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Abstract 

Occupational safety remains of interest in the construction sector. The frequency of accidents has 

decreased in Sweden but only to a level that remains constant over the last ten years. Although Sweden 

shows to be performing better in comparison to other European countries, the construction industry 

continues to contribute to a fifth of fatal accidents in Europe. The latter situation pushes towards the 

need for reducing the frequency and fatalities of occupational accident occurrences in the construction 

sector. In the Swedish context, several initiatives have been established for prevention and accident 

frequency reduction. However, risk analysis models and causal links have been found to be rare in this 

context. 

The continuous reporting of accidents and near-misses creates large datasets with potentially useful 

information about accidents and their causes. In addition to that, there has been an increased research 

interest in analysing this data through machine learning (ML). The state-of-art research efforts include 

applying ML to analyse the textual data within the accumulated accident reports, identifying 

contributing factors, and extracting accident information. However, solutions that are created by ML 

models can lead to changes for a company and the industry. ML modelling includes a prototype 

development that is accompanied by the industry’s and domain experts’ requirements. The aim of this 

thesis is to investigate how ML based methods and techniques could be used to develop a research-

based prototype for occupational accident prevention in a contracting company. The thesis focus is on 

the exploration of a development processes that bridges ML data analysis technical part with the context 

of safety in a contracting company. The thesis builds on accident causation models (ACMs) and ML 

methods, utilising the Cross Industry Standard Process Development Method (CRISP-DM) as a method. 

These were employed to interpret and understand the empirical material of accident reports and 

interviews within the health and safety (H&S) unit. 

The results of the thesis showed that analysing accident reports via ML can lead to the discovery of 

knowledge about accidents. However, there were several challenges that were found to hinder the 

extraction of knowledge and the application of ML. The identified challenges mainly related to the 

standardization of the development process and, the feasibility of implementation and evaluation. 

Moreover, the tendency of the ML-related literature to focus on predicting severity was found not 

compatible either with the function of ML analysis or the findings of accident causation literature which 

considers severity as a stochastic element. The analysis further concluded that ACMs seemed to have 

reached a mature stage, where a new approach is needed to understand the rules that govern the 

relationships between emergent new risks – rather than the systemization of risks themselves. The 

analysis of accident reports by ML needs further research in systemized methods for such analysis in 

the domain of construction and in the context of contracting companies – as only few research efforts 

have focused on this area regarding ML evaluation metrics and data pre-processing.  

Key words: Accident report, accident causation models, construction, machine learning, prevention, 

health and safety. 
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1. Introduction 
This project focuses on identifying risks associated with occupational accidents within a Swedish 

Contracting Company, particularly those that result in injuries. 

Contracting companies have improved their processes and registration of accident reports. These 

improvements have been parallel to developments in regulations and the available software for 

accident registration. There is, however, a desire and need to learn from failures by analysing the 

accidents that are now reported more consistently. Moreover, new opportunities to gain knowledge 

about the causes of accidents through the registration database have emerged, together with the 

increased interest in and the capabilities of machine learning (ML), both of which could potentially 

improve accident prevention.  

1.1. Background 
The health and safety (H&S) units within large contractor organisations continuously report their 

internal accidents and near-misses (incidents) that have occurred on construction sites. The 

accumulated reports form a database that details the different types of accidents. In addition, 

production personnel such as the site managers and safety engineers have practical knowledge of 

accidents and their causes. However, it is seldom that these accumulated accident reports are analysed. 

Nonetheless, there has been a recent increasing trend within publications in accident prevention to look 

at this data using ML (Xu et al. 2021). These include applying ML to analyse the textual data within 

the accumulated accident reports in contracting companies and national registries, identifying 

contributing factors, and extracting accident information (Hegde and Rokseth 2020, Sarkar and Maiti 

2020, Khallaf and Khallaf 2021, Hou et al. 2021). 

ML, designed to find underlying patterns in a dataset, can be used to predict situations that may pose 

the risk of accidents at construction sites (Baek et al. 2021, Vallmuur 2015). ML systems automatically 

improve their built-in functionality through experience (Jordan and Mitchell 2015). The use of ML – 

a subdivision within artificial intelligence (AI) - in a construction context is now being seen as a 

promising development (Vallmuur 2015, Kifokeris and Xenidis 2018, Pan and Zhang 2021). Another 

key tool in understanding the accumulated data is data mining, which is understood as "the process of 

discovering interesting patterns from large amounts of data" (Han et al. 2011).  

Vallmuur (2015) reviewed eight ML system examples that analyse the database of registered 

occupational accidents. The ML systems use Bayesian networks (BN), decision trees (DT) and 

association rule mining. Examples of using ML in the prevention of occupational accidents are 

becoming more common within relevant published research studies (Hegde and Rokseth 2020). 

Algorithms such as DT, Random Forest (RF), Stochastic Gradient Tree Boosting (SGTB), artificial 

neural network (ANN), and natural language processing (NLP) for data pre-processing (Vallmuur 

2015, Witten et al. 2016, Hegde and Rokseth 2020, Hou et al. 2021) can be used to analyse the data of 

injury cases. The purpose of the latter type of analysis includes the prediction of accident types, 

classification of causes, and information extraction. It is important to note that in this thesis, the author 

terms a "prototype" as the designed digital software that suggests a precise implementation for ML-

based data analytics, i.e., that shows means of application and an interface that is ready for use.  
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Despite the attention being paid to the importance of safety in the workplace, the building industry has 

the highest frequency of fatalities (Arbetsmiljöverket 2021). Moreover, the rate of fatal injuries has 

not decreased since 2019 compared to other industries (such as transport and warehousing) 

(Arbetsmiljöverket 2021). The frequency of accidents (number of accidents / 1000 employees) has 

levelled out in the last decade, hanging roughly at around 11 (Byggforetagen 2021). The accident types 

show a rather complex and scattered pattern: body movement with physical overload (18%), injuries 

from tools and gear (16%), collapse, falls and rupture of material (12%), falls from a height (12%) and 

falls at the same level (tripping) (12%). Although Sweden's figures are better than other European 

countries (e.g., France, Portugal, and Germany), the construction industry accounts for one-fifth of all 

fatal accidents at work in the EU. Of these fatal accidents, 27 occurred within the construction sector 

(Eurostat 2018). There is a need to reduce the injury frequency and fatalities in the construction 

industry. 

The construction industry is characterized by high complexity, uncertainty, and interdependence 

(Berglund et al. 2017). This situation creates difficulties in operational planning and creating a safe 

and disturbance-free workflow. An agenda for safer construction has been pursued by both 

practitioners and researchers alike. Multiple routines and approaches exist in Swedish projects and 

companies (Törner and Pousette 2009). Accident prevention research has developed several risk 

analyses and accident-related causal models (Behm and Schneller 2013, Berglund et al. 2017, Harms-

Ringdahl 2013, Jørgensen 2002, Reason 2008). Some of these models systematically distribute 

different levels to different causes and systematize causes in a fault-tree analysis or a hierarchical 

analysis, assuming that multiple causes drive accidents. However, the use of such causal links is rare 

in the Swedish construction sector (Berglund et al. 2017). Safety in construction is affected and/or 

hindered by conditions such as the construction site's organization, management (Törner and Pousette 

2009), equipment, and materials (Berglund et al. 2019). Those change from one workplace to another, 

making it more difficult to maintain sufficient, common safety routines (Albrechtsen and Hovden 

2014, Lingard et al. 2012, Schwatka et al. 2016). In addition, safety and the safety culture are affected 

by several factors such as subcontractor and the main contractor cultures, organizational decision-

making regarding safety considerations, and individual behaviour (Koch 2013, Zhou et al. 2015). 

This thesis assumes that it is possible to prevent accidents by systematizing the learning and knowledge 

accumulated from registered accidents by investment in the latest digitization technology – in this case, 

ML (Berglund et al. 2017). However, IT research that implements ML data analysis can lead to 

changes not only for a company but for the entire industry (Bilal et al. 2016, Bilal and Oyedele 2020). 

Applying ML does not only include the development of a prototype, but also to address the industry 

requirements and collaborate with industry experts and ML analysts (Bilal and Oyedele 2020). 

Regardless, the current literature lacks concrete use cases and the required integration with domain 

and expert knowledge (Vallmuur 2015, Bilal et al. 2016). The aforementioned collaboration with 

domain experts needs an understanding of the context or the domain of the application and explaining 

the ML models to the humans involved (Gilpin et al. 2018). This thesis contributes to exploring 

development processes that bridge ML data analysis technical part with the context of safety in a 

contracting company. In understanding the context, the Cross Industry Standard Process Development 

Method (CRISP-DM) is of interest (Martínez-Plumed et al. 2019). CRISP-DM is a methodology 

consisting of six steps that catalogue and guide the process of data mining projects (Martínez-Plumed 

et al. 2019). Moreover, accident causation models (ACMs) are of interest in explaining ML models. 
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According to Kjellen and Albrechtsen (2017), ACMs are the "simplified representations of the 

processes in the real world that result in accidental loss" (p.25). ACMs are mature theoretical, 

conceptual models that have impacted the development of safety management methods and processes 

(Kjellen and Albrechtsen 2017). 

1.2.  Aim and research questions 
This thesis aims to investigate how ML-based methods and techniques could be used to develop a 

research-based prototype for occupational accident prevention in a contracting company. The thesis 

focuses on exploring a development process that bridges ML data analysis technical part with the 

context of safety in a contracting company. The research context is accident prevention and H&S 

activities on-site, with the company being the case for the prototype development. The main (primary) 

data source is the registry of accident reports of the case company. Secondary data collection was 

undertaken through interviews with the company’s H&S unit.  

It is important for both business and academia to understand the use and the obstacles in introducing 

advanced technologies such as ML. Such understanding can benefit the construction industry through 

improved safety performance and better accident prevention strategies. As discussed earlier, this 

industry-wide interest in improving safety measures has been evident in the literature. 

Therefore, this research project contributes to the development of ML for analysing accident reports 

and exploring methods for building a prototype to improve occupational accident prevention strategies 

while considering the context. The context of the contracting company and its safety processes are the 

targeted application domain for the digital system. The ML analysis is based on the data generated by 

different actors in the case company and is intended to be applied within its safety processes. 

One overall research question and sub-questions were posed based on this research aim. 

Overall research question: Does the application of ML on accident reports reveal new knowledge 

about accidents in the construction industry? 

RQ1: What are the requirements for applied ML in the domain of accident prevention in a contracting 

company’s occupational safety processes? 

RQ2: What is the role of accident causation models (ACMs) as a theoretical framework for the ML 

results of analysed reported accidents in the construction industry – and what can be learned about 

ACMs through ML? 

RQ3: What are the experiences and challenges of applying CRISP-DM’s business understanding to 

assure a solid contextual embedding and an appreciation of local dynamics? 

RQ4: What are the predictive attributes of accidents based on the application of ML to accident 

reports? 
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2. Theoretical framework 

2.1. Accident causation models (ACMs) 
ACMs may provide a foundation for accident investigation and feedback and, most importantly, 

highlight accidents’ causal factors (Kjellen and Albrechtsen 2017). Moreover, ACMs were developed 

and adjusted over the last 100 years, resulting in different ACMs having their own characteristics 

(Pillay 2015, Fu et al. 2020). Thus, ACMs are different in causes representation and the logic behind 

the occurrence of accidents (Fu et al. 2020). 

ACMs can be classified in different ways, such as linear and non-linear models according to the logical 

sequence of events that lead to accidents (Fu et al. 2020). Fu et al. (2020) further categorized the non-

linear models into human-based, statistics-based, energy-based (e.g., the Bow-tie model, and the tripod 

beta model), and system-based (Systems Theoretic Accident Model and Processes (STAMP), 

AcciMap), while linear models included the Swiss cheese model (SCM), Heinrich domino theory, and 

the HFACS. 

Kjellen and Albrechtsen (2017) distinguished between seven main ACMs categories. The 

categorization by Kjellen and Albrechtsen (2017) included causal-sequence models (the domino 

theory, the tripod model), process models (Occupational Accident Research Unit (OARU), Haddon’s 

phase model), the energy model (the Swiss cheese model), logical tree models (fishbone diagram, 

Construction Accident Causation (ConAC)), system models (HFACS, MORT, AcciMap, STAMP).  

The inclusion of models in Kjellen and Albrechtsen (2017) and Fu et al. (2020) demonstrates the 

complexity and diversity of ACMs, primarily evident in the difference in the typology of causes, levels 

of causes, the relationship between the levels, their application, and the mechanism within which 

events take place. 

According to Woolley et al.’s (2019) categorization, accident causation models have three main 

categories based on their characteristics and their time of development: 

• Simple linear models (1920s) 

• Complex linear models (1950s–1990s) 

• Complex non-linear models (1990s to present) 

The simple linear models (e.g., the domino theory) represent the view on accidents as being predictable 

through a chain of events and that they could be prevented if one of the root causes was eliminated in 

the sequence of that chain of events (Woolley et al. 2019). This category usually concentrates on 

physical/mechanical and human error (Woolley et al. 2019). However, it is criticized for the lack of 

distinction of uncertain causal relationships at the personal, organizational, and management levels 

(Kjellen and Albrechtsen 2017). 

