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In quantum optics, it is common to assume that atoms are pointlike objects compared to the wavelength
of the electromagnetic field they interact with. However, this dipole approximation is not always valid, e.g.,
if atoms couple to the field at multiple discrete points. Previous work has shown that superconducting qubits
coupled to a one-dimensional waveguide can behave as such “giant atoms” and then can interact through the
waveguide without decohering, a phenomenon that is not possible with small atoms. Here, we show that this
decoherence-free interaction is also possible when the coupling to the waveguide is chiral, i.e., when the coupling
depends on the propagation direction of the light. Furthermore, we derive conditions under which the giant atoms
in such chiral architectures exhibit dark states. In particular, we show that unlike small atoms, giant atoms in a
chiral waveguide can reach a dark state even without being excited by a coherent drive. We also show that in
the driven-dissipative regime, dark states can be populated faster in giant atoms. The results presented here lay
a foundation for applications based on giant atoms in quantum simulations and quantum networks with chiral
settings.

DOI: 10.1103/PhysRevA.105.023712

I. INTRODUCTION

In recent years, new paradigms in quantum optics have
emerged. On one hand, it has been shown that the dipole
approximation, i.e., the assumption that atoms are small com-
pared to the wavelength of the light they interact with, is
not always valid. We typically refer to atoms that break this
approximation as giant, since they can couple to light—or
other bosonic fields—at several points, which may be spaced
wavelengths apart. The physics of such atoms has mostly
been studied from a theoretical perspective [1–22], with find-
ings including a frequency-dependent relaxation rate [2] and
decoherence-free interaction between multiple giant atoms
coupled to a waveguide [4]. Experimental demonstrations of
giant atoms have also been realized, by coupling supercon-
ducting artificial atoms [23–25] to surface acoustic waves
[26–37] and microwave waveguides [38,39].

Another new approach in quantum optics is based on chiral
interfaces, where the coupling between light and matter de-
pends on the propagation direction of the light [40,41]. Such
chirality emerges naturally in optical nanofibers when light is
strongly transversely confined [42–44] and it is also achiev-
able in atomic waveguides [45] and in microwave waveguides
by using circulators [23,46–49], sawtooth lattices [50], or
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entangled states between quantum emitters [51]. Besides pho-
tonic reservoirs, other architectures have been proposed to
realize chiral coupling, such as phononic waveguides con-
sisting of Bose-Einstein quasicondensates [52–54] or trapped
ions [55], and magnonic waveguides made of yttrium iron gar-
net (YIG) [56] or spin chains [55,57]. Chiral quantum optics
is increasingly attracting interest [41,58–65] since it can be
harnessed in quantum information for quantum state transfer
between qubits and for manipulation of stabilizer codes for
quantum error correction [8,40].

In this paper, we study the overlap between the afore-
mentioned paradigms in quantum optics, which has barely
been explored due to its recentness [7,8,12,13,16,17,21,22].
In particular, Refs. [8,16,17,21] use giant atoms to induce
effective chirality and Refs. [12,13] use a collision model for
exploring chiral setups. In this manuscript, however, we ana-
lyze the behavior of multiple giant atoms chirally coupled to
a one-dimensional (1D) bosonic waveguide through a master-
equation treatment. We show that a certain arrangement of the
connection points of the giant atoms allows them to interact
without decohering into the waveguide, in agreement with the
results found in Refs. [12,13], and in a similar way as they
do when the coupling is bidirectional [4,38]. This protected
interaction is independent of the state of the giant atoms and
not accessible to small atoms.

Furthermore, we look into dark states [66–68] as another—
less robust—way of protecting the system against decoher-
ence. We derive conditions for the existence of such states in
undriven atomic ensembles and show that unlike small atoms
[60], certain configurations of giant atoms allow for perfect
subradiance regardless of the chirality of their coupling. We
also extend this analysis to the driven-dissipative regime and
find that compared to small atoms [60], giant atoms can pop-
ulate dark states faster.
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FIG. 1. Diatomic setups considered in the present work: (a) two small atoms, (b) two separate giant atoms, (c) two nested giant atoms,
and (d) two braided giant atoms, coupled to a 1D open waveguide. The atoms are denoted by a and b, and their connection points to the
transmission line are identified by their position xk and their relaxation rates γk , for k = 1, 2, 3, 4. At each coupling point, we distinguish
the decay rate to the right- and left-propagating modes as γkR and γkL , in such a way that γkR + γkL = γk . The phase shifts acquired between
neighboring coupling points are denoted by φk = ω|xk+1 − xk |/v for k = 1, 2, 3, where ω and v are the frequency and velocity of the traveling
boson, respectively.

The theoretical treatment presented here is valid for any
two-level systems that can chirally couple to 1D waveguides
of a bosonic nature at multiple points. This implies that
numerous architectures could potentially realize this chiral
coupling of giant atoms, e.g., transmon qubits [69] coupled
to meandering transmission lines with circulators, ultracold
atoms in dynamical state-dependent optical lattices [5], and
perhaps also cold atoms coupled to optical nanofibers.

The present work can find applications in quantum simu-
lations [70] of open chiral many-body systems. In particular,
decoherence-free interaction between distant atoms allows the
simulation of open quantum many-body systems [38] and
the results found here extend the simulatability to chiral in-
terfaces. Furthermore, we believe that giant atoms can be
used to generate spatially entangled photons [71] and entan-
gled cluster states for one-way quantum computing [72]. On
the other hand, dark states are typically involved in coher-
ent population trapping [73–75], electromagnetically induced
transparency [15,39,76–79], and stimulated Raman adiabatic
passage [80–82], which are key phenomena to develop quan-
tum memories [83–85] and quantum networks [86,87].

This paper is structured as follows. In Sec. II, we present
a theoretical model that we use to describe two atoms chi-
rally coupled to a 1D open waveguide. We use the standard
master-equation treatment, where the dynamics of the sys-
tem are obtained by tracing out the waveguide modes in the
Born-Markov approximation. We employ this model to study
decoherence-free interaction in Sec. III and find possible dark
states in Sec. IV. In particular, in Sec. IV A, we assume that

the atoms are not driven, whereas in Sec. IV B, they are driven
by a coherent field. Finally, in Sec. V, we discuss how the
results found here generalize to multiple atoms with multiple
coupling points, and we conclude in Sec. VI with a summary
and an outlook. We also include two appendices with more
detailed derivations of the mathematical model used here (Ap-
pendix A) and the dark-state conditions (Appendix B).

II. THEORETICAL MODEL

The setup we initially consider in this article is a system
consisting of two two-level quantum emitters (qubits) dissipa-
tively coupled to a bosonic bath, which we assume to be an
open 1D waveguide with constant density of states (Fig. 1).
The two atoms are the simplest layout that allow us to first
illustrate the main physical phenomena. Later, in Sec. V, we
consider a larger system with an arbitrary number of atoms
and coupling points, and provide a more comprehensive de-
scription of the dynamics.

Depending on the amount of coupling points between the
atoms and the waveguide, we distinguish small atoms, which
are coupled at a single point [Fig. 1(a)], and giant atoms,
with two or more connection points each [Figs. 1(b)–1(d)].
For simplicity, we assume here that the giant atoms interact
with the waveguide at only two points, and we identify three
different topologies according to the arrangement of their
coupling points [4]: separate [Fig. 1(b)], nested [Fig. 1(c)],
and braided [Fig. 1(d)].
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Besides the amount and arrangement of the connection
points, the coupling of the atoms to the reservoir can also be
characterized by the directionality of the propagating modes
in the waveguide. Throughout this article, we say that atoms
couple chirally to a waveguide when their bare relaxation rate
(the relaxation rate before any interference effects are taken
into account) is generally different towards the right and left
directions, i.e., γR �= γL. Consequently, there are two limit-
ing cases: the bidirectional or nonchiral case, where atoms
couple symmetrically to the right and left (γR = γL), and the
unidirectional or cascaded case, where atoms couple to modes
propagating in only one direction (e.g., γL = 0).

We remark that chiral coupling does not in itself break
Lorentz reciprocity [88] in the waveguide. For instance,
in photonic nanostructures, the strong confinement of light
causes a spin-momentum locking effect, which allows direc-
tional propagation of photons without breaking reciprocity.
In the model we present here, we consider the bath-system
ensemble to be nonreciprocal, whether it consists of a recip-
rocal bath with chiral coupling to the system or an intrinsically
nonreciprocal bath. This means it does not necessarily apply
to unidirectional transducers (UDTs) [89,90] and other recip-
rocal devices.

