r, (4.7)

and we have assumed that 𝑣1 = 𝑣2, which is a contradiction.
The energy is a functional of the electron density

𝐸[𝑛(r)] = 𝐹[𝑛(r)] + ∫ 𝑣(r)𝑛(r)𝑑r, (4.8)

where 𝐹 is the universal functional (kinetic energy and electron electron interaction en-
ergy). There is a secondHohenberg-Kohn theorem that states that the ground state elec-
tron density minimizes the energy by virtue of the variational principle, i.e.,

𝐸[𝑛GS(r)] ≤ 𝐸[𝑛(r)], (4.9)

if the electron density is consistent with an external potential (𝑣-representable) [93].

4.2.2 Kohn-Shammethod
In the Kohn-Sham approach [94], the interacting electron system in the true potential
is reformulated asmany non-interacting electrons (Kohn-Sham orbitals) in an effective
potential. It is assumed that the electron density of the interacting electron system in the
true potential can be represented as the electron density of the many non-interacting
electrons in the effective potential [93]. The Kohn-Sham equations are

⟨𝜙𝑖| − 1
2∇

2 + 𝑣eff|𝜙𝑖⟩ = 𝜀𝑖. (4.10)

The Kohn-Sham orbitals and the electron density are related as follows

𝑛(r) = ∑
𝑖
𝑓𝑖𝜙†𝑖 (r)𝜙𝑖 (r), (4.11)

where 𝑓𝑖 is the occupation number of 𝜙𝑖 . The effective potential in Eq. 4.10 can can be
further decomposed in contributions from the external potential, theHartree potential,
and the exchange-correlation (XC) potential [93]

𝑣eff(r) = 𝑣ext(r) + ∫ 𝑑r′ 𝑛(r′)
|r − r′| +

𝛿𝐸XC[𝑛]
𝛿𝑛(r) . (4.12)
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Due to the non-linearity of the effective potential, the Kohn-Sham equations have to be
solved self consistently, usually with iterative methods. The two first terms in Eq. 4.12,
the external potential and the Hartree potential, are easy to evaluate whereas the XC
potential contains all complex many body interactions present in the system. This po-
tential has been, and continues to be the subject of considerable research efforts in order
to improve the predictions within the DFT framework [95].

4.2.3 Exchange-correlation potential
From theKohn-Shamequations one can define theXC energy as the difference between
the energy of the system and the known contributions from the external and Hartree
potentials as well as the kinetic energy of the non-interacting states

𝐸XC[𝑛] = 𝐸[𝑛] − ∫ 𝑑r 𝑣ext(r)𝑛(r) − 𝑇 [𝑛] − 𝑣H[𝑛]. (4.13)

The exact XC functional is not known and has to be approximated.

4.2.3.1 Local and semi-local functionals

The local density approximation (LDA) is one of the simpler XC approximations and rep-
resents the lowest step on the Perdew ladder of approximations to the XC energy [96].
Both the exchange energy and the correlation energy are obtained from the correspond-
ing energy density of the homogeneous electron gas, i.e.,

𝐸XC = ∫ 𝑑r 𝑛(r)[𝜖HEGX (𝑛(r)) + 𝜖HEGC (𝑛(r))]. (4.14)

The exchange energy of the homogeneous electron gas has a closed form whereas the
corresponding correlation energyhasbeenbeobtained fromquantumMonteCarlo sim-
ulations [97] that was then used to fit a function for the correlation energy [98].
Semi-local functionalswithin thegeneralizedgradient approximation (GGA)aremore

complex in comparisonwith theLDA.Besides the electrondensity, theXC functional de-
pends on the magnitude of the generalized gradient of the electron density. And while
the gradient is in principle a local quantity, the additional dependence of the infinites-
imal surrounding region renders the gradient dependent functionals semi-local in na-
ture. The dependence on the variation of the electron density provides a better descrip-
tion of systems that exhibit a rapidly varying electron density and GGAs generally offer
an improvement compared to theLDA.There aremanyGGA functionals and someof the
more popular are PBE [99] and PBEsol [83], which have been utilized in some studies in
connection to this thesis.
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4.2.3.2 Van der Waals and non-local functionals

Local and semi-local functionals have some serious drawbacks, one of which is their in-
ability to correctly describe dispersion interactions. This renders especially semi-local
DFT futile for systems for which at least some important degrees of freedoms are domi-
nated by weak dispersion interactions, e.g., bi- andmulti-layer systems as well as vdW
solids in general. LDA has a tendency to overbind atoms andmodeling bilayers with the
LDAcan lead to seemingly sound results for thewrong reasons. There are severalways to
include dispersion interactions inDFT, but the one used throughout the papers this the-
sis is the non local vdW-df-cx functional [71, 100]. While it is coined as a vdWfunctional,
the vdW-df-cx functional has also been shown to accurately describe quantities in bulk
solids such as lattice parameter, cohesive energies, and vibrational properties [64, 101].
The vdW-df-cx functional has been used in Paper I to describe the atomic geometry, in
Paper V-Paper VII to model the geometry of the bilayer systems, and in Paper VIII to
construct phase diagrams of monolayer alloys.

4.2.4 Self-interaction error
While theHohenberg Kohn theorem asserts the exactness of DFT, in the practical Kohn-
Sham method, local and semi-local XC functionals suffer from self-interaction errors
in which electrons interact with themselves through the mean field. This leads, among
other things, to a propensity for orbital delocalization. It has also been observed that
methods that reduce the self-interaction error tend to improve the description of band
gaps [102]. There are remedies for the self-interaction error in the form of DFT+𝑈 and
hybrid functionals [93]. DFT+𝑈 is a method in which a Coulomb repulsion energy 𝑈
is added to a particular state in order to correct the Coulomb interaction of the overly
delocalized states of local or semi-local DFT.

4.2.4.1 Hybrid functionals

Hybrid functionals is a class of XC functionals that accounts for the exact-exchange en-
ergy to some degree by inclusion of the following non-local Coulombmatrix elements

𝑀𝑛𝑚 = ∫∫ 1
|r − r′| 𝑛

†𝑛𝑚(r)𝑛𝑛𝑚(r′) 𝑑r𝑑r′, (4.15)

where 𝑛𝑛𝑚 is the orbital density of Kohn-Sham states 𝜙𝑛 and 𝜙𝑚. The exchange energy is
then a sum over the occupied states

𝐸exactX = −12 ∑𝑛,𝑚
𝑀𝑛𝑚 (4.16)

If one were to only include the exact-exchange energy in the XC energy one would ob-
tain a Hartree-Fock calculation, in which there is no self-interaction by construction.
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Hence, hybrid functionals provide a remedy for systems that critically suffer from the
self-interaction error. By mixing in a quarter of the exact-exchange energy, the PBE0
functional is obtained [103]

𝐸XC = 1
4𝐸

exact
X + 3

4𝐸
PBE
X + 𝐸PBEC . (4.17)

The range-separated HSE06 functional [104, 105] is obtained by decomposing the ex-
changeenergy ina short and long-rangedpart andonly apply the exact-exchangeenergy
for the short range part, keeping the full long-range exchange energy of PBE.

𝐸XC = 1
4𝐸

SR, exact
X + 3

4𝐸
SR, PBE
X + 𝐸LR, PBEX + 𝐸PBEC . (4.18)

For implementations in periodic DFT, the orbital densities 𝑛 in Eq. 4.15 carries a non-
zero phase and the exact-exchange energy in Eq. 4.16 becomes an integral over the first
Brillouin zone. While hybrid functionals may offer an improved description of certain
quantities over local, or semi-local DFT, for plane-wave basis sets, hybrid functionals
are significantly more expensive than semi-local DFT due to the explicit evaluation of
the non-local Coulomb matrix elements, which scales badly with both electron count
and density of the Brillouin zone sampling from a computational perspective.

4.2.5 Charged systems
Models of crystalline systems require periodic boundary conditions. While a real crystal
is charge neutral on average, theoretically one can consider charged systems by modi-
fying the number of electrons. This will have the effect that the system consists of an
infinite array of charged cells. The standardmethod to avoid a divergence in the electro-
static energy is to add a compensating background charge based on the Jellium model
so that the computational cell is charge neutral on average. Localized charge will how-
ever still interact with its periodic image. This will have the effect that the formation
energy of a localized charged defect is dependent on the size of the system beyond elas-
tic interactions, which entails additional considerationswhenmodeling the dilute limit
formation energy of a charged defect.
There are two principal methods to handle the finite size corrections, 𝑖) a correction

scheme based on material and supercell parameters, and 𝑖𝑖) extrapolation by consider-
ing a set of supercells. Methods to account for image charge interactions has been devel-
oped [106, 107] based on the electrostatic interactions and Lany and Zunger suggested
the following form of the correction scheme [107]

𝐸𝐶 = 𝑀𝑞2
3𝐿𝜀 , (4.19)

where 𝑀 is the Madelung constant and 𝐿 is the cell length. For periodic 2D systems,
which exhibits a mix of different types of screening, extrapolation has been suggested
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as a feasible route to handle the finite size effects [108, 109]. Since the out-of-plane di-
rection is essentially unscreened, special supercells with a specific amount of vacuum
was shown to facilitate the extrapolation.

The standard method to model isolated defects in semiconductors/insulators is by
using super cells. The relation between the super cell cell metric and the unit cell cell
metric is given by

Asc = TAuc, (4.20)

where T is a transformation matrix. A practical consideration for anisotropic unit cells
is that a simple integer repetition (diagonal transformation matrix) is likely to result in
a non-optimal supercell. In the worst case, a non-optimal supercell would lead to that
the defect periodic image distance is much smaller in one direction compared with the
other. This can be mediated by considering the full transformation matrix between the
unit cell and the supercell andoptimizing the transformationmatrix such that the target
supercell is as cubic as possible [110].

4.2.6 Excited states
Charge neutral excitations can be modelled by the ΔSCF method [93], in which the oc-
cupation numbers are constrained. This method explicitly accounts for the difference
in character between the ground state and excited state in the construction of the elec-
tron density. The atomic geometry of the excited state can be obtained by relaxing the
structure with the constrained occupations that corresponds to the excited state.

