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a b s t r a c t   

Quality control of mechanical components is crucial to ensure their expected performance and prevent their 
failure. For components manufactured additively, quality control performed in-process is particularly in-
teresting, as the sequential deposition and remelting of layers represent a possibility to mitigate existing 
flaws. The first step towards closed-loop control is to ensure that the monitoring setup and the data ana-
lytics approach can flag and discriminate flaws. This study aims to assess the potential of a layerwise 
monitoring system associated with a supervised machine learning approach to identify and classify internal 
flaws in laser powder bed fusion of Hastelloy X. For that, systematically generated internal flaws were 
mapped ex-situ in 72 distinct process conditions. The outputs of the near-infrared long-exposure acquisi-
tion system were labeled according to the ex-situ characterization and used to train a fully convolutional 
neural network. The network was then used to classify previously unseen monitoring images into three 
classes, according to the predominant flaw type expected, lack of fusion, keyhole porosity, or residual 
porosity. Accuracy, precision and recall over 96% are obtained, indicating that the monitoring system 
combined with this supervised machine learning approach successfully identifies and classifies internal 
flaws. 

© 2022 The Author(s). 
CC_BY_4.0   

Introduction 

The presence of flaws is inherent to any manufacturing process, 
including laser powder bed fusion (LPBF). While some flaws can be 
eliminated in post-processing, mechanical design often accounts for 
and admits flaws of restricted size and characteristics [1]. In order to 
identify whether a flaw is present in the material and assess its 
criticality, nondestructive inspection techniques, such as radio-
graphy and ultrasonic testing, are routinely employed industrially 
for flaw detection. However, these methods are typically performed 
ex-situ, post-manufacturing, and in these conditions cannot be used 
to identify or mitigate a flaw upon its formation. The advent of ad-
ditive manufacturing introduces the possibility to mitigate flaws 
during the manufacturing process due to the layer-by-layer nature of 
the processes. This prospect, coupled with the need for identifying 
flaws and to the goal of implementing first-time-right manu-
facturing [2], gave rise to the enormous interest in in-situ mon-
itoring and closed-loop control in the additive manufacturing 

community [3,4]. The capabilities of various sensors, monitoring 
setups and detection algorithms of detecting internal flaws, such as 
cracks, lack of fusion and pores, have been investigated in the lit-
erature. 

Two of the most employed monitoring systems in LPBF are 
layerwise optical monitoring and real-time melt pool monitoring. 
The setup for optical monitoring of the powder bed typically consists 
of a camera that acquires signal in the visible spectrum across the 
entire build area in a layerwise fashion, after recoating or after laser 
exposure. In order to use this system for the detection of internal 
flaws, the in-situ detection is often validated by the ex-situ detection 
of flaws [5–7]. Process monitoring based on the acquisition of in-
frared emissions through photodiodes has been most widely used 
for thermal sensing but has also been applied to detect internal flaws 
in multilayer builds [8,9]. In this approach, as the monitoring is ty-
pically performed on the melt pool scale and with high acquisition 
rates, large amounts of data are generated. Similar to the approach 
employed in optical monitoring, process deviations are cross- 
checked ex-situ. Due to the reduced processing speed of this mon-
itoring system, most of the research has been dedicated to identi-
fying flaws in single tracks [10–12]. 

In LPBF process monitoring, there is a trade-off between pro-
cessing time and resolution [13]. While layerwise signal acquisition, 
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such as monitoring the powder bed through optical imaging, re-
quires minimal computational efforts and data storage, it has lim-
itations, especially on the scale of deviations that can be captured. 
On the other hand, real-time monitoring, such as thermal sensing 
with photodiodes, captures high-resolution data but demands great 
computational efforts and data storage. A promising alternative is a 
long-exposure thermal sensing system that acquires process signals 
during the entire process but yields a layerwise output covering the 
whole build area [14,15]. The resolution is sufficient to detect 
anomalies [16], while the layerwise output rate can be sufficient for 
mitigation to be performed in the subsequent layer. This setup has 
been employed to distinguish average pixel intensity values of 
images of specimens manufactured with standard process para-
meters and specimens with keyhole porosity and lack of fusion [17] 
and to monitor the process when an increasing number of layers are 
intentionally not exposed by the laser beam, resulting in insufficient 
binding [18]. Analysis of pixel intensity distribution was also used for 
determining which layers of prints with relatively complex geome-
tries contain hotspots [19]. 