Formally, we can derive a master equation for the density
matrix ρ of all the setups described above. In order to do so,
we assume that the coupling of each atom j ∈ {a, b} is weak
compared to their transition frequency, i.e., � j � ω j , and
that the travel time between connection points is negligible
compared to the relaxation times 1/� j of all the atoms. We
also disregard losses caused by the coupling of the atoms
to other environments by assuming those coupling rates are
much smaller than � j .

Then, we use the SLH formalism [91–93] for cascaded
systems to derive a master equation for the diatomic ensemble.
The SLH triplet, which consists of a scattering matrix S , a
vector L of n collapse operators that describe the coupling of
the system to the transmission line, and the Hamiltonian H of
the system, yields the master equation for the system in the
Lindblad form (h̄ = 1 throughout this article):

ρ̇ = −i[H, ρ] +
n∑

k=1

D[Lk]ρ, (1)

where D[X ]ρ = XρX † − 1
2 {X †X , ρ} are Lindblad superoper-

ators. In particular, as shown in Appendix A, we can write the
master equation for all the setups in Fig. 1 as follows:

ρ̇ = −i

[
ω′

a

σ a
z

2
+ ω′

b

σ b
z

2
+ (gσ a

−σ b
+ + H.c.) + Hd , ρ

]
+ �aD[σ a

−]ρ + �bD[σ b
−]ρ

+
[
�coll(σ

a
−ρσ b

+ − 1

2
{σ a

−σ b
+, ρ}) + H.c.

]
, (2)

where ω′
j = ω j + δω j , ω j is the transition frequency of atom j

only including Lamb shifts from individual connection points,
δω j is the contribution to the Lamb shift of atom j from
interference between connection points, g is the exchange
interaction between atoms, � j is the individual relaxation rate
of atom j, and �coll is the collective relaxation rate for the

atoms. A possible external drive is accounted for by Hd , the
Pauli Z matrix and the raising (lowering) operator of atom j
are denoted by σ

j
z and σ

j
+(σ j

−), respectively, and H.c. denotes
Hermitian conjugate.

As shown in Appendix A, the right (R) and left (L) collapse
operators can be written as

LR/L = √�aR/L σ a
− +√�bR/L σ b

−, (3)

and they relate to the individual and collective decay rates in
the following way:

� j = � jR + � jL for j = a, b, (4)

�coll = √�aR�∗
bR +√�aL�∗

bL. (5)

Note that the collective decay �coll is set by interference
between the emission from connection points belonging to
different atoms, whereas the exchange interaction g is set by
emission from connection points of one atom being absorbed
at connection points of the other atom [4].

The drive Hamiltonian Hd in Eq. (2) accounts for a co-
herent drive which, without loss of generality, we assume
is incoming from the left side and thus propagating towards
the right. Then, the drive is quantifiable by a boson flux of
|β|2 bosons per second or, equivalently, a Rabi frequency


 j = 2βSR

√
�∗

jR, and the Hamiltonian reads

Hd = −iβSRL†
R + H.c.

= − i

2
(
aσ

a
+ + 
bσ

b
+) + H.c., (6)

where SR = ei�kφk is the right-propagating scattering-matrix
term and �kφk is the sum of the phase shifts acquired between
the outermost connection points to the waveguide. Similarly,
we denote the other terms of the system’s Hamiltonian H
by Hu, for undriven Hamiltonian. In Secs. III and IV A, we
neglect the drive term (i.e., we set Hd = 0 and H = Hu); we
only consider it in Sec. IV B.

The coefficients δω j , � j , �coll, and g in Eq. (2) are well
known for small atoms [60,94,95] and also for giant atoms
in a bidirectional open waveguide [4]. In Table I, we pro-
vide the coefficients for the chiral case, assuming that the
bare relaxation rate at each connection point is γ = γR + γL,
where R and L denote right and left, respectively. From these
expressions, a first difference to note with respect to the bidi-
rectional case [4] is that �coll and g are no longer always real:
they can become complex in the chiral case due to the phase
shifts acquired in the waveguide. In the following sections,
we use these expressions to derive conditions where atoms
are protected from decoherence, either through decoherence-
free interaction (Sec. III) or dark states (Sec. IV). Formulas
for arbitrary bare relaxation rates and arbitrary phase shifts
between connection points are given in Appendix A.

III. DECOHERENCE-FREE INTERACTION

One aspect to note from the expressions in Table I is that, in
general, atoms lose their excitations into the waveguide due to
nonzero relaxation rates � j and �coll. However, braided giant
atoms have the distinctive feature of being able to interact
without decohering, i.e., g �= 0 while � j = �coll = 0. This
result was found in Ref. [4] using a similar master-equation
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TABLE I. Frequency shifts, exchange interaction, and individual and collective decay rates [δω j, g, � j, �coll in Eq. (2)] for two small and
giant atoms chirally coupled to a 1D open waveguide. We assume arbitrary phase shifts φ1, φ2, φ3 and equal bare relaxation rates at each
coupling point k, i.e., γR ≡ γkR and γL ≡ γkL for k = 1, 2, 3, 4. For the general case with different γk , see Table VI in Appendix A.

Coefficient Topology Atom a Atom b

Frequency shifts, Small 0 0
δωa, δωb Separate (γR + γL ) sin φ1 (γR + γL ) sin φ3

Nested (γR + γL ) sin(φ1 + φ2 + φ3) (γR + γL ) sin φ2

Braided (γR + γL ) sin(φ1 + φ2) (γR + γL ) sin(φ2 + φ3)
Individual decays, Small γR + γL γR + γL

�a, �b Separate 2(γR + γL )(1 + cos φ1) 2(γR + γL )(1 + cos φ3)
Nested 2(γR + γL )[1 + cos(φ1 + φ2 + φ3)] 2(γR + γL )(1 + cos φ2)
Braided 2(γR + γL )[1 + cos(φ1 + φ2)] 2(γR + γL )[1 + cos(φ2 + φ3)]

Collective decay, �coll Small γR eiφ + γL e−iφ

Separate γR(ei(φ1+φ2 ) + ei(φ1+φ2+φ3 ) + eiφ2 + ei(φ2+φ3 ) )
+γL (e−i(φ1+φ2 ) + e−i(φ1+φ2+φ3 ) + e−iφ2 + e−i(φ2+φ3 ) )

Nested γR(eiφ1 + ei(φ1+φ2 ) + e−i(φ2+φ3 ) + e−iφ3 )
+γL (e−iφ1 + e−i(φ1+φ2 ) + ei(φ2+φ3 ) + eiφ3 )

Braided γR(eiφ1 + ei(φ1+φ2+φ3 ) + e−iφ2 + eiφ3 )
+γL (e−iφ1 + e−i(φ1+φ2+φ3 ) + eiφ2 + e−iφ3 )

Exchange interaction, g Small [γR eiφ − γL e−iφ]/(2i)
Separate [γR(ei(φ1+φ2 ) + ei(φ1+φ2+φ3 ) + eiφ2 + ei(φ2+φ3 ) )

−γL (e−i(φ1+φ2 ) + e−i(φ1+φ2+φ3 ) + e−iφ2 + e−i(φ2+φ3 ) )]/(2i)
Nested [γR(eiφ1 + ei(φ1+φ2 ) − e−i(φ2+φ3 ) − e−iφ3 )

−γL (e−iφ1 + e−i(φ1+φ2 ) − ei(φ2+φ3 ) − eiφ3 )]/(2i)
Braided [γR(eiφ1 + ei(φ1+φ2+φ3 ) − e−iφ2 + eiφ3 )

−γL (e−iφ1 + e−i(φ1+φ2+φ3 ) − eiφ2 + e−iφ3 )]/(2i)

model, but only for the case of bidirectional coupling. In
Ref. [13], it was shown that this interaction was also possible
in waveguides of any chirality, a result that was proved by
using a collision model without resorting to a master equation.
Here, we show that we can use the master-equation treatment
described in Sec. II to derive conditions for decoherence-free
interaction in waveguides of any chirality.

By definition, an atomic ensemble does not decohere into
the waveguide when the individual decay rate of each atom
is zero, i.e., � j = 0 ∀ j. In braided atoms, this implies that
an excitation acquires a phase π (mod 2π ) between the cou-
pling points of atom j or, equivalently, that the coupling
points are separated by half the excitation’s wavelength, λ/2
(mod λ). For this particular distance, the emission from each
atom’s connection points interferes destructively, making the
sum over all atoms zero and thus preventing collective de-
cay (�coll = 0). In separate and nested atoms, the connection
points of atom b are consecutive, so the emission between
them cancels (g = 0) when �b = 0. Unlike these topologies,
braided atoms have the particularity that no consecutive points
belong to the same atom, allowing a nonzero exchange inter-
action. This implies that an excitation can be released from
atom a to be reabsorbed by atom b, and vice versa, in a
continuous loop.