4.2.7 Projector augmented wavemethod
Theothogonality requirement for the singleparticle states implies that thevalence states
must vary rapdily in the core region. From a computational perspective this entails that
very high Fourier componentsmust be used in a plane wave expansion of the single par-
ticle valencewave function. The ideawith the projector augmentedwave [111]method is
that one can divide space into a core region and a valence region and obtain the ground
state energy based on pseudo wave functions. These are related to the wave function by
a linear transformation. In this case, the full structure of the wave function close to the
atoms is, or can be retained, which is not the case for e.g. pseudopotentials. Thismakes
the projector augmented wave method more accurate compared with pseudopotential
methods that does not preserve information about the wave function in the core region.
The single particle pseudo wave function, which is smooth in the core regions is re-

lated to the single particle wave function as 𝜓𝑛𝑘 = 𝑈 ̃𝜓𝑛𝑘. The transformation 𝑈 is of the
following type

|𝜓𝑛𝑘⟩ = (1 +∑
𝑎
𝑠𝑎) | ̃𝜓𝑛𝑘⟩, (4.21)
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with 𝑠𝑎 = 0 for |𝑟 − 𝑟𝑎 | > 𝑟cutoff. The rationale for a transformation of this type is that
⟨𝑟 |𝜓𝑛𝑘⟩ and ⟨𝑟 | ̃𝜓𝑛𝑘⟩ coindices for |𝑟 − 𝑟𝑎 | > 𝑟cutoff and that the augmentation spheres form
a spatially disjoint set [111, 112]. Within the augmentations spheres the wave function
can be expanded in a complete basis set {𝜙𝑎𝑖 }, which is related to the pseudo basis set
{ ̃𝜙𝑎𝑖 }, via the transformation 𝑈 . This gives

𝑠𝑎 | ̃𝜙𝑎𝑖 ⟩ = |𝜙𝑎𝑖 ⟩ − | ̃𝜙𝑎𝑖 ⟩. (4.22)

For augmentation sphere 𝑎 [112]
̃𝜓𝑛𝑘 = ∑

𝑖
⟨𝑝𝑎𝑖 | ̃𝜓𝑛𝑘⟩| ̃𝜙𝑎𝑖 ⟩, (4.23)

where 𝑝𝑎𝑖 are the projector functions, which satisfies ⟨𝑝𝑎𝑖 | ̃𝜙𝑎𝑗 ⟩ = 𝛿𝑖,𝑗 . The transformation
𝑈 has then the explicit form of [111]

𝑈 = 1 +∑
𝑎
∑
𝑖
(|𝜙𝑎𝑖 ⟩ − | ̃𝜙𝑎𝑖 ⟩)⟨𝑝𝑎𝑖 |. (4.24)

The energy of the system is then found from the stationary Schrödinger equation and
a transformed hamiltonian. The projector augmented wavemethod as implemented in
GPAW [113, 114] and VASP [115–117] has been used for DFT calculations in the studies
this thesis is based on. For the studies in Paper VI-Paper VII, the explicit evaluation of
matrix elements within the projector augmented wave formalism was implemented in
the GPAW framework.

4.3 Beyond density functional theory
4.3.1 𝐺𝑊 approximation
The𝐺𝑊 approximation is amany-bodymethod to compute the quasi-particle spectra of
a set of interacting electrons [118] by expanding the self energy in the screenedCoulomb
interaction𝑊 = 𝜖−1𝑣 .
The equation of motion for a quasi particle in an external potential is [119]

[−12∇
2 + 𝑣𝐻 (r) + 𝑣ext(r)] 𝜓𝑖(r, 𝐸) + ∫ 𝑑r′ Σ(r, r′, 𝐸)𝜓𝑖(r′) = 𝜀𝑖(𝐸)𝜓𝑖(r, 𝐸), (4.25)

where the one-electron self-energy Σ is a 𝑖) non local 𝑖𝑖) energy dependent 𝑖𝑖𝑖) complex
valued potential that accounts for the XC interactions. The self-energy expressed in the
many-body Green’s function is [120]

Σ(r, r′, 𝐸) = 𝐺−10 (r, r′, 𝐸) − 𝐺−1(r, r′, 𝐸), (4.26)
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where 𝐺 is the Greens function

𝐺(r, r′, 𝐸) = ∑
𝑖

𝜓𝑖(r, 𝐸)𝜓†𝑖 (r′, 𝐸)
𝐸 − 𝜀𝑖(𝐸)

. (4.27)

𝐺0 is the corresponding Green’s function for the case of Σ = 0. It was shown by Hedin
[118] that the lowest order expansion of the self energy in the screened Coulomb inter-
action𝑊 is the 𝐺𝑊 term i.e. [119]

Σ(r, r′, 𝐸) = (−2𝜋𝑖)−1 ∫𝑑𝐸′𝐺(r, r′, 𝐸 + 𝐸′)𝑊 (r, r′, 𝐸′). (4.28)

The 𝐺𝑊 approximation is in principle not connected to the theoretical framework of
DFT.However, quasi-particles fromDFTcanbeused to construct the initial states in the
𝐺𝑊 approximation. Due to intricate dependencies between the screened Coulomb in-
teraction and the Green’s function, the self energy must be computed iteratively. How-
ever, 𝐺𝑊 calculations are computationally demanding and one common shortcut is the
𝐺0𝑊0 approximation, where the Green’s function in Eq. 4.28 is replaced by 𝐺0 and the
screened interaction by 𝑊0 (evaluated based on 𝐺0) [121]. The 𝐺0𝑊0 method provides
a correction to the quasi-particle levels of conventional DFT, but as any perturbative
method, the quasi-particle levels depend on the underlying DFT computations [122].
Note that the sum over states in Eq. 4.27 is not restricted to occupied states, and hence
describes the full quasi-particle spectrum.
The dielectric function exhibits a very different behavior in the long-wavelength limit

of 2D compounds compared with a 3D compound, e.g., the dielectric constant tends to
1 in the long-wavelength limit for 2Dmaterials [123, 124]. It is difficult to converge (with
respect to vacuum) the quasi-particle levels in a 𝐺0𝑊0 calculation of a monolayer using
periodic boundary conditions in the out-of-plane direction. Hence, some truncation
of the Coulomb interaction should be necessary in order to accurately determine the
band gap of 2D materials with 𝐺0𝑊0 [124]. However, in Paper V, we were interested in
the relative band gap difference when displacing monolayers relative to each other, a
quantity that converges much faster with added vacuum than the absolute band gap.

4.4 Phonons
4.4.1 Theory of small oscillations
The atomsmovemuch slower than the electrons so the Hamiltonian for the atoms is

𝐻({R; 𝑛}) = −12 ∑𝑗
𝑀−1𝑗 ∇2𝑗 + 𝐸𝑛({R}). (4.29)
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𝑛 is here a quantum number indicating the electronic state of the system. Here we are
concerned with the electronic ground state. The harmonic vibrations of the atoms in
a general crystal can be described with a semi-classical model comparable to the equa-
tions of motion of a set of beads connected with springs. To find the proportionality
constants between the force and the displacement the total energy relative to the equi-
librium energy is expanded in a basis of small atomic displacements.
The equilibrium position of atom 𝑖 is

r𝑖𝑙 = p𝑙 + q𝑖, (4.30)

where p𝑙 is the translation vector to unit cell 𝑙 and q𝑖 is the relative position of atom 𝑖 in
unit cell 𝑙. A small displacement of atom 𝑖 inunit cellp relative to its equilibriumposition
is

u𝑖𝑙 = p𝑙 + 𝛿q𝑖 − p𝑙 + q𝑖. (4.31)

The Taylor expansion can be written as

𝐸({u}) ≈ 1
2 ∑𝑖′𝑙′

∑
𝑖𝑙
∑
𝛼,𝛽

𝜕2𝐸
𝜕𝑢𝛼𝑖𝑙 𝜕𝑢

𝛽
𝑖′𝑙′

|
0

⋅ 𝑢𝛼𝑖𝑙 𝑢
𝛽
𝑖′𝑙′ , (4.32)

where 𝛼 and 𝛽 index the Cartesian components of the displacement vector. The zeroth
order term is the reference energy, and the first order term vanishes via the definition
of the equilibrium positions. The quantity

Φ𝛼𝛽
𝑖𝑙,𝑖′𝑙′ =

𝜕2𝐸
𝜕𝑢𝛼𝑖𝑙 𝜕𝑢

𝛽
𝑖′𝑙′

|
0

(4.33)

is called a second-order force constant, andmeasures the force extereted on atom 𝑖𝑙 when
atom 𝑖′𝑙′ is displaced. Now, 𝑖 is bound in crystalline systems, whereas 𝑙 is unbounded
due to an infinite repetition of unit cells. In practice, the second-order force constants
decay relatively fast with the distance (|r𝑖𝑙 − r𝑖′𝑙′ |) due to screening of the induced fields.
Therefore, the number of unit cells that has to be included in the energy expansion is
system dependent. The analytic property of the energy as a function of displacement is
an assumption, which may be violated in some cases. There may be long range inter-
actions that are not captured in the energy expansion, which however can be handled
using non analytical corrections. These are dipole dipole interactions in polarmaterials
that gives rise to the well known energy splitting between longitudinal and transverse
optical phononmodes.
The harmonic Hamiltonian is [90]

𝐻 = −12 ∑𝑗
𝑀−1𝑗 ∇2𝑗 + 1

2 ∑𝑖′𝑙′
∑
𝑖𝑙
∑
𝛼,𝛽

Φ𝛼𝛽
𝑖𝑙,𝑖′𝑙′ ⋅ 𝑢𝛼𝑖𝑙 𝑢

𝛽
𝑖′𝑙′ . (4.34)
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The second order force constants are used to construct the dynamical matrix [10]

𝐷𝛼𝛽
𝑖𝑖′ (q) = 1

√𝑚𝑖𝑚𝑖′
∑
𝑙′

Φ𝛼𝛽
𝑖0,𝑖′𝑙′ exp(𝑖q ⋅ [r𝑖0 − r𝑖′𝑙′]). (4.35)

The eigenvalues of the dynamical matrix are the squared frequencies.

4.4.2 Computational method
Tocompute thephonon frequencies andeigenvectors, themost straightforwardapproach
is the so-called frozen phonon approach, where the atoms of system are displaced and
the energy is computed and subsequently the second-order force constants, see Eq. 4.33.
Theonly requirement of the underlying electronic structure code is to be able to evaluate
the total energy of a system. In practice, numerous software packages, e.g., phonopy
[10] are interfaced with modern electronic structure codes that facilitate the computa-
tions by providing the relevant input, i.e., the symmetry reduced displacements, and
parsing the relevant output.
The drawback of the frozen phonon approach is that the number of displacements

can be an unfeasible large number, specially for low-symmetry systems such as defects.
In principle, a full DFT calculation is required for each symmetry inequivalent degree
of freedom. Another approach, which is based on regression is to make simultaneous
displacements and fit the set of force constants to the forces from the DFT calculations
[11].
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5
Oxygen vacancies in wide band gap

oxides

In this chapter, the findings pertaining to oxygen vacancies are presented. This chapter
also serves as a summary of Paper I and Paper II.

5.1 Alignment of defect levels
In Paper Iwe addressQ1 of the introduction, which is here repeated for convenience.

Q1. Is it possible to understand the properties of oxygen vacancies in wide band gap
oxides without having to explicitly study the oxygen vacancy in each new oxide?

Oneof themost important features of a defect is theCTL and for oxygen vacancies the
most relevant CTL is the (0/+2) CTL.Therefore, when addressingQ1we considered the
(0/ + 2) CTL of 26 different wide band gap oxides, of which there were 6 ternary oxides
(perovskite oxides) and 20 binary oxides. The oxides considered were

- AO, A = Be,Mg,Ca,Sr,Ba,Zn,

- ABO3, A = Ba,Pb and B = Ti,Zr,Hf,

- AO2, A = Ti, Si, Sn, Hf,Zr, Ge,

- A2O3, A = Al,Ga,In,Sc,Y,Lu.

