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Abstract—Information flow properties are the semantic cor-
nerstone of a wide range of program transformations, program
analyses, and security properties. The variety of information that
can be transmitted from inputs to outputs in a deterministic sys-
tem can be captured by representing information as equivalence
relations over the sets of possible values, using an equivalence
relation on the input domain to model what may be learned,
and an equivalence relation on the output to model what may
be observed. The set of equivalence relations over a given set of
values form a lattice, where the partial order models containment
of information, and lattice join models the effect of combining
information. This elegant and general structure is sometimes
referred to as the lattice of information.

In this paper we identify an abstraction of information
flow which has not been studied previously, namely disjunctive
dependency (depending on x or y, as distinct from depending on
both x and y). We argue that this refines the space of semantic
models for dependency in a way which is both interesting in
its own right and which has applications in security settings of
practical interest (in particular, where so-called “Chinese wall
policies” are in effect).

To model disjunctive dependency we introduce a nontrivial
generalisation of the lattice of information in the form of a
richer structure, built on sets of equivalence relations closed
under a novel condition called tiling-closure. This structure forms
a quantale - a lattice equipped with a tensor operation - in
which lattice join corresponds to disjunctive combination of
information, and tensor corresponds to conjunctive combination.
Using this we generalise the definition of information flow
properties, and show that the definition has the key properties
needed to support compositional reasoning about programs.

Index Terms—dependency analysis, information flow, nonin-
terference, security policy

I. INTRODUCTION

Consider any system with inputs and outputs. If you can
place a bound on what information can be deduced about
a certain input when observing a certain output, then you
can derive many useful properties of the system - typically
referred to as information flow properties. (A note on our use
of the word property. There is potential for confusion in work
related to formal verification, since the word is often used
to refer to properties of traces, as in safety properties and
liveness properties, but information flow requirements such as
noninterference are neither saftey nor liveness properties. In
the current paper we use the word to refer to properties of
programs and systems, not of traces.)

For example, suppose our system has data sources (e.g.
input channels) I1, I2 and I3, and suppose we can show that
{I1, I3} is an upper bound on the set of sources about which

you could potentially learn something by observing output
channel O. The typical terminology is that there is information
flow from I1 and I3 to O, or that O depends on I1 and I3. In
this paper we will use the terms “information flows from A to
B” and “B depends on A” interchangeably. Irrespective of how
we compute the bound, we can instantiate this raw dependency
information to derive a range of interesting properties of the
program. For example we can check whether a given multi-
level secure information-flow property is satisfied: suppose
that the policy is specified by associating a security label
with each data source and sink, and specifying a “may flow
to” relation between labels, (for example, a simple two-level
policy might specify public may flow to secret, but not vice-
versa). We require that the dependencies respect the flow
policy, and this can be checked by ensuring that label(Ii) may
flow to label(O) holds for both i = 1 and i = 3 [1].

In fact, information flow properties can be viewed as the
basis of many other program analyses and transformations,
such as for example program slicing [2]. This generality mo-
tivated Abadi et al. to develop a “core calculus” of dependency
[3] with which to show that many different analyses had
essentially the same dependency analysis at their core. How-
ever, from a soundness perspective the fundamental common
factor is arguably the semantics of dependency itself, rather
than any particular feature of a computable approximation
to the dependency properties of programs. The semantics of
information flow is the topic of this paper; the development
of static analysis is left for future work.

A. The Lattice of Information

If information flow is about the possible information gained
about a data source when observing a data sink, what exactly
do we mean by information?

In a deterministic system, the information conveyed by
an observation can be expressed at a variety of levels of
granularity. In imperative code, one of the simplest but more
widely used forms is to study the dependency between input
parameters and outputs channels. More fine-grained notions of
dependency might for example determine that a certain output
only depends on some specific attributes of an input or inputs.
Another form of dependency is conditional dependency; for
example, one could have a security property in which data
is labelled with security levels which might not be statically
known. Here a conditional dependency property would be
useful to (partly) determine security: out.value may only



depend on in.value when out.level (the security level of the
output) is higher or equal to in.level (the security level of the
input). One would also typically require that out.level does not
depend on in.value in such a scenario.

Note that information flow properties are almost always
about upper bounds on information. For example, we would
say that x∗y depends on both x and y – even though y might
be zero and thus x ∗ y does not depend on x in all cases.

In the context of deterministic computation (the focus of
this paper) all of these varieties of information flow have a
common semantic basis in a general structure which describes
the possible varieties of information that one might be able to
convey, a structure that has been studied abstractly since at
least the 1920s [4], and used to understand various forms of
dependence and independence in programs [5], [6], in security
[7], and in the semantics of types in programming languages
(e.g. [8]). This structure is the lattice of equivalence relations1

ordered by refinement, dubbed the lattice of information by
Landauer and Redmond [7].