We observe that this reasoning applies separately in each
propagation direction and thus it holds for waveguides of
any chirality. Mathematically, the decoherence-free interac-
tion conditions for two braided giant atoms reads

φ1 + φ2 = (2n1 + 1)π,

φ2 + φ3 = (2n2 + 1)π,
n1, n2 ∈ N, (7)

which yield g = (2γLeiφ2 − 2γRe−iφ2 )/(2i), according to
Table I. Therefore, for bidirectional coupling, the additional
condition φ2 �= n3π with n3 ∈ N is required in order to obtain
nonzero interaction.

The reasoning is also valid for arbitrary bare relaxation
rates, as shown in Ref. [4] for bidirectional coupling. Nev-
ertheless, in such a case, � j is only zero for both atoms when
γ1R/L = γ3R/L and γ2R/L = γ4R/L.

IV. DARK STATES

A. Undriven system

An important aspect of the decoherence-free interaction
in Sec. III is that it is independent of the states of the giant
atoms, meaning that the entire Hilbert space of the atomic
ensemble is protected from decoherence. A less robust way
of preventing atoms from decaying is through dark states
[66–68,94], whereby only a subspace of the Hilbert space
is protected from decoherence. In an atomic network, dark
states are nonradiative pure states which are annihilated by
all collapse operators and are eigenstates of the multiatom
Hamiltonian [58,60,61,67,95].

In the case of two small atoms coupled nonchirally, a
nontrivial dark state (i.e., not the ground state) arises when
the atoms share an excitation that is prevented from decay-
ing by destructive interference between coupling points. This
behavior, however, is not possible if the atoms are coupled
to a unidirectional waveguide, wherein only one of the atoms
is “aware” of the other [40]. Therefore, in general, when the
system is not driven [Hd = 0 in Eq. (2)], chirally coupled
small atoms do not exhibit dark states. In this section, we look
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FIG. 2. Energy-level diagrams of two two-level atoms coupled by a chiral waveguide. (a) The four canonical basis states are that both
atoms are excited (|ee〉), one atom is excited while the other is in its ground state (|eg〉 , |ge〉), or both atoms are in their ground state (|gg〉).
The decay rates �a and �b, as well as the drives 
a and 
b, depend on the topology of the atoms. They are defined in Table I and Eq. (6),
respectively. (b) Equivalent four-state basis, where |S/T 〉 is a dark state which does not decay to the waveguide and |T/S〉 is a bright state that
decays with a superradiant rate �a + �b. The states |S〉 and |T 〉 denote the singlet and the triplet, respectively [see Eq. (9)], and they act as dark
or bright states according to the conditions in Table II. As derived in Appendix B, they are coupled by ξ = (ω′

b − ω′
a + g − g∗)/2, meaning

that if Hd = 0, then ξ must also be zero for |S/T 〉 to be a dark state. If Hd �= 0, then ξ �= 0 and we can find a dark state |DS/T 〉 in the subspace
spanned by |gg〉 and |S/T 〉. Also, as shown in Eq. (B8), the drive couples states |gg〉 ↔ |T/S〉 ↔ |ee〉 by

√
2(
a ± 
b)/2, which under the

dark-state conditions is equal to
√

2
a ≡ √
2
. (c) Diagram for the driven-dissipative regime, where the dark and bright states |DS/T 〉 and

|BT/S〉 are defined in Eqs. (10) and (11), respectively. The rate �DS/T at which they are populated can be found in Eq. (12). The choice of singlet
and triplet states complies with the conditions in Table III, which also contains expressions for α.

for dark states in setups with two giant atoms and find that
in the nested configuration, they can share an excitation even
when they are chirally coupled.

Let us consider two qubits a and b with ground states |g〉
and excited states |e〉. The canonical states of the ensemble
can then be described by the basis {|gg〉 , |ge〉 , |eg〉 , |ee〉},
where |nm〉 = |n〉a ⊗ |m〉b is the tensor product of the state
of both atoms [see Fig. 2(a)]. A dark state |D〉 is therefore,
in general, a linear combination of the four states above. It is
derived from the aforementioned definition, which formally
reads

LR |D〉 = LL |D〉 = 0,

H |D〉 = μ |D〉 , μ ∈ R. (8)

In particular, the first condition ensures that |D〉 is nonradia-
tive and the second one ensures it is a steady state.

Taking the undriven Hamiltonian of the system H = Hu

and the collapse operators LR/L defined in Sec. II, we find
that under certain restrictions, the dark state can either be the
singlet state |S〉 or the triplet |T 〉:

|S〉 = 1√
2

(|ge〉 − |eg〉),

|T 〉 = 1√
2

(|ge〉 + |eg〉). (9)

These restrictions are collected in Table II, where we show
that the dark state is |S〉 or |T 〉 depending on the phase ac-
quired by the traveling boson in the waveguide. Note that, for
simplicity, we have derived the constraints assuming the bare
relaxation rates are equal at all connection points, but different
in each propagation direction. In all atomic setups, this perfect
subradiance can only be achieved if both atoms have the same
transition frequency (ωa = ωb) and, with the exception of
nested atoms, only if the waveguide is bidirectional (γR = γL).
A key result that we find is that nested atoms allow for the
existence of a dark state regardless of the chirality of their
coupling to the waveguide.

Taking a closer look at the dark-state conditions in
Table II, we see that nested atoms require φ2 �= π , i.e., they
require atom b to be able to decay (�b �= 0). If this atom
does not relax, it is also not able to absorb an excitation, and
�coll, g = 0. Then, if φ1 and φ3 are chosen such that atom a
cannot decay either, the diatomic ensemble does not decohere,
but it also does not interact. In such a situation, all the states
are dark and the system does not evolve. Therefore, setting
φ2 �= π allows atom b to release an excitation which can be
absorbed by atom a, even in chiral waveguides. If we then
choose φ1 = φ3, this release is compensated by the possibility
of atom a relaxing to excite atom b, thus making the maximum
entanglement between |ge〉 and |eg〉 a dark state. Note that
the reason why the other topologies do not have a dark state
in chiral waveguides is because atom b cannot excite atom

TABLE II. Conditions for the existence of a nontrivial dark state
|D〉 in the setups described in Fig. 1. We assume arbitrary phase
shifts φ1, φ2, φ3 and equal bare relaxation rates at each coupling
point k, i.e., γR ≡ γkR and γL ≡ γkL for k = 1, 2, 3, 4. In all cases,
the frequencies of atom a and b must be equal (ωa = ωb).

Topology Dark state Phase shift Chirality

Small |S〉 φ = 0 γR = γL

|T 〉 φ = π γR = γL

Separate |S〉 φ1 = φ3 �= π γR = γL

φ1 = −φ2

|T 〉 φ1 = φ3 �= π γR = γL

φ1 + φ2 = π

Nested |S〉 φ1 = φ3 = 0 Any
φ2 �= π

|T 〉 φ1 = φ3 = π Any
φ2 �= π

Braided |S〉 φ1 = φ3 = 0 γR = γL

φ2 �= π

|T 〉 φ1 = φ3 = π γR = γL

φ2 �= 0
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a with the same probability as a can excite b. In fact, this
distinctive symmetry that allows nested atoms to have a dark
state regardless of the chirality is also present when a giant
atom a nests a small atom b between its connection points.

Another significant difference between small and giant
atoms exists with regard to trivial dark states. In small atoms,
only |gg〉 is a trivial dark state, whereas in giant atoms, we can
also find phase shifts that make all states dark. In this case,
the atoms are completely decoupled from the waveguide and
each other. This regime should be accessible in architectures
with tunable atomic frequencies (which changes the phases
φ j) [2,38], such as superconducting qubits coupled to a trans-
mission line.

As derived in Appendix B and depicted in Fig. 2(b), an
alternative multiatom state basis is {|gg〉 , |S〉 , |T 〉 , |ee〉},
where |S〉 and |T 〉 are coupled by ξ = (ω′

b − ω′
a + g − g∗)/2.