These oxides are of closed shell type (Sect. 2.1.1.1) and exhibits a plethora of different
crystal structures (e.g., perovskite, rock salt, and bixbyite) and a large variation in band
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Chapter 5. Oxygen vacancies in wide band gap oxides

gaps. Furthermore, there is a large variation in the coordination of the oxygen atoms
over the considered oxides as is indicated by the different stoichiometries. The defect
calculationswere performedwith conventionalDFTusing the vdW-df-cx functional [71]
in order to obtain the atomic geometry. Subsequently, the HSE06 hybrid functional
[104, 105] was used to compute the energetics without allowing for atomic relaxation.
In order to assess general features of the oxygen vacancies using the CTLs, these have

to be compared on an absolute scale. To this end, the band edges were aligned to the
oxygen 1𝑠 level. This level presumably does not participate in the formation of metal-
oxygenbondsand thereforeprobesmainly the local electrostatic environment. Theband
alignment of the considered oxides closely resembles the common anion rule with a few
exceptions.
The main finding of Paper I is that when the band edges are aligned to a common

reference level, the (0/ + 2) CTL exhibits a common value of−5.2 eV with a standard de-
viation of 0.7 eV.This is a indication of a commonality of the oxygen vacancies due to the
large span of band gaps in the considered oxides. Themain feature that determines the
character of the oxygen vacancy i.e. if the oxygen vacancy is shallow or deep (Sect. 3.2) is
the position of the conduction band with respect to the vacuum level. If the conduction
band edge falls below around−5 eV, the oxygen vacancy could be shallow and otherwise
it is likely deep.
In order to expand on the underlying physical origin we considered the potential of

the oxygen vacancy and found that the ”size” of the oxygen vacancy is similar in all these
materials. The energy levels of a particle-in-boxmodel is completely determined by the
size of the box and we propose that this is the explanation for the almost constant CTL
of oxygen vacancies in wide band gap oxides as well.

5.2 The three hallmarks of deep oxygen vacancy
levels

In Paper I, the properties of oxygen vacancies in charge transfer oxides are examined
and it is revealed that there are three common features for deep oxygen vacancy states.
Deep oxygen vacancies exhibit the following features

𝑖) quasi-particle (Kohn-Sham) level in the band gap,

𝑖𝑖) The (0/ + 2) CTL resides in the band gap,
𝑖𝑖𝑖) Large structural distortion between different charge states.

The presence of a Kohn-Sham level in the band gap is a clear indication that a mid gap
state is formed while feature 𝑖𝑖) is in principle the definition of a deep defect level. Fea-
tures 𝑖) and 𝑖𝑖) are, however, subject to systematic errors within DFT, and may not al-

48



5.3. Luminescence quenching

ways be observable. For example, due to the underestimation of the band gap, both the
(0/ + 2) CTL and the Kohn-Sham level may be erroneously positioned above the conduc-
tion band edge.
In the case of vacancies in ionicmaterials, as is the case here, the structural distortion

may be a good descriptor of the character of the defect state (Fig. 5.1).

Figure 5.1: Structural distortion upon a change in charge state on the oxygen vacancy in MgO.
The arrows depict the relaxation of the nearest Mg atoms between the neutral and doubly
charged states. The solid color indicates atoms in the neutral charge state and the transparent
atoms are those in the doubly charged state.

Many of these materials exhibit a strong ionic bonding character, which, in the ionic
limit makes the oxygen atom doubly negatively charged. For the deep neutral oxygen
vacancy there is a surplus of two spin-paired electrons that are predominantly localized
in the vacancy. The geometry of the local environment of a neutral oxygen vacancy is
relatively similar to the one of the vacancy-free structure due to the electronic screening
providedby the electrons. For the+2 chargedoxygenvacancy, these electrons are absent
from the vacancy and the metal ions are now subject to a mutual unshielded Coulomb
interaction that results in atomistic relaxation. This is shown in Fig. 5.1 for the case of
an oxygen vacancy in MgO. This indicates that the structural distortion is a very good
probe for the character of the oxygen vacancy state.
We are now in a position to give an answer to Q1. There are common features of the

oxygenvacancy that extendoveravarietyofwidebandgapoxides. Thecommonfeatures
includea (0/+2)CTLcenteredat−5.2 eVand the threehallmarksofdeepoxygenvacancy
levels discussed in this section.

5.3 Luminescence quenching
Asdiscussed in theprevious section, the structuraldistortionuponacharge state change
on deep oxygen vacancies is associatedwith a lowering of the lattice energy, which is rel-
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Chapter 5. Oxygen vacancies in wide band gap oxides

atively large. This fact underpins the exploration of possible recombination pathways in
Ce:YAG that involves oxygen vacancies at some point. In order to address Q2 of the in-
troduction, inPaper II theCTLs of the oxygen vacancywerefirst evaluated and theCTLs
indicate that the oxygen vacancy in YAG is deep. In order for the oxygen vacancy to be
able to dissipate the excitation energy, the crucial step is electron transfer to the oxygen
vacancy. Already at this step, luminescence is effectively quenched due to the depletion
of the Ce:5𝑑 state.
Therefore, we considered the following three-step mechanism for non radiative re-

combination, starting from the charge states +1 or +2 of the oxygen vacancy.

Ce×Y + V𝑞O
ℏ𝜔−−→ Ce∗Y + V𝑞O (5.1)

Ce∗Y + V𝑞O −−→ Ce+1Y + V𝑞−1O (5.2)

Ce+1Y + V𝑞−1O −−→ Ce×Y + V𝑞O (5.3)

We assessed the energy barriers associated with each step in this mechanism and in
order to validate our computations wemodeled the optical lineshape of the Ce lumines-
cence. Before continuing in describing the details of the reaction mechanism, the opti-
cal lineshape results are briefly presented. The generating functionmethodwas used to
model the optical lineshapes and generally, a good agreement with experimental line-
shapes is found. The fine structure observed in experiments [7] is shown to not be a
result of local vibrational modes involving the nearest neighbor oxygen atoms. This is
argued to be the case since there is no dominant mode in the electron phonon spectral
function and the fine structure peaks are associated with low frequency phononmodes
that likely originate from heavier atoms such as yttrium and not oxygen.
Havingassessed theoptical lineshape,which is related to the changeson theCeY atom

in Eq. 5.1 we find that the charge transfer to the oxygen vacancy (Eq. 5.2) is associated
with aminuscule energybarrier in the case of 𝑞 = +2 andanegative barrier in the case of
𝑞 = +1. The limiting step for the recycling of the oxygen vacancy as a quenching center
is the transfer of the electron from the oxygen vacancy back to the Ce:4𝑓 state. This
barrier is 0.8 eV in the case of 𝑞 = +1. We estimated the energy barriers for thermal
ionization and landscape crossover to 1.1 eV and 3.8 eV, respectively. The relatively low
energy barrier suggests that out of these consideredmechanisms, the proposed charge
transfermechanism is likely to be contributing to the thermal luminescence quenching.
Themechanism described in Eq. 5.1-5.3 depends mainly on the energetics of the oxy-

gen vacancy, and is as such perhaps applicable to other oxide based phosphors as well.
Based on the findings in Paper II, the answer toQ2 is a short and simple yes.
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6
Color centers in h-BN and 4H-SiC

A defect exhibits multiple characteristic features including CTLs and formation ener-
gies. Optically active defects exhibit in addition vibrationally induced characteristics
such as HR-factor, Stokes shift, and optical lineshape. In Paper III and Paper IV, we
used the generation function approach to compute the emission lineshapes of defects
in 4H-SiC and monolayer h-BN in order to compare and identify defects reported in
literature based on the vibrationally induced properties.

6.1 Color centers in 4H-SiC
Paper III is concerned with defects in 4H-SiC. The following defects, heavily focused
around the silicon vacancy (VSi), were considered VSi, VSiNC, VSiVC, VCCSi, and VSiNC,
and in all 9 different transitions. The geometries of the defects and the vibrational spec-
tra were obtained using the PBEsol functional. The ZPLs were computed using the hy-
brid functionalHSE06without allowing for further relaxation and theZPLs fall between
0.72 eV and 1.69 eV, i.e. the infrared part of the spectrum and even the telecom region
(≈1 eV). We show that the emission lineshape of all these defects exhibit structure and a
well defined phonon sidebandwithHR factors between 1.5 and 3.8. All considered emis-
sion lineshapes exhibit essentially zero intensity at energies of 400meV above the ZPL
relative to the phonon sideband peak with the exception of the carbon vacancy based
VCCSi defect. This defect has a much longer tail than the defects based on VSi and the
largestHR factor of the considered defects at 3.8. It is found that there is a phononband
gap in defect free 4H-SiC between 75meV to 90meV that is to some extent preserved in
the defective structures. In the region around 75meV and above the electron phonon
coupling for all considered defects attains a more local character and fewer atoms are
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Chapter 6. Color centers in h-BN and 4H-SiC

involved in the coupling to the electronic transition, revealing a commonality in the elec-
tron phonon coupling.

6.2 Color centers in h-BN
In Paper IV, conventional DFT was used to compute the geometry of the defect in the
ground and excited states as well as the vibrational spectrum for the defective supercell.
In addition, the hybrid functional HSE06 was used to estimate the transition energies
for charge transitions, which inevitably suffers from the band gap problem present in
conventional DFT.
A set of defects including both intrinsic defects and carbon based defects were con-

sidered. One common feature of many experimentally observed emission centers in
h-BN is that the emission lineshape is structured with well defined phonon sidebands
and thus exhibit a moderate HR factor. We find that, among the defects that can host
transitions withmoderate HR factors, carbon based defects and the negatively charged
boron vacancy (V−1B ) are the most likely candidates based on the HR factor. The elec-
tronic structure of V−1B is complex with several in-gap states including both occupied
and unoccupied states. Two geometries of the excitation of the lowest unoccupied state
on V−1B were investigated,𝐷3ℎ, and 𝐶2𝑣 . The𝐷3ℎ state exhibit a threefold rotational sym-
metry and exhibit aweak electron phonon couplingwith aHR factor of 0.9. Thephonon
sideband has a peak at 162meV. The 𝐶2𝑣 is distorted along one direction and exhibits a
larger HR factor of 2.5 and consequently a wider phonon sideband.
Charge transitions on the carbon substitional defectsCN andCB exhibitHR factors of

1.8-1.9 and consequently structured emission lineshapeswithwell defined phonon side-
bands and associated phonon replicas. The analysis of the electron phonon coupling
shows that it is predominantly modes at around 185meV that contribute to the phonon
sidebands for these transitions. The optical transition on CBCN (i.e. neigbouring CN
andCB) exhibit a similar lineshape asCN andCB, with thefirst phonon sideband located
at 195meV.The origin of the phonon sideband in CN CB is a localized phononmode that
involves the breathing motion of the carbon atoms. In addition, we predicted a differ-
ence of 4meV in the phonon sidebands for the CBCN defect consisting of 13C instead of
the naturally occurring 12C, which could help identifying this defect center experimen-
tally.
To answerQ3 of the introduction, we have predicted the phonon sidebands of several

transitions/defects in h-BN and SiC and found that there are multiple defects that can
host transitions with similar emission lineshapes. This makes an unambiguous identi-
fication based only on the computed shape of the emission spectrum not viable in gen-
eral. It is however another accessible (from first-principles calculations) characteristic,
together with e.g., ZPL, formation energy, spin state, electronic structure, Stokes shift,
and HR factor that can be used to elucidate the chemical nature of emission centers.
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7
Optical properties of TMDs

In this chapter, the results from the studies on untwisted and twisted TMD bilayers are
addressed as well as the properties of TMD alloys. This section serves as a summary of
Paper V-VIII.