We describe the lattice of information in more detail in
Section II, but for now it suffices to say that the points
in the lattice denote possible states of knowledge about an
entity such as an input. The extreme states are: knowing
everything about the value (modelled by the identity rela-
tion) at one extreme, and knowing nothing (modelled by the
equivalence relation with a single big equivalence class) at the
other. In between we can model varieties of information (e.g.
knowing the checksum of a sequence of digits, modelled by
the equivalence relation which relates any two values with
the same checksum). These varieties of information form
a lattice via a partial order relation which describes when
one piece of knowledge subsumes another, and a least-upper-
bound operation which describes the information obtained
when combining information. Information flow properties of
programs can be described uniformly in terms of elements
of the lattice of information by exploring how the program
behaves on each equivalence class. A typical static analysis
of dependency, or static verification of an information flow
security property, implicitly picks out a particular sublattice of
the lattice of information, namely those points which describe
information at the desired level of granularity.

This paper deals with a shortcoming of the lattice of infor-
mation or any of its sublattices, namely an inability to express
what we will call disjunctive information flow properties,
and proposes a generalisation of the lattice of information,
a quantale of information, which overcomes this limitation.

B. Motivation: Disjunctive Information Flow Policies

We motivate the development of a semantics for disjunctive
information flow as a natural requirement when have policies
which distinguish between alternative flows, an in particular
when the choice of flow may be made at run time.

1Strictly speaking several of the above references use the more general
lattice of partial equivalence relations, but we will not make use of the partial
case in this work.

To build an intuitive understanding of the concept of dis-
junctive information flow policies, we consider some small
examples of policies where disjunctive information flow is
natural.

a) ”Chinese Wall” Policies: The so-called “Chinese
wall” policies are a standard concept from the business world
relating to ethical handling of information. We will henceforth
refer to these policies as ethical wall policies. The goal of
such policies is to prevent conflict of interest situations. For
example, a large law firm could represent both sides of a
legal dispute. To handle this in an ethical way, there would
be a strict separation between the respective legal teams – an
ethical wall. We can view this as a disjunctive information
flow policy: a single lawyer has, a priori, no constraint on
which team they may work with. They can therefore access
sensitive information from either party, but the key property
is that they may not not learn sensitive information from both.

Such policies were studied formally in an access-control
context by Brewer and Nash [9]. We will return to the Brewer-
Nash model in detail in section IV.

b) Secret Sharing: An example based on the idea of
secret sharing [10]. Suppose that a secret S has been split
into two shares S1 and S2 to be distributed among agents
A1 and A2 such that they each get one share. The idea in
secret sharing is that neither A1 nor A2 can reconstruct S
alone, but can do so by combining their shares. Suppose
further that the assignment of respective shares to A1 and A2

is done on some basis outside of the control of the system
(for example, first-come-first-served), or under the control of
some other parameters of the system. What is the dependency
property that we want from the system? The simplest property
that provides the intended security is that data visible to Ai
depends at most on S1 or S2. Existing semantics and analyses
of dependency do not provide a way to represent this form
of disjunction directly, and the meaning we intend for the
informal “or” here is not just logical disjunction (the required
property is not “Ai depends at most on S1 or Ai depends at
most on S2”). We discuss this further below.

c) Bounding Information Release: Another example mo-
tivating disjunctive information flow policies relates to allow-
ing a choice of what information is released but managing the
amount which is released by providing a strict choice. Suppose
that a system manages sensitive and non-sensitive data from a
given user, and permits an analyst to make a query on the
sensitive data under the assumption that the sensitive data
has been protected using differential privacy [11] (a quantified
notion of disclosure) by adding noise. Differential privacy has
the nice compositional property that the disclosure quantity
(the ”epsilon” in the terminology of differential privacy) of two
queries is the sum of the disclosure quantities of the individual
queries.

Suppose that there are n possible queries that the system is
willing to answer, each providing the same quantified amount
of disclosure. The analyst may choose any answer (perhaps
based on the non-sensitive data) – but cannot choose more



than one, since that would imply an unacceptable amount of
disclosure.

C. The Semantics of Disjunctive Information Flow

In this paper we show how the lattice of information
can be generalised to include all disjunctive combinations
of information, and how this naturally captures the desired
disjunctive dependency properties.

Disjunctive dependency looks intuitively reasonable but
there is a major challenge if we are to formally analyse
disjunctive dependency properties: what do they mean?

To see that disjunctive dependency is not just a trivial logical
disjunction of standard dependency properties, consider again
the computation over inputs x, y, and z in Listing 1. This is our
canonical example of a disjunctive dependency. (For example,
g and h may compute two secret shares and w may be the
share released to A1 in the above scenario, but the following
discussion is not specific to this example.)

i f p ( x )
w = g ( y ) ;

e l s e
w = h ( z ) ;

Fig. 1. A prototypical Disjunctive Dependency

As mentioned above, a conventional dependency analysis
will say that w depends on x, y and z (the dependency on
x arises indirectly via the control-flow). But note that, while
w may depend on x and y in some runs, and on x and z
in others, it will never depend on both y and z in the same
run. Or, expressed more directly in terms of what you may
learn by running this program and observing w: you may learn
something about x and y (but nothing about z), or you may
learn something about x and z (but nothing about y); there are
no runs in which you simultaneously learn something about
both y and z. This example suggests that there ought to be a
general reasoning principle for conditionals, of the form:

E depends-on P Fi depends-on Qi i = 1, 2;

(if E then F1 else F2) depends-on P⊗ (Q1 ∨Q2)

where we read ⊗ as conjunction and ∨ as disjunction (here
we anticipate the definitions and notation of Section III-D).
In Section VI we prove the correctness of a formal (and
more general) version of this rule (Lemma 6); establishing
an appropriate semantic framework is the key contribution of
this paper. But, at the outset, note that the semantics of ∨
cannot be a straightforward classical disjunction. Certainly it
should combine with ⊗ in a reasonable way; in particular we
require the equivalence P⊗ (Q1∨Q2) ≡ (P⊗Q1)∨ (P⊗Q2).
But it cannot represent simple disjunction of dependencies: in
fig. 1 it is not the case that “w depends only on x and y” or “w
depends only on x and z”, since neither of these statements
is true for the program!

We will define a semantics for dependency that will include
disjunctive dependencies (modelling for example “x and y or

x and z”) but is not restricted to talking about variable-to-
variable dependencies; any degree of deterministic information
flow can be represented.

Contributions

Our overarching contribution is the identification of a new
property, disjunctive dependency and its semantics. More
specifically, we make the following contributions:

1) We develop a semantic model for disjunctive depen-
dency (§III), built on sets of equivalence relations closed
under a novel condition called tiling-closure, and gen-
eralising the so-called lattice of information. We show
that this structure forms a quantale [12], which is an
enriched lattice where the partial order is the information
ordering, but where lattice join models the disjunctive
combination of information, and an additional tensor
operation models the conjunctive combination of infor-
mation.

2) We show (§IV) how we can give an information-flow
interpretation to Brewer-Nash style ethical wall policies,
and justify our interpretation with an epistemic analysis
of the implications of such policies.

3) We show (§V) how tiling closure can be systematically
used as an abstract domain refinement, enriching any ab-
straction based on the lattice of information with points
representing the disjunctive combination of information.

4) We show (§VI) that key combinators for functions
(composition, conditionals and pairing) enjoy compo-
sitionality properties with respect to their disjunctive
information flows, paving the way for useful static
program analyses.

II. BACKGROUND: THE LATTICE OF INFORMATION

In this section we review the lattice of information and how
it can be used to specify information flow properties.

In this section we introduce a standard but general way
to understand information flow properties of a function by
considering its action on equivalence relations over its input
space. This account is based on the common denominator
of a variety of related models of information flow, including
Landauer and Redmond’s lattice of information [7], the PER
model of information flow [6], [13], and abstract noninterfer-
ence [14], [15], and the key ideas seem already present in an
early note of Claude Shannon [16].

The core idea is to represent information about a given
domain of values as an equivalence relation over that do-
main, where the equivalence classes represent sets of indis-
tinguishable values. Before we present the lattice structure
of equivalence relations, lets build some intuitions for the
use of equivalence relations to model information taken from
standard instances of this idea.

Consider a function f from some input space A to an
output space B. To understand the information flow between
A and B we will use equivalence relations over A and B
respectively, where the equivalence relation on B represents
the observer’s view of B (i.e. the information about the output



that the observer can see), and the equivalence relation on A
models what may be learned by said observation.

To illustrate this let us take a concrete example in a form
often used to express confidentiality properties of imperative
programs. Suppose that A and B are both spaces of finite
mappings from a set of variables Var to some domain of values
D. We will refer to such mappings as stores, Sto = Var→ D.
Suppose further that Var is partitioned into two sets, secret
and public. The intention is that variables in secret contain
sensitive information, and that this should not leak to the
public variables in the output store.

Now suppose that we want to give semantics to the state-
ment “for function f : Sto → Sto, there is no information
flow from the secret part of the input to the public part of the
output”. In literature on language-based security this property
is usually called noninterference [17].

The standard way to express this property is to require that
for any two stores s and t which have equivalent values for all
the public variables, f(s) and f(t) will have equivalent values
for their respective public variables. Put another way, changing
the values of secret input variables will have no effect on the
final value of public variables.

Let us introduce some concise notation to make this state-
ment precise, and to generalise this kind of property. For
any subset X ⊆ Var, we can characterise the observations
available to an observer of X by the equivalence relation ∼X
on Sto defined by: s ∼X t iff ∀x ∈ X.s(x) = t(x). The
essential idea is that, for an observer who can see only X ,
the stores s and t are indistinguishable iff s ∼X t. In later
examples we will write ∼x as shorthand for ∼{x}, and ∼xy
for ∼{x,y} etc.