Whenever ξ = 0, there can be a dark state |D〉 = |S/T 〉 that
does not relax into the waveguide, and a bright state |B〉 =
|T/S〉 that decays at a superradiant rate �a + �b. We use the
notation |S/T 〉 , |T/S〉 to denote that when |D〉 = |S〉 in the
instances presented in Table II, then |B〉 = |T 〉, and vice versa.
Let us remark that ξ = 0 when g ∈ R and ω′

a = ω′
b, which

ultimately imposes the chirality and frequency restrictions
from Table II.

B. Driven-dissipative regime

In Ref. [60], it is shown that one can get around the ab-
sence of dark states for small atoms in chiral waveguides by
coherently driving the system. When such a drive is added, the
diatomic ensemble evolves to a dynamic equilibrium between
drive and dissipation where the stream of bosons scattered
from the first atom interferes destructively with the bosons
scattered from the second [40]. Here, we show that such a
regime is also accessible for all three topologies of giant
atoms.

We consider an incoming coherent signal from the left side
of the waveguide, as described in Eq. (6). Then, with the modi-
fied Hamiltonian H = Hu + Hd , it follows from the conditions
in Eq. (8) that the dark state in the driven-dissipative regime
is one of the following:

|DS/T 〉 = 1√
1 + |α|2

(α |S/T 〉 + |gg〉), (10)

where α = i
√

2
/(2ξ ) is a function of the bare relaxation
rates, the coherent drive, and the detuning of the atoms from
the drive (see Table III). These dark states exist in all topolo-
gies regardless of the chirality of the waveguide the atoms
are coupled by, but only under the constraints collected in
Table III. In particular, if the atoms are detuned from the
drive frequency by δ j , then |DS/T 〉 only exists if the detunings
are opposite (i.e., δa = −δb), and additionally, the detuning
must be nonzero for nested atoms. Moreover, from the phase
shifts in Table III, it follows that the drive amplitudes of both
atoms are equal (
a = 
b) when |DS〉 is dark and opposite
(
a = −
b) when |DT 〉 is dark. We use the notation 
 ≡ 
a

and δ ≡ δa to refer to the drive and detuning, respectively.

TABLE III. Conditions for the existence of a nontrivial dark state
in the coherently driven versions of the setups in Fig. 1. |DS〉 and |DT 〉
are the states defined in Eq. (10). We assume arbitrary phase shifts
φ1, φ2, φ3 and equal bare relaxation rates at each coupling point k,
i.e., γR ≡ γkR and γL ≡ γkL for k = 1, 2, 3, 4. These dark states exist
regardless of the chirality of the coupling between the atoms and the
waveguide, but only when the atoms have opposite detunings (δa =
−δb). We use the definitions δ ≡ δa, 
 ≡ 
a, and �γ ≡ γL − γR.
Note that with the phase shifts below, 
a = 
b when |DS〉 is dark
and 
a = −
b when |DT 〉 is dark.

Dark Phase
Topology state shift α(β ) α(
)

Small |DS〉 φ = 0
2
√

2β
√

γR

�γ − 2iδ

√
2


�γ − 2iδ

|DT 〉 φ = π
2
√

2β
√

γR

�γ − 2iδ

√
2


�γ − 2iδ

Separate |DS〉 φ1 = 0
2
√

2β
√

γR

2�γ − iδ

√
2


4�γ − 2iδ
φ2 = π

φ3 = 0

|DT 〉 φ1 = 0
2
√

2β
√

γR

2�γ − iδ

√
2


4�γ − 2iδ
φ2 = π

φ3 = 0

Nested |DS〉 φ1 = 0

√
2β

√
γR(1 + eiφ2 )

−iδ

√
2


−2iδ
φ2 �= π

φ3 = 0

|DT 〉 φ1 = π

√
2β

√
γR(1 + eiφ2 )

−iδ

√
2


−2iδ
φ2 �= π

φ3 = π

Braided |DS〉 φ1 = 0

√
2β

√
γR(1 + eiφ2 )

�γ − iδ

√
2


2�γ − 2iδ
φ2 �= π

φ3 = 0

|DT 〉 φ1 = π

√
2β

√
γR(1 − eiφ2 )

�γ − iδ

√
2


2�γ − 2iδ
φ2 �= 0
φ3 = π

Note that the bright states accompanying the dark states
above are

|BS/T 〉 = 1√
1 + |α|2

(|S/T 〉 − α∗ |gg〉). (11)

The existence of these dark and bright states |DS/T 〉 and |BS/T 〉
is intuitive from the fact that the diagram of states |gg〉, |S/T 〉,
and |T/S〉 in Fig. 2(b) mimics a � system [15,60,61]. Thus,
when the atoms are externally driven, a new dark state arises
in the subspace spanned by |S/T 〉 and |gg〉.

In the driven-dissipative regime, it is more conve-
nient to write the master equation in the basis {|DS/T 〉 ,

|BS/T 〉 , |T/S〉 , |ee〉}, as depicted in Fig. 2(c). In Appendix
B 2, we show that this change of basis allows us to derive the
rate �DS/T at which the dark state is populated,

�DS/T = �a + �b

1 + |α|2 . (12)
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TABLE IV. Populating rate �DS/T of the dark state in the driven-dissipative regime for all the setups described in Fig. 1. To calculate
�DS/T = (�a + �b)/(1 + |α|2), we take �a and �b from Table I with the phase shifts from Table III. We also take α from Table III and assume
equal bare relaxation rates at each coupling point k, i.e., γR ≡ γkR and γL ≡ γkL for k = 1, 2, 3, 4. We use the definitions δ ≡ δa = −δb,

 ≡ 
a = ±
b, and �γ ≡ γL − γR. In the expression of �DS/T for braided giant atoms, ± denotes + when the dark state is |DS〉 and − when
it is |DT 〉.

Topology �DS/T (β ) �DS/T (
)

Small
2(γR + γL )(�γ 2 + 4δ2)

8γR|β|2 + �γ 2 + 4δ2

2(γR + γL )(�γ 2 + 4δ2)

2
2 + �γ 2 + 4δ2

Separate
8(γR + γL )(4�γ 2 + δ2)

8γR|β|2 + 4�γ 2 + δ2

16(γR + γL )(4�γ 2 + δ2)


2 + 8�γ 2 + 2δ2

Nested
4(γR + γL )(1 + cos φ2)δ2

4γR|β|2(1 + cos φ2) + δ2

8(γR + γL )(1 + cos φ2)δ2


2 + 2δ2

Braided
4(γR + γL )(1 ± cos φ2)(�γ 2 + δ2)

4γR|β|2(1 ± cos φ2) + �γ 2 + δ2

8(γR + γL )(1 ± cos φ2)(�γ 2 + δ2)


2 + 2�γ 2 + 2δ2

In particular, we write the full expression of �DS/T for each
setup in Table IV, from which we observe that giant atoms
can populate the driven-dissipative dark state faster than small
atoms.

It is not trivial to quantify how much faster the dark state
can be populated in a giant atom than in a small one. We
propose several ways to do so:

(i) By keeping the same drive amplitude 
, we find that
�DS/T (
)|giant � 64�DS/T (
)|small. However, that might seem
like an unfair comparison since 
 contains interference effects
between the connection points of the same atom which are not
present in small emitters.

(ii) A fairer comparison might be made by assuming
the same boson flux |β|2. By looking at the expressions
in Table IV, we see that in the limiting case where the
drive γR|β|2 is weak compared to the detuning δ2 and the
coupling-strength asymmetry �γ 2, then �DS/T (β; γ )|giant �
4�DS/T (β; γ )|small. However, by evaluating the rates numeri-
cally, it can be seen that when the drive strength is comparable
to the coupling-strength asymmetry, �DS/T (β; γ )|separate can be
up to 16�DS/T (β; γ )|small. In this comparison, we are assuming
that both small and giant atoms have a bare relaxation rate
γ = γR + γL at each connection point. This means that for a
small atom, max(� j )|small = γ , whereas for a giant atom with
two coupling points, max(� j )|giant = 4γ . Since the individual

relaxation rate then is not the same for small and giant atoms,
some might consider this still an unfair comparison.

(iii) We could therefore impose max(� j )|small =
max(� j )|giant, which is achieved by taking the bare relaxation
rate to be γ at each of the coupling points of the giant atoms
and 4γ at each connection point of the small atoms. In this
case, �DS/T (β; γ )|giant � 4�DS/T (β; 4γ )|small.

Hence, we conclude that regardless of the choice of com-
parison, giant atoms can populate the driven-dissipative dark
state faster than small atoms. This feature might be advanta-
geous in typically slow processes such as adiabatic-passage
techniques [80–82].