Complex linear models (SCM, the Loughborough Construction Accident Causation Model, and the 

Causal Model of Construction Accident Causation) view the accident as being caused by the 

interaction between latent factors and unsafe human behaviour (Woolley et al. 2019). The SCM argues 

that accident causes can be traced back to the origins of organizational decision-making (Kjellen and 

Albrechtsen 2017). Although complex linear models introduce the organizational factors, they also 
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retain the sequencing of events and do not include factors outside the organization (Woolley et al. 

2019).  

Complex non-linear models took a broader view of system-related factors (Woolley et al. 2019, Kjellen 

and Albrechtsen 2017) as a response to the growing complexity and tighter couplings in industrial 

domains. System-based models (Fu et al. 2020, Kjellen and Albrechtsen 2017) are now surpassing the 

previous ACMs through their systematic and thorough concentration on managerial and organizational 

factors and their interaction with individuals, technology, and behaviour. System-based models assume 

the responsibility of everyone within the system (including politicians and regulators), and accidents 

are claimed to have been caused by the dynamic and non-linear interaction among multiple factors 

within the entire system (Woolley et al. 2019). 

The development of ACMs initially focused on human behaviour within sequences of events. More 

recently, ACMs have tended to explore the more dynamic approach and consider higher levels of 

causation (Pillay 2015). This development seems to be based on the assumption that higher levels of 

causation can explain accidents. Moreover, the different types of ACMs assume stochasticity in 

accident severity since the accident impact level is not differentiated within any of the reviewed 

models. ACMs break down to multiple causation levels that are primarily not assigned weights for 

their importance but portray the interplay of causation factors as either single-rooted and linear, 

multiple-linear, and having multiple and dynamic causes. 

In construction research, applied causation models range from technological and behavioural models 

(e.g., the domino theory) to the more advanced socio-technical and cultural models (e.g., the 

Loughborough construction accident causation model, the fault tree analysis, and the Swiss cheese 

Model) (Pillay 2015). System-based models were, in contrast, hardly, if ever, used in the published 

literature dealing with accident causation analysis within the construction sector (Woolley et al. 2019). 

The scarcity of system-based models points to the limited inclusion of governance and regulatory 

factors in accident analysis (Woolley et al. 2019). When system-based models are applied to analyse 

accidents, regulatory and governance factors are often overlooked (Pillay 2015). For example, physical 

processes, actor activities, equipment and environment, unsafe acts, and management decision-making 

are more prominent in system-based accident analysis in multiple industrial contexts rather than 

regulatory and other governmental factors (Hulme et al. 2019).  

The limited inclusion of higher levels of causation hampers the understanding of whether the 

predictability of accidents increases from the advanced growth in the interactions of causes and the 

inclusion of factors outside the organization and limit benefits in prevention (Grant et al. 2018). They 

also act to hinder identifying the relationship between factors (Woolley et al. 2019). Since accidents 

persist in the construction industry, there is a need to revisit theories and models of accidents’ causation 

and critically reflect on applied ACMs in construction – especially set against the quantitative data that 

is now being derived from many registered accidents. 

2.2. Machine learning (ML) 
Machine learning is defined as the “computational methods using experience to improve performance 

or to make accurate predictions” (Mohri et al. 2018). Experience refers to existing information mostly 

available in a digital form of data (Mohri et al. 2018). ML is also defined as a set of methods that 

automatically detect patterns and use those to predict future data (Murphy 2012), while according to 
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Carbonell et al. (1983) “the study and computer modelling of learning processes in their multiple 

manifestations constitutes the subject matter of machine learning.” 

ML includes different types of learning: supervised and unsupervised learning are the main ones 

(shown in Figure. 1), but there is also semi-supervised learning, transductive inference, online learning, 

and reinforcement and active learning (Shalev-Shwartz and Ben-David 2014, Mohri et al. 2018, 

Murphy 2012). 

 

 

 

 

 

 

 

 

Figure 1. Machine learning summary. 

• Unsupervised learning is a method of data exploration or description used for, among other 

things, clustering (Shalev-Shwartz and Ben-David 2014, Mohri et al. 2018, Murphy 2012). In 

unsupervised learning, there are no specific patterns to be followed or an error metric (Murphy 

2012). Clustering can partition or group a set of objects into homogeneous subsets and is 

usually used in analysing large datasets (Mohri et al. 2018). The same sequence of objects can 

be clustered differently depending on the algorithm used; therefore, unsupervised learning does 

not always provide steady results (Shalev-Shwartz and Ben-David 2014). Another feature of 

unsupervised ML is that checking for accuracy and interpretation is subjective and requires 

expert knowledge for examining the results and inference (Shalev-Shwartz and Ben-David 

2014). 

• Supervised learning is an approach that learns a mapping from input to output and is used 

mainly for prediction (Murphy 2012). The input can be referred to as features, attributes, or 

covariates. At the same time, the output can be either categorical (a classification or a 

categorical problem) or numerical (a regression or ranking problem) (Murphy 2012). The data 

should be already labelled (input and output variables are known and identified through pre-

assigned categorization). The purpose of using this type of learning is to predict or classify the 

labels of future examples as accurately as possible (Mohri et al. 2018). Moreover, supervised 

ML can be used in prediction or classification algorithms and assessed by calculating the 

potential loss in finding false instances (Shalev-Shwartz and Ben-David 2014). 

• Semi-supervised learning is when the data is partially labelled and commonly when the 

unlabelled data is accessible but labelling the data unattainable (Mohri et al. 2018) or when the 

labelled part is used to infer the unlabelled part (El Naqa et al. 2019). 
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The ML model process 

The ML process usually consists of multiple steps: 

• Data exploration  

• Data pre-processing 

• Model training 

• Model validation 

• Model testing 

It is important to note that the author of this thesis term an ML model as the specific mathematical or 

computational description that expresses the relationship between a set of input variables and one or 

more outcome variables studied or predicted. 

Data exploration entails gaining knowledge into the attribute types (e.g., nominal or numerical), the 

entries contained in each attribute, and the distribution of the input and the output features (Han et al. 

2011). Data pre-processing ensures data quality for a reliable ML analysis and consists of multiple 

tasks – including handling missing values, noise, and resolving inconsistencies and discrepancies (Han 

et al. 2011). Discrepancies might originate from the data entry form, human errors, system errors, and 

other reasons (Han et al. 2011). The data is then split into the training, validation, and testing datasets 

(Shalev-Shwartz and Ben-David 2014). The training data should not be used in testing the model to 

find out whether the ML model performs as well with data points that have not been used in its training 

(Han et al. 2011). The validation step is used to tune the model’s parameters for the ML algorithms 

(Han et al. 2011). 

The testing of ML performance depends on the type of ML problem and the employed algorithms. The 

Receiver operating characteristic (ROC) curves and the F1 measure are usually used in classification 

problems (Han et al. 2011). The F1 measure is based on the confusion matrix depicted in Table 1. TP, 

FP, FN, and TN stand for true positive, false positive, false negative, and true negative, respectively 

(Japkowicz and Shah 2015). In binary classification tasks, the class of interest is called the positive 

class while the other is the negative class (Gopal 2018). Accordingly, TP and TN are the accurate 

classifications that the algorithm achieves. FP and FN are referred to when the algorithm inaccurately 

classifies a positive when it is a negative in reality and a negative when it is positive, respectively 

(Gopal 2018). The latter can be variously combined to calculate specific performance metrics, as in 

the following (Japkowicz and Shah 2015, Han et al. 2011): 

Accuracy=(TP+TN)/(P+N) 

Precision=TP/(TP+FP) 

Recall= TP/(TP+FN) 

F1 measure= (2. Recall. Precision)/ (Recall + Precision) 

It is common that accuracy does not sufficiently evaluate a model's performance, such as in cases of 

data imbalance (Japkowicz and Shah 2015). Precision and recall also have shortcomings in showing 

how a classifier behaves in terms of showing the detailed negative and positive recognition (Japkowicz 

and Shah 2015). Alternatively, the ROC curve is another method for testing the performance of an ML 

algorithm when accuracy, precision or recall fall short (Han et al. 2011, Japkowicz and Shah 2015, 
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Gopal 2018) – e.g., when false-negative classifications are costly (such as in disease diagnostic 

applications). The ROC curve takes paired measurements of false-positive rates on the x-axis and the 

true-positive rates on the y-axis, with the highest value being 1 (Han et al. 2011). 

Table 1. A generic confusion matrix 

True class Positive Negative 

True positive TP FP 

True negative FN TN 

Supervised and unsupervised learning have different algorithms characterized by different structures 

and application types (El Naqa et al. 2019). Supervised ML is more interpretable, testable and 

applicable when available data is labelled (Murphy 2012, Mohri et al. 2018). Furthermore, supervised 

ML algorithms can be organized into linear and non-linear models. 

Linear Models 

Linear regression (LR) and support vector machines (SVM) are linear algorithms that can be used for 

regression or classification (Shalev-Shwartz and Ben-David 2014). LR is a simple model without 

parameters to control model complexity (Ray 2019). However, if the data is not linearly separable, LR 

is not best to fit the data (Shalev-Shwartz and Ben-David 2014). Instead, a polynomial regression 

(which fits a non-linear function although being a statistical estimation problem) can be used (Shalev-

Shwartz and Ben-David 2014), but the polynomial model is more complex than LR, and there is a risk 

for overfitting (Hawkins 2004). SVMs work by separating the dimension space into two classes in the 

case of a binary classification task (Shalev-Shwartz and Ben-David 2014). The margin of a hyperplane 

that separates the data is the smallest distance between a point in the training set and the hyperplane 

(Shalev-Shwartz and Ben-David 2014). This margin limits the performance of the linear SVM; if the 

margin is larger, the error decreases because the model becomes more tolerant to the disturbance in 

the data points. The SVM is regularized with using the parameter C – large values of C (smaller 

regularization) allow the model to fit the training data even in the case of a smaller margin, while larger 

regularization makes the model more tolerant to errors on individual data points (Bhavsar and Ganatra 

2012, Singh et al. 2016). 

Non-linear models 

K-Nearest Neighbor (KNN) is one of the simplest ML algorithms used for regression and 

classification. It assumes that the close-by instances are likely to have the same labelling (Shalev-

Shwartz and Ben-David 2014). The parameter K can take different values starting from 1, and then the 

algorithm looks at the single closest instance label to predict the label of another instance. The smaller 

K is, the more complex the model, and there is a risk of an overfitting decision boundary (Bhavsar and 

Ganatra 2012, Singh et al. 2016). The disadvantages of KNN models are the sensitivity to 

dimensionality (which can affect the algorithm’s performance) (Shalev-Shwartz and Ben-David 2014) 

and the compromise of accuracy because the algorithm assigns equal weights for the features and the 

sensitivity to the local structure of the data and the value of K (Bhavsar and Ganatra 2012). 

Kernelized support vector machines (KSVM) are a variation of SVM that transform the data into a 

high dimensional space to allow for a linear classification for a feature space that is not linearly 

separable (Shalev-Shwartz and Ben-David 2014). KSVM are highly sophisticated models and one of 
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the most accurate models in binary classifications (Bhavsar and Ganatra 2012). On the other hand, 

DTs are characterized by the easy interpretation by simply visualizing the entire tree. However, feature 

importance rankings do not indicate which classes are predicted by a feature or the relationships 

between features (Singh et al. 2016). Moreover, the sample complexity of DTs might result in growing 

very large trees (deep trees) that are prone to overfitting (Shalev-Shwartz and Ben-David 2014). This 

situation, however, can be prevented by controlling the size of the tree by applying a reduced-error 

pruning method (Lee and El Naqa 2015). Random forest (RF) is a classifier consisting of a collection 

of DTs (Shalev-Shwartz and Ben-David 2014). The DTs within RF are built with random sample 

variations that are bootstrapped by a random feature split selection (Lee and El Naqa 2015). Although 

RFs are generally more accurate than simple DTs, they can be unstable, produce local optimal solutions 

instead of global ones, and have sampling errors (Ray 2019). 

Artificial Neural Networks (ANNs) are computational models inspired by the structure of the brain’s 

neurons and have recently reached high performance in different learning tasks (Shalev-Shwartz and 

Ben-David 2014). There are two main types of ANNs (feed-forward and back-propagation). Feed-

forward networks – also called multi-layer perceptron (MLP) – take the idea of computing weighted 

sums of input features (like in logistic regression) but introduce a processing step that consists of 

several neurons as a hidden layer (hidden units) (Shalev-Shwartz and Ben-David 2014). The MLP 

complexity is affected by the number of units, layers, regularization and activation function (Lee and 

El Naqa 2015). Backpropagation has the same structure as an MLP but backwards learns the network’s 

weights by employing a gradient descent to minimize the squared error between the network outputs 

and the target values of these outputs (Gopal 2018). 

The characteristics of the previously presented ML algorithms are summarized in Table 2. The table 

characterizes the ML algorithms in strengths – represented in a plus sign – and weaknesses – 

represented in a minus sign. The table can be used to choose ML algorithms based on the task’s 

requirements. This contributes to a systematic and informed choice of algorithms instead of the 

experimental approach. 