7.1 Excitons in twisted bilayers
Twisting one monolayer in a bilayer structure induces certain structural distortions in
comparison with the untwisted bilayer. In Paper VII, these structural distortions are
investigated in detail for twisted MoS2/MoS2 down to a twist angle of 4.4∘. The main
structural distortions occurs in the binding distance due to the formation of regions
of different stacking orders (Fig. 2.8) and the interlayer distance becomes ambiguous
due to the spatial variation and attains the form of a distribution. We show that the
distribution becomes very narrowat large twist angles (13.2∘) centered at themean value
of the interlayer distance found in𝑅ℎℎ and𝑅𝑀ℎ . For smaller twist angles, the distribution
becomes wider and the boundary points tends towards the interlayer distance in the
limiting structures. In-plane structural distortion is observed as well with magnitudes
around0.2 Å for larger twist angles (7.3∘) and around0.6 Å for smaller twist angles (4.4∘).
In Paper V, the influence of the twist induced potential on the inter- and intralayer

excitons at the 𝐾-point is investigated for the MoSe2/WSe2 heterostructure in the low
angle limit. Here, the intra and interlayer band gap variation of the limiting structures
are computed using the 𝐺0𝑊0 method. The 𝐺0𝑊0 band gap variations were used in con-
structing a model based on the exciton density matrix formalism. The band gap varia-
tion is approximately equal to the electrostatic moiré potential at the 𝐾-point. In Pa-
perVI, it is shown that the degree of hybridization or tunneling for both the conduction
band and valence band is small at the 𝐾 point. For small tunneling rates the interlayer
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band gap variation from the 𝐺0𝑊0 probes mainly the variation of the electrostatic po-
tential. Furthermore, the small tunneling rates implies that hybrid intra/interlayer ex-
citons is unlikely to be formed. In Paper V, it is shown that the twist induced potential
has a profound effect on the exciton landscape. For very low twist angles, below 2∘ both
the intra- and interlayer excitons becomes localized in space and at 3∘ the excitons ob-
tain a delocalized form. For 1∘, the interlayer exciton absorption spectra exhibit much
more structure with at least four distinct peaks with alternating polarization. This is in
contrast with the case of 3∘ where there are only two peaks in the absorption spectrum.
In addition, for the case of 3∘ twist angle the intralayer absorption spectrum exhibit a
single peak for each layer whereas for 1∘ twist angle this single peak is splitted into four
peaks. In the introduction the following question was posed

Q4. How are the optical properties of a TMD bilayer affected by twisting one of the
constituent monolayers?

This is a very complex question and a partial answer is that the ground state 𝐾 − 𝐾
intra- and interlayer exciton becomes localized at twist angles below 2∘ and fine struc-
ture in the absorption spectrum appears due to the presence of the moiré potential.
The twist induced electrostatic potential in bilayer TMDs can be investigated by DFT

calculations, and was done so in Paper VII to address question Q6. First, the limit-
ing structures were considered and it was found that the induced electrostatic poten-
tial is an alternating dipolar potential, which originates from a charge displacement in
asymmetric stacking orders. The magnitude of this dipolar potential is relatively simi-
lar across the TMDs H-MX2 with M=Mo,W and X=S,Se,Te with a value of 131meV and a
standard deviation of 8meV. Furthermore, in order to access the twist induced electro-
static potential inmoiré superlatticeswith afinite twist angle, the electrostatic potential
at the ion cores were considered. It was found that the amplitude of this electrostatic
potential decays rapidly with increasing twist angle. For the 4.4∘ twistedMoS2/MoS2 bi-
layer, the amplitude at ∼ 5∘ is about half of the 0∘ value. The twist angle dependence of
the potential is attributed to twist angle dependence of both the interlayer spacing and
the interlayer horizontal alignment that determines the induceddipolemoment. The re-
sults in Paper VII on the twist induced potential suggests that charge carrier transport
is subject to a twist angle dependent energy barrier that might impede charge carrier
transport and the associated exciton transport.

7.2 Untwisted bilayers
The intra- and interlayer excitons at the 𝐾 − 𝐾 point in MoSe2/WSe2 could be modeled
using band gap variations due to negligable tunneling rates at that particular point in
the Brillouin zone. Other excitons, including hybrid excitons require additional efforts.
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In Paper VI and Paper VII the disentanglement of the electrostatic potential and hy-
bridization energy is undertaken in order to answer Q5 posed in the introduction. The
magnitude of the hybridization and dipole potential in both TMD homobilayers and
TMDheterobilayers are determined for the limiting structures. The disentaglement be-
tween hybridization and electronic state realignment is achieved by solving the Poisson
equation for the electron density difference and then subtract the electronic state re-
alignment from the energy of the electronic states of the bilayer. The electronic state
realignment is found by computing the following matrix element, with the potential
coming from the electron density difference

𝑀 = ⟨𝜓𝑛k|𝛿𝑉 |𝜓𝑛k⟩. (7.1)

The electronic states of the bilayer contains both hybridization and electronic state re-
alignment. The valence band, which presumably is involved in the electronic density
displacement is strongly hybridized in a small region around the zone center for all con-
sidered materials, whereas hybridization in the conduction band is strongest at the Λ
point.
Theelectronic state realignmentandmomentumresolvedhybridizationenergieswere

used in Paper VI to assess the lowest energy exciton in untwisted TMDhomostructures
and heterostructures by means of density matrix theory. The numerous systems that
were considered, exhibited to a large extent different excitonic landscapes. For exam-
ple, in all stacking orders, we found that the lowest energy exciton in MoS2/MoS2 ho-
mobilayer andMoS2/WS2 heterobilayer is an indirect exciton where the hole originates
at the zone center and the electron at the 𝐾 ′-point. Whereas for WS2/WS2, the 𝐾 − Λ
exciton is the lowest energy exciton in𝑅ℎℎ and Γ−Λ for the other stacking orders. For the
selenides, the lowest exciton in the 𝑅 stacked MoSe2/WSe2 heterobilayer is the 𝐾 − 𝐾
exciton whereas the 𝐻 stacked systems where indirect with the hole at 𝐾 and the elec-
tron at either Λ or 𝐾 ′. In WSe2/WSe2 the lowest exciton were indirect (𝐾 − Λ) while
in MoSe2/MoSe2 both indirect (𝐾 − Λ) and direct (𝐾 − 𝐾 ) excitons exhibited the lowest
energy, depending on stacking order.

7.3 Monolayer TMD alloys
The main objective of Paper VIII was to determine the mixing properties and band
edge alignment of TMD alloys. Here, DFT calculations in conjunction with cluster ex-
pansions and Monte Carlo simulations were used. To this end, the systems tabulated
in Table 7.1 were considered. It was found that many TMDs exhibit an in-plane or-
dered ground state e.g., Mo𝑥W1−𝑥S2, which is slightly lower in energy in comparison
with the randomly mixed state. The critical temperatures for the ordered to disordered
transitions were found to be very small (on the order of a few tens of K) in almost all
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Chapter 7. Optical properties of TMDs

Table 7.1: Alloy systems considered in Paper VIII. Tuples indicate the mixing species.

Symmetry Mixing site Transition metals Chalcogen species
H X Ti, Zr, Hf, Mo,W (S,Se), (S,Te), (Se,Te)
T X Ti, Zr, Hf, Pd, Pt (S,Se), (S,Te), (Se,Te)
H M (Ti, Zr), (Ti, Hf), (Ti, W), (Hf, Zr), S, Se, Te

(Hf, W), (Mo, Ti), (Mo, Zr), (Mo,W)
(W, Zr), (Hf, Mo)

T M (Ti, Zr), (Hf, Ti), (Hf, Zr), (Pd, Pt) S, Se, Te

systems with an ordered ground state with the exception of T-HfS2𝑥Te2(1−𝑥) and H-
HfS2𝑥Se2(1−𝑥). These system exhibit ordered states stable up to around 100K. This re-
sult indicate that in-plane ordered phases in TMDalloys are not present at ambient con-
ditions. Furthermore, there were numerous systems that do not easily mix. These are
found to predominantly consists of either chalcogen mixed alloys where S and Te are
mixing as well as mixing of cations from different groups of the periodic table. In addi-
tion, cationmixed systemswith Ti also exhibit large critical temperatures even ifmixed
with Zr and Hf, which are in the same group in the periodic table. The systems with
mixing of cations from different groups exhibit the largest critical temperatures with
values up to several thousands of K. Finally, the alloys TiX2𝑥Te2(1−𝑥)withX=S, Se exhibit
critical temperatures above room temperature. In Paper VIII, the software SISSO [125]
was used to construct simplemodels of the critical temperature based on features from
the boundary phases. For transition mixed alloys, a functional form that includes the
difference in ionization potential and elastic energy predicts the critical temperature
reasonable well. Furthermore, SISSO was used to classify the ground state of chalco-
gen mixed alloys as ordered, non-mixing, or Janus. It is found that two descriptors,
one with units of pressure and one adimensional that is related to the bonding in the
material can predict the category of the chalcogenmixed alloy with 93% success rate.
Many of the considered alloys exhibit extremely large critical temperatures and are

excluded from further investigations into the electronic structure. The electronic band
edges for a subset of the considered alloys were evaluated and aligned to the vacuum
level. The bowing parameters were estimated using on conventional DFT calculations.
The valence band edge bowing parameter was found to be negative for all chalcogen
mixedalloyswithan increasingmagnitude in the seriesS2𝑥Se2(1−𝑥), Se2𝑥Te2(1−𝑥), S2𝑥Te2(1−𝑥).
In PaperVIII, we answerQ7 by showingwhat TMDs alloys that are likely tomix and the
possible variation in band edge energies due to different compositions.