Definition 1. Let f : A→ B and let P and Q be equivalence
relations on A and B, respectively. Define:

f : P ⇒ Q iff a P a′ =⇒ (fa) Q (fa′)

In this notation2, the noninterference statement that public
outputs depend on at most the public inputs can be written as:

f : ∼public ⇒ ∼public

The key point here is that many varieties of information
transmission between inputs and outputs can be modelled as
properties of the form f : P ⇒ Q. Equivalence relation Q
models the information that can be observed, and P models a
bound on what can be learned.

We write Id for the finest equivalence relation (the identity
relation) and All for the coarsest (the relation which lumps all
elements together in a single equivalence class). Consider the
role played by P when we characterise the dependency of f
on its inputs using a statement of the form f : P ⇒ Q. The
coarser P is, the less sensitive f must be to variations in its
input. In the extreme case, if f : All ⇒ Id, then f must be
a constant function, not depending on any part of its input.

2This notation is taken from Hunt’s work on static analysis using partial
equivalence relations [5], and later used by Sabelfeld and Sands to model
information flow [13].

Conversely, a finer P means that f may depend strongly on
its input. The lattice of information thus orders equivalence
relations with finer relations above coarser ones:

P v Q def
= Q ⊆ P

where in the right-hand-side we view a relation as a set of
pairs (the pairs of elements in the relation). This means that
if P v Q then the information represented by P is subsumed
by the information represented by Q.

A key operation on equivalence relations for information
flow analysis is conjunction, which we denote using t:

P tQ def
= P ∩Q

i.e. a (P tQ) b iff a P b and a Q b. With our chosen
ordering, equivalence relations form a complete lattice with
t as the join, All as the bottom element, and Id as top
[4]. Following [7], we will refer to this lattice as the Lattice
of Information. We write LoI(A) to refer to the lattice of
information over some set A.

A crucial consequence of these definitions is that ⇒ enjoys
the natural subtyping property with respect to the LoI lattice
ordering:

Proposition 1. Let P v P ′ ∈ LoI(A) and let Q′ v Q ∈
LoI(B). Then:

(f : P ⇒ Q) =⇒ (f : P ′ ⇒ Q′)

for all f : A→ B.

A. Partitions

Another way of viewing an equivalence relations over a
set A is as a partition of A. This view will be useful in the
development that follows in this paper.

Given an equivalence relation P on a set A and an element
a ∈ A, let [a]P denote the (necessarily unique) equivalence
class of P which contains a. Let [P ] denote the set of all
equivalence classes of P . Note that [P ] is a partition of A.

As an example, consider the domain A = {0, 1, 2, 3}.
Figure 2 presents a Hasse diagramn of a sublattice of the lattice
of information for A.

We will refer to the equivalence classes of a partition as
cells. Note that one partition P is above another Q, precisely
when each cell of Q can be “tiled” by (i.e. is the union of)
some cells of P . For example the cell {1, 2, 3} of the partition
isZero can be tiled by the cells {{1}, {2, 3}} of the partition
above it in the figure. Tiling, as in the covering of a set using
a collection of non-overlapping subsets, will play a key role
in the semantics of disjunctive dependency.

III. THE SEMANTICS OF DISJUNCTIVE INFORMATION

In this section we introduce our formal definition of dis-
junctive information.
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Fig. 2. An Example Sublattice of the lattice of Information over {0, 1, 2, 3}

A. Goals

We propose that any satisfactory definition should meet the
following goals:

1) It should generalise the “standard” lattice of informa-
tion definition reviewed in the previous section (Defini-
tion 1).

2) It should ensure that disjunctive dependencies allow us
to specify more refined flow policies by “occupying the
gap” between individual and conjunctive dependencies.
That is, having dependency bounded by P1 or P2 should
be a weaker requirement (satisfied by more functions)
than having dependency Pi alone, but a stronger re-
quirement than allowing both dependencies P1 and P2

simultaneously.
3) It should support reasoning about conditionals and, more

generally, provide compositional reasoning principles, so
that for example the dependency properties of a compo-
sition f2 ◦f1 can be computed compositionally from the
properties of f2 and f1 respectively, as well as having
strongest-postcondition and weakest-precondition prin-
ciples.

B. Generalised Kernel

We recall that the kernel of a function f : A → B is
the equivalence relation ker(f) ∈ LoI(A) which relates all
elements mapped by f to the same result: a ker(f) a′ iff
fa = fa′. Let us then focus on the equivalence classes
of the kernel (the cells of its corresponding partition). Each
X ∈ [ker(f)] is of the form f−1({b}) for some output b; an
observer who sees b, knowing f , can infer only that the input
belongs to X . Thus [ker(f)] can be understood as a bound on
the information about inputs which is provided by the outputs
of f .

This can usefully be generalised to provide an alternative
characterisation of statements of the form f : P ⇒ Q.

Definition 2 (Generalised Kernel). Let f : A → B and let
Q ∈ LoI(B). Let f−1(Q) denote the collection of non-empty
preimages of the equivalence classes of Q under f :

{f−1(Y ) | Y ∈ [Q]} \ ∅

It is a basic fact about functions that f−1(Q) defines a
partition of the domain of f , thus we may view f−1(Q) itself
as an equivalence relation.