This study aims to assess the potential of using near-infrared 
long-exposure imaging with layerwise registration to discriminate 
regions of LPBF manufactured Hastelloy X that contain flaws from 
those virtually flaw-free and distinguish regions based on the pre-
dominant flaw type present. The assessment is based on images 
obtained from in-situ monitoring of the manufacturing process of 
specimens with varying flaw contents. As the flaws are generated 
systematically, their distribution is widespread throughout the ma-
terial. Each monitored layer is used for training a neural network, 
which is then employed to classify images into containing a primary 
flaw type, lack of fusion, keyhole porosity or residual gas porosity 
only. This monitoring system has previously been demonstrated to 
detect flaws formed stochastically as a result of powder redeposition 
on the powder bed [16]. From an implementation perspective, using 
a single system capable of detecting multiple flaw types increases 
the control efficiency, hence the relevance of assessing the cap-
abilities of this monitoring system to identify distinct flaw types. 

Experimental setup and methods 

Additive manufacturing and ex-situ classification per flaw type 

In previous work by the authors [20], an EOS M290 (Electro 
Optical Systems GmbH, Germany) LPBF machine was employed to 
manufacture the material investigated in this study. The system is 
equipped with a Yb fiber laser with a maximum nominal power of 
400 W and a focused beam diameter of 100 µm. The feedstock 
material utilized is gas atomized Hastelloy X (EOS NickelAlloy HX) 
powder with composition corresponding to UNS N06002 and par-
ticle size between 19 µm (d10) and 58 µm (d90). 

The nominal laser power, scan speed and layer thickness were 
systematically varied to cover a comprehensive range of the process 
space, as shown in Table 1. Manufacturing was performed at a fixed 
hatch spacing, 100 µm. Each of the 72 sets of parameters was used to 
manufacture cylinder-shaped specimens of diameter 10 mm and 
height 20 mm, positioned on the build platform to avoid redeposi-
tion of process byproducts on the laser-exposed area, thereby 
avoiding the formation of spatter-driven stochastic flaws. Satisfac-
tory recoating was ensured by monitoring the process with EOSTATE 
PowderBed monitoring, thereby avoiding the formation of stochastic 

flaws driven by powder bed inhomogeneities. All specimens were 
manufactured with a stripe exposure strategy, with a stripe width 
of 10 mm. 

In prior work [20], all specimens were characterized in terms of 
internal flaw content, flaw size distribution and predominant flaw 
type. The categorization per predominant flaw type is employed for 
labeling images in the present study. 

In-situ monitoring and image acquisition 

Monitoring of the manufacturing process was performed with 
the EOSTATE Exposure OT system, equipped with a 5-megapixel 
sCMOS (scientific complementary metal-oxide-semiconductor) 
camera positioned on top of the build chamber, covering the whole 
build platform area in its field of view. Multiple bandpass filters are 
employed to suppress the acquisition of signals extraneous to the 
built components, such as laser reflections and plasma emissions  
[14]. Hence the system only acquires signal from the process in a 
narrow range of the near-infrared spectrum, namely 
887.5–912.5 nm. During the processing of each layer of the build, the 
system sequentially acquires images at 10 fps, pre-processes all the 
acquired images for noise reduction and geometric and intensity 
corrections, and outputs a single image. The intensity registered in 
each pixel corresponds to the maximum intensity registered in the 
125 µm × 125 µm region of the build area corresponding to a pixel 
during the exposure of the layer. The acquisition is done in a layer-
wise fashion and, in the experiments performed in the present 
study, registers the signal obtained during the manufacture of 
multiple geometrically identical specimens of constant cross-section 
printed simultaneously. EOSTATE OT was employed for image ac-
quisition only; all data processing and analysis was performed in a 
Matlab R2019b environment. After sectioning the acquired images 
into regions of constant size centered in the cross-section of each 
specimen, where only a single specimen can be observed, a database 
was constructed for training a neural network. The labeling is per-
formed based on the ground-truth data obtained by ex-situ char-
acterization. 