V. MULTIPLE ATOMS WITH MULTIPLE
COUPLING POINTS

Now that we have illustrated the main mechanisms to avoid
decoherence with two small and giant atoms, it is natural
to generalize the dynamics to multiple atoms with multiple
connection points each. In the same way we have built a
model in Sec. II for two atoms, we can derive a master
equation for an arbitrary number of atoms N , where each
atom j has Mj connection points. In this case, following the
procedure described in Appendix A, we obtain the master
equation

ρ̇ = −i

⎡
⎣ N∑

j=1

ω′
j

σ
j

z

2
+

N−1∑
j=1

N∑
k= j+1

(g j,kσ
j

−σ k
+ + H.c.) + Hd , ρ

⎤
⎦+

N∑
j=1

� jD[σ j
−]ρ

+
N−1∑
j=1

N∑
k= j+1

[
�coll, j,k

(
σ

j
−ρσ k

+ − 1

2
{σ j

−σ k
+, ρ}

)
+ H.c.

]
, (13)

with the constants

δω j =
Mj−1∑
n=1

Mj∑
m=n+1

(
√

γ jnRγ jmR + √
γ jnLγ jmL ) sin(φ jn, jm ), (14)

g j,k =
Mj∑

n=1

Mk∑
m=1

ε

2i
[
√

γ jnRγkmR exp(εiφ jn,km ) − √
γ jnLγkmL exp(−εiφ jn,km )], (15)
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(a) Braided chain (b) Braided triad

FIG. 3. Examples of atomic setups that allow decoherence-
free interaction [4] even when coupled to a chiral waveguide.
(a) 1D braided chain with protected nearest-neighbor interaction.
(b) Braided triad with protected all-to-all connectivity.

� j =
Mj∑

n=1

Mj∑
m=1

(
√

γ jnRγ jmR + √
γ jnLγ jmL ) cos(φ jn, jm ), (16)

�coll, j,k =
Mj∑

n=1

Mk∑
m=1

[
√

γ jnRγkmR exp(εiφ jn,km )

+ √
γ jnLγkmL exp(−εiφ jn,km )], (17)

where φm,n =∑n
k=m φk , the position of connection point jn is

denoted by x jn , and

ε =
⎧⎨
⎩

+1 if x jn < xkm

0 if x jn = xkm

−1 if x jn > xkm .

(18)

In particular, for N = 2 and M1,2 � 2, we retrieve Eq. (2) with
the coefficients from Table VI in Appendix A.

Note that it becomes evident by Eq. (16) that if the bare
relaxation rates are the same at each coupling point, i.e.,
γ jn = γ jm∀n, m, then the maximum individual relaxation rate
max(� j ) scales quadratically with the number of coupling
points Mj , as shown for a single giant atom in Ref. [2].

At first sight, it might seem difficult to distinguish in the
equations above the three giant-atom topologies displayed
in Fig. 1. But when there are multiple atoms with multiple
connection points, we can still define the three canonical lay-
outs as follows. By taking the atoms in pairs, we define the
separate configuration as the one where all connection points
of atom j are situated to the left of all connection points of
atom k, and the nested configuration as the one where all cou-
pling points of atom k are situated between two consecutive
points of atom j. The braided topology encompasses all other
configurations, i.e., the cases where some connection points
of atom j are between some connection points of atom k.

A. Decoherence-free interaction

A first thing to notice from Eq. (13) is that all interactions
are pairwise, which means that the phenomena derived for two
atoms in the preceding sections can be generalized to multi-
ple atoms. For instance, in order to achieve decoherence-free
interaction between multiple atoms, it is necessary to have
g j,k �= 0 and � j, �coll, j,k = 0 for all j, k, which by the defi-
nition above is still only possible in braided configurations.
Therefore, interesting layouts such as a 1D spin chain with
protected nearest-neighbor interaction [Fig. 3(a)] or an atomic

(a) Matryoshka (b) Enclosed braided

FIG. 4. Examples of undriven atomic setups that have dark states
even when coupled to a chiral waveguide. (a) Matryoshka nested
atoms, which illustrate that the number of atoms does not affect the
existence of a dark state, only its form. (b) Enclosed braided atoms,
which show that atoms with different numbers of connection points
can also be entangled and share an excitation to form a dark state.

triad with protected all-to-all connectivity [Fig. 3(b)] [4] can
be built with waveguides of any chirality.

Let us remark that decoherence-free interaction is also
achievable with more than two coupling points, as shown in
Ref. [13]. For instance, the three-coupling-point architecture
used in Ref. [38] to demonstrate decoherence-free interaction
in a bidirectional waveguide is also protected from decay in a
chiral waveguide.

B. Dark states

In Sec. IV A, we showed that two atoms with two connec-
tion points each can share an excitation and form a dark state,
but only nested atoms can do so with chiral coupling due to
their distinctive symmetry. This property can be generalized to
multiple atoms with multiple coupling points through the fol-
lowing sufficient conditions for the existence of a dark state:

(1)
√

� jR/
√

�kR = √� jL/
√

�kL ∀ j, k and for certain
phase shifts. This ensures that a dark state |D〉 exists such
that LR |D〉 = LL |D〉 = 0 for those phase shifts. Note that if√

� jR/L = 0 ∀ j, then all states are dark.
(2) H |D〉 = μ |D〉 , μ ∈ R. By definition, a dark state is

an eigenstate of the Hamiltonian.
(3) ω′

j = ω′
k ∀ j, k. One way to ensure this, but which is not

necessary, is setting ω j = ωk and δ j = 0 ∀ j, k.
(4) g j,k ∈ R ∀ j, k. This condition, together with the previ-

ous one, ensures that the dark and bright states are decoupled,
as explained in Sec. IV A, where we set ξ = 0.

Some symmetric layouts that obey these conditions are
“matryoshka” nested atoms [Fig. 4(a)], which, like the epony-
mous Russian doll, are iteratively nested one inside another,
or enclosed braided atoms [Fig. 4(b)], which are braided,
but have the two outermost connection points belonging
to the same atom. For instance, if we set all the phases
to 0 mod 2π and all the relaxation rates to γ = γR + γL,
then three matryoshka atoms can share one excitation in the
state |D〉 = (|egg〉 + |geg〉 − 2 |gge〉)/

√
6, and two enclosed

braided atoms can share an excitation in the state |D〉 =
(2 |eg〉 − 3 |ge〉)/

√
13.

The existence of a dark state is invariant under the splitting
of connection points, provided that if one point with relaxation
rate γ splits into n consecutive points with coupling strengths
γ1, . . . , γn, then (

∑n
j=1

√
γ j )2 = γ and there is no additional

phase shift between points (mod 2π ). Such a case is illus-
trated in Fig. 5, where Fig. 5(a) and Fig. 5(b) depict a braided
layout before and after splitting, respectively.
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(a)

γ γ

φ φ

(b)

γ γ1 γ2 γn

φ φ 0 0

FIG. 5. Example of the invariance of a dark state under splitting
of connection points. (a) Braided configuration which exhibits a
dark state when φ = 0, π . (b) Splitting of the last connection point
in layout (a) into n consecutive connection points with coupling
strengths γ1, . . . , γn. This layout exhibits a dark state provided that
(
∑n

j=1
√

γ j )2 = γ and no additional phase shift (mod 2π ) is ac-
quired in the splitting.

VI. CONCLUSION AND OUTLOOK

In this paper, we have derived a master equation for mul-
tiple giant atoms chirally coupled to a 1D open waveguide at
multiple points. We have shown that when giant atoms have
their connection points in a braided configuration, they can in-
teract without decohering into the waveguide. This exchange
interaction is mediated by the waveguide and is not protected
from decay in small atoms (nor in separate and nested giant
atoms). In braided giant atoms, however, the protection is
possible regardless of the chirality of the waveguide and the
atomic state of the system.

Moreover, we have shown that giant atoms exhibit dark
states in both the static and driven-dissipative regimes, and we
have derived conditions for the existence of such subradiant
states. In particular, we have found that unlike small atoms,
undriven giant atoms in the nested and braided configurations
can present dark states regardless of the chirality of the waveg-
uide. We have also shown that dark states of coherently driven
giant atoms can be populated faster than their counterparts in
small atoms.