We call this the generalised kernel (introduced, though not
named, using the notation f#(Q) in [7]) since the kernel of
f corresponds to the special case given by f−1(Id). It is then
easily seen that Definition 1 can be equivalently expressed as:

f : P ⇒ Q iff f−1(Q) v P

With this perspective we may see f : P ⇒ Q as stating that the
information available to a Q-observer is bounded by [P ]: for
any actual input a, the observer learns [a]P or less (i.e. some
superset of [a]P ). (This “epistemic” perspective is discussed
in more detail in Section IV.)

Our definition of disjunctive information is essentially
a generalisation of this view. Informally, we define f :
P or R⇒ Q to mean that that the information available to a
Q-observer is bounded by the union of the cells of [P ] and [R].
To illustrate, we instantiate the secret-sharing idea as follows.
For simplicity, we suppose that each share is a single bit and
we only model one agent. Suppose that input y provides share
S1, input z provides share S2 and input x is a flag determining
which share agent A1 receives (output variable w):

i f ( x ) w = ( 1 , y ) ; e l s e w = ( 2 , z ) ;

This defines a function f(x, y, z) of three binary inputs. The
output is independent of S1 if it depends only on x and z; it
is independent of S2 if it depends only on x and y. Our policy
for A1 (the policy for A2 would be the same) is therefore that
it should depend (at most) on x and y or x and z:

f : ∼xy or ∼xz ⇒ ∼w

(To relate this to the earlier use of the ∼ notation, consider a
triple as a simple kind of Sto with just three components, each
of which is a single bit. Thus ∼xy is the equivalence relation
which relates just those (x, y, z) which agree on both x and y.)
The three equivalence relations f−1(∼w) and ∼xy and ∼xz
are represented in Figure 3 by their corresponding partitions.
Note, for example, that each cell in the middle partition (∼xy)
contains triples whose first two bits have the same value: 00
for the first cell, 01 for the second cell, and so on.
Note that f−1(∼w) cannot be represented in the same way
as the other equivalence relations in this example; there is no
subset X ⊆ {x, y, z} such that f−1(∼w) = ∼X .

Given our informal definition we can immediately see that
f satisfies the policy, since each cell of f−1(∼w) belongs to
the union of the cells of the two disjuncts.

Our semantic model builds on this idea. We model a disjunc-
tion of equivalence relations by combining their equivalence
classes in all possible ways to obtain a new set of equivalence
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Fig. 3. Comparison of equivalence relations

relations, and we lift the definition of⇒ to sets of equivalence
relations as follows:

Definition 3. Let f : A → B and let P and Q be sets of
equivalence relations on A and B, respectively. Define:

f : P⇒ Q iff ∀Q ∈ Q.∃P ∈ P.f : P ⇒ Q

(Overloading⇒ in this way should cause no confusion since
f : {P} ⇒ {Q} and f : P ⇒ Q are clearly equivalent.)

C. Mixing and Tiling

The discussion above motivates the following definition:

Definition 4. Let P be a subset of LoI(A) (i.e. a set of
equivalence relations on some domain A). Define the set
mix(P) to be the set of all equivalence relations that can be
constructed by combining the cells of the members of P. That
is:

mix(P) = {R ∈ LoI(A)|X ∈ [R] =⇒ ∃P ∈ P.X ∈ [P ]}

Thus, in our secret-sharing example, the relevant disjunction
is modelled by mix({∼xy,∼xz}), pictured in fig. 4. Note that

Fig. 4. mix({∼xy ,∼xz})

as well as the original disjuncts P2 and P3 (which necessarily
belong to the mix) the mix contains two new equivalence
relations P1 and P4. It is clear that f : mix({∼xy,∼xz}) ⇒
{∼w}, since f−1(∼w) = P1. Any other f such that f : P ⇒
∼w for some P in the mix will satisfy the same policy. For
example:
f1: w = (x,y );
f2: w = (x,z );
f3: if (x) w = (1,z ); else w = (2,y );
f4: if (x) w = z; else w = y;

Clearly, f−11 (∼w) = ∼x,y = P2 and f−12 (∼w) = ∼x,z = P3,
so both f1 and f2 satisfy the policy. f3 is the mirror image of
the original f and it is easy to verify that it too satisfies the
policy since f−13 (∼w) = P4. f4 is similar to f3 except that it
fails to tag its output. Intuitively, f4 reveals less information
than f3, so we would expect it also to satisfy the policy. And
indeed, f−14 (∼w) can be obtained from P4 by merging some
cells, so f−14 (∼w) v P4, hence f4 : P4 ⇒ ∼w.