Image analysis 

To handle this classification problem, a supervised machine 
learning approach is taken. An annotated dataset is constructed and 
used to train, validate and test a fully convolutional neural network. 
Convolutional neural networks are powerful classifiers in which an 
input image undergoes sequential operations to finally be categor-
ized into one of the pre-defined outputs [21]. On each convolutional 
layer, the data contained in the previous layer are linearly combined 
through convolution operations, then pass a batch normalization  
[22] step before introduction of non-linearity by the Rectified Linear 
Unit (ReLU) function: 

=f x x( ) max( , 0) (1)  

In downsampling layers, max-pooling operations are performed 
with a stride length of two. In the penultimate layer of the network, 
class probabilities are estimated using the softmax function, which 
is a generalization of the logistic sigmoid function for a multiclass 
problem: 

=f x
x

x
( )

exp( )
exp ( )i

i

j j (2)  

Table 1 
Nominal process parameters employed in the manufacturing of Hastelloy X spe-
cimens.    

Laser power (W) 100, 200, 300 
Laser scan speed (mm/s) 200, 400, 600, 800, 1000, 1200, 1400, 1600 
Layer thickness (µm) 20, 40, 80 
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Results 

Ex-situ characterization 

As the flaws observed in this study are generated as a result of 
the selection of process parameters, their occurrence is systemic, 
and their distribution is homogeneous, as observed in the cross- 
sections in Fig. 1. The figure illustrates the variability of the internal 
flaw populations generated through the experimental design. Fig. 1 
A-B represent different levels of systematic keyhole porosity, a flaw 
type obtained when excessive energy is input to the material. The 
material illustrated in A has received a higher energy input in its 
manufacturing than B and presents larger size and volume fraction 
flaws. Fig. 1 C represents a specimen where only residual gas por-
osity was identified, which corresponds to the case in which the 
material is virtually flaw-free as a result of adequate energy input in 
the manufacturing process. Fig. 1 D-E illustrate systematic lack of 
fusion with varying degrees of severity as a result of progressively 
lower energy input. 

Small, spherical and sparse pores are always present in as- 
printed LPBF material due to the gas entrapped in the feedstock 
powder [23] and solubility drop of gas-forming elements present in 
the feedstock powder upon solidification [24,25]. Hence, “residual 
porosity” corresponds to desirable processing conditions and will 
only be considered the predominant flaw type if no other flaws are 
present. The predominant flaw types identified in each of the 72 
specimens in [20] are shown in Fig. 2. 

Flaw types and construction of the dataset 

The dataset used to train, validate, and test the network was 
constructed with near-infrared long-exposure images obtained 
layerwise from the cylindrical specimens built employing the para-
meters in Table 1. Patches of dimensions 81 × 81 pixels centered in 
the specimen layerwise cross-sections were obtained from each 
image and labeled according to the predominant flaw type pre-
viously determined through metallographic analysis. As the flaws 
are generated systematically due to the selection of process para-
meters and occur systemically in the microstructure, each layer is 
assumed to be representative of the resulting flaw distribution. A 
total of 38,097 labeled images were obtained, out of which 8709 
were assigned the label “keyhole porosity”; 21,909, “lack of fusion”; 
7479, “residual porosity”. Sample images obtained from three spe-
cimens belonging to the distinct categories are visualized in Fig. 3, in 
which four distinct layers are depicted. The striped artifacts present 
in the sample images result from the laser scanning pattern and data 
collection gap of the system, and vary layer by layer in a single 
specimen due to the rotation of the stripe pattern and the varying 
stripe layout on the laser exposure. The disruptions in the striped 
pattern mark the locations of stripe overlaps. 

To ensure a balanced and varied dataset, the 7479 images labeled 
“residual porosity” were included in the dataset, and, for the re-
maining categories, the same number of labeled images were ran-
domly selected to compose the dataset. Hence, the effectively 

Fig. 1. Overview of the deliberately generated systematic flaws. (A) and (B) show cross-sections with different volume fractions of systematic keyhole porosity. A detailed sample 
of keyhole porosity is observed in (F). (C) represents a sample virtually free from flaws, in which only gas porosity has been identified. A sample of gas porosity is seen in (G). (D) 
and (E) show cross-sections with distinct volume fractions of systematic lack of fusion. A detailed sample of lack of fusion is observed in (H). 
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utilized dataset contains 22,437 labeled images equally divided into 
three categories. 