Table 2. Summary of ML algorithms characteristics  

Algorithm NB SVM KSVM DT RF KNN LR LogR 

Interpretability + + - + - + + + 

Parameters tuning + - - + + - + - 

High dimensionality + + + + - - - - 

Feature dependability - + + - + + - - 

Generalization - + + - + + - - 

Accuracy - + + - + + - + 

Small data set + - + + + + - - 

Large data set + + + - + - + + 

Linearity - - - - - - + - 

Low dimensionality + - + + + - + + 

Dobbe et al. (2018) suggested that bias might originate from multiple sources when data is used in ML 

decision-making models. First, measurement bias can originate due to how the collected data is scaled, 
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and the people registering their entries are represented. The modelling bias is affected by the 

engineering of features and the selection of the model classes. These processes include reconstructing 

a complex phenomenon in a finite data sample. The optimisation bias is related to the model builder 

choices of designing and optimising the parameters of the ML algorithms, which affect the outcomes 

or decisions the model produces (Dobbe et al. 2018).  

Dobbe et al. (2018) explained that the origins of bias acknowledge the need for understanding the 

epistemology of the specific context, and the role played by the creator of the ML model. Also, when 

applying ML to research in social sciences, Radford and Joseph (2020) suggest a “theory in” and 

“theory out” approach. Theory in means that known theories about a phenomenon should be 

considered in the pipeline for research that uses ML in analysing social data. A problem and task 

definition should rely on the knowledge gap in what is already known about the social world, starting 

from the conception of an ML model. Thus, theory help in identifying which problems are worth 

solving and frame why a problem is important. Moreover, theory help to define the ML outcome that 

validly captures the construct sought to be measured (Radford and Joseph 2020). Theory out refers to 

considering the model’s interpretability, explainability and theory building beyond the model’s 

technical parameters – in other words, using theory to understand why the model learned what it did 

and what can be learned about the world based on its results (Radford and Joseph 2020). Theory 

building here refers to the new knowledge about the social world that can be discovered from the 

results of our model (Radford and Joseph 2020). The implication of the latter described approach is 

that an ML model needs to be developed by supporting the relevant theories throughout the ML 

development process. 

One of the most famous models in ML industrial applications is the Cross Industry Standard Process 

Development Method (CRISP-DM) (Martínez-Plumed et al. 2019). CRISP-DM consists of multiple 

steps (business understanding, data understanding, data preparation, modelling, evaluation, and 

deployment) (Martínez-Plumed et al. 2019, Figure 2) 

 

Figure 2. The CRISP-DM process model of data mining (Martínez-Plumed et al. 2019). 

These steps can account for a contextualisation of the developmental process, starting with the initial 

step of business understanding. The business understanding plays a role in defining the business 

objective and offering a systemised process to mitigate the dependence only on data experimentation 
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(Chapman et al. 2000, Martínez-Plumed et al. 2019). The business understanding consists of four sub-

tasks: determine business objectives, assess the situation, determine data mining goals, and produce a 

project plan (Chapman et al. 2000). 
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3. Research design 

The approach chosen in this research is interpretive, where reality is deemed as the construction of the 

interaction between the researcher and the research (Alvesson and Sköldberg 2017). This approach 

assumes a reflexive research methodology that typically arises when different levels or elements of 

interpretation are played out against each other, and when none of the research components gains 

dominance throughout the entire research process (Alvesson and Sköldberg 2017). Reflexivity 

encourages creativity through the movement between different philosophical profundities and other 

empirical research elements (Alvesson and Sköldberg 2017). To follow a reflexive research 

methodology, multiple paradigms that are associated with this research were identified similar to 

mixed method approaches (Creswell and Clark 2017) – namely, the literature and texts, the empirical 

material, ACMs and the ML theory. 

The research is mainly interested in understanding and interpreting ML methodologies and techniques 

as a process to develop ML models to be applied in existing practice. The research aim is motivated 

by the need to bridge the technical ML analysis and the context of the application that involves people. 

The focus here is on the H&S unit as both a generator of the accident reports dataset and the end-user 

of the ML intended prototype. The H&S unit consists of safety engineers, safety representatives, site 

supervisors, site managers, safety managers and safety strategists. The qualitative interpretive research 

is aligned with the research aim to cultivate interpretation and reflection as key elements of reflexive 

research (Alvesson and Sköldberg 2017). The premises of this research method is derived from the 

view that how researchers interpret phenomena is always perspectival and that facts are always theory-

laden (Alvesson and Sköldberg 2017). 

According to Alvesson and Sköldberg (2017) method, reflexive interpretation consists of four levels 

– namely, interaction with the empirical material, interpretation, critical interpretation, and reflection 

on text production and language use (p.331), also called the quadruple hermeneutics (p.122). ACMs, 

ML algorithms, and CRISP-DM provide the multiplicity needed in the interpretive approach - as 

illustrated in Figure 3.- each of these is used for interpreting the data analysis results. The formulated 

research questions are accordingly generated to support interaction across the aforementioned 

theoretical framework and the empirical material.  

The primary data collection was done through the digital reporting system used by a contracting 

company: Synergi Life. Complementary data collection was done through twelve interviews with the 

H&S unit within the contracting company. Accident reports are highly dependent on the reporters, 

especially their interpretations of how accidents and their causes should be described (Dekker 2015). 

Thus, the challenges and opportunities of developing an ML-powered prototype and implementing it 

in the safety processes within the case company are ultimately dependent on the prevailing perceptual, 

theoretical and cultural assumptions within the case company. For the development and analysis of an 

applied ML model, the CRISP-DM (Cross Industry Standard Process Development Method) is chosen 

as a development process method. CRISP-DM is also used as a framework to understand the H&S 

objectives and identify ML utilisation propositions. 

Mainly, primary data is analysed through the application of ML algorithms. ACMs is chosen as the 

theoretical framework for interpreting the ML model results. ACMs components that describe accident 

occurrences are used to contextualise and conceptualise the results of the ML analysis. 
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The critical interpretation level stems from the reflection on ACMs from the perspective of existing 

ML literature by a comparative analysis of the components and assumptions of ACMs against the 

components and assumptions of existing ML models. Moreover, the experience of conducting the 

CRISP-DM’s business understanding analysis through the interviews was utilised to explore the fit of 

CRISP-DM to develop ML with the H&S unit. 

The researcher finally reflects on their assumptions about the phenomenon and the limitation of the 

repertoire of interpretation. 

Level of interpretation                                            Reflective themes 

Empirical material/ 

Construction of data                                             Accident reports/Interviews                                                                        
 

 

Interpretation 

 

 

Critical Interpretation          

 

 

 

Self-critical reflection 

 

 

Figure 3. Illustration of reflexive methodology based on levels of interpretations (the quadruple hermeneutics, 

Alvesson & Sköldberg 2017). 

3.1. Research process 
The research process consists of the four steps described in paper I, paper II, and paper III summarised 

in section 4 and ML results described in section 5. The papers and data analysis were conducted 

sequentially, represented in a process graph shown in Figure 4. Each paper provided a background for 

the contribution and the development of the following paper. 

The first step was to review the existing body of literature to identify the requirements for applied ML 

in occupational accident prevention within a construction company. This first step in paper I 

investigates the possible development requirements for an ML model to be implemented in 

occupational construction safety. The reviewed literature provides an in-depth and detailed exposition 

on the uses of ML in analysing accident reports, and is synthesised in terms of used algorithms, data 

characteristics, data processing, and purpose and scope of the ML models. 

Consequently, paper II was designed to investigate the role of ACMs as a theoretical framework in 

ML application for analysing accident reports in the construction industry. A framework of 

understanding the ML results should be established to place causes in meaningful categories – and 

The multiplicity in interpretation stem from the analysis of 

the data guided by ACMs, ML, and CRISP-DM.  

The critical interpretation produces another level of 

analysis on the theory level. 

• ACMs interpreted against ML. 

• CRISP-DM interpreted against interviews. 

• ML interpreted against ACMs. 

Reflect on research own assumptions based on limited 

repertoire of interpretations.  
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vice versa, to contribute to learnings about ACMs obtained through ML. The work is carried out in the 

form of a comparative desk study of the literature covering the application of ML to accident reports 

in the construction industry and ACMs. This contributed to providing a conceptualisation of ML 

models through the lens of ACMs’ components. 

After the means of understanding ML results through ACMs was established, the need for a systemised 

ML development method ensuring the contextual embedding led to the use of the CRISP-DM method 

for understanding the context of accident reporting in the case company, and analysing the experience 

and challenges in applying the “business understanding” stage (Martínez-Plumed et al. 2019). Paper 

III centres on five interviews with a safety strategist and four safety engineers at the case company in 

Sweden to answer this research question. Paper III contributed both to the identification of ML 

utilisation proposals that meet the needs of the H&S unit, and also adds value to accident prevention 

measures. Seven further interviews were conducted after paper III was published to gain further 

insights from different actors within the H&S unit of the case company. 

The fourth step finally provides an ML analysis of accident reports from the case company based on 

an ML model design and interviews analysis. This work builds on the learnings and conclusions of 

papers I, II, and III. Furthermore, the continuation of the interviews contributed to decisions related to 

the purpose and design of the ML prototype. It is important to note that this thesis has not realised a 

prototype. However, paper I, paper II, paper III and the ML data analysis are all paving the path of the 

prototype development process. 

 

 

 
 

 

 

 
 

 

 

 

 

Figure 4. Research process. 

3.2. Case description 
This thesis's primary interest is in embedded accident prevention in the business setting. The contractor 

operates a project-based organisation. The building project is the most important value and turnover 

generator and cost transformer. The different building projects are produced in portfolios placed in 

divisions with slightly different business objectives, i.e., civil works, residential buildings, office 

buildings. The project commences with a contract with a client. The H&S work commences by 

documenting how H&S will be organised in the project in a bid for the customer. Typically, no risk 
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analysis is carried out by the safety engineers (SEs) this early; however, this is done once a contract is 

obtained. A particular job role, called BAS P (educated in design safety), is part of this process. From 

the beginning of work planning, the SEs inspect the plans with an H&S perspective. During 

production, the safety representatives (the so-called BAS U personnel – basic education for 

production) are responsible for a particular part of the building project and the building process. They 

collaborate with the on-site H&S, Quality, and Environment (HES) manager and the SEs. Together, 

they constitute a horizontal element of the H&S organisation and support the similarly horizontal 

building processes. H&S work is thus organised close to the single building project. Apart from this 

horizontal element, the company also encompasses a vertical hierarchy, where H&S is attached to 

several organisational levels. A central H&S unit is part of a corporate management HR unit. HES 

units are adjacent to several organisational levels. This cross-organisational H&S apparatus works with 

behaviour issues, analysis and reporting, digitalisation, and developing directives. In it, it is a common 

perception that accidents are mostly due to behaviours, so efforts are targeting this issue. Another 

workstream is related to analysing and reporting, digitalisation, driving projects, and the way the 

company benefits from machines and innovation. The third workstream is related to developing 

directive processes and procedures. 

3.3. Collection of empirical material 
Below I elaborate first of the more quantitively oriented collection of date emanating from the accident 

reports, moving on to the rich knowledge and information in the interviews. 

3.3.1. Accident reports 

The accumulated accident data have a common method for registering and analysing single 

occurrences of accidents in the construction industry. The case company’s data is mostly gathered by 

safety engineers, site managers, safety representatives, and workers. Accidents are registered through 

a digital software interface called Synergi Life, which is a complete quality, health, and safety risk 

management software package. Accident reports were extracted by the researcher into excel sheets and 

initially investigated in excel. 

The software package offers the option of recording four types of reports: 

• Accident: An event that led to personal injury. 

• Incident: An unwanted, sudden event that could have led to a personal injury. 

• Negative observation: An unwanted situation or risk that could have led to personal injury. 

• Positive observation: A positive action or solution that has led to better health or safety. 

The reporting process consists of four steps:  

1. Registration, which is possible to be made by anyone working at the case company (either on 

the desktop or the mobile application software versions).  

2. Appointment of a case handler. 

3. Filling in the case with either investigations or a required action. 

4. Closing of the case, which needs to be done by the health and safety unit. 

The accident report consists of seven main sections (see Appendix). 

• Where, what and who. 

• General classification. 
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• Consequences. 

• Potential loss. 

• Causes. 

• Prevention. 

• Attached documents. 

The data contains two forms of reporting: free text describing the accident, and pre-populated drop-

down list options for causes, processes, consequences of severity, and personal injury-related 

information. The dataset contains 3,626 cases of accidents. The data status varies in terms of complete 

entries for every available case. Monetary loss information was only entered 109 times out of all cases, 

and prevention comments were only reported for 365 cases. Description of injury type was entered for 

only 139 cases. Moreover, there are usually two levels of entries: a general category and one that is 

more detailed- such as for the injured body part, the category of injury, Specific physical activity, and 

injury type. 

The entered data shows that a number of entries did not belong to a known category, such as in injury 

type level 1 (310 cases) and specific physical activity level 1 (205 cases). Moreover, it is observed that 

the level of detail varies between the general level and the more detailed levels of the reported fields. 

The more detailed levels of “type of work in detail” contain 149 unique categories of entries, the 

“external factor that affected the incident” contains 159, and the “work process” contains 149. 

Although these accidents report mainly describe the accident by pre-populated drop-down lists, the 

reporters select the causes and other information using their understandings. Dekker (2015) argues that 

the epistemology of accident descriptions implies that reporters can have different narratives for the 

same event, depending on multiple factors (such as the reporter’s perspective and experience). 