56



8
Outlook

The studies this thesis is based on does not follow a straight red line with regards to
the topic. Differentmaterials have been studied, different physical processes have been
modeled, and different issues have been addressed. What unites them however, is the
topic of atomistic handicraft and the pursuit of understanding how materials act on
the microscopic scale when the composition or orientation is manipulated. We are in
the middle of an age where materials can be manipulated and controlled on the atomic
scale to yield fantastically different behavior. Here, in this thesis, the chemical nature
of defects that are presumed to be responsible for certain observed behavior such as
emission lines or luminescence quenching in specific materials, are elucidated.
Some of these studies have been of high-throughput character where many mate-

rials or many defects have been addressed and hopefully these studies could serve as
roadmaps for further experimental and theoretical investigations. On the theoretical
side, theremight be a paradigm shift coming with the advent of machine learning algo-
rithms adjusted for problems in materials science, both for computing and for analysis
[11, 125, 126]. Thismayhavehuge impact for establishing, andunderstanding trends and
similarities acrossmaterials. Machine learning algorithms canhelp in establishing phe-
nomenological models based on material specific features, which could elucidate what
features that leads a specific property e.g., deep defect states in different relatedmateri-
als. There is a simple satisfactory explanation for the commonality of oxygen vacancies
in Paper I in terms of band edge positions and size of the vacancy, however, in other
situations it might become too difficult to find simple predictors by manual inspection.
There are numerous interesting directions for further studies on the topics covered in

this thesis. It should be of interest to further investigate the ability of oxygen vacancies
to act as non-radiative electron capture centers in order to understand the limitations of
wide band gap oxide semiconductors inmicro- and optoelectronical applications. Here
the results from Paper I is a start, but modeling the electron dynamics require much

57



Chapter 8. Outlook

more effort. First-principles investigations of non-radiative carrier capture rates of
important defects in e.g., GaP has been performed based on the generating function
method so the method is already established [127]. The bottleneck is the computation
of electron-phononmatrix elements, whichmay be difficult in oxides due to the strong
ionic character that many oxides exhibit. Furthermore, the large structural distortion
of charge transitions on oxygen vacancies in some materials may require treatment of
anharmonicity.
The moiré potential was the subject of study for the exciton TMD papers and in all

bits and pieces on how twisting influences the electronic properties has been revealed.
Understanding that the underlying electrostaticmoiré potential is of dipolar origin and
originates from an asymmetric charge displacement opens up for interesting possibil-
ities in tailoring this potential e.g., by applying pressure to decrease the interlayer dis-
tance or make moiré superlattices of Janus monolayers that already have an intrinsic
dipole moment. This would perhaps make the moiré potential deeper and localize exci-
tons at larger twist angles. Furthermore, in multilayer materials, there are additional
twistingdegreesof freedomand theelectronicpropertiesof twistedmultilayerheterostruc-
tures is almost completely unexplored.

58



Acknowledgments

This was mostly fun. To a large extent it was because I had a phenomenal supervisor in
Paul Erhart. Thank you for your contagious curiosity and ambitions.

I would also like to thankmy assistant supervisors ErminMalic andMikael Kuisma and
examiner GöranWahnström.

And although many years have passed, I would like to express my gratitude to Daniel
Åberg for his expertise and patience in supervision during my visit.

I would like to thank all my collaborators and the past and current members of the re-
search group for all the help and discussions when we all were at the office.

Finally, I would like to thankmy family for their support and sacrifices.

59





Bibliography

[1] P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques,
T. Gaebel, F. Jelezko, and J. Wrachtrup,Multipartite Entanglement Among Single Spins in Di-
amond, Science 320, 1326 (2008). doi:10.1126/science.1157233.

[2] I. Aharonovich, D. Englund, andM. Toth, Solid-state single-photon emitters,Nature Photon-
ics 10, 631 (2016). doi:10.1038/nphoton.2016.186.

[3] Z. Xia, Z. Xu, M. Chen, and Q. Liu, Recent developments in the new inorganic solid-state LED
phosphors,Dalton Transactions 45, 11214 (2016). doi:10.1039/C6DT01230B.

[4] T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, Quantum emission from hexag-
onal boron nitride monolayers, Nature Nanotechnology 11, 37 (2016). doi:10.1038/nnano.
2015.242.

[5] J. P. Perdew, Density functional theory and the band gap problem, International Journal of
Quantum Chemistry 28, 497 (1985). doi:10.1002/qua.560280846.

[6] J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, Insight into the Thermal
Quenching Mechanism for Y3Al5O12:Ce3+ through Thermoluminescence Excitation Spectroscopy,
The Journal of Physical Chemistry C 119, 25003 (2015). doi:10.1021/acs.jpcc.5b08828.

[7] V. Bachmann, C. Ronda, and A. Meijerink, Temperature Quenching of Yellow Ce3+ Lumines-
cence in YAG:Ce, Chemistry of Materials 21, 2077 (2009). doi:10.1021/cm8030768.

[8] M. Lax, The Franck‐Condon Principle and Its Application to Crystals, The Journal of Chemical
Physics 20, 1752 (1952). doi:10.1063/1.1700283.

[9] A.Alkauskas, B.B.Buckley,D.D.Awschalom, andC.G.V.deWalle, First-principles theoryof
the luminescence lineshape for the triplet transition indiamondNVcentres,NewJournal ofPhysics
16, 073026 (2014). doi:10.1088/1367-2630/16/7/073026.

[10] A. Togo and I. Tanaka, First principles phonon calculations inmaterials science, Scripta Materi-
alia 108, 1 (2015).

[11] F. Eriksson, E. Fransson, and P. Erhart,TheHiphive Package for the Extraction of High-Order
Force Constants by Machine Learning, Advanced Theory and Simulations 2, 1800184 (2019).
doi:10.1002/adts.201800184.

[12] K. F.Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, AtomicallyThinMoS2: ANewDirect-Gap
Semiconductor, Physical Review Letters 105, 136805 (2010). doi:10.1103/PhysRevLett.
105.136805.

[13] A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials 6, 183 (2007). doi:
10.1038/nmat1849.

61

https://doi.org/10.1126/science.1157233
https://doi.org/10.1038/nphoton.2016.186
https://doi.org/10.1039/C6DT01230B
https://doi.org/10.1038/nnano.2015.242
https://doi.org/10.1038/nnano.2015.242
https://doi.org/10.1002/qua.560280846
https://doi.org/10.1021/acs.jpcc.5b08828
https://doi.org/10.1021/cm8030768
https://doi.org/10.1063/1.1700283
https://doi.org/10.1088/1367-2630/16/7/073026
https://doi.org/10.1002/adts.201800184
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1038/nmat1849
https://doi.org/10.1038/nmat1849


Bibliography

[14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva,
S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene,
Nature 438, 197 (2005). doi:10.1038/nature04233.

[15] H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H. G. Xing, and L. Huang,
Exciton Dynamics in Suspended Monolayer and Few-Layer MoS2 2D Crystals, ACS Nano 7, 1072
(2013). doi:10.1021/nn303973r.

[16] T. Olsen, S. Latini, F. Rasmussen, and K. S. Thygesen, Simple Screened Hydrogen Model of
Excitons in Two-Dimensional Materials, Physical Review Letters 116, 056401 (2016). doi:10.
1103/PhysRevLett.116.056401.

[17] H. Yu, G.-B. Liu, J. Tang, X. Xu, and W. Yao, Moiré excitons: From programmable quantum
emitter arrays to spin-orbit coupled artificial lattices, Science Advances 3, e1701696 (2017). doi:
10.1126/sciadv.1701696.

[18] M. Kira and S.W. Koch, Semiconductor QuantumOptics (Cambridge University Press, 2011).
doi:10.1017/CBO9781139016926.

[19] J.Zaanen,G.A.Sawatzky, and J.W.Allen,Bandgapsandelectronic structureof transition-metal
compounds, Physical Review Letters 55, 418 (1985). doi:10.1103/PhysRevLett.55.418.

[20] J. B. Torrance, P. Lacorre, C. Asavaroengchai, andR.M.Metzger,Whyare some oxidesmetal-
lic, while most are insulating?, Physica C: Superconductivity 182, 351 (1991). doi:10.1016/
0921-4534(91)90534-6.

[21] A. Klein, Energy band alignment at interfaces of semiconducting oxides: A review of experimental
determination using photoelectron spectroscopy and comparison with theoretical predictions by the
electron affinity rule, charge neutrality levels, and the common anion rule, Thin Solid Films 520,
3721 (2012). doi:10.1016/j.tsf.2011.10.055.

[22] S.-H. Wei and A. Zunger, Calculated natural band offsets of all II–VI and III–V semiconductors:
Chemical trends and the role of cation d orbitals, Applied Physics Letters 72, 2011 (1998). doi:
10.1063/1.121249.

[23] J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar,
S. Rajan, C. G. Van deWalle, E. Bellotti, C. L. Chua, R. Collazo,M. E. Coltrin, J. A. Cooper,
K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W.
Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N.
Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and
J. A. Simmons,Ultrawide-Bandgap Semiconductors: ResearchOpportunities andChallenges, Ad-
vanced Electronic Materials 4, 1600501 (2018). doi:10.1002/aelm.201600501.

[24] A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J. W. Ager, C. S. Lo, and B. Jalan, Wide
bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1, Nature Com-
munications 8, 15167 (2017). doi:10.1038/ncomms15167.

[25] M. Grundmann, H. Frenzel, A. Lajn, M. Lorenz, F. Schein, andH. vonWenckstern, Trans-
parent semiconducting oxides: materials and devices, physica status solidi (a) 207, 1437 (2010).
doi:https://doi.org/10.1002/pssa.200983771.

[26] E. Fortunato and R. Martins, Where science fiction meets reality? With oxide semiconductors!,
physica status solidi (RRL) – Rapid Research Letters 5, 336 (2011). doi:https://doi.org/
10.1002/pssr.201105246.

62

https://doi.org/10.1038/nature04233
https://doi.org/10.1021/nn303973r
https://doi.org/10.1103/PhysRevLett.116.056401
https://doi.org/10.1103/PhysRevLett.116.056401
https://doi.org/10.1126/sciadv.1701696
https://doi.org/10.1126/sciadv.1701696
https://doi.org/10.1017/CBO9781139016926
https://doi.org/10.1103/PhysRevLett.55.418
https://doi.org/10.1016/0921-4534(91)90534-6
https://doi.org/10.1016/0921-4534(91)90534-6
https://doi.org/10.1016/j.tsf.2011.10.055
https://doi.org/10.1063/1.121249
https://doi.org/10.1063/1.121249
https://doi.org/10.1002/aelm.201600501
https://doi.org/10.1038/ncomms15167
https://doi.org/https://doi.org/10.1002/pssa.200983771
https://doi.org/https://doi.org/10.1002/pssr.201105246
https://doi.org/https://doi.org/10.1002/pssr.201105246


Bibliography

[27] P. Ágoston, K. Albe, R. M. Nieminen, andM. J. Puska, Intrinsic 𝑛-Type Behavior in Transpar-
ent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO, Physi-
cal Review Letters 103, 245501 (2009). doi:10.1103/PhysRevLett.103.245501.

[28] K. H. L. Zhang, K. Xi, M. G. Blamire, and R. G. Egdell, P-type transparent conducting oxides,
Journal of Physics: Condensed Matter 28, 383002 (2016). doi:10.1088/0953-8984/28/
38/383002.

[29] H. Hosono and K. Ueda, Transparent Conductive Oxides. In S. Kasap and P. Capper, eds.,
Springer Handbook of Electronic and Photonic Materials (Cham: Springer International Pub-
lishing, 2017).

[30] J. B. Varley, A. Janotti, C. Franchini, and C. G. Van de Walle, Role of self-trapping in lumi-
nescence and 𝑝-type conductivity of wide-band-gap oxides, Physical Review B 85, 081109 (2012).
doi:10.1103/PhysRevB.85.081109.

[31] S. B. Zhang, S.-H. Wei, and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and
the defect physics of ZnO, Physical Review B 63, 075205 (2001). doi:10.1103/PhysRevB.63.
075205.