While mix({∼xy,∼xz}) captures the intended disjunctive
information, it is not unique in doing so. We take the view
that P and P′ represent the same information if they are
interchangeable in all expressions of the form f : ⇒ Q
or f : Q ⇒ . By Proposition 1, adding some additional P ′

makes no difference to the information represented by a set, as
long as P ′ v P for some P already in the set. In particular,
the following is an immediate corollary of Definition 3 and
Proposition 1:

Proposition 2. These are all equivalent (where ↓ denotes
downwards closure):

1) f : P⇒ Q
2) f : ↓P⇒ Q
3) f : P⇒ ↓Q

To obtain canonical representations we therefore work with
the downwards closures of our mix sets. (An alternative, and
perhaps more fundamental, justification for downwards clo-
sure, is closure under post-processing. This is also discussed
in more detail in Section IV.) For reasons that will soon be
clear (Proposition 3) we call this combination of mixture and
downwards closure, tiling closure:

Definition 5. Let P be a set of equivalence relations. The tiling
closure of P, denoted tc(P), is defined by: tc(P) = ↓mix(P).

It turns out that tc(P) can be defined directly in terms of a
simple tiling relation. We say that a set of sets X tiles a set Y
iff Y can be written as a disjoint union of sets chosen from
X. We lift this to equivalence relations in terms of the cells of
their corresponding partitions: we say that a set of equivalence
relations P tiles an equivalence relation S iff each Y ∈ [S]
can be tiled by the set of sets {X ∈ [P ]|P ∈ P}.

Proposition 3.
1) mix and tc are both closure operators.
2) R ∈ tc(P) iff P tiles R.

Proof:
1) Evident consequences of the definitions.
2) Firstly, it is immediate from the definitions that P ∈

mix(P) implies that P tiles P . It is also clear that R v
R′ implies that R is tiled by R′ (see the discussion at
the end of Section II) so the set of all R tiled by P is
downwards-closed. This establishes the implication from
left to right.
Secondly, let χ ⊆

⋃
P∈P [P ] be a tiling of R by P. Then

χ is clearly a partition; let Rχ be the equivalence rela-
tion corresponding to this partition. Then Rχ ∈ mix(P)
and R v Rχ, hence R ∈ tc(P).



D. A Quantale of Information

To generalise the lattice of information we propose a
structure which not only allows us to represent disjunction of
information, in the way described above, but also to faithfully
encode the same information as LoI. Our structure is a lattice,
but it is not only a lattice: it has an additional operation,
tensor, distinct from both join and meet. Moreover, while join
provides conjunction in LoI, in this new lattice it provides
disjunction; tensor provides conjunction.

Definition 6 (Quantale).
A quantale [12] is a structure 〈L,v,

∨
,⊗, 1〉 such that:

1) 〈L,v,
∨
〉 is a complete join-semilattice.

2) 〈L,⊗, 1〉 is a monoid: ⊗ is associative and x⊗1 = x =
1⊗ x for all x ∈ L, ;

3) ⊗ distributes over joins on both sides: x ⊗ (
∨
Y ) =∨

{x ⊗ y|y ∈ Y } and (
∨
Y ) ⊗ x =

∨
{y ⊗ x|y ∈ Y }

for all x ∈ L and Y ⊆ L.
A commutative quantale is one in which ⊗ is commutative.

For our purposes, the significance of the axioms (in par-
ticular for the commutative case) is that they ensure that
disjunction (join) and conjunction (tensor) support algebraic
reasoning conforming to some reasonably familiar logical
principles: “and” distributes over “or”, both are associative,
both are commutative. However, as we will see, they are
distinctly non-classical in some key respects.

Definition 7 (The Quantale of Information).
QoI(A) is 〈L,v,

∨
,⊗, 1〉 where:

• L is the set of all tiling-closed subsets of LoI(A).
• v = ⊆ (hence ⊥ = ∅, > = LoI(A))
•
∨
i∈I Pi = tc(

⋃
i∈I Pi)

• P⊗Q = tc({P tQ|P ∈ P, Q ∈ Q})
• 1 = {All}

Where the choice of A is not relevant to the discussion, we
simply write QoI.

We have yet to establish that our definition actually respects
the quantale axioms. First we need some basic lemmas; these
essentially allow us to eliminate nested uses of tiling closure
when reasoning about elements of QoI.

Definition 8. For a closure operator cl : A → A and a
function F : A → A, say that F weakly commutes with cl
if F (cl(X)) ⊆ cl(F (X)) for all X ⊆ A.

Lemma 1. Let cl : A → A be a closure operator and let
X,Y ⊆ A. Suppose that F : A → A weakly commutes with
cl and that G : A×A→ A weakly commutes with cl in each
argument. Then:

1) cl(F (cl(X))) = cl(F (X))
2) cl(G(cl(X)× cl(Y ))) = cl(G(X × Y ))

Proof: Routine, using the properties of a closure operator.

Lemma 2.

1) The join operator of LoI weakly commutes with tc in
each argument.

2) tc(X)⊗ tc(Y ) = tc({P tQ|P ∈ X,Q ∈ Y })
Proof:

1) Let P,Q ∈ LoI and let X ⊆ LoI. It suffices to show that
if Q is tiled by X then PtQ is tiled by {P tR|R ∈ X}.
This follows easily from the definition of tiling and the
fact that [P tQ] = {A ∩B|A ∈ [P ], B ∈ [Q]} \ ∅.