3.3.2. Interviews 

The interviews were considered a secondary source of empirical material that was complementary to 

the accident reports. The semi-structured interviews were conducted in a thematic format to explore 

and gather information and knowledge about accident reporting. Thematic semi-structured interviews 

are useful in exploring a particular organizational issue, and are characterized by connecting a series 

of questions within a particular theme (Cassell 2015). The intention behind the interviews was to gain 

an insight into the perspectives of the H&S unit on the meaning of safety (in general), the accident 

response process, the quality of collected reports, and the expectations from an ML-based prototype.  

Mainly, the ML-related questions and discussions were formulated based on the business 

understanding framework of CRISP-DM (Chapman et al. 2000) and the recommended practice (RP) 

framework (DVN GL AS 2020). The intention for this formulation concerns developing an ML 

prototype situated within the needs and perspectives of the H&S unit with the explicit purpose of 

improving awareness of accident prevention measures within the case contracting company. 

Interviews were chosen to provide the actor’s point of view on the needs of safety process and site 

accident prevention. The interviewees were selected based on the mapping of the H&S unit of the case 

company, as shown in case description section 3.2 and Table 3. 

The interview guideline was organized into four thematic sections. The first focused on a background 

of position and experience, and the second on the meaning of safety and a description of daily safety 
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processes. The third part included questions about the reporting regarding assigning causes, levels of 

causation, credibility, quality, and overall value of reporting accidents. The fourth part investigated the 

potential for improvement in relation to accident prevention, based on learnings from or the utilization 

of accident reports. The questions then targeted the anticipated added value of a potential ML 

application, potentially benefitted users, advised propositions, work-process constraints, risks, and 

ethical considerations. 

Table 3. Interview respondents and position 

Positions Respondents 
Safety engineer 4 

Safety representative 4 

Site manager 1 

Site supervisor 1 

Safety manager 1 

Safety strategist 1 

 

3.4. Analysis of empirical material 

3.4.1. Interview’s analysis 

The interviews were analysed using a qualitative method combining Kvale & Brinkmann (2009) 

approach to analysing interviews with Alvesson and Sköldberg (2017) reflexive methodology. The 

themes of the interviews were organized based on the themes of the interview’s questions.  

• The meaning of safety at the contracting company 

• A normal working day 

• The response in the event of an accident 

• The reporting of accidents 

• Status of the data use and safety objectives 

• The value of reporting of accidents and improvements 

• Improvement in the safety process for accident prevention support 

• Value proposition 

• ML potential 

• Proposals and ML risks 

• Satisfaction with the reporting 

• Success criteria for a prototype based on the reports’ data 

The analysis of the interviews was done in an iterative manner, where the interview questions were 

modified based on the gained insights from the previous interviews. The interviews continued until 

the responses began to be repeated and reached a state of saturation (Schutz 1972). Drawing on 

reflexive methodology in this context meant critically reflecting on the respondents’ utterances, 

placing them in an organization and societal context and finally reflecting about the researcher own 

role and position - inspired by Alvesson and Sköldberg (2017) concept quadruple hermeneutics. 

3.4.2. Machine learning design 

3.4.2.1. Understanding the data structure 

The dataset can be characterised as relational, namely a collection of records in tabular format 

(sometimes called “relations”) with columns that denote data features, and rows that indicate 
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individual observations of instances (Martyr and Rogers 2020). The dataset mainly consists of two 

types of features: structured and unstructured features. The data, in this case, might include a reference 

number that identifies the instances (Gopal 2018) – in this instance, the case unique number. This 

allows the features to be searched, filtered, and reorganised (Martyr and Rogers 2020). However, some 

features are labelled as accident title, description and health and safety category, cause description, 

comments, and prevention description, and are written by the reporter in free-text format (see 

Appendix). The free text data type is considered unstructured (Gopal 2018). Structured features can 

be handled differently than the free text, as the latter requires methods of data mining, NLP or 

unsupervised ML (Gopal 2018). In this thesis, the structured dataset acts as an investigative step for 

the predictability of accidents in building the information extraction on the first step of the prototype 

development and recommend prevention measures. 

Another characteristic of the dataset is the definition of input and output features. In an application 

where an event happens at a specific point in time and in prediction models, data leakage must be 

prevented (Kaufman et al. 2012). Data leakage is defined as the introduction of information about the 

target of a data mining problem, from which it should not be legitimately available to mine (Kaufman 

et al. 2012). The input features chosen in the current case are listed in Table 4. The latter were chosen 

based on whether the features contained information that could be known before an accident occurred, 

since the data was generated as an occupational accident reporting. The downside is that most of the 

data described the event's outcome, which leaves only a few input attributes. Table 5 illustrates which 

existing feature could potentially be a target output for an ML analysis. 

The data is generally nominal (which indicates that they are represented by symbols) – it can be 

represented numerically by coding the entries by a nominal encoding scheme (Han et al. 2011). 

Table 4. Input features 

 Input feature Type of entries 
1 Type of work in detail Nominal 

2 Involved substance / chemical Nominal 

3 Employment relationship Nominal 

4 Work environment Nominal 

5 Position Nominal 

6 Company name Nominal 

7 Specific physical activity level 1 Nominal 

8 Specific physical activity level 2 Nominal 

9 Shift or accident to / from work Nominal 

10 Experience in position (months) Numerical 

11 The last deviating event that preceded the injury Nominal 

12 Work Process Nominal 

13 External factor that affected the incident Nominal 

 

Table 5. Output features 

 Output feature Type of entries 
1 Actual severity Nominal 

2 External factor that affected the incident Nominal 

3 Description of injury Type Nominal 

4 Description of damaged body part, Common Nominal 

5 The last deviating event that preceded the injury Nominal 

6 Injured body part Nominal 
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7 Injury class Nominal 

8 Category of injury  Nominal 

9 Injury type level 1 Nominal 

10 Injury type level 2 Nominal 

11 Cause category Nominal 

12 Circumstances of the accident Nominal 

13 Potential Severity - Most Severe Nominal 

14 Risk area Nominal 

 

3.4.2.2. Data pre-processing 

Data pre-processing consists of several major tasks: data cleaning, data integration, data reduction, and 

data transformation (Han et al. 2011). Data cleaning is usually the first step in pre-processing the data 

and is done by handling missing values and noisy data (Han et al. 2011).  

In the current case, the most interesting output feature was the actual severity. The distribution of the 

classes of this output was unbalanced and needed further data prepossessing. It is possible to combine 

the last three levels of injury in one category (called major injury) and the first two classes in another 

(called minor injury). This combination separates the severity into two categories, while the major 

injury class starts at the point where accidents result in the absence of a worker from the construction 

site.  

                    

Figure 5. Actual severity frequency distribution 

3.4.2.3. Algorithm choice 

The goal of the first stage of the prototype is to predict the severity of construction processes. The 

following criteria influence the choice of algorithm for this first stage of the prototype (see Table 2), 

based on the purpose and the accident reports data structure: 

• Interpretability: The algorithm must be interpretable, especially since there is a second step 

involving the prevention recommendation that is going to be connected to the prediction. 

• Parameter tuning: A model that depends only on parameter tuning can be problematic because 

the model is then highly sensitive to the parameter’s values – it is preferable that the chosen 

algorithm is less sensitive to parameter tuning, but it is deemed not as a strict requirement.  
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• High dimensionality: The high dimensionality criteria are not critical since our data structure 

is not high dimensional. 

• Generalizability: Generalizability is one of the most essential features of ML algorithms, and 

there is a need for a model that generalizes well, especially for a relatively small dataset such 

as the one in this case. 

• Accuracy: The model must produce high and accurate predictions, especially since safety is 

the application domain – and therefore, accuracy is crucial. 

• Large dataset: The dataset is relatively small (fewer than 50000 instances), which is not a highly 

important criterion. 

• Linearity: It is not known whether the data is linearly separable. Therefore, there is a need to 

experiment with linear and nonlinear algorithms to test which best classifies the severity level. 

• Low dimensionality: The algorithm should perform well with low dimensional data since the 

dataset is relatively large compared to the number of input features. 

Highly interpretable algorithms are NB, SVM, DT, KNN, LR and LogR (see Table 2). However, Only 

NB, DT, RF, LR and LogR perform well with low dimensional datasets. RF and KNN have very good 

generalization abilities. KNN, RF and LogR are usually good for this criterion in terms of accuracy. 

Only the LogR is suitable for building a linear model. Based on this breakdown of the algorithms and 

their characteristics, the chosen algorithms are KNN, DT, LogR and RF. 

3.5. Researcher own role 
In line with Alvesson and Sköldberg (2017)’s suggestions, all activities in this licentiate thesis were 

exposed to a critical reflection of my own role and identity vis a vis not only collaboration partners, 

literature, interview respondents and supervisors, but also in reflecting and analysing literature, 

developing analytical insights and discussion, even when arriving at the main results. Being a middle-

class woman with a middle east background involves advantages and disadvantages. Particular 

Swedish construction industry traits are more visible for externals and can be identified comparing 

with the researcher own background. On the other hand, social group differences between university 

employees and building sector professionals would constitute more of a disadvantage, given the mutual 

stereotyping of academics and site professionals. In sum, these conditions are at a time enabling and 

constraining the research in characteristic ways. 

3.6. Ethical considerations 
There were a number of ethical considerations that shaped the research design. The use of the data by 

the licentiate team was governed by a non-disclosure agreement. The data transfer was only performed 

through secure channels managed by the data owner. The case company and respondents remain 

anonymous. Moreover, due to the sensitive nature of the data and the researchers’ use of ML for 

generating solutions that target specific individuals, the author chose not to consider any personal or 

enterprise information in the ML data analysis. 
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4. Summary of the papers 
This part presents a summary of the collection of papers included in this licentiate thesis. 

4.1. Paper I: A REVIEW OF MACHINE LEARNING FOR ANALYSING ACCIDENT REPORTS IN 

THE CONSTRUCTION INDUSTRY AND APPLICATION REQUIREMENTS (under review at 

The Journal of Information Technology in Construction (ITcon) submitted on 2022-02-10)  
Artificial intelligence (AI) and ML have become more popular in solving construction management 

problems (Pan & Zhang 2021). Applied ML reviews have shown advancements in safety management 

and knowledge extraction by examining accident records (Pan and Zhang 2021, Hon et al. 2021). 

However, the literature still lacks a comprehensive analysis of what developing and applying ML 

entails in the domain of accident reports analysis within the construction industry. It is not clear what 

the implantation of ML-based analysis in a contracting company might require. This paper aims to 

answer the research question: what are the requirements of an ML model based on accident reports 

data to be implemented in occupational safety in a contracting company? 

This paper contributes to the identification of prerequisites of ML development that arise from the 

specific conditions and the processes associated with managing H&S in a contracting company in the 

construction industry. The research question was answered by a literature review conducted using the 

concept-centric framework augmented by units of analysis (Webster and Watson 2002). It was based 

on searches related to the application of ML to the analysis of accident registries in the construction 

sector. The organization of the review was done to synthesize the literature into appropriate units of 

analysis, namely data characteristics, data pre-processing, algorithm type and training the ML model, 

testing algorithm performance, and implementation of ML analysis. Three citation indexes were 

selected: Web of Science, Elsevier, and Scopus. The review was conducted iteratively within the three 

databases and within Google Scholar by using the search terms “accident report,” “construction 

industry,” “machine learning”, and “construction occupational safety.” Nineteen articles were finally 

selected, four of which were found in all the searched databases. 

The analysis of the literature showed that multiple requirements are necessary. One of the most 

important requirements is a careful implementation strategy that considers existing safety processes 

and their relation to other in-place processes such as design and project planning. Thus, the 

implementation of ML-based models requires feasibility and implementation analysis - in a prototype 

format, for instance - and the involvement of practitioners. Another crucial requirement is ML 

performance measurement and evaluation to assess the performance metrics and accuracy threshold. 

Risk critical application such as safety and, more importantly, accident analysis imposes higher 

requirements of accuracy and trustworthiness in applied ML solutions. Accidents have been shown to 

generate imbalanced data in terms of accident types, causes and severity. The ROC was proposed as 

an ML performance metric because of the visualization benefits for comparing different combinations 

of errors. The ML classifiers that have lower error rates for a specific class can then be chosen 

(Gholizadeh et al. 2018). This proposed approach was shown to be especially beneficial in maximizing 

the prediction accuracy of minority classes in unbalanced data sets in the construction accident reports 

data (Gholizadeh et al. 2018).  

Overall, implementing ML in the construction industry, needs a standardized development method, 

notably due to the difficulty in assessing the best approaches in data pre-processing and applied 
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algorithms. However, ML algorithms that are easily interpreted were found to fit the safety context 

because they allow for understanding ML results. The word embedding in the data pre-processing 

showed a pattern and potential improvement within the domain-specific corpus. Future research should 

experiment and conclude whether domain-specific dictionaries should be used in word embeddings in 

the pre-processing stage. Finally, there is a need for theoretical frameworks for guiding the 

contextualization of causal factors. This would assist when developing safety solutions and when they 

are being deployed further from centralized computing platforms for real-time decision-making 

support. 