[32] Y. Youn, M. Lee, D. Kim, J. K. Jeong, Y. Kang, and S. Han, Large-Scale Computational Iden-
tification of p-Type Oxide Semiconductors by Hierarchical Screening, Chemistry of Materials 31,
5475 (2019). doi:10.1021/acs.chemmater.9b00816.

[33] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, P-type electri-
cal conduction in transparent thinfilms ofCuAlO2,Nature 389, 939 (1997). doi:10.1038/40087.

[34] N. Zheludev,The life and times of the LED—a 100-year history,Nature Photonics 1, 189 (2007).
doi:10.1038/nphoton.2007.34.

[35] N. Holonyak and S. F. Bevacqua, Coherent (visible) light emission from Ga(As1−𝑥P𝑥 ) junctions,
Applied Physics Letters 1, 82 (1962). doi:10.1063/1.1753706.

[36] Y.Nanishi,Thebirth of the blue LED,Nature Photonics 8, 884 (2014). doi:10.1038/nphoton.
2014.291.

[37] E. F. Schubert and J. K. Kim, Solid-State Light SourcesGettingSmart, Science 308, 1274 (2005).
doi:10.1126/science.1108712.

[38] S. Ye, F. Xiao, Y. Pan, Y. Ma, and Q. Zhang, Phosphors in phosphor-converted white light-
emitting diodes: Recent advances in materials, techniques and properties, Materials Science and
Engineering: R: Reports 71, 1 (2010). doi:10.1016/j.mser.2010.07.001.

[39] W. Yen, M. Raukas, S. Basun, W. van Schaik, and U. Happek, Optical and photoconductive
properties of cerium-doped crystalline solids, Journal of Luminescence 69, 287 (1996). doi:10.
1016/S0022-2313(96)00107-X.

[40] Y.Ma, L. Zhang, T. Zhou, B. Sun, Y.Wang, J. Kang, P. Gao, J. Huang, F. A. Selim, C.Wong,
M. Li, and H. Chen, High recorded color rendering index in single Ce,(Pr,Mn):YAG transparent
ceramics for high-powerwhite LEDs/LDs, Journal ofMaterial Chemistry C 8, 4329 (2020). doi:
10.1039/D0TC00032A.

[41] C. Becher, A. Kiraz, P. Michler, A. Imamoğlu, W. V. Schoenfeld, P. M. Petroff, L. Zhang,
and E. Hu, Nonclassical radiation from a single self-assembled InAs quantum dot, Physical Re-
view B 63, 121312 (2001). doi:10.1103/PhysRevB.63.121312.

63

https://doi.org/10.1103/PhysRevLett.103.245501
https://doi.org/10.1088/0953-8984/28/38/383002
https://doi.org/10.1088/0953-8984/28/38/383002
https://doi.org/10.1103/PhysRevB.85.081109
https://doi.org/10.1103/PhysRevB.63.075205
https://doi.org/10.1103/PhysRevB.63.075205
https://doi.org/10.1021/acs.chemmater.9b00816
https://doi.org/10.1038/40087
https://doi.org/10.1038/nphoton.2007.34
https://doi.org/10.1063/1.1753706
https://doi.org/10.1038/nphoton.2014.291
https://doi.org/10.1038/nphoton.2014.291
https://doi.org/10.1126/science.1108712
https://doi.org/10.1016/j.mser.2010.07.001
https://doi.org/10.1016/S0022-2313(96)00107-X
https://doi.org/10.1016/S0022-2313(96)00107-X
https://doi.org/10.1039/D0TC00032A
https://doi.org/10.1039/D0TC00032A
https://doi.org/10.1103/PhysRevB.63.121312


Bibliography

[42] C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Stable Solid-State Source of Single Pho-
tons, Physical Review Letters 85, 290 (2000). doi:10.1103/PhysRevLett.85.290.

[43] R. Loudon, Photon Bunching and Antibunching, Physics Bulletin 27, 21 (1976). doi:10.1088/
0031-9112/27/1/023.

[44] B. Lienhard, T. Schröder, S. Mouradian, F. Dolde, T. T. Tran, I. Aharonovich, and D. En-
glund, Bright and photostable single-photon emitter in silicon carbide,Optica 3, 768 (2016). doi:
10.1364/OPTICA.3.000768.

[45] A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, Single Pho-
ton Quantum Cryptography, Physical Review Letters 89, 187901 (2002). doi:10.1103/
PhysRevLett.89.187901.

[46] M.Berthel, O.Mollet, G.Dantelle, T.Gacoin, S.Huant, andA.Drezet,Photophysics of single
nitrogen-vacancy centers in diamond nanocrystals, Physical Review B 91, 035308 (2015). doi:
10.1103/PhysRevB.91.035308.

[47] X. Cao, M. Zopf, and F. Ding, Telecom wavelength single photon sources, Journal of Semicon-
ductors 40, 071901 (2019). doi:10.1088/1674-4926/40/7/071901.

[48] G.R. Fisher andP.Barnes,Towardsaunifiedviewof polytypism in silicon carbide,Philosophical
Magazine B 61, 217 (1990). doi:10.1080/13642819008205522.

[49] H. J. von Bardeleben, J. L. Cantin, E. Rauls, and U. Gerstmann, Identification andmagneto-
optical properties of the NV center in 4𝐻 − SiC, Physical Review B 92, 064104 (2015). doi:10.
1103/PhysRevB.92.064104.

[50] S. I. Sato, T.Narahara, S.Onoda, Y. Yamazaki, Y.Hijikata, B. C.Gibson, A.Greentree, and
T. Ohshima,Near Infrared Photoluminescence of NCVSi- Centers inHigh-Purity Semi-Insulating
4H-SiC Irradiatedwith Energetic Charged Particles, in SiliconCarbide andRelatedMaterials 2019,
vol. 1004 ofMaterials Science Forum, 355, Trans Tech Publications Ltd, 2020. doi:10.4028/
www.scientific.net/MSF.1004.355.

[51] S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima,
A silicon carbide room-temperature single-photon source, Nature Materials 13, 151 (2014). doi:
10.1038/nmat3806.

[52] V. L. Solozhenko, V. Z. Turkevich, and W. B. Holzapfel, Refined Phase Diagram of Boron Ni-
tride,The Journal of Physical Chemistry B 103, 2903 (1999). doi:10.1021/jp984682c.

[53] M. R. Rosenberger, C. K. Dass, H.-J. Chuang, S. V. Sivaram, K. M. McCreary, J. R. Hen-
drickson, and B. T. Jonker, Quantum Calligraphy: Writing Single-Photon Emitters in a Two-
DimensionalMaterials Platform, ACS Nano 13, 904 (2019). doi:10.1021/acsnano.8b08730.

[54] Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alka-
uskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, PhotoinducedModification of Single-
Photon Emitters in Hexagonal Boron Nitride, ACS Photonics 3, 2490 (2016). doi:10.1021/
acsphotonics.6b00736.

[55] R. Bourrellier, S.Meuret, A. Tararan, O. Stéphan,M.Kociak, L.H.G. Tizei, andA. Zobelli,
Bright UV Single Photon Emission at Point Defects in h-BN, Nano Letters 16, 4317 (2016). doi:
10.1021/acs.nanolett.6b01368.

[56] A. D. Oyedele, S. Yang, L. Liang, A. A. Puretzky, K. Wang, J. Zhang, P. Yu, P. R. Puda-
saini, A. W. Ghosh, Z. Liu, C. M. Rouleau, B. G. Sumpter, M. F. Chisholm, W. Zhou,

64

https://doi.org/10.1103/PhysRevLett.85.290
https://doi.org/10.1088/0031-9112/27/1/023
https://doi.org/10.1088/0031-9112/27/1/023
https://doi.org/10.1364/OPTICA.3.000768
https://doi.org/10.1364/OPTICA.3.000768
https://doi.org/10.1103/PhysRevLett.89.187901
https://doi.org/10.1103/PhysRevLett.89.187901
https://doi.org/10.1103/PhysRevB.91.035308
https://doi.org/10.1103/PhysRevB.91.035308
https://doi.org/10.1088/1674-4926/40/7/071901
https://doi.org/10.1080/13642819008205522
https://doi.org/10.1103/PhysRevB.92.064104
https://doi.org/10.1103/PhysRevB.92.064104
https://doi.org/10.4028/www.scientific.net/MSF.1004.355
https://doi.org/10.4028/www.scientific.net/MSF.1004.355
https://doi.org/10.1038/nmat3806
https://doi.org/10.1038/nmat3806
https://doi.org/10.1021/jp984682c
https://doi.org/10.1021/acsnano.8b08730
https://doi.org/10.1021/acsphotonics.6b00736
https://doi.org/10.1021/acsphotonics.6b00736
https://doi.org/10.1021/acs.nanolett.6b01368
https://doi.org/10.1021/acs.nanolett.6b01368


Bibliography

P. D. Rack, D. B. Geohegan, and K. Xiao, PdSe2: Pentagonal Two-Dimensional Layers with
High Air Stability for Electronics, Journal of the American Chemical Society 139, 14090 (2017).
doi:10.1021/jacs.7b04865.

[57] A. Stukowski,Visualizationandanalysis of atomistic simulationdatawithOVITO–theOpenVisu-
alization Tool,Modelling and Simulation in Materials Science and Engineering 18, 015012
(2009). doi:10.1088/0965-0393/18/1/015012.

[58] S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N.
Gjerding, D. Torelli, P. M. Larsen, A. C. Riis-Jensen, J. Gath, K. W. Jacobsen, J. J.
Mortensen, T. Olsen, and K. S. Thygesen, The Computational 2D Materials Database: high-
throughput modeling and discovery of atomically thin crystals, 2D Materials 5, 042002 (2018).
doi:10.1088/2053-1583/aacfc1.

[59] M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, N. R.
Knøsgaard, M. Kruse, A. H. Larsen, S. Manti, T. G. Pedersen, U. Petralanda, T. Skovhus,
M. K. Svendsen, J. J. Mortensen, T. Olsen, and K. S. Thygesen, Recent progress of the Com-
putational 2D Materials Database (C2DB), 2D Materials 8, 044002 (2021). doi:10.1088/
2053-1583/ac1059.

[60] R. G. Dickinson and L. Pauling, THE CRYSTAL STRUCTURE OF MOLYBDENITE, Journal
of the American Chemical Society 45, 1466 (1923). doi:10.1021/ja01659a020.

[61] J. Gusakova, X. Wang, L. L. Shiau, A. Krivosheeva, V. Shaposhnikov, V. Borisenko,
V. Gusakov, and B. K. Tay, Electronic Properties of Bulk and Monolayer TMDs: Theoretical
Study Within DFT Framework (GVJ-2e Method), physica status solidi (a) 214, 1700218 (2017).
doi:10.1002/pssa.201700218.

[62] H. Li, J. Wu, Z. Yin, and H. Zhang, Preparation and Applications of Mechanically Exfoliated
Single-Layer and Multilayer MoS2 and WSe2 Nanosheets, Accounts of Chemical Research 47,
1067 (2014). doi:10.1021/ar4002312.

[63] Y.-H. Lee, X.-Q. Zhang,W. Zhang,M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W.
Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, Synthesis of Large-Area MoS2 Atomic Layers with
Chemical Vapor Deposition, Advanced Materials 24, 2320 (2012). doi:https://doi.org/10.
1002/adma.201104798.