Network architecture 

A fully convolutional neural network was designed to classify 
images per primary flaw type identified through metallographic 
analysis. This choice was made as a fully convolutional neural net-
work can process inputs of any dimensions, despite the training 
being performed on images of fixed size, and is the architecture 

suitable for semantic segmentation, which enables the application of 
the trained network to any part geometry. Training and validation 
were performed in the dataset built as per the previous section. The 
network layers were designed to handle the 81 × 81 inputs and re-
duce their dimensions gradually through convolution and max- 
pooling operations, followed by a final convolutional layer that re-
sults in an output of dimensions 1 × 1 × 3. This way, the fully con-
nected layer typically present in the last steps of a neural network is 
replaced by a convolutional layer that produces an output of the 
same dimension, which is dependent on the number of classes, in 
this case, three. This layer is then used as an input to the Softmax 
layer. Finally, a classification layer is used to output a predicted class, 
“keyhole porosity”, “lack of fusion” or “residual porosity”. 

The network was designed to contain adequate complexity to 
avoid overfitting while being relatively simple. For that, a limited 
number of parameters were used, still ensuring satisfactory valida-
tion accuracy. Moreover, three max-pooling layers were used to 
decrease spatial resolution, thereby decreasing computational time. 
In order to improve training, batch normalization layers were added. 
The network can be schematically visualized in Fig. 4. 

Experimental evaluation of the network 

The dataset was split into training, validation, and test data at 
ratios 75%, 20% and 5%, respectively. The training was performed 
with stochastic gradient descent with momentum, at a fixed 

Fig. 2. Predominant flaw type in Hastelloy X across the process space, based on ex-situ characterization. Based on data collected in [20].  

Fig. 3. Image patches obtained from three specimens containing distinct pre-
dominant flaw types. The process parameters employed in manufacturing are in-
dicated. Four distinct layers are represented. 

Fig. 4. Schematic of the network architecture. The layers in the network are represented together with their inputs and outputs.  
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learning rate of 0.01, and L2 regularization factor of 1.0e-4. The 
training was stopped after five epochs since the accuracy of the 
network had already reached a plateau at that point, as well as the 
loss function for the validation dataset, indicating no overfitting. The 
training and validation losses, as well as the accuracies, are shown in  
Fig. 5. The resulting validation accuracy is 97.99%. 

The network was employed to classify the 1122 images pre-
viously set apart in a test set. These images are previously unseen by 
the network, and can therefore be used to estimate its performance 
in practice. The performance of the model is described in the con-
fusion matrix in Fig. 6, in which the rows represent the class pre-
dicted by the network, and the columns represent the true class, 
which corresponds to the label assigned during the construction of 
the dataset. The diagonal cells, in green, present the total number 
and percentage of the total number of observations classified cor-
rectly for each class, while the remaining cells, in red, correspond to 
incorrect classifications. Precision and false discovery rates corre-
spond to the percentages of images predicted to belong to each class 
that are correctly and incorrectly classified, respectively, and are 
shown in the column on the far right. Recall and false-negative rates 
correspond to the percentages of images belonging to each class that 
are correctly and incorrectly classified, respectively, and are shown 
in the bottom row. 

Discussion 

In this study, an sCMOS camera integrated with a bandpass filter 
was employed to acquire long-exposure images of the entire LPBF 
build area when manufacturing specimens through 72 distinct 
process conditions. The specimens either contain systematic lack of 
fusion and keyhole porosity of varying degrees of severity, or are 
virtually free from flaws, in which case only residual gas porosity is 
present. The acquired images were utilized for training, validating 
and testing a convolutional neural network that predicts the pre-
dominant flaw type, given an image obtained in-situ. 