2) Follows from (1) by applying Lemma 1 to the definition
of ⊗.

Proposition 4. QoI is a commutatative quantale.
Proof:

1) The join-semilattice conditions follow easily from the
fact that tc is a closure operator.

2) To show associativity of ⊗: inline the definition of ⊗ in
P ⊗ (Q ⊗ R) and (P ⊗ Q) ⊗ R; then use Lemma 2
to eliminate nested uses of tc; finally, flatten using
associativity of LoI t to obtain identical expressions.
To show that {All} is a unit for ⊗, note that All is
the bottom element of LoI; then {All} ⊗ P = tc({Allt
P |P ∈ P}) = tc(P) = P.

3) To establish distributivity we need to show that
P⊗

∨
i∈I Ri =

∨
i∈I(P⊗ Ri): use Lemma 2 and ba-

sic properties of
⋃

to reduce both sides to identical
expressions. (Distribution on the right follows because
⊗ is commutative.)

Commutativity of ⊗ is inherited directly from commutativity
of LoI t.

Although lattice meet has no direct logical interpretation
(note that it is not mentioned explicitly in the quantale axioms)
every quantale is a complete lattice, so meets do exist in QoI.
In fact, meet in QoI is simply set intersection (this is true for
any lattice of sets in which joins are defined by applying a
closure operator to unions).

E. QoI Generalises LoI

LoI can be embedded in QoI in such a way that every
point of LoI has an exact representation in QoI, simply as its
principal ideal (downward closure of a single point). Clearly,
LoI cannot be a sublattice of QoI, since joins in QoI combine
information in an essentially different way from joins in LoI.
In fact, while the embedding does preserve meets, it maps join
in LoI to tensor in QoI. Define emb : LoI→ QoI as the map:
P 7→ tc({P}) = ↓P . Then:

Proposition 5.
1) P v Q =⇒ emb(P ) ⊆ emb(Q)
2) emb(P tQ) = emb(P )⊗ emb(Q)
3) emb(P uQ) = emb(P ) ∩ emb(Q)

Proof: Routine.

F. Logical but Not Classical

As mentioned, while the quantale operations behave al-
gebraically in a way which is broadly consistent with an



intuitive interpretation of ⊗ and ∨ as logical connectives for
dependencies (conjunction and disjunction, respectively) they
are not classical. We point out the key manifestations of this:

• As for classical disjunction, ∨ is idempotent. However
⊗ is only idempotent for the principal ideals of LoI. In
general, P ⊗ P 6= P. For example, let a = ↓P , b = ↓Q.
Then:

(a∨b)⊗(a∨b) = (a⊗a)∨(a⊗b)∨(b⊗a)∨(b⊗b) = a⊗b.

• The quantale lattice ordering does not correspond to
classical entailment between propositions. In a classical
entailment ordering, a and b would both be intermediate
between a∨ b and a∧ b. However, in the quantale lattice
we have a, b v a ∨ b v a⊗ b.

Although we do not attempt to draw a formal connection here,
the non-classical nature of these operators, together with the
use of a quantale structure, strongly suggests connections with
linear logic [18].

G. Goals Revisited

At the start of this section we listed three goals for a
semantic definition of disjunctive dependency: (1) generalise
LoI, (2) provide more fine-grained policies “occupying the
gap” between individual and conjunctive dependencies, and (3)
support compositional reasoning about conditionals (and more
generally). For the first goal we showed quite explicitly how
the LoI embeds into QoI, and together with Definition 1 it is
clear that the standard definition of information flow between
elements of LoI is subsumed by semantics of information flow
in QoI. For the second goal, the following result shows that
disjunction (join) in this specific quantale occupies that gap
between conjunction (the tensor) and the individual dependen-
cies. (But note that in general the tensor of a quantale need
not dominate the join.)

Lemma 3. Let P,Q ∈ QoI. Then P,Q v P ∨Q and, if P,Q
are non-empty, then P ∨Q v P⊗Q.

Proof: The first inequality holds simply because ∨ is
lattice join. For the second inequality, consider that any
non-empty element of QoI contains All. It follows from the
definitions that P ∪Q ⊆ P⊗Q, since R t All = R,
and hence (using the properties of closure operators) that
P ∨Q ⊆ P⊗Q.

Section VI addresses the third goal explicitly.

IV. ETHICAL WALL POLICIES

In this section we return to the question of ethical wall
policies, and make precise: how ethical wall information flow
policies can be modelled using disjunctive information flow,
and in what sense our semantics captures the essence of an
ethical wall policy in terms of what can be learned by an
observer.

A. Modelling Policies

Following the formalisation proposed by Brewer and Nash
[9], an ethical wall policy involves a set of companies C; the
set of companies is partitioned into disjoint conflict classes
{Ci}i∈I representing groups with mutual conflict of interest,
for example a conflict class for all banks, another for all
telecoms companies etc. We will write Cij to denote the jth
company in conflict class i, where j ranges over {1, . . . , |Ci|}.