[64] D. O. Lindroth and P. Erhart, Thermal transport in van der Waals solids from first-principles
calculations, Physical Review B 94, 115205 (2016). doi:10.1103/PhysRevB.94.115205.

[65] C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, Band alignment
of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,
Applied Physics Letters 103, 053513 (2013). doi:10.1063/1.4817409.

[66] M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, Kohn-Sham potential with disconti-
nuity for band gapmaterials, Physical Review B 82, 115106 (2010). doi:10.1103/PhysRevB.
82.115106.

[67] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Optical Spectrum ofMoS2: Many-Body Effects
and Diversity of Exciton States, Physical Review Letters 111, 216805 (2013). doi:10.1103/
PhysRevLett.111.216805.

65

https://doi.org/10.1021/jacs.7b04865
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/2053-1583/aacfc1
https://doi.org/10.1088/2053-1583/ac1059
https://doi.org/10.1088/2053-1583/ac1059
https://doi.org/10.1021/ja01659a020
https://doi.org/10.1002/pssa.201700218
https://doi.org/10.1021/ar4002312
https://doi.org/https://doi.org/10.1002/adma.201104798
https://doi.org/https://doi.org/10.1002/adma.201104798
https://doi.org/10.1103/PhysRevB.94.115205
https://doi.org/10.1063/1.4817409
https://doi.org/10.1103/PhysRevB.82.115106
https://doi.org/10.1103/PhysRevB.82.115106
https://doi.org/10.1103/PhysRevLett.111.216805
https://doi.org/10.1103/PhysRevLett.111.216805


Bibliography

[68] W. Shan, B. D. Little, A. J. Fischer, J. J. Song, B. Goldenberg, W. G. Perry, M. D. Bremser,
and R. F. Davis, Binding energy for the intrinsic excitons in wurtzite GaN, Physical Review B 54,
16369 (1996). doi:10.1103/PhysRevB.54.16369.

[69] B. Sklénard, A. Dragoni, F. Triozon, and V. Olevano, Optical vs electronic gap of hafnia by
ab initio Bethe-Salpeter equation, Applied Physics Letters 113, 172903 (2018). doi:10.1063/1.
5044631.

[70] T. Cheiwchanchamnangij and W. R. L. Lambrecht, Quasiparticle band structure calculation
of monolayer, bilayer, and bulk MoS2, Physical Review B 85, 205302 (2012). doi:10.1103/
PhysRevB.85.205302.

[71] K. Berland and P. Hyldgaard, Exchange functional that tests the robustness of the plasmon de-
scription of the van der Waals density functional, Physical Review B 89, 035412 (2014). doi:
10.1103/PhysRevB.89.035412.

[72] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero,
Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43 (2018).
doi:10.1038/nature26160.

[73] L. Xian, D. M. Kennes, N. Tancogne-Dejean, M. Altarelli, and A. Rubio, Multiflat Bands
andStrongCorrelations inTwistedBilayerBoronNitride: Doping-InducedCorrelated Insulator and
Superconductor,Nano Letters 19, 4934 (2019). doi:10.1021/acs.nanolett.9b00986.

[74] M. H. Naik and M. Jain, Ultraflatbands and Shear Solitons in Moiré Patterns of Twisted Bilayer
Transition Metal Dichalcogenides, Physical Review Letters 121, 266401 (2018). doi:10.1103/
PhysRevLett.121.266401.

[75] S. Shallcross, S. Sharma, and O. A. Pankratov,Quantum Interference at the Twist Boundary in
Graphene, Physical Review Letters 101, 056803 (2008). doi:10.1103/PhysRevLett.101.
056803.

[76] K. Hermann, Periodic overlayers and moiré patterns: theoretical studies of geometric properties,
Journal of Physics: Condensed Matter 24, 314210 (2012). doi:10.1088/0953-8984/24/
31/314210.

[77] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Graphene Bilayer with
a Twist: Electronic Structure, Physical Review Letters 99, 256802 (2007). doi:10.1103/
PhysRevLett.99.256802.

[78] B. Alling, A. V. Ruban, A. Karimi, O. E. Peil, S. I. Simak, L. Hultman, and I. A. Abrikosov,
Mixing and decomposition thermodynamics of 𝑐−Ti1−𝑥Al𝑥N from first-principles calculations,
Physical Review B 75, 045123 (2007). doi:10.1103/PhysRevB.75.045123.

[79] M. Ångqvist, W. A. Muñoz, J. M. Rahm, E. Fransson, C. Durniak, P. Rozyczko, T. H. Rod,
and P. Erhart, ICET – A Python Library for Constructing and Sampling Alloy Cluster Expansions,
AdvTheo. Simul. 2, 1900015 (2019). doi:10.1002/adts.201900015.

[80] C. G. Van de Walle and J. Neugebauer, First-principles calculations for defects and impuri-
ties: Applications to III-nitrides, Journal of Applied Physics 95, 3851 (2004). doi:10.1063/
1.1682673.

[81] S. Harada, K. Tanaka, and H. Inui, Thermoelectric properties and crystallographic shear struc-
tures in titanium oxides of the Magnèli phases, Journal of Applied Physics 108, 083703 (2010).
doi:10.1063/1.3498801.

66

https://doi.org/10.1103/PhysRevB.54.16369
https://doi.org/10.1063/1.5044631
https://doi.org/10.1063/1.5044631
https://doi.org/10.1103/PhysRevB.85.205302
https://doi.org/10.1103/PhysRevB.85.205302
https://doi.org/10.1103/PhysRevB.89.035412
https://doi.org/10.1103/PhysRevB.89.035412
https://doi.org/10.1038/nature26160
https://doi.org/10.1021/acs.nanolett.9b00986
https://doi.org/10.1103/PhysRevLett.121.266401
https://doi.org/10.1103/PhysRevLett.121.266401
https://doi.org/10.1103/PhysRevLett.101.056803
https://doi.org/10.1103/PhysRevLett.101.056803
https://doi.org/10.1088/0953-8984/24/31/314210
https://doi.org/10.1088/0953-8984/24/31/314210
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevB.75.045123
https://doi.org/10.1002/adts.201900015
https://doi.org/10.1063/1.1682673
https://doi.org/10.1063/1.1682673
https://doi.org/10.1063/1.3498801


Bibliography

[82] S. B. Zhang and J. E. Northrup, Chemical potential dependence of defect formation energies in
GaAs: Application to Ga self-diffusion, Physical Review Letters 67, 2339 (1991). doi:10.1103/
PhysRevLett.67.2339.

[83] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin,
X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and
Surfaces, Physical Review Letters 100, 136406 (2008). doi:10.1103/PhysRevLett.100.
136406.

[84] M. Fox,Optical Properties of Solids (OUP Oxford, 2010). ISBN 9780199573363.
[85] V. Barone, J. Bloino, M. Biczysko, and F. Santoro, Fully Integrated Approach to Compute Vi-

brationallyResolvedOpticalSpectra: FromSmallMolecules toMacrosystems, Journal ofChemical
Theory and Computation 5, 540 (2009). doi:10.1021/ct8004744.

[86] A. Baiardi, J. Bloino, and V. Barone, General time dependent approach to vibronic spectroscopy
including franck-condon, herzberg-teller, and duschinsky effects, Journal of ChemicalTheory and
Computation 9, 4097 (2013). doi:10.1021/ct400450k.

[87] G. Mahan,Many-Particle Physics (Springer US, 2000). ISBN 9780306463389.
[88] T.Miyakawa andD. L.Dexter, PhononSidebands,MultiphononRelaxation ofExcitedStates, and

Phonon-Assisted Energy Transfer between Ions in Solids, Physical Review B 1, 2961 (1970). doi:
10.1103/PhysRevB.1.2961.

[89] R.Kubo andY. Toyozawa,Application of theMethodofGeneratingFunction toRadiative andNon-
Radiative Transitions of a Trapped Electron in a Crystal, Progress ofTheoretical Physics 13, 160
(1955). doi:10.1143/ptp.13.160.

[90] J. J. Markham, Interaction of Normal Modes with Electron Traps, Reviews of Modern Physics
31, 956 (1959). doi:10.1103/RevModPhys.31.956.

[91] A. Kelley, Condensed-Phase Molecular Spectroscopy and Photophysics (Wiley, 2012).
ISBN 9781118493069.

[92] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review 136, B864 (1964).
doi:10.1103/PhysRev.136.B864.

[93] R. M. Martin, Electronic Structure: BasicTheory and PracticalMethods (Cambridge University
Press, 2004). doi:10.1017/CBO9780511805769.

[94] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects,
Physical Review 140, A1133 (1965). doi:10.1103/PhysRev.140.A1133.

[95] J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly Constrained and Appropriately Normed
Semilocal Density Functional, Physical Review Letters 115, 036402 (2015). doi:10.1103/
PhysRevLett.115.036402.

[96] J. P. PerdewandK. Schmidt, Jacob’s ladder of density functional approximations for the exchange-
correlation energy, AIP Conference Proceedings 577, 1 (2001). doi:10.1063/1.1390175.

[97] D.M.Ceperley andB. J. Alder,GroundState of theElectronGas byaStochasticMethod,Physical
Review Letters 45, 566 (1980). doi:10.1103/PhysRevLett.45.566.

[98] J. P. Perdew and Y.Wang, Accurate and simple analytic representation of the electron-gas correla-
tion energy, Physical Review B 45, 13244 (1992). doi:10.1103/PhysRevB.45.13244.

[99] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple,
Physical Review Letters 77, 3865 (1996). doi:10.1103/PhysRevLett.77.3865.

67

https://doi.org/10.1103/PhysRevLett.67.2339
https://doi.org/10.1103/PhysRevLett.67.2339
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1021/ct8004744
https://doi.org/10.1021/ct400450k
https://doi.org/10.1103/PhysRevB.1.2961
https://doi.org/10.1103/PhysRevB.1.2961
https://doi.org/10.1143/ptp.13.160
https://doi.org/10.1103/RevModPhys.31.956
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1017/CBO9780511805769
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1063/1.1390175
https://doi.org/10.1103/PhysRevLett.45.566
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevLett.77.3865


Bibliography

[100] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals
Density Functional for General Geometries, Physical Review Letters 92, 246401 (2004). doi:
10.1103/PhysRevLett.92.246401.

[101] L. Gharaee, P. Erhart, and P. Hyldgaard, Finite-temperature properties of nonmagnetic transi-
tion metals: Comparison of the performance of constraint-based semilocal and nonlocal functionals,
Physical Review B 95, 085147 (2017). doi:10.1103/PhysRevB.95.085147.

[102] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for
many-electron systems, Physical Review B 23, 5048 (1981). doi:10.1103/PhysRevB.23.
5048.

[103] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density
functional approximations,The Journal of Chemical Physics 105, 9982 (1996). doi:10.1063/
1.472933.

[104] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb
potential,The Journal of Chemical Physics 118, 8207 (2003). doi:10.1063/1.1564060.