4.2. Paper II: A COMPARISON OF ACCIDENT CAUSATION MODELS (ACMS) AND 

MACHINE LEARNING (ML) FOR APPLIED ANALYSIS WITHIN ACCIDENT REPORTS 
ACMs are theoretical frameworks and have had an impact on accident causation analysis. However, 

ACMs were not sufficiently addressed in the literature of applied ML in accident records analysis. 

ML-based analysis has been criticised for lacking interpretable recommendations, data quality issues, 

clear implementation cases, the integration with domain knowledge (Vallmuur 2015, Bilal et al. 2016), 

and generalizability (Xu et al. 2021, Sarkar and Maiti 2020). On the other side, ACMs can be 

categorised into many types characterised by different causation logic and focus of causation 

categories. The current literature on ML applications within the domain of accident analysis does not 

integrate ACMs as theoretical frameworks into the ML model development and analysis. The authors 

of this paper also assume that analysing accident reports using ML can contribute to learning about 

ACMs as well as occupational accidents. This research investigated the question of what ACMs can 

contribute to the ML results of analysed reported accidents in the construction industry, and what can 

be learned about ACMs from the application of ML in this domain. This paper contributes to 

conceptualising ML models through the lens of ACMs. 

This paper is based on a desk study of the literature of applied ML in the analysis of construction 

accident reports and ACMs. The ML models are based on a literature review and the systemisation of 

the purpose of the ML, the included features, and the ranking of important factors. The themes are 

presented for an in-depth analysis. ACMs were selected based on crossing the models which were 

reviewed by Kjellen and Albrechtsen (2017), Fu et al. (2020) and Woolley et al. (2019). Three models 

were selected based on the types of ACMs and their common application in the construction industry. 

ML analysis of accident reports usually results in components that are predictive of accident types or 

severity levels. The comparative study illustrated that the components extracted by ML could be 

compared to the typology of the BOW-Tie model and the SCM. However, one major difference was 

found in ML components in that they lack prevention measures which are a bottom-line building block 

in ACMs and, consequently, accident prevention. However, the levels of causations were found to be 

mostly those remaining close to the workplace and human behaviour factors. At the same time, ML 

results rarely included factors that are related to the higher levels of decision making within the 

organisation. 

The lack of prevention measures or the inclusion of higher levels of causation factors is not necessarily 

a drawback of ML itself but the reporting that has repeatedly been missing the prevention measures 

suggestions. The more accident analysis considered factors further from the event, the harder it gets 

for further factors to become apparent in terms of their effect on the event. Furthermore, the mechanism 
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causing accidents seem to differ between the representation of ML and the SCM. Nevertheless, such a 

comparison remains ambiguous and need visualisation to make more conclusive comparisons. Finally, 

ML models in the reviewed literature tend to highlight severity as an outcome that needs to be 

predicted. In contrast, ACMs focus on accidents as events that occur regardless of their level of 

severity. 

The paper concluded that the ML analysis of accident reports needs to be guided by ACMs to be useful 

in real-life implementation. This combination contributes to making sense of ML-based 

recommendations of accident prevention measures. As much as a prediction of the event of an accident 

or the magnitude of the consequence might seem to be preventive, in the future, ML analysis might be 

better utilised in the modelling of risk factors. The integration with ACMs such as the BOW-Tie model 

and the SCM provides the backbone for ML-based accident analysis models to be tuned towards 

accident risks and any corresponding prevention measures. From an ML point of view, explainable 

algorithms should be used. The conclusions of this paper for approaching the ML-based accident 

analysis provides a possible recipe for better understanding causation factors and the mechanisms 

through which accidents happen. 

4.3. Paper III: LEARNING FROM ACCIDENTS: MACHINE LEARNING PROTOTYPE 

DEVELOPMENT BASED ON THE CRISP-DM BUSINESS UNDERSTANDING 
The increased interest in ML evident in the literature and the growing use of ML in accident statistical 

analysis has been shown to be valuable in analysing large volumes of data. However, it is not beneficial 

to reinvent existing methods, so in truth, no new knowledge is provided by such solutions. Moreover, 

the analysis of the literature contained in paper I have shown that there is a need to contextualise 

understandings of ML-based analysis and define clear ML tasks. This paper explored the local and 

corporate context for ML-based analysis and the ML development method known as CRISP-DM for 

conducting such studies.  

The aim of this paper is to analyse experiences and challenges in using the “business understanding” 

phase of CRISP-DM as the first step towards ML prototype development with respect to the context 

and local dynamics of a Swedish contracting company. The investigation adopted a bottom-up 

approach, where knowledge of accident registration procedures was the point of departure. 

The overall method is an interpretive approach. A concept-centric literature review was conducted 

(Webster and Watson 2002) to review the status of ML-based solutions for accidents report analyses. 

For the empirical context, five interviews were carried out: four with safety engineers and one with a 

safety strategist at a high level in a Swedish contractor company. The ML related interview questions 

and discussions were focused on gathering the safety requirements for developing a data-driven 

prototype, inspired by the business understanding framework of CRISP-DM and the recommended 

practice (RP) framework (DVN GL AS 2020). 

The business understanding phase begins with defining the client’s goal and deciding on a value 

proposition for the ML application. The interviews showed a difference in safety priorities between 

top management and operational level, especially the focus on behaviour and fatal accidents, the 

planning of safety tasks, and communication. This leads to conflict between single versus multiple-

goal orientation compared to the CRISP-DM model, which suggests that a single goal should be 

identified. In response to this obstacle, this paper suggested that at the end of the first step of the 
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business understanding phase, there is a need for an intermediary step to agree on a common objective 

before proceeding to accident report analysis.  

The second step of the business understanding phase requires a detailed analysis of the related 

resources, constraints, assumptions of the business objectives, risks of project failure, terminology, 

and cost-benefit analysis from a commercial perspective. The most important aspect of this application 

is to investigate the resources of the H&S unit and the characteristics of the data. The data incorporates 

valuable information, but the level of detail in reported accident causes is doubtable due to different 

experience levels among the personnel that do the reporting. Moreover, constraints can be found in the 

digital reporting system and the incorporation of safety planning between production’s main objectives 

of meeting schedule and budget demands.  

To sum up, following the recommendations of this business understanding phase reveals insights into 

possibilities and local constraints. However, it is not possible to cover all scenarios, especially if the 

first step of the business understanding phase was not concluded or aspects of the ethical consequences 

were very challenging to be identified through the interviews. 

The following step would ideally be defining data-driven goals. These would include the ML 

prediction output and the model’s acceptable accuracy. By the time the analysis arrived at this stage, 

this ideal had become more unattainable since the last two steps had not been completely closed. 

Moreover, the requirements of this step are highly dependent on the data condition. Thus, it is 

suggested that this step should be completed by adding an iteration as primary data analysis. This 

would then suggest realistic potentials and limitations to match the organisation’s aspirations. 

The previous analysis highlighted the application of CRISP-DM in the business understanding phase 

and the involvement of domain experts in a breakdown of daily processes and experiences. In project-

based organisations such as the case contracting company, there is a need to investigate and analyse 

the business understanding phase on different organisational levels. The different organisational levels 

and their concentration on a very different set of priorities challenges the use of CRISP-DM. Moreover, 

the analysis showed that adding two intermediary steps was necessary to meet the challenges in 

defining ethical considerations, application design and data-driven goals. 
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5. Machine learning model design and analysis 
This section describes a continuation of the thesis including the ML model design and analysis of 

accident reports. This section is organized after the summary of the papers (section 4) because the 

following analysis builds on the results of the previously described papers. 

5.1. Model design 
The following analysis encompasses a continuation of interviews based on the business understanding 

phase and a follow-up recapitulation of the proposed solutions. Seven further interviews were 

conducted by following the same main structure of the interview guide as in aper III. The conclusions 

of Paper III indicated the need to agree on a common organisational objective for the ML prototype 

design. The interviews which were conducted in paper III (section 4.3) were extended to include more 

actors from the H&S unit, including one site supervisor, four safety representatives, one safety 

manager and one site manager. The interviewees' collected ML application proposals are presented in 

Table 6.  

Furthermore, a workshop was planned to discuss how the accumulated propositions identified by 

analysing the interviews could be integrated into the preliminary prototype development. The 

workshop included a presentation of the results of paper III and Table 6 as the intermediary step -

suggested in paper III- of the business understanding phase. 

The workshop included the following actors: 

• Safety engineer from the contracting company (2) 

• Trade union organiser  

• Safety engineer contractor (1) 

• Business Development Lead – Analytics contactor (3)    

• Development leader Health and Safety contractor (3) 

• Construction Workers' Union agent  

• IT Solutions Manager contractor (3) 

• Work environment manager contractor (2) 

Table 6. Summary of interviews model propositions 

Machine learning model propositions 

To produce statistics on historical accident cases. 

To pay attention to work steps where there are many accidents 

To use Synergi more easily for safety work preparation and risk assessment 

Tools for presenting information about safety risks to production people 

Negative and positive observations to find the reasons behind workers not following the safety rules. 

No safety improvement needs. 

 

The workshop was organized in an online meeting and facilitated by the author of this thesis. The 

workshop resulted in a vote for the proposition that was considered the most value-adding for safety 

prevention, based on the ML analysis of the collected data from accident reports. Most of the workshop 
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participants thought the proposition for work steps and safety risk assessment was the most value-

adding use of ML (see Figure 6). 

 

Figure 6. Workshop vote for ML model proposition. 

The workshop then presented the preliminary data analysis of the case contractor’s accident reports 

(section 3.4.2.1) and the corresponding prototype design (Figure 7). The prototype design consists of 

the input features, and the blue arrows represent a drop-list of predefined categories. The categories 

should be identical to those that constituted the accident reports for consistency. The prototype was 

designed to predict severity that is categorized as low risk and high risk. The high-risk category 

represents a prediction of a final outcome starting from the absence of workers towards outcomes of 

further severity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. prototype design illustration. 

Type of work in detail  
Involved (d) Substance / chemical  
Employment relationship  
Work Process  
Work environment  
Position  
Company name  
Specific physical activity level 1  
Specific physical activity level 2  
Shift or accident to / from work  
Experience in position (Months)  
External factor that affected the incident  
The last deviating event that preceded the injury  

Prediction output 

Risk assessment                   Low risk                               High risk 
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5.2. Framework of understanding 
In response to the conclusions of paper II (see section 4.2), the Bow-Tie model was chosen as a 

framework of understanding for the ML model. In this section, I will categorise the selected input 

features for the ML model into the components of the Bow-Tie model (see Table 7). 

The BOW-Tie model (see Figure. 8) consists of multiple components characterising accidents. The 

model analysis starts by identifying a hazard in the organisation or the surrounding environment. I 

interpret that the input factors “Type of work in detail”, “Shift or accident to/from work”, “Experience 

in position (Months)”, Employment relationship”, “Work environment”, “Position” and “Company 

name” as representatives of the surrounding conditions of the work process. The hazard component is 

directly connected to the top event (see Figure 8), which I interpreted as the occurrence of an accident. 

The top event is at the centre of the BOW-Tie model and is caused by what the BOW-Tie model 

categorises as threats. The latter is represented by the input features “Specific physical activity level 

1”, “Specific physical activity level 2”, “Involved (d) Substance / chemical”, and “The last deviating 

event that preceded the injury”. The “External factor that affected the incident” feature was interpreted 

as an escalation factor. Moreover, the consequences are interpreted as the level of severity of the 

accident. The input factors are summarised in Table 7. 

Prevention barriers are very important components of the BOW-Tie model, and they are also reported 

in the accident reports. They are entered as free text, and the prototype design does take free-text data 

into consideration in this analysis (see section 5.1). 

 

Figure 8. BOW-Tie, Fu et al. (2020) 

Table 7. Input features categorization into the BOW-Tie framework. 

 Input feature  

1 Type of work in detail Hazards 

2 Shift or accident to / from work 

3 Experience in position (Months) 

4 Employment relationship 

5 Work environment 

6 Position 
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7 Company name 

8 Specific physical activity level 1 Threats 

9 Specific physical activity level 2 

10 Involved (d) Substance / chemical 

11 The last deviating event that preceded the injury 

12 External factor that affected the incident Escalating factor 

 

5.3. ML analysis results 
The input features represented in Table 8 were used to predict the level of accident severity in two 

different settings: the reported actual and potential severity. The actual and potential severity levels 

were reported and can be used as a prediction target. The potential severity represents the degree of 

severity of an accident that could have happened; for example, a minor accident requiring first aid 

medical attention could have resulted in a more severe injury and might have led to the worker having 

to take days off work. The ML model was performed by myself using the Pandas and Scikit-learn -

Python 3.9.7 libraries version. Since almost all input features were nominal values, the data was 

encoded with the sklearn LabelEncoder function. The output features had five classes, which I then 

processed to make only two classes for binary classification. In particular, the first two initial severity 

levels “First aid, continue to work” and “Injury that requires medical attention” were merged into one 

category of low severity, and the highest three categories “Personal injury with absence”, “Very 

serious personal injury”, and “Fatal accident” into one high severity category. The results of the 

predictions are presented in Table 9. 

The data analysis showed that the imbalanced state of the data had a considerable impact on the 

classification of severity. If we take the confusion matrix as a metric, the best prediction the DT 

algorithm can achieve is 383 true-positive cases of high severity, compared to 645 false-positive cases. 