This work has potential applications in quantum simula-
tions and quantum networks in chiral settings, as discussed
and demonstrated in the experiments of Refs. [38,39]
for nonchiral waveguides. As shown in Ref. [38], the
decoherence-free interaction enables the creation of any quan-
tum many-body state among the atoms since the interaction
can be used to form a universal set of quantum gates. The
interaction of this many-body system with the environment
represented by the waveguide can then be turned on and off
for quantum simulations by controlling the phase shifts φ j in
the setup, e.g., by tuning the atomic frequencies. Similarly,
the universal gate set can be used to create entangled states
that then are released into the waveguide for quantum com-
munication or one-way quantum computing. Furthermore, the
dark states we have found here for giant atoms could find
applications in quantum memories and quantum networks, as
described in Sec. I.

Future work may include studying the driven-dissipative
regime beyond the diatomic case presented here, to observe
the effect of chirality on the formation of dimers, tetrameres,

and other multipartite entangled states [60,61]. The theory
derived here may also be extended by considering the time
delay between connection points [3,9,10,18,35], e.g., to de-
termine how robust the decoherence-free interaction or the
dark states are to such time delays. Another interesting path
to explore might be to make the atoms three-level �, �, V ,
or � systems [41,61]. Finally, we believe that the phenomena
found here unique to giant atoms in a chiral setting are ready
to be demonstrated experimentally in several platforms, e.g.,
using superconducting qubits coupled to a transmission line
with circulators inserted to provide the chirality [46].
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APPENDIX A: DERIVATION OF THE MASTER EQUATION

1. Two atoms with one or two connection points

In the model presented in Sec. II, we use the Lindblad
form of the master equation [96,97]. For this to be valid, we
need to make several assumptions. First, we make the Born
approximation, which relies on the coupling between the atom
and the waveguide being weak. This implies that the density
matrix of the waveguide does not change significantly due to
the interaction with the atoms. Second, we make the Markov
approximation, through which we assume that the waveguide
has no memory, i.e., that any effect that an atom has on the
waveguide at a certain time does not affect the dynamics of
the atom at a later time. This relies on the assumption that the
travel time between the connection points of the giant atoms is
negligible compared to the relaxation times of the atoms. With
these two approximations, we can further apply the rotating-
wave approximation (RWA) and trace over the waveguide
modes to obtain the master equation in the Lindblad form, as
written in Eq. (1) in the main text,

ρ̇ = −i[H, ρ] +
n∑

k=1

D[Lk]ρ, (A1)

where D[X ]ρ = XρX † − 1
2 {X †X , ρ}.

In order to find the Hamiltonian H and collapse operators
Lk of the atomic ensemble, we use the SLH formalism for
cascaded systems [91–93]. In the way we present it here, this
formalism requires the Born and Markov approximations, that
the bosons propagate in a linear medium without dispersion,
and that the travel time between connection points is negligi-
ble compared to the relaxation times of the atoms.

In the SLH formalism, an open quantum system with n
input-output ports is described by a triplet G = (S, L, H ),
where S is an n × n scattering matrix, L is an n × 1 vector
representing the coupling between the system and the envi-
ronment at the input-output ports, and H is the Hamiltonian
of the system. In our case, L models the coupling between an
atom j and the waveguide at a connection point k, in such a
way that Lk = √

γkσ
j

−.
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TABLE V. Right and left collapse operators LR and LL for each atomic setup depicted in Fig. 1. We assume arbitrary phase shifts φ1, φ2, φ3

and arbitrary bare relaxation rates γkR, γkL at each coupling point k = 1, 2, 3, 4.

Topology Collapse operator

Small LR = √
γ1R eiφσ a

− + √
γ2Rσ b

−
LL = √

γ1Lσ
a
− + √

γ2L eiφσ b
−

Separate LR = (
√

γ1R ei(φ1+φ2+φ3 ) + √
γ2R ei(φ2+φ3 ) )σ a

− + (
√

γ3R eiφ3 + √
γ4R )σ b

−
LL = (

√
γ2L eiφ1 + √

γ1L )σ a
− + (

√
γ4L ei(φ1+φ2+φ3 ) + √

γ3L ei(φ1+φ2 ) )σ b
−

Nested LR = (
√

γ1R ei(φ1+φ2+φ3 ) + √
γ4R )σ a

− + (
√

γ2R ei(φ2+φ3 ) + √
γ3R eiφ3 )σ b

−
LL = (

√
γ4L ei(φ1+φ2+φ3 ) + √

γ1L )σ a
− + (

√
γ3L ei(φ1+φ2 ) + √

γ2L eiφ1 )σ b
−

Braided LR = (
√

γ1R ei(φ1+φ2+φ3 ) + √
γ3R eiφ3 )σ a

− + (
√

γ2R ei(φ2+φ3 ) + √
γ4R )σ b

−
LL = (

√
γ1L + √

γ3L ei(φ1+φ2 ) )σ a
− + (

√
γ2L eiφ1 + √

γ4L ei(φ1+φ2+φ3 ) )σ b
−

We proceed in the following way, similar to the derivation
for giant atoms in a bidirectional waveguide in the supplemen-
tal material of Ref. [4]. At each connection point k, we define
an SLH triplet:

Gk =
⎧⎨
⎩

(1,
√

γkσ
j

−, 1
2ω jσ

j
z ) if k is the first coupling

point of atom j,
(1,

√
γkσ

j
−, 0) otherwise.

(A2)

To account for the phase shift acquired between connection
points k and k + 1, we define

Gφk = (eiφk , 0, 0). (A3)

We then take one propagation direction and apply a series
product between all the triplets, as if the system was cascaded.
In the SLH formalism, the series product between two triplets
is defined as follows:

G2�G1 =
[
S2S1, S2L1 + L2, H1 + H2

+ 1

2i
(L†

2S2L1 − L†
1S

†
2L2)

]
. (A4)

If the waveguide is unidirectional, the series product yields
the final triplet. Otherwise, we repeat the process in the other
propagation direction, which results in two triplets, GR and
GL. Since propagation to the right and left directions occurs
simultaneously, we can concatenate the two triplets according
to SLH practice,

G1 � G2 =
((

S1 0
0 S2

)
,

(
L1

L2

)
, H1 + H2

)
. (A5)

Therefore, for all the setups depicted in Fig. 1, the final
SLH triplet has the following form. The scattering matrix
reads

S =
(
SR 0
0 SL

)
=
(

ei�kφk 0
0 ei�kφk

)
, (A6)

where �kφk is the sum of all the phase shifts acquired in the
waveguide. The collapse operator, also known as the coupling
vector or jump operator, reads

L =
(
LR + Ld

LL

)
, (A7)

where LR/L = √�aR/L σ a
− +√�bR/L σ b

− and Ld = 0 if there
is no external drive. In particular, we write LR/L for each
topology as shown in Table V.

Finally, the last component of the SLH triplet is the Hamil-
tonian of the system, which reads

H = 1
2ω′

aσ
a
z + 1

2ω′
bσ

b
z + gσ a

−σ b
+ + g∗σ a

+σ b
− + Hd , (A8)

where ω′
j and g obey the expressions in Table VI and g∗

denotes the complex conjugate of the exchange interaction
g. Using the series product and concatenation from the SLH
formalism, we find that given an incoming coherent drive from
the left, with a boson flux of |β|2, then

Ld = βSR,

Hd = −i

2
(βSRL†

R − β∗S†
RLR).

(A9)

Using Eqs. (A7)–(A9), we can expand the master equation
in the Lindblad form [Eq. (A1)] to obtain

ρ̇ = −i[H, ρ] + D[LR + Ld ]ρ + D[LL]ρ

= −i

[
ω′

a

σ a
z

2
+ ω′

b

σ b
z

2
+ (gσ a

−σ b
+ + H.c.) + Hd , ρ

]
+�aD[σ a

−]ρ + �bD[σ b
−]ρ

+ [�coll(σ
a
−ρσ b

+ − 1

2
{σ a

−σ b
+, ρ}) + H.c.], (A10)

which we note is the same as Eq. (2), with the constants from
Table VI. It can be shown that the dynamics of a system with

G1R
�

Gφ1

�
G2R

� . . .

GR

�
Gφn−1

�
GnR

G1L
�

Gφ1

�
G2L

� . . .