In the original Brewer-Nash model there is a data set
associated with each company, consisting of a collection of
objects. The access-control interpretation of a policy requires
that a consultant (say) can access objects belonging to at most
one company per conflict class.

In our information-flow interpretation of ethical wall poli-
cies we do not (need to) model how the company data is
structured or represented.

We assume that the overall system has some input data
D, and that D encompasses the data from all the companies,
and possibly other data not pertaining to any company (e.g.
public data, or data relating to the consultant or consultancy).
To model the data from a specific company Cij we assume
an equivalence relation on D, RC ij . Note that if we wanted
to view the company data in terms of a projection function
getCij ∈ D → Dij , then RC i would simply be defined as the
kernel of getCij .

At this point we might choose to insist that the information
represented by the respective RCi are independent from each
other 3. However, in our semantic analysis we will not require
such an assumption, so our analysis will allow the case where
some company data maybe shared between companies or even
public.

Now consider the system as a function f ∈ D → E. Our
information-flow semantics for f satisfying the ethical wall
policy is thus

f :
⊗
i

∨
j

RC ij ⇒ Id

Here and in the rest of this section we abuse notation slightly,
writing an equivalence relation Q where we actually mean its
embedding ↓Q into QoI. (As noted previously, no ambiguity
arises for statements of the form f : P ⇒ Q, since f : P ⇒ Q
iff f : ↓P ⇒ ↓Q.) Thus we are proposing a very direct
encoding of the intended policy as a conjunction (⊗) of
disjunctions. Now we turn to a semantic justification for this
choice in epistemic terms.

B. A knowledge-based Interpretation of Ethical Wall Informa-
tion Flow

We now want to show how our semantics supports the
intuitive interpretation of what an ethical wall policy should
satisfy. But what is the intuitive meaning? Suppose that our
consultant observes the outcome of applying f . Intuitively we
might say that this observer should learn something about at
most one company in each conflict class. But since there may

3A suitable notion of independence in the lattice of information is provided
by Landauer and Redmond [7].



be mutual information across the companies in a conflict class,
this would not be reasonable since what we learn could be part
of the common knowledge between conflicting companies.
Instead we can say that whatever is learned, could have been
learned from at most one company per conflict class. To make
this a bit more precise it is useful to take an example from
which the general case should be self-evident: suppose that
there are just two conflict classes A and B, each containing
two companies A = {A1, A2}, B = {B1, B2}. Then we
expect that, if f satisfies the ethical wall policy, our observer
of f ’s output learns something which could have been learned
from one of (i) A1 and B1, (ii) A1 and B2, (iii) A2 and B1,
(iv) A2 and B2.

Now we turn to our semantic interpretation. The quantale
properties allow us to rearrange the term

⊗
i

∨
j RC ij into a

disjunction of conjunctions. In the case of the above example,
the ethical wall policy is

(A1 ∨A2)⊗ (B1 ∨B2)⇒ Id

which, by the quantale properties, can be written equivalently
as

(A1 ⊗B1) ∨ (A1 ⊗B2) ∨ (A2 ⊗B1) ∨ (A2 ⊗B2)⇒ Id

Suppose that an observer sees the output of a function satisfy-
ing such a policy. What we would like to show, in some formal
sense, is that what the observer can deduce about the input is
something that could be deduced from a single “disjunct”.
As noted above, each Ai in these terms actually denotes the
embedding ↓Ai of a single equivalence relation into QoI. And
by Proposition 5, ↓Ai ⊗ ↓Bj = ↓P , where P = Ai t Bj is
a single equivalence relation. Thus the tensors in these terms
have no special relevance. So what we will study is simply
policies of the form P1 ∨ . . . ∨ Pn ⇒ Id, and show that an
observation of an output of a function satisfying this property
allows us to learn something which is consistent with one of
the Pi.

Towards this goal, let us introduce some terminology to
capture what is learned by an observation – sometimes referred
to as a “knowledge-based” view of information flow [19].

Definition 9 (Knowledge Set). Suppose f ∈ D → E. We say
that K ⊆ D is a knowledge set for f , if K is non-empty and
K ∈ {f−1{e} | e ∈ E}.

Each knowledge set of a function represents what an ob-
server of a single output might be able to deduce about the
input. Note that f−1{e} is empty iff e ∈ E is not in the range
of f , so e is not a possible observation. We exclude the empty
set from our definition because impossible observations have
no relevance in what follows. Note also that the set of all
knowledge sets of f is just the (partition corresponding to)
the kernel of f .

When we use an equivalence relation to model everything
that might be known about an input we use it as an upper
bound on what might be learned. For example, when we use
a “low equivalence” to model knowledge of some low security
inputs, we do not actually require that these can be learned

from the output – the observer might not learn them at all on
some or all runs. So what is the relation between equivalence
relations used to model upper bounds on knowledge, and
knowledge sets? This is captured in the following:

Definition 10 (Consistency). Given R ∈ LoI(D), we say that
K is consistent with R iff R tiles K.

Proposition 6. f : R⇒ Id if