[105] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum: “Hybrid functionals based on a screened
Coulomb potential” [Journal of Chemical Physics 118, 8207 (2003)], The Journal of Chemical
Physics 124, 219906 (2006). doi:10.1063/1.2204597.

[106] G. Makov and M. C. Payne, Periodic boundary conditions in ab initio calculations, Physical Re-
view B 51, 4014 (1995). doi:10.1103/PhysRevB.51.4014.

[107] S. Lany and A. Zunger, Assessment of correction methods for the band-gap problem and for finite-
size effects in supercell defect calculations: Case studies for ZnO and GaAs, Physical Review B 78,
235104 (2008). doi:10.1103/PhysRevB.78.235104.

[108] H.-P. Komsa, N. Berseneva, A. V. Krasheninnikov, and R. M. Nieminen, Charged Point De-
fects in the Flatland: Accurate FormationEnergyCalculations in Two-DimensionalMaterials, Phys-
ical Review X 4, 031044 (2014). doi:10.1103/PhysRevX.4.031044.

[109] H.-P. Komsa, N. Berseneva, A. V. Krasheninnikov, and R.M. Nieminen, Erratum: Charged
Point Defects in the Flatland: Accurate Formation Energy Calculations in Two-DimensionalMateri-
als [Physical Review X 4, 031044 (2014)], Physical Review X 8, 039902 (2018). doi:10.1103/
PhysRevX.8.039902.

[110] P. Erhart, B. Sadigh, A. Schleife, andD. Åberg, First-principles study of codoping in lanthanum
bromide, Physical Review B 91, 165206 (2015). doi:10.1103/PhysRevB.91.165206.

[111] P. E. Blöchl, Projector augmented-wave method, Physical Review B 50, 17953 (1994). doi:10.
1103/PhysRevB.50.17953.

[112] C. Rostgaard,TheProjector Augmented-waveMethod, 2009. arxiv/0910.1921.
[113] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Real-space grid implementation of the

projector augmented wave method, Physical Review B 71, 035109 (2005). doi:10.1103/
PhysRevB.71.035109.

[114] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt,
C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen,
L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Pet-
zold, N. A. Romero, J. Stausholm-Møller,M. Strange, G. A. Tritsaris,M. Vanin,M.Walter,
B. Hammer, H. Häkkinen, G. K. H. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska,

68

https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevB.95.085147
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1063/1.472933
https://doi.org/10.1063/1.472933
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.2204597
https://doi.org/10.1103/PhysRevB.51.4014
https://doi.org/10.1103/PhysRevB.78.235104
https://doi.org/10.1103/PhysRevX.4.031044
https://doi.org/10.1103/PhysRevX.8.039902
https://doi.org/10.1103/PhysRevX.8.039902
https://doi.org/10.1103/PhysRevB.91.165206
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.71.035109
https://doi.org/10.1103/PhysRevB.71.035109


Bibliography

T. T. Rantala, J. Schiøtz, K. S. Thygesen, and K. W. Jacobsen, Electronic structure calcula-
tionswithGPAW:a real-space implementation of the projector augmented-wavemethod, Journal of
Physics: CondensedMatter 22, 253202 (2010). doi:10.1088/0953-8984/22/25/253202.

[115] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Physical Review B 47,
558 (1993). doi:10.1103/PhysRevB.47.558.

[116] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and
semiconductors using a plane-wave basis set, Computational Materials Science 6, 15 (1996).
doi:10.1016/0927-0256(96)00008-0.

[117] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set, Physical Review B 54, 11169 (1996). doi:10.1103/PhysRevB.
54.11169.

[118] L. Hedin, New Method for Calculating the One-Particle Green’s Function with Application to the
Electron-Gas Problem, Physical Review 139, A796 (1965). doi:10.1103/PhysRev.a139.
A796.

[119] F. Aryasetiawan andO.Gunnarsson,TheGWmethod,Reports onProgress in Physics 61, 237
(1998). doi:10.1088/0034-4885/61/3/002.

[120] A. Szabo and N. S. Ostlund,Modern Quantum Chemistry: Introduction to Advanced Electronic
StructureTheory (Dover Publications, 1996). ISBN 9780486691862.

[121] X.-Z. Li, R. Gómez-Abal, H. Jiang, C. Ambrosch-Draxl, and M. Scheffler, Impact of widely
used approximations to the𝐺0𝑊0 method: an all-electron perspective,New Journal of Physics 14,
023006 (2012). doi:10.1088/1367-2630/14/2/023006.

[122] F. Caruso, P. Rinke, X. Ren, M. Scheffler, and A. Rubio, Unified description of ground and
excited states of finite systems: The self-consistent 𝐺𝑊 approach, Physical Review B 86, 081102
(2012). doi:10.1103/PhysRevB.86.081102.

[123] K.Andersen, S. Latini, andK.S.Thygesen,DielectricGenomeof vanderWaalsHeterostructures,
Nano Letters 15, 4616 (2015). doi:10.1021/acs.nanolett.5b01251.

[124] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Screening and many-body effects in two-
dimensional crystals: Monolayer MoS2, Physical Review B 93, 235435 (2016). doi:10.1103/
PhysRevB.93.235435.

[125] R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, and L. M. Ghiringhelli, SISSO:
A compressed-sensing method for identifying the best low-dimensional descriptor in an immen-
sity of offered candidates, Physical Review Materials 2, 083802 (2018). doi:10.1103/
PhysRevMaterials.2.083802.

[126] J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. Marques, Recent advances and appli-
cations of machine learning in solid-state materials science, npj Computational Materials 5, 83
(2019). doi:10.1038/s41524-019-0221-0.

[127] L. Shi, K. Xu, and L.-W. Wang, Comparative study of ab initio nonradiative recombination rate
calculations under different formalisms, Physical Review B 91, 205315 (2015). doi:10.1103/
PhysRevB.91.205315.

69

https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRev.a139.A796
https://doi.org/10.1103/PhysRev.a139.A796
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1088/1367-2630/14/2/023006
https://doi.org/10.1103/PhysRevB.86.081102
https://doi.org/10.1021/acs.nanolett.5b01251
https://doi.org/10.1103/PhysRevB.93.235435
https://doi.org/10.1103/PhysRevB.93.235435
https://doi.org/10.1103/PhysRevMaterials.2.083802
https://doi.org/10.1103/PhysRevMaterials.2.083802
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1103/PhysRevB.91.205315
https://doi.org/10.1103/PhysRevB.91.205315



	List of abbreviations
	Introduction
	Background
	Defects in wide band gap materials
	Oxides
	Carbides and nitrides

	Optical and thermodynamical properties of TMDs
	Transition metal dichalcogenides
	Excitons
	Bilayers and moiré superlattices
	Binary alloys


	Point defects
	Thermodynamics
	Formation energy
	Configurational entropy
	Charge transition levels
	Chemical potential
	Electron chemical potential

	Electronic structure
	Optical properties
	Radiative transitions
	Vibronic transitions involving defect states


	First-principles methodology
	Background
	Density functional theory
	The Hohenberg-Kohn theorems
	Kohn-Sham method
	Exchange-correlation potential
	Self-interaction error
	Charged systems
	Excited states
	Projector augmented wave method

	Beyond density functional theory
	GW approximation

	Phonons
	Theory of small oscillations
	Computational method


	Oxygen vacancies in wide band gap oxides
	Alignment of defect levels
	The three hallmarks of deep oxygen vacancy levels
	Luminescence quenching

	Color centers in h-BN and 4H-SiC
	Color centers in 4H-SiC
	Color centers in h-BN

	Optical properties of TMDs
	Excitons in twisted bilayers
	Untwisted bilayers
	Monolayer TMD alloys

	Outlook
	Acknowledgments
	Bibliography
	Papers I–VIII
	Tom sida
	Tom sida
	Tom sida
	paper-VII.pdf
	The moiré potential in twisted transition metal dichalcogenide bilayers
	Abstract
	Introduction
	Methodology
	Computational details

	Results
	Structural properties
	Moiré potential
	Hybridization and tunneling in MoS2/MoS2
	Extension to other TMDs
	Bilayer excitons

	Discussion
	Conclusions
	Acknowledgments
	References


	Tom sida
	paper-VIII.pdf
	 High-throughput characterization of transition metal dichalcogenide alloys: Thermodynamic stability and electronic band alignment 
	Introduction
	Methodology
	Results and discussion
	Thermodynamic properties
	Category A: Phase separation into boundary phases
	Category B: Systems with in-plane ordering
	Category C: Systems with out-of-plane (Janus-type) ordering
	Comparison with experiment
	Comparison with previous modeling studies

	Models for predicting alloying behavior
	Electronic structure

	Conclusions
	Acknowledgments
	References


	paper-VIII-SI.pdf
	Supplementary Notes
	S1. Reference calculations for cluster expansion construction
	S2. Cluster expansion construction
	S3. Calculation of critical temperatures and order parameters
	S4. Electronic structure calculations

	Supplementary Tables
	S1. Cluster expansion parameters for M-site mixing alloys
	S2. Cluster expansion parameters for X-site mixing alloys
	S3. Boundary phase features
	S4. Elemental properties
	S5. Bowing parameters

	Supplementary Figures
	S1. Valence band edge position for Hf2xSe2(1-x).
	S2. Lattice constant as a function of concentration for Mo and W-based alloys (spacegroup 187)
	S3. Lattice constant as a function of concentration for Hf, Zr and Pd-based alloys (spacegroup 164)
	S4. Mixing energies (part 1) for Hf/Mo/Ti/W/Zr-based M-site mixing (spacegroup 187)
	S5. Mixing energies (part 2) for Hf/Mo/Ti/W/Zr-based M-site mixing (spacegroup 187)
	S6. Mixing energies for Hf/Mo/Ti/W/Zr-based X-site mixing (spacegroup 187)
	S7. Mixing energies for Hf/Ti/Zr-based M-site mixing (spacegroup 164)
	S8. Mixing energies for Hf/Ti/Zr-based X-site mixing (spacegroup 164)
	S9. Mixing energies for Pd/Pt-based M-site mixing (spacegroup 164)
	S10. Mixing energies for Pd/Pt-based X-site mixing (spacegroup 164)
	S11. Results from MC sampling for Mo/W-based M-site mixing (spacegroup 187)
	S12. Results from MC sampling for Mo/Ti-based M-site mixing (spacegroup 187)
	S13. Results from MC sampling for Mo-based X-site mixing (spacegroup 187)
	S14. Results from MC sampling for W-based X-site mixing (spacegroup 187)
	S15. Results from MC sampling for Hf/Zr-based M-site mixing (spacegroup 164)
	S16. Results from MC sampling for Hf/Ti-based M-site mixing (spacegroup 164)
	S17. Results from MC sampling for Ti/Zr-based M-site mixing (spacegroup 164)
	S18. Results from MC sampling for Hf-based X-site mixing (spacegroup 164)
	S19. Results from MC sampling for Zr-based X-site mixing (spacegroup 164)
	S20. Results from MC sampling for Pd/Pt-based M-site mixing (spacegroup 164)
	S21. Results from MC sampling for Pd-based X-site mixing (spacegroup 164)
	S22. Results from MC sampling for Pt-based X-site mixing (spacegroup 164)

	Supplementary References