GL

���

�
Gφn−1

�
GnL

FIG. 6. Diagram illustrating the SLH calculation for an arbitrary
number of atoms, N , and a total of n =∑N

j=1 Mj coupling points
to the waveguide. In the sketch, GkR/L is the SLH triplet from
Eq. (A2), which describes the connection point k, and Gφk is the
triplet from Eq. (A3), which accounts for the phase shift acquired
in the waveguide. The symbols � and � describe the operations
defined in Eqs. (A4) and (A5) according to the input-output flow.
The full system is described by the resulting triplet GR � GL , with
GR = GnR� . . .�G1R and GL = G1L� . . .�GnL .
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TABLE VI. Frequency shifts, exchange interaction, and individual and collective decays [δω j, g, � j, �coll in Eq. (2)] for small and giant
atoms chirally coupled to a 1D open waveguide. We assume arbitrary phase shifts φ1, φ2, φ3 and arbitrary bare relaxation rates γkR, γkL at each
coupling point k = 1, 2, 3, 4.

Coefficient Topology Expression for two atoms, a and b

Frequency shifts, δωa, δωb Small 0

0

Separate (
√

γ1Rγ2R + √
γ1Lγ2L ) sin φ1

(
√

γ3Rγ4R + √
γ3Lγ4L ) sin φ3

Nested (
√

γ1Rγ4R + √
γ1Lγ4L ) sin(φ1 + φ2 + φ3)

(
√

γ2Rγ3R + √
γ2Lγ3L ) sin φ2

Braided (
√

γ1Rγ3R + √
γ1Lγ3L ) sin(φ1 + φ2)

(
√

γ2Rγ4R + √
γ2Lγ4L ) sin(φ2 + φ3)

Individual decays, �a, �b Small γ1R + γ1L

γ2R + γ2L

Separate γ1R + γ1L + γ2R + γ2L + 2(
√

γ1Rγ2R + √
γ1Lγ2L ) cos φ1

γ3R + γ3L + γ4R + γ4L + 2(
√

γ3Rγ4R + √
γ3Lγ4L ) cos φ3

Nested γ1R + γ1L + γ4R + γ4L + 2(
√

γ1Rγ4R + √
γ1Lγ4L ) cos(φ1 + φ2 + φ3)

γ2R + γ2L + γ3R + γ3L + 2(
√

γ2Rγ3R + √
γ2Lγ3L ) cos φ2

Braided γ1R + γ1L + γ3R + γ3L + 2(
√

γ1Rγ3R + √
γ1Lγ3L ) cos(φ1 + φ2)

γ2R + γ2L + γ4R + γ4L + 2(
√

γ2Rγ4R + √
γ2Lγ4L ) cos(φ2 + φ3)

Collective decay, �coll Small
√

γ1Rγ2R eiφ + √
γ1Lγ2L e−iφ

Separate
√

γ1Rγ3R ei(φ1+φ2 ) + √
γ1Rγ4R ei(φ1+φ2+φ3 ) + √

γ2Rγ3R eiφ2

+√
γ2Rγ4R ei(φ2+φ3 ) + √

γ1Lγ3L e−i(φ1+φ2 ) + √
γ1Lγ4L e−i(φ1+φ2+φ3 )

+√
γ2Lγ3L e−iφ2 + √

γ2Lγ4L e−i(φ2+φ3 )

Nested
√

γ1Rγ2R eiφ1 + √
γ1Rγ3R ei(φ1+φ2 ) + √

γ2Rγ4R e−i(φ2+φ3 )

+√
γ3Rγ4R e−iφ3 + √

γ1Lγ2L e−iφ1 + √
γ1Lγ3L e−i(φ1+φ2 )

+√
γ2Lγ4L ei(φ2+φ3 ) + √

γ3Lγ4L eiφ3

Braided
√

γ1Rγ2R eiφ1 + √
γ1Rγ4R ei(φ1+φ2+φ3 ) + √

γ2Rγ3R e−iφ2

+√
γ3Rγ4R eiφ3 + √

γ1Lγ2L e−iφ1 + √
γ1Lγ4L e−i(φ1+φ2+φ3 )

+√
γ2Lγ3L eiφ2 + √

γ3Lγ4L e−iφ3

Exchange interaction, g Small [
√

γ1Rγ2R eiφ − √
γ1Lγ2L e−iφ]/(2i)

Separate [
√

γ1Rγ3R ei(φ1+φ2 ) + √
γ1Rγ4R ei(φ1+φ2+φ3 ) + √

γ2Rγ3R eiφ2

+√
γ2Rγ4R ei(φ2+φ3 ) − √

γ1Lγ3L e−i(φ1+φ2 ) − √
γ1Lγ4L e−i(φ1+φ2+φ3 )

−√
γ2Lγ3L e−iφ2 − √

γ2Lγ4L e−i(φ2+φ3 )]/(2i)

Nested [
√

γ1Rγ2R eiφ1 + √
γ1Rγ3R ei(φ1+φ2 ) − √

γ2Rγ4R e−i(φ2+φ3 )

−√
γ3Rγ4R e−iφ3 − √

γ1Lγ2L e−iφ1 − √
γ1Lγ3L e−i(φ1+φ2 )

+√
γ2Lγ4L ei(φ2+φ3 ) + √

γ3Lγ4L eiφ3 ]/(2i)

Braided [
√

γ1Rγ2R eiφ1 + √
γ1Rγ4R ei(φ1+φ2+φ3 ) − √

γ2Rγ3R e−iφ2

+√
γ3Rγ4R eiφ3 − √

γ1Lγ2L e−iφ1 − √
γ1Lγ4L e−i(φ1+φ2+φ3 )

+√
γ2Lγ3L eiφ2 − √

γ3Lγ4L e−iφ3 ]/(2i)

this master equation, and the collapse operator and Hamilto-
nian from Eq. (A9), are the same as for a system whose drive
operators are

Ld = 0,

Hd = −i(βSRL†
R − β∗S†

RLR). (A11)

For convenience, we use the latter in the derivation of the dark
states in the driven-dissipative regime.

Let us remark that the frequency shifts δω j used in the
master equation are just a contribution to the Lamb shift and
not the full Lamb shift itself. In fact, the SLH formalism yields

a contribution to the Lamb shift from the interaction between
connection points at frequencies close to the atomic frequency
ω j , provided the waveguide is at a low temperature and has a
constant density of states [2]. For a small atom, there is no
such contribution at all since there is only a single connection
point, which is why δω j = 0 for small atoms in Tables I and
VI. Reference [2] also explains that with an increasing num-
ber of connection points in the giant atom, δω j becomes the
dominant contribution to the Lamb shift. An exact derivation
of the full Lamb shift is beyond the scope of this manuscript.
We refer the reader to Ref. [2] for an in-depth discussion about
frequency-dependent Lamb shifts in giant atoms.
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2. Multiple atoms with multiple coupling points

We can use the same procedure described above to derive the SLH triplet of an arbitrary number of atoms, N , where each
atom j has Mj connection points (see Fig. 6). The result is

S =
(

exp
(
iφ11,NMN

)
0

0 exp(iφ11,NMN
)

)
(A12)

L =
(∑N

j=1

∑Mj

n=1 exp
(
iφ jn,NMN

)√
γ jnR σ

j
−∑N

j=1

∑Mj

n=1 exp(iφ11, jn )
√

γ jnL σ
j

−

)
, (A13)

H =
N∑

j=1

⎡
⎢⎢⎣ω j +

∑Mj−1

n=1

∑Mj

m=n+1
(
√

γ jnRγ jmR + √
γ jnLγ jmL ) sin(φ jn, jm )︸ ︷︷ ︸

δω j

⎤
⎥⎥⎦σ

j
z

2

+
N−1∑
j=1

N∑
k= j+1

⎛
⎜⎜⎝σ

j
−σ k

+
{∑Mj

n=1

∑Mk

m=1

ε

2i
[
√

γ jnRγkmR exp(εiφ jn,km ) − √
γ jnLγkmL exp(−εiφ jn,km )]

}
︸ ︷︷ ︸

g j,k

+H.c.

⎞
⎟⎟⎠, (A14)

where φm,n =∑n
k=m φk and

ε =
⎧⎨
⎩

+1 if x jn < xkm

0 if x jn = xkm

−1 if x jn > xkm .

(A15)

This SLH triplet yields the Lindblad master equation shown
in the main text [Eq. (13)].