A 5 Megapixel sCMOS camera with a field of view comprising the 
entire build area was used for signal acquisition. The narrow spectral 
range allowed by the filter integrated into the camera ensures that 
most noise characteristic to the LPBF process is eliminated, which is 
a major concern for the robustness of the monitoring system. The 
increased shutter time boosts the pixel intensities, counteracting the 
large field of view and the narrow bandwidth, and highlights heat 
sink regions, where flaws are prone to be formed [16]. Even though 
the acquisition is performed at 10 fps, the system combines the 
images acquired in a layer into a single output image [15]. On the 
one hand, the reduced output of the system makes it suitable as a 
quality control tool due to the increased data processing speed and 
the reduced storage needs, which facilitates traceability in an in-
dustrial environment, for example. On the other hand, layerwise 
monitoring implies that corrective actions cannot be taken im-
mediately, as would be feasible in real-time monitoring, but only 
upon completion of the exposure of the layer. Considering the ad-
ditive nature of the process, i.e., sequential deposition of layers, 
several layers are remelted in each pass, thus enabling the healing of 
flaws. In this perspective, layerwise monitoring might suffice for 
detection and mitigation of internal flaws, and consititutes a feasible 
alternative to real-time monitoring, which requires processing of 
large volume of data. 

Before a monitoring system can be used as a quality assurance 
tool, it must be calibrated to ensure a fair correspondence between 
detections and flaws of interest. An approach taken in more mature 
inspection systems is to generate flaws of controlled dimensions at 
pre-defined locations, for example, by drilling holes in the material 
and calibrating the detection system to generate a distinct signal on 
those locations [26]. In AM, the goal is in-situ detection of flaws; 
therefore, the flaws created deliberately to test the monitoring 
system must be created in-situ, and the method for the deliberate 
generation of flaws becomes an issue to be considered. Some flaws 

Fig. 5. Training progress plots. (A) shows increasing prediction accuracy in the training and validation sets. (B) shows decreasing loss function in the training and validation sets.  

Fig. 6. Confusion matrix showing the performance of the network in classifying the 
1122 images in the test set. 
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arise in laser powder bed fusion (LPBF) stochastically, for example, 
due to spatter redeposition on the powder bed. Flaws formed 
through this mechanism were successfully detected through the 
same monitoring system employed in the present study [16] but 
consisted of lack of fusion flaws driven by spatter redeposition only. 
Thus, the monitoring system had not yet been proven to detect other 
flaw types, such as keyhole pores. This flaw type, as well as lack of 
fusion, was intentionally generated in this study from improper se-
lection of process parameters. Other flaw types can occur in mate-
rials manufactured via LPBF, as a result of improper design [27]. 
Detection of these flaws is not in the scope of this work. 

In practice, sub-optimal parameters are likely not employed in 
manufacturing, as the manufacturing process is preceded by ex-
tensive research and development. However, regions of heat accu-
mulation and internal flaws can occur depending on part geometry 
and scan strategy [28], particularly in regions where short hatch 
vectors are present [29]. In this sense, the strategy for deliberate flaw 
generation implemented in this study mimics a pore formation 
process that occurs in practice. For the case of systematic lack of 
fusion, the extensive process mapping and metallography work has 
identified systematic lack of fusion in varied conditions, including 
those where high relative density is obtained, which tend to be 
overlooked in the optimization process due to the use of relative 
density as processability metric. The model correctly predicted these 
conditions. The trained model can be used to detect regions of lack of 
fusion due to fluctuations in the laser intensity, particularly in 
manufacturing conditions that produce melt pools with low mar-
ginals in relation to geometrical parameters (width and depth with 
dimensions close to hatch spacing and layer thickness, respectively). 

Conclusions 

In this study, a sizeable dataset (38,097 labeled images) was 
created from images obtained through in-situ monitoring of the 
LPBF process during the manufacture of Hastelloy X specimens. The 
manufacturing process was designed to comprise ample process 
conditions and varied flaw contents. A fully convolutional neural 
network was trained and was deemed capable of determining the 
predominant flaw type based an image obtained through in-situ 
monitoring. Best machine learning practices were employed to as-
sure the robustness of the model. 

It is demonstrated that the fully convolutional neural network 
trained on near-infrared long-exposure images is capable of classi-
fying individual layers of specimens per predominant flaw type in 
the categories keyhole porosity, lack of fusion, and residual porosity 
with high accuracy (97.8% in the test set), precision and recall (above 
96% for all classes), when considering systematic process parameter- 
induced flaws. 
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