However, if the accuracy is considered a metric, it was noted that it is not representative of how well 

the model classifies major and minor accidents. Since the interest here is to predict severity and the 

more critical one resulting in severe accident impact, accuracy alone is not enough as a metric. A good 

example here is the RF algorithm. The algorithm’s accuracy is 69.29%, while the confusion matrix 

shows that the classifier almost always assigns minor severity to the case. The results of classifying 

the potential consequences showed the models’ tendency to classify most cases as severe accidents – 

which is the most populated class in the potential severity case (see Table 9). 

The unsuccessful prediction results can be attributed to the class imbalance, but they might also be 

attributed to the features. The features might be loosely correlated to the output, which explains the 

predictions. To test the features’ predictability, I performed a random under-sampling for the high 

populated class to classify actual and potential severity. The random under-sampling reduced the 

frequency of the high severity class to match the frequency of the low severity class. This resulted in 

a slight reduction in accuracy but improved the ROC metric due to the more balanced confusion matrix. 

According to the confusion matrix metric, the predictions of the undersampled data showed slight 

improvement. This result indicates that the balanced data is not the only problem for classifying the 

target values, but also that the features are not correlated with the output. 
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The results of severity prediction illustrate that the proposed prototype design (Figure 7) can not be 

realised based on the ML model design and analysis of this thesis. 

Table 9. The results of ML algorithms classification of severity. 

Under sampling 

Actual severity 

prediction 

RF LogR KNN DT 

Accuracy % 60.02 56.57  55.01 53.94 

ROC 0.6002 56.57 0.5501 0.5394 

 

Confusion matrix [622  406] 

[416  612] 

[569  459] 

[434  594] 

[579  449] 

[476  552] 

[560  468] 

[479  549] 

Original data form 

Accuracy % 69.29 69.05 

 

 65.33 

 

60.12 

 

ROC 0.5549 0.5102 0.5324 0.5373 

 

Confusion matrix [2123  209] 

[823    205] 

[2273   59] 

[981     47] 

[1968  364] 

[801    227] 

[1637  695] 

[645    383] 

 

Under sampling 

Potential severity 

prediction 

RF LogR KNN DT 

Accuracy % 55.68 

 

51.9 51.65 

 

52.75 

ROC 0.5568 

 

0.519 0.5165 0.5275 

Confusion matrix [758 607] 

[603 762] 

 

[1086  279] 

[1034  331] 

[696 669] 

[651 714] 

[713 652] 

[638 727] 

Original data form 

Accuracy % 60.69 

 

62.26 57.08 54.26 

ROC 0.5443 

 

0.5034 

 

0.5187 0.5177 

Confusion matrix [397   968] 

[457 1803] 

 

[28 1337] 

[31 2229] 

[420   945] 

[611 1649] 

[569   796] 

[862 1398] 

 

 

 

 

 

 

 



30 
 

6. Results and discussion 
The overall aim of this thesis is to investigate how ML-based methods and techniques could be used 

to develop a research-based prototype for occupational accident prevention in a contracting company. 

The thesis focuses on exploring development processes that bridge ML data analysis technical part 

with the context of safety in a contracting company. The overall research question was formulated 

with the focus on accident prevention and H&S activities on-site, with the company being the case for 

the prototype development. The following four sub-questions were sequentially investigated and 

critically reflected upon to answer this research question. The following discussion around the 

theoretical framework and the data analysis is structured with these research questions in mind. 

RQ1: What are the requirements for applied ML in the domain of accident prevention in a 

contracting company’s occupational safety processes?? 

The review of current ML literature found that when analysing accident reports, a number of challenges 

originated from the characteristics of the data in terms of data format, availability, and content. 

Accident reports, which were discussed in the reviewed literature, existed in textual format and lacked 

labels. In the case of high volumes of data, the accident description content and causes were therefore 

not easily understood. On the other hand, accident reports in predefined reporting categories clearly 

illustrated the reported features. However, they often had shortcomings on the level of causation, as 

they mainly reported the factors close to the physical work environment. Only a few datasets included 

distal causal factors, such as the type of construction and project size (Choi et al. 2020) and monthly 

project-related attributes (Poh et al. 2018). The shallow description of causes in the literature studied 

is one of the most disrupting challenges because it indicates that accident reports do not possess 

sufficient detailed causation capacity to explain why accidents occur.  

Ultimately, the data characteristics determine a considerable part of the data pre-processing step. 

Accident reports are characterised by their use of language and domain-specific terminology. Although 

the literature review did not reach a definite conclusion about the application of domain-specific NLP, 

the critical literature analysis suggested that word-embedding algorithms trained with domain-specific 

corpus achieved good results in pre-processing accident reports (Zhang 2019, Zhang et al., 2020, Baker 

et al. 2020). 

Moreover, accidents happen at different frequencies – particularly severe and fatal accidents which are 

rare compared to the high frequency of reported minor injuries. The reviewed literature mostly used a 

range of data resampling methods to counteract the less frequent accidents in the reported accident 

dataset, such as Random Over Sampling (ROS), Synthetic Minority Oversampling Technique 

(SMOTE), Random Under Sampling (RUS), inversed proportional weights, and manual labelling. 

However, the reviewed literature lacked a justification for the choice of methods, and the consequences 

of using such methods were not considered. This leads to difficulty understanding ML models’ results 

for them to be applied in real-life situations. 

One of the essential recommendations arising from the ML literature review is the need for a 

systemised method for accident analysis with ML. This originated from the technical aspects of ML 

modelling and the need to integrate the theoretical and domain knowledge of safety practices. 

Considering the development context is an applied ML development general requirement and not 

exclusive for ML accident analysis. Nevertheless, it is suggested that the context around the data and 
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code systems, the data analysts, and the organisational expertise are the missing pieces of an ML 

modelling lifecycle (Garcia et al. 2018). Thus, in the construction safety domain, elements of 

digitalisation, change management, feasibility and implementation analysis depend heavily and 

necessarily on the involvement of domain experts. 

The successful application of ML in the domain of safety requires reliable evaluation methods. More 

research is needed in the area of evaluating ML prediction models. The ROC was proposed as an 

efficient metric for maximising the prediction accuracy in construction accident reports, given the 

asymmetrical frequency of serious/non-serious accidents. Nevertheless, more research is needed in 

evaluating applied ML in construction safety, including external validation and implementation trials. 

It is important to note that this literature analysis has been influenced by my thinking about the problem 

I intended to solve. I have been interested in finding the best way to conduct an ML model for analysing 

accident reports. It is not necessarily so that categorising the literature into main themes such as the 

data characteristics and the implementation of ML is original, but it has been shaped by my wish to 

find themes that could help my research. This probably explains my somewhat performative language 

use. Moreover, this observation also relies on being explicit about the fourth level in the reflective 

methodology, the researcher’s role (Alvesson & Sköldberg 2017). 

RQ2: What is the role of ACMs as a theoretical framework for the ML results of analysed reported 

accidents in the construction industry, as well as what can be learned about ACMs from ML? 

The accident causation models (ACMs) (i.e., the BOW-Tie, the SCM, and the STAMP model) were 

compared to the literature that applied ML to analyse accident reports in the construction industry. 

This comparison considered their level of causes, the relationship between causes, and the 

predictability of severity. This contributed to a re-conceptualising of ML-based models through the 

lens of ACMs. The study in paper II concluded that ML could benefit from integrating accident report 

components into the components of ACMs. The benefit is derived from conceptualising extracted 

features from free text and providing a foundation for prevention measures. Rule-based data mining 

and feature extraction methods were found to have shortcomings due to features and rules being 

prepared by a human and the weak generalisation of results (Pan and Zhang 2021). The SCM, the 

Bow-tie model, and several ACMs categorise accident causes into predefined categories. These 

provide somewhat well-defined causes levels – I say somewhat here because I have a reservation on 

how well accident causes are defined in ACMs. Nevertheless, ACMs provided a reference point that 

partly alleviates confusion of interpreting free text data used in ML-based accident analysis. I would 

say the same about accident reports in pre-populated format. These might have their implicit theory, 

and to use ACMs components to recategorise reported accident causes may clarify that. 

There is also a missed opportunity to reflect on ACMs from the perspective of ML analysis. Methods 

such as data mining (Zhong et al. 2020) and semantic roles and rules analysis of accident components 

(Kim and Chi 2019) have visualised the relationships between causal variables. Generally, this 

contributes to creating a link between accident types and accident consequences. However, further 

research is needed to understand the nature of the relationships between causal variables and 

investigate if the levels of causation contribute to accidents equally. 

A major difference was found by comparing the analysed ML literature and the SCM and the BOW-

Tie. It was found that the approach taken by ML modelling to predict the severity of accidents is 
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contradictory with accident analysis and causation models that assume the outcome of accidents as 

involving an unpredictable stochastic element (Harms-Ringdahl 2013). Although the ML literature 

claimed success in severity predictions with internal validity (i.e., ML model accuracy and not in 

applied real-life situations), their results were not always consistent and did not show proof to 

counteract the assumptions of ACMs regarding the stochasticity of accident severity. I must say I 

would like that severity could be predicted. Maybe the academics who work in the same domain wish 

for that too. This might be a reflection of the desire to protect on-site personnel from a dangerous 

situation. One should be aware of such inclinations because they could lead to the opposite, such as 

increased exposure to the danger of minor accidents if predictions introduce overweight on instances 

leading to fatalities. This observation echoes Alvesson & Sköldberg’s (2017) observations on the role 

of the researcher and the structural, societal distance between ML developers and the building site. 

RQ3: What are the experiences and challenges of applying CRISP-DM “business understanding to assure 

a solid contextual embedding and an appreciation of local dynamics? 

Based on the conducted literature review to answer RQ1, there was a recommendation to develop ML 

prototypes concerning the local context dynamics systematically. The CRISP-DM was investigated as 

a possible method. The application of this method by doing interviews, although posing relevant 

questions, was found too general to finalise a business understanding without adding multiple 

iterations. Nevertheless, the interviews revealed interesting insights into the safety processes and the 

perception of H&S personnel within the organisation. It is important to note that the description of the 

CRISP-DM method does not particularly advise doing interviews or a specific way for conducting the 

business understanding analysis. The decision to conduct interviews was my interpretation of using 

the CRSP-DM. It was somewhat challenging for me to start thinking about a prototype without 

understanding the existing safety processes and who would be using it. 

While the respondents agreed on the meaning of safety (“everyone goes home injury-free”), it seems 

that ideas about achieving that goal were not as clearly a part of safety meaning. This indicated 

describing safety as the goal to be injury-free. There was much focus on the planning and preparing 

for safety measures on-site. Accordingly, processes were in place with a particular focus on fatal 

accidents and the behaviour of individuals. Individual risky behaviour was the shared major cause 

among top management and the safety engineers. However, another major cause mentioned by safety 

engineers and site managers was thought to be related to production time pressure and referring to 

contractual arrangements as an inevitable, unchangeable condition that produces safety risks. 

There was also a prevailing assumption that effective accident prevention is achieved by systemically 

identifying the risks associated with accidents and taking measures to avoid their impact. Furthermore, 

the interviewees expressed conflicting views about risks associated with the prevailing safety 

assumptions about behaviour and the systemised risk analysis. These commonly held assumptions and 

associated risk evaluation techniques were often criticised in the literature for low inter-rater reliability, 

i.e., low degree of agreement among observers/raters/analysts in estimating frequencies and 

consequences (Harms-Ringdahl 2013). Analysts/raters tend to assume that a major consequence is 

automatically less probable (Harms-Ringdahl 2013).  

The interviews showed a need and potential added value to accident prevention activities by improved 

safety planning and more accessible risk identification. It seems as if there is frustration with 
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anticipating what would cause the next accident. It might be because some safety professionals have a 

perception that all that can be done to prevent accidents is known and well-established, but accidents 

still occur. Some of the respondents pointed to the need to know why allegedly workers do not follow 

the safety work packages. They attributed that alleged behaviour to the workers’ tendency to prefer to 

do the work before thinking about safety. So, considering workers’ behaviour as a significant cause of 

accidents makes much sense for those safety professionals who deem the rules known and sufficient. 

Ultimately, the CRISP-DM is applied to collect and understand the context requirement and identity 

the business’s expected advantage of using ML data analysis. However, the interviewees’ experiences 

and views indicated complexity in defining a goal that solves an existing problem -from their 

perspective. This presented a difficulty in deciding on an ML utilisation goal and more so to analyse 

the implications and more specific ML prototype design requirements. Paper III concluded that 

CRISP-DM might benefit from adding two iterative steps to the existing ones in its process. 

RQ4: What are the predictive attributes of accidents based on ML application to accident 

reports? 

Based on the ML data analysis in this thesis (see section 5), the pr-populated categories of accident 

description were the point of departure for the ML model design. However, in the accident reports data 

of the case contractor, only a few reported features could represent knowledge before the accident took 

place (such as “work environment”). Compared to those features registering the consequences such as 

the description of the damaged body part and description of injury type and cause category.  

In this thesis’s accident reports analysis (section 5.3), the same phenomenon of the low frequency of 

severe accidents was encountered. The ML model classified most accidents into the low severity 

category, which was the most populated class. Random undersampling (RUS) was employed to test 

the impact of the uneven severity frequency. However, it was found that the difference in frequency 

did not explain the ML model’s results since the use of RUS for the more populated class did not result 

in a considerable improvement in the classification performance.  

This result indicated that the same features’ entries that characterised the work environment for a high 

impact accident were the same for the low impact ones, according to other accident research. It is 

important to note that the prototype design and the choice of severity as an output for the ML model 

were impacted by the available features within the case accident reports and influenced by my own 

inclination to predict severity. This finding implies that research on analysing accident reports by ML 

needs new ways of thinking by approaching the analysis differently. More research is needed about 

this development phase, and only a little research can be found in response to the methodological 

limitations for handling severe accident reports data. A systemised data pre-processing approach that 

implements clustering, chi-square test and principal component analysis (PCA) has been proposed in 

earlier published studies (Lee et al. 2020). 

In this thesis, the BOW-Tie model was used to understand the consequence prediction ML analysis. It 

was found that the data organised as hazards and threats did not differentiate between which work 

conditions, physical activities and deviating events explained the level of severity in the event of 

accidents. This result is in line with basic assumptions in the BOW-tie model. This result raises two 

critical questions. One involves safety planning and what, in fact, the H&S unit knows about the 
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accidents that could be used in planning and prevention. This, in turn, relates to whether an overall 

prevention strategy is being implemented on-site.  

The second important question involves the BOW-Tie model, or in general, whether the ACMs’ 

assumption to prevent accidents by systematically analysing the risks is just an illusion. Building on 

the interviews with the staff of the H&S unit, this is probably true since general safety practices and 

accident analysis are more concerned with preventing the consequence/severity of an accident than the 

event itself. The ML analysis of accidents reports and the prediction model that was undertaken in this 

thesis supported this discussion. By using the reported potential accident consequence instead of the 

actual severity as a prediction target, there appears to be a stochastic element in accident outcomes. 

On a general note, there has been a change in the view of risk evaluation beyond probabilities and 

consequences and more towards a decision-making process that considers a broader view on the 

context of risk (Harms-Ringdahl 2013).  

Intuitively, it could be assumed that the reported potential severity might alleviate some of the 

stochasticity in accident severity. However, the experimental ML analysis in this thesis (see Table 9) 

showed otherwise. This might be explained by the reported potential severity being overestimated. 

Most of the potential accident severities were estimated to be just in the next severity level above in 

the case accident reports. Although these results do not seem encouraging, accident reports and the 

application of ML could support other purposes instead of accident impact prediction. Such purposes 

could include causation modelling and extraction of unique accident cases that might present new 

knowledge. The case accident reports contained other data types such as causes and prevention 

measures and accident descriptions in free-text format (see Appendix). This type of data was not used 

in this thesis, but it can potentially be used in independent research that considers another ML model 

design. 

Accident causation analysis of accident reports using ML provided an added value by giving means 

for efficient extraction of information. ML algorithms search for high frequency, often repeated 

patterns, and this approach is not compatible with finding new knowledge about all types of accident 

occurrences. The domain of accident prevention is mature, and much is known about accidents 

causation combined with developed ACMs that have evolved to include further levels of causes 

beyond the workplace and human behaviour. Therefore, expecting the next accident might not be 

associated with analysing frequent accidents cases but with discovering emergent risks. ACMs provide 

a stable foundation for putting emergent risks into perspective and support prevention strategies. 

However, ACMs seem to have reached a ceiling of causation levels and their representation. Thus, 

more development is needed in understanding the nature of the relationships between causes instead 

of adding further categorisations and levels of analysis. 

Finally, according to my definition of a prototype” as the one suggesting a precise implementation for 

ML-based data analytics. One that shows means of application and a digital software interface that is 

ready for use”. I can say that this thesis did not realise the aimed and designed prototype. Mainly, the 

results of the ML modelling of the case accident reports were not successful in being taken further to 

an implementation stage. 
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7. Conclusion 
This thesis contributed to the exploration and understanding of ML development processes to bridge 

ML data analysis with the context of safety in a contracting company. The thesis has provided a method 

for choosing an ML algorithm based on the required criteria of the ML model. Moreover, the thesis 

discussion argued for the use of CRISP-DM as a method for understanding the context and gathering 

potential use of ML from the business perspective. ACMs were also essential in ML model 

interpretation, especially in identifying components of accident analysis and categories of causes. 

ACMs provided a background for accident investigation and causation analysis for many years and 

developed over time. This has resulted in several classifications such as linear (e.g., SCM) and non-

linear (e.g., Bow-tie model) models according to the assumed logical sequence of events that lead to 

accidents. Other classifications also exist, but ACMs have been divided into groups based on different 

stages and causations. The simple linear models attributed accidents to physical/mechanical and human 

errors. ACMs then became associated with complex linear models as they increasingly considered the 

interaction between latent organisational factors and unsafe behaviour. Complex non-linear models 

encouraged a broader view of system-related factors in response to the growing complexity and tighter 

couplings within industrial domains. They now explain accidents as being caused by the dynamic and 

non-linear interaction among multiple factors within the entire system, including political and 

regulatory factors. 

ACMs evolved to include higher levels of causation. Moreover, ACMs assumed stochasticity in 

accident severity. Behaviour and advanced socio-technical and cultural models were used in the 

relevant domain literature in the construction research context, while the system-based models were 

hardly ever applied. Accidents continue to occur in the construction industry, and there is a need to 

investigate theories and models of accident causation against the quantitative data analysis that is now 

being derived from many registered accidents. 

The ML-based approach to accident analysis includes supervised, unsupervised and semi-supervised 

learning. Unsupervised learning is a method of data exploration or description employed when there 

are no specific preassigned labels for the input or output features. In comparison, supervised machine-

based learning depends on mapping an already labelled input to output. Semi-supervised machine-

based learning consists of a combination of the latter two approaches. Supervised ML algorithms can 

be further categorised into linear and non-linear algorithms, each having different characteristics, 

strengths and weaknesses. The algorithms were organised based on their characteristics (e.g., 

interpretability, accuracy, generalizability). 

This thesis has employed an overall qualitative-interpretive reflexive methodological approach. This 

approach combined different levels of interpretation. ACMs and ML accident analysis were chosen as 

the main theoretical frameworks for answering one overall research question and four related sub-

questions. The associated empirical research included collecting accident reports and interviews 

conducted within the H&S unit in a contracting company. The CRISP-DM and ML algorithms were 

employed to develop and analyse an applied machine learning model. ACMs, ML algorithms, and 

CRISP-DM provided the desired multiplicity in interpreting the empirical material. The practical 

research method consisted of four sequential steps, including three papers and the ML-based analysis 

of accident data. 
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ML-based accident analysis can create knowledge about accidents in a contracting company or other 

organisations, such as objects and combinations of situations that cause accidents. The literature in this 

context showed various means by which the application of ML algorithms can enhance knowledge 

about accidents. ML models can be applied in severity estimation, accident type classification, 

information extraction and safety training scenario generation. However, the literature also showed 

that extracting new knowledge about accidents in a contracting company was hindered by an array of 

challenges. Mainly the systematisation of the ML process, the feasibility of implementation, and the 

focus on severity prediction. 

The reviewed literature of applied ML in accident report analysis indicated the need for the 

standardisation of the development process regarding the feasibility of implementation and evaluation. 

However, implementing the CRISP-DM as a process did add essential components to understanding 

the context, such as context requirements, assumptions about safety processes and accident prevention. 

Although the CRISP-DM was found too general to provide specific guidelines for ML prototype 

development, it provided a backbone for the application domain. Further decisions on the ML system 

design can be established with a flexible-iterative model design process. 

ACMs served as a theoretical framework for conceptualising reported accident features and 

understanding ML-based analysis and interpretation. It was concluded that the reported features that 

described the work environment do not explain severity. Although the domain produces less severe 

accidents that are not aligned with how the machine learning classification algorithms work, this was 

not the primary problem. The primary problem lies within the direction of the ML related literature to 

predict severity, which is stochastic.  

Although ACMs have guided accident investigation and promoted successful prevention strategies, 

the promise of risk mitigation by systematically analysing accident risks has been undermined by the 

difficulties around the identification of unknown and emerging new types of risk. ACMs assume that 

the essence of prevention is by systemising risks and causes. However, in this mature field of study, 

what is needed is to understand better the rules that govern the relationships between emergent new 

risks. Accident report analysis using ML offers methods and means in this area. Data mining and 

unsupervised ML are proposed as a possible way forward to meet this ambition in that they are less 

explored in the ML models considered within the current literature. 

This study suggests that there is a need for systemised machine learning modelling methods for 

analysing accident reports. Systemised methods should consider integrating an applied ML model 

within the context of domain experts responsible for implementing prevention measures and strategies. 

Moreover, there is a need for a development method that systemises the technical part of data pre-

processing and the choice of algorithms along with the needed internal and external validation. 

Moreover, integrating a theoretical framework is essential for analysing accident reports, namely 

ACMs. The application of a theoretical framework proves to be particularly helpful in identifying 

components of accident prevention. 

From a technical perspective, several methods in accident reports analysis in the construction industry 

were recommended. Specific NLP algorithms that consider the local domain language was 

recommended over ML algorithms trained with a general corpus. Moreover, data pre-processing and 

handling methods such as clustering and Chi-square were also recommended. These were explicitly 



37 
 

suggested to justify and explain the consequences of the chosen methods. The same applies to the 

evaluation metrics, such as the ROC metric. A definitive consensus about the best use of algorithms 

was not evident in the existing literature. However, this thesis suggested a method for selecting the 

ML algorithm based on its preferences and task definition and strengths and weaknesses of the relevant 

ML algorithm.  

The ML model that is built on accident reports from the contracting company did not explain accident 

outcomes. It was found that the entries of the features that described the accidents did not differentiate 

between high severity and low severity accidents. This result indicated that ML models that mainly 

focus on accident severity prediction are less successful than they seem. Instead, this thesis advised 

that the focus should shift from accident severity level and use ML to identify emergent risks. The 

latter direction should involve close collaboration with domain experts and organisational change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

8. Future work 
Future work might take in consideration unsupervised-ML based analysis and data mining methods on 

the unstructured reported accidents. Such an ML based approach will be useful in discovering and 

understanding the relationships between causes. Moreover, an in-depth analysis of the ML 

development process could also be a useful direction for future research, where more case studies 

could be taken in consideration in order to explore the development of a more generalized process. 

Such a development would benefit from investigating the prevention strategies implemented on site 

because much can be learned about successful safety process. Such an empirical investigation could 

be of benefit in identifying the methods and principles of prevention measures that allow for safe 

production rather than merely focusing on accident occurrences that drive current thinking.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

9. References 
https://ec.europa.eu/eurostat/statistics 

explained/index.php?title=Accidents_at_work_statistics#Analysis_by_activity 

https://byggforetagen.se/statistik/arbetsmiljo/ 

Albrechtsen, E., & Hovden, J. (2014). Management of emerging accident risk in the building and 

construction industry. Working on safety. 

Alvesson, M., & Sköldberg, K. (2017). Reflexive methodology: New vistas for qualitative research. 

sage. 

Baek, S., Jung, W., & Han, S. H. (2021). A critical review of text-based research in construction: Data 

source, analysis method, and implications. Automation in Construction, 132, 103915. 

Baker, H., Hallowell, M. R., & Tixier, A. J. P. (2020). Automatically learning construction injury 

precursors from text. Automation in Construction, 118, 103145. 

Behm, M., & Schneller, A. (2013). Application of the Loughborough construction accident causation 

model: a framework for organizational learning. Construction Management and 

Economics, 31(6), 580-595. 

Berglund, L., Johansson, J., Johansson, M., Nygren, M., Samuelsson, B., & Stenberg, M. (2017). 

Risker och säkerhetsarbete i byggbranschen: En kunskapssammanställning baserad på 

internationell forskning. 

Berglund, L., Johansson, M., Nygren, M., Samuelson, B., Stenberg, M., & Johansson, J. (2019). 

Occupational accidents in Swedish construction trades. International Journal of Occupational 

Safety and Ergonomics. 

Bhavsar, H., & Ganatra, A. (2012). A comparative study of training algorithms for supervised machine 

learning. International Journal of Soft Computing and Engineering (IJSCE), 2(4), 2231-2307. 

Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., ... & Pasha, M. (2016). 

Big Data in the construction industry: A review of present status, opportunities, and future 

trends. Advanced engineering informatics, 30(3), 500-521. 

Bilal, M., & Oyedele, L. O. (2020). Guidelines for applied machine learning in construction industry—

A case of profit margins estimation. Advanced Engineering Informatics, 43, 101013. 

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). 

CRISP-DM 1.0 Stepby-step data mining guide, SPSS Inc. CRISPMWP-1104. 

Cheng, C. W., Lin, C. C., & Leu, S. S. (2010). Use of association rules to explore cause–effect 

relationships in occupational accidents in the Taiwan construction industry. Safety 

science, 48(4), 436-444. 

https://ec.europa.eu/eurostat/statistics%20explained/index.php?title=Accidents_at_work_statistics#Analysis_by_activity
https://ec.europa.eu/eurostat/statistics%20explained/index.php?title=Accidents_at_work_statistics#Analysis_by_activity
https://byggforetagen.se/statistik/arbetsmiljo/


40 
 

Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). An overview of machine 

learning. Machine learning, 3-23. 

Cassell, C. (2015). Conducting research interviews for business and management students. Sage. 

Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research. Sage 

publications. 

Dekker, S. W. (2015). The psychology of accident investigation: epistemological, preventive, moral 

and existential meaning-making. Theoretical Issues in Ergonomics Science, 16(3), 202-213. 

DVN GL AS (2020) Recommended practice: framework for assurance of data-driven algorithms and 

models. Report No. DNVGL-RP-0510. Online: DVN GL AS. 

El Naqa, I., Li, R., & Murphy, M. (2019). Machine Learning in Radiation Oncology. 

Fu, G., Xie, X., Jia, Q., Li, Z., Chen, P., & Ge, Y. (2020). The development history of accident 

causation models in the past 100 years: 24Model, a more modern accident causation 

model. Process safety and environmental protection, 134, 47-82. 

Garcia, R., Sreekanti, V., Yadwadkar, N., Crankshaw, D., Gonzalez, J. E., & Hellerstein, J. M. (2018). 

Context: The missing piece in the machine learning lifecycle. In KDD CMI Workshop (Vol. 

114). 

Gholizadeh, P., Esmaeili, B., & Memarian, B. (2018, April). Evaluating the performance of machine 

learning algorithms on construction accidents: An application of ROC curves. In Construction 

Research Congress 2018 (pp. 8-18). 

Gopal, M. (2018). Applied machine learning. McGraw-Hill Education. 

Grant, E., Salmon, P. M., Stevens, N. J., Goode, N., & Read, G. J. (2018). Back to the future: What do 

accident causation models tell us about accident prediction?. Safety Science, 104, 99-109. 

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier. 

Harms-Ringdahl, L. (2013). Guide to safety analysis for accident prevention. Stockholm: IRS 

Riskhantering. 

Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical information and computer 

sciences, 44(1), 1-12. 

Hegde, J., & Rokseth, B. (2020). Applications of machine learning methods for engineering risk 

assessment–A review. Safety science, 122, 104492. 

Hon, C. K., Sun, C., Xia, B., Jimmieson, N. L., Way, K. A., & Wu, P. P. Y. (2021). Applications of 

Bayesian approaches in construction management research: a systematic review. Engineering, 

Construction and Architectural Management. 

Hou, L., Chen, H., Zhang, G. K., & Wang, X. (2021). Deep learning-based applications for safety 

management in the AEC industry: A review. Applied Sciences, 11(2), 821. 



41 
 

Hulme, A., Stanton, N. A., Walker, G. H., Waterson, P., & Salmon, P. M. (2019). What do applications 

of systems thinking accident analysis methods tell us about accident causation? A systematic 

review of applications between 1990 and 2018. Safety science, 117, 164-183. 

Japkowicz, N., & Shah, M. (2015). Performance evaluation in machine learning. In Machine Learning 

in Radiation Oncology (pp. 41-56). Springer, Cham. 

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and 

prospects. Science, 349(6245), 255-260. 

Jørgensen, K. (2002). En taxonomi for arbejdsulykker: En systematisk beskrivelse af 

årsagssammenhænge. 

Khallaf, R., & Khallaf, M. (2021). Classification and analysis of deep learning applications in 

construction: A systematic literature review. Automation in Construction, 129, 103760. 

Kim, T., & Chi, S. (2019). Accident case retrieval and analyses: Using natural language processing in 

the construction industry. Journal of Construction Engineering and Management, 145(3), 

04019004. 

Kjellén, U., & Albrechtsen, E. (2017). Prevention of accidents and unwanted occurrences: Theory, 

methods, and tools in safety management. CRC Press. 

Kifokeris, D., & Xenidis, Y. (2018). Application of linguistic clustering to define sources of risks in 

technical projects. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part 

A: Civil Engineering, 4(1), 04017031. 

Koch, C. (2013). From crew to country? Local and national construction safety cultures in 

Denmark. Construction management and economics, 31(6), 691-703. 

Kvale, S., & Brinkmann, S. (2009). Interviews: Learning the craft of qualitative research interviewing. 

sage. 

Lee, S., & El Naqa, I. (2015). Machine learning methodology. In Machine Learning in Radiation 

Oncology (pp. 21-39). Springer, Cham. 

Lingard, H. C., Cooke, T., & Blismas, N. (2012). Designing for construction workers’ occupational 

health and safety: a case study of socio-material complexity. Construction Management and 

Economics, 30(5), 367-382. 

Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Orallo, J. H., Kull, M., Lachiche, N., ... & 

Flach, P. A. (2019). CRISP-DM twenty years later: From data mining processes to data science 

trajectories. IEEE Transactions on Knowledge and Data Engineering. 

Martyr, A. J., & Rogers, D. R. (2020). Engine Testing: Electrical, Hybrid, IC Engine and Power 

Storage Testing and Test Facilities. Butterworth-Heinemann. 

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT press. 



42 
 

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press. 

Pan, Y., & Zhang, L. (2021). Roles of artificial intelligence in construction engineering and 

management: A critical review and future trends. Automation in Construction, 122, 103517. 

Pillay, M. (2015). Accident causation, prevention and safety management: a review of the state-of-the-

art. Procedia manufacturing, 3, 1838-1845. 

Ray, S. (2019, February). A quick review of machine learning algorithms. In 2019 International 

conference on machine learning, big data, cloud and parallel computing (COMITCon) (pp. 

35-39). IEEE. 

Reason, J. The Human Contribution: Unsafe Acts, Accidents and Heroic Recoveries.(2008). Farnham: 

Ashgate Publishing. 

Sarkar, S., & Maiti, J. (2020). Machine learning in occupational accident analysis: A review using 

science mapping approach with citation network analysis. Safety science, 131, 104900. 

Schutz, A. (1972). The phenomenology of the social world. Northwestern University Press. 

Schwatka, N. V., Hecker, S., & Goldenhar, L. M. (2016). Defining and measuring safety climate: a 

review of the construction industry literature. Annals of occupational hygiene, 60(5), 537-550. 

Singh, A., Thakur, N., & Sharma, A. (2016, March). A review of supervised machine learning 

algorithms. In 2016 3rd International Conference on Computing for Sustainable Global 

Development (INDIACom) (pp. 1310-1315). Ieee. 

Symon, G., & Cassell, C. (Eds.). (2012). Qualitative organizational research: core methods and 

current challenges. Sage. 

Törner, M., & Pousette, A. (2009). Safety in construction–a comprehensive description of the 

characteristics of high safety standards in construction work, from the combined perspective 

of supervisors and experienced workers. Journal of safety research, 40(6), 399-409. 

Xu, Y., Zhou, Y., Sekula, P., & Ding, L. (2021). Machine learning in construction: From shallow to 

deep learning. Developments in the Built Environment, 6, 100045. 

Vallmuur, K. (2015). Machine learning approaches to analysing textual injury surveillance data: a 

systematic review. Accident Analysis & Prevention, 79, 41-49. 

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature 

review. MIS quarterly, xiii-xxiii. 

Zhang, F. (2019). A hybrid structured deep neural network with Word2Vec for construction accident 

causes classification. International Journal of Construction Management, 1-21. 

Zhang, J., Zi, L., Hou, Y., Deng, D., Jiang, W., & Wang, M. (2020). A C-BiLSTM approach to classify 

construction accident reports. Applied Sciences, 10(17), 5754. 



43 
 

Zhong, B., Pan, X., Love, P. E., Ding, L., & Fang, W. (2020). Deep learning and network analysis: 

Classifying and visualizing accident narratives in construction. Automation in 

Construction, 113, 103089. 

Zhou, Z., Goh, Y. M., & Li, Q. (2015). Overview and analysis of safety management studies in the 

construction industry. Safety science, 72, 337-350. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

List of abbreviations 

Abbreviations Explanation  
ACMs Accident causation models 

AcciMap accident map model 

AI Artificial intelligence 

ANN Artificial neural network 

ConAC Construction Accident Causation 

CRISP-DM Cross Industry Standard Process Development Method 

DT Decision tree 

FN False negative 

FP False positive 

HSACS Human Factor Analysis and Classification System 

KNN K-nearest neighbour 

KSVM Kernelized support vector machine 

LogR Logistic regression 

LR Linear regression 

ML Machine learning 

MLP Multi-layer perceptron 

MORT The Management Oversight and Risk Tree 

NB Naïve Bayesian 

NLP Natural language processing 

OARU Occupational Accident Research Unit 

RF Random forest 

ROC Receiver operating characteristic 

ROS Random over sampling 

RUS Random under sampling 

SCM Swiss cheese model 

SMOTE Synthetic Minority Oversampling Technique 

STAMP Systems Theoretic Accident Model and Processes 

SVM Support vector machine 

SVR Support vector regression 

TN True negative 

TP True positive 
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Appendix  
Accident report dataset description. 

Where, what, who 

This section of the report consists of information about the date, time and notified authorities, 

followed by the health and safety category, and the company where the incident took place. A case 

title and description are asked for, as well as whether the accident involves in-house or subcontracted 

employees. Project information contains multiple levels of detail, indicating the project and divisions 

where the accident took place. The title of accident, its description, and the health and safety category 

are written by the reporter. The health and safety category report lists accident types such as machines 

and equipment, falling objects, walkways, access roads, lighting, etc. 

General classification 

The general classification section involves information about the detailed work process, material 

agent and the substance / chemical solution involved in the report and is listed in a pre-populated 

drop-down list. The work process concerns the general type of work, and the work process list 

concerns a more detailed process category. Both have multiple levels of detail, but despite being 

necessarily different from each other, they seem to be repeated in the data. 

Type of work in detail Reinforcement, Excavation, Concrete work, etc. 

Involved substance / chemical 

solution 

Gas, Cement, Bitumen, etc. 

 

Work Process Excavation, construction work, renovation, demolition 

New construction – house 

Etc. 

External factor that affected the 

incident 

Building and construction parts  

Facilities 

Etc. 

Consequences 

The consequences section indicates the severity of the accident, as well as details such as whether it 

resulted in personal injury, whether the worker was assigned alternative work, any financial losses, 

the units where the accident happened, and the work shift during which the accident occurred.  

Actual severity 1) First aid, continue to work 

2) Injury that requires medical attention 

3) Personal injury with absence 

4) Very serious personal injury 

5) Fatal accident 

Monetary loss  Monetary loss 

Employment relationship Part time employee, Own employee. 

Work environment Production site, factory, workshop 

Underground – mine 

Etc. 

Position Machine operator 

Supervisor 

Etc. 

Description of damaged body part, 

Common 

The leg / calf 

Torso 

Etc. 

Description of injury  

type 

Allergic reaction 

Electricity injury 

Etc. 

The last deviating event that 

preceded the injury 

Electrical problem due to defects in the installation - causes 

an indirect contact 

Fire, ignition 

Etc. 

Number of registrations Personal 

injuries 

The number of registered personal injuries. 
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Experience in position (Months) The number of months of experience.  

Actual number of days with 

Alternative work 

The actual number of days with alternative work. 

Actual number of days of absence 

(Absence damage), calendar days 

The actual number of days of absence 

Company name Main contractor 

Subcontractor 

Injured body part Finger (fingers) 

Teeth 

Etc. 

Injury class 1) First aid, continue to work 

2) Injury that requires medical attention 

3) Personal injury with absence 

4) Very serious personal injury 

5) Fatal accident 

Category of injury  Hit by moving objects, collision with – no 

Squeezing, crushing, getting stuck in, etc. Not specified. 

Etc. 

Injury type level 1 Wounds and superficial injuries 

Dislocation, sprains, and strain 

Etc. 

Injury type level 2 Superficial injury 

Dislocation and subluxations 

Etc. 

Specific physical activity level 1 Working with hand-held tools - Not spec. 

Driving / staying on board transport equipment / handling 

equipment - Not spec. 

Etc. 

Specific physical activity level 2 Working with hand-held tools – motorized 

Driving a means of transport or handling equipment - mobile 

and not motorized 

Etc. 

Shift or accident to / from work Day shift 

Evening shift 

Etc. 

Loss potential 

Possible further consequence Material damage 

Personal injury 

Potential Severity - Most Severe 1) First aid, continue to work 

2) Injury that requires medical attention 

3) Personal injury with absence 

4) Very serious personal injury 

5) Fatal accident 

Risk area Less serious area (green traffic light) 

Serious area (yellow traffic light) 

Critical area (red traffic light) 

Causes 

Comments Potential comments offered for a case. 

Circumstances of the accident During travel between the home and the workplace 

At work: During work 

At the workplace but not in work tasks: Other premises than 

those arranged by the employer 

Etc. 

Cause level 1 Inadequate risk assessment and / or risk assessment not 

carried out 
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Removal of safety devices 

Etc. 

Cause level 2 Unconcentrated / distracted 

Insufficient safety assessment 

Etc. 

Causes - Cause description Free text 

Cause category Prerequisites (Direct cause) 

Person-dependent factors (underlying cause) 

Etc. 

Prevention 

Expiration Status of Action Ended after due date 

Completed before due date 

No deadline 

Comments Free text  

Prevention status Prevented 

Rejected 

Prevention type Temporary 

Prevention 

Action - Created Date, Time Period 

= Day 

Date format 

Action - Fixed, Time period = Day Date format 

Action description Free text 

Case handling 

Case Management Time Number of days 

Registration delay (Established date 

- Case date) 

Number of days 

Case management and status All cases in the data set are closed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