APPENDIX B: HAMILTONIAN IN THE DARK-STATE
BASIS

1. Undriven system

When the diatomic system is not driven, the Hamiltonian
can be written in the basis {|gg〉 , |S〉 , |T 〉 , |ee〉} as follows:

H = Hu = 1

2
ω′

aσ
a
z + 1

2
ω′

bσ
b
z + gσ a

−σ b
+ + g∗σ a

+σ b
−

= (ω′
a + ω′

b)

2
|ee〉〈−| (ω′

a + ω′
b)

2
|gg〉〈gg|

+ (g + g∗)

2
|T 〉〈T | − (g + g∗)

2
|S〉〈S|

+ (ω′
b − ω′

a + g − g∗)

2
|S〉〈T | + H.c., (B1)

taking |S〉 and |T 〉 from Eq. (9) in the main text, using the
definition σ

j
z = |e〉 j 〈e| j − |g〉 j 〈g| j , and allowing the abuse of

notation σ a
z ≡ σ a

z ⊗ I2, σ b
z ≡ I2 ⊗ σ b

z . With the Hamiltonian
in this form, it is straightforward to see from the last two terms
that whenever ω′

a �= ω′
b or g /∈ R, the singlet and triplet states

are coupled and none of them can be dark states.
This can also be mathematically derived using the dark-

state conditions from Eq. (8),

LR |D〉 = LL |D〉 = 0,

H |D〉 = μ |D〉 , μ ∈ R. (B2)

Since

LR/L =√�aR/L σ a
− +√�bR/L σ b

−

=
√

2

2
(
√

�aR/L −√�bR/L )(|S〉〈ee| − |gg〉〈S|)

+
√

2

2
(
√

�aR/L +√�bR/L )(|T 〉〈ee| + |gg〉〈T |),
(B3)

the first condition implies that |D〉 = |S〉 when
√

�aR/L =√
�bR/L and |D〉 = |T 〉 when

√
�aR/L = −√�bR/L, which sets

the phase shifts from Table II. Then, the second condition
implies that |S〉 and |T 〉 must be uncoupled, i.e., that ω′

a = ω′
b

and g = g∗. These constraints, in turn, imply that ωa = ωb

and γR = γL for all setups, with the exception of nested giant
atoms. The symmetry of nested atoms with the dark-state
phase shifts allows g = g∗ without the need to impose bidi-
rectional coupling (see Table I with φ1 = φ3 = {0, π}). Note
that the instances presented in Table II assume the bare relax-
ation rate to be the same at all connection points; however,
conditions for arbitrary decay rates can be obtained using the
same procedure.

With the Hamiltonian and the collapse operators in this
basis [Eqs. (B1) and (B3), respectively] and knowing that the
master equation reads

ρ̇ = −i[H, ρ] + D[LR]ρ + D[LL]ρ, (B4)

we can derive the decay rates from the states |S〉 and |T 〉 by
tracking the time evolution of the ground-state population,

ρ̇gggg =〈gg|ρ̇|gg〉
= 1

2 (�a + �b + �coll + �∗
coll )ρT T

+ 1
2 (�a + �b − �coll − �∗

coll )ρSS

+ 1
2 (�b − �a − �coll + �∗

coll )ρST

+ 1
2 (�b − �a + �coll − �∗

coll )ρT S, (B5)
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where the first two terms yield the decay rates from the triplet
and singlet states,

�T = 1
2 (�a + �b + �coll + �∗

coll ),

�S = 1
2 (�a + �b − �coll − �∗

coll ). (B6)

Using the conditions in Table II, we find that when γ1 =
γ2 = γ3 = γ4, the last two terms in Eq. (B5) cancel and that

|D〉 = |T 〉 ⇒ �T = 0, �S = �a + �b,

|D〉 = |S〉 ⇒ �S = 0, �T = �a + �b. (B7)

This means that whenever |D〉 = |T 〉, the triplet state does not
decay, agreeing with the fact that it is a dark state, whereas
the singlet state decays with a superradiant rate �a + �b, thus
making it a bright state. Conversely, when the singlet state is
a dark state, the triplet state is bright.

2. Coherently driven system

When we drive the system coherently as described in
Eq. (A11), the collapse operators do not change, and the
Hamiltonian in Eq. (B1) gets an extra term:

Hd = − iβSRL†
R + H.c.

=
[
−iβSR

√
2

2
(
√

�∗
aR −√�∗

bR )(|ee〉〈S| − |S〉〈gg|)

− iβSR

√
2

2
(
√

�∗
aR +√�∗

bR )(|ee〉〈T |+|T 〉〈gg|)
]

+ H.c.

(B8)

In this case, the possible dark states are

|DS/T 〉 = 1√
1 + |α|2

(α |S/T 〉 + |gg〉), (B9)

as mentioned in Eq. (10).
Since the collapse operators have not changed, they im-

pose the same dark-state restrictions as without the drive, i.e.,
|D〉 = |DS〉 when

√
�aR/L = √�bR/L and |D〉 = |DT 〉 when√

�aR/L = −√�bR/L, which sets the phase shifts in Table III.
These constraints, in turn, impose that the drive amplitudes
of both atoms are equal (
a = 
b) when |DS〉 is dark and
opposite (
a = −
b) when |DT 〉 is dark. In both cases, we
define 
 ≡ 
a.

The second dark-state condition, which requires |D〉 to be
an eigenstate of the Hamiltonian Hu + Hd , yields

α = i
√

2


2ξ
, (B10)

with the expression of α as a function of the parameters of
the system collected in Table III for all the atomic setups. The
second condition also implies that the existence of the dark
state in this regime is subject to the atoms having opposite
detunings, i.e., δa = −δb.

It is now convenient to change to the basis {|DS/T 〉 ,

|BS/T 〉 , |T/S〉 , |ee〉}, with |BS/T 〉 shown in Eq. (11). In this
way, we can monitor the time evolution of the occupancy of
the state |DS/T 〉 and derive at which rate �DS/T this state is
being populated. In this basis, the undriven Hamiltonian and
the collapse operators read

Hu = + ω′
a + ω′

b

2
|ee〉〈ee| ± g + g∗

2
|T/S〉〈T/S| − (ω′

a + ω′
b) ± (g + g∗)|α|2

2(1 + |α|2)
|DS/T 〉〈DS/T |

− (ω′
a + ω′

b)|α|2 ± (g + g∗)

2(1 + |α|2)
|BS/T 〉〈BS/T | +

[
α

(ω′
a − ω′

b) ± (g − g∗)

2
√

1 + |α|2
|T/S〉〈DS/T |

+ (ω′
a − ω′

b) ± (g − g∗)

2
√

1 + |α|2
|T/S〉〈BS/T | + α

(ω′
a + ω′

b) ∓ (g + g∗)

2(1 + |α|2)
|BS/T 〉〈DS/T |

]
+ H.c., (B11)

LR/L = +
√

2

2
(
√

�bR/L ±√�aR/L )|T/S〉〈ee| +
√

2

2
√

1 + |α|2
(
√

�bR/L ∓√�aR/L )(α∗|DS/T 〉〈ee| + |BS/T 〉〈ee|)

+
√

2

2
√

1 + |α|2
(
√

�aR/L ±√�bR/L )(|DS/T 〉〈T/S| − α|BS/T 〉〈T/S|)

+
√

2

2(1 + |α|2)
(
√

�aR/L ∓√�bR/L )(α|DS/T 〉〈DS/T | − α|BS/T 〉〈BS/T | + |DS/T 〉〈BS/T | − α2|BS/T 〉〈DS/T |), (B12)

where ± (∓) means that we take + (−) in the basis
{|DS〉 , |BS〉 , |T 〉 , |ee〉} and − (+) in the basis {|DT 〉 ,

|BT 〉 , |S〉 , |ee〉}. The drive Hamiltonian is Hd = −iβSRL†
R +

H.c. with the above definition of LR.
Similarly to the previous section, we now have all the el-

ements necessary to derive the master equation. In particular,

we find that the dark and bright states evolve as follows:

ρ̇DS/T , DS/T =�a + �b ± �coll ± �∗
coll

2(1 + |α|2)
ρT/S, T/S

+ · · · , (B13)
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ρ̇BS/T , BS/T =|α|2(�a + �b ± �coll ± �∗
coll )

2(1 + |α|2)
ρT/S, T/S

+ · · · , (B14)

where we are only interested in tracking the dependence on
the population of the |T/S〉 state. From Eq. (B13), we can
define the effective pumping rate of the dark state,

�DS/T = �a + �b ± �coll ± �∗
coll

2(1 + |α|2)
. (B15)

Using the conditions from Table III, we find that when
γ1 = γ2 = γ3 = γ4, the dark state is populated at a rate

�DS/T = �a + �b

1 + |α|2 , (B16)

with the full expression of �DS/T for each layout in Table IV.
Similarly, the bright state is populated at a rate |α|2�DS/T .

We note that the procedure used in this Appendix can
also be applied to multiple atoms with multiple connec-
tion points by using the pertinent Hamiltonian and collapse
operators.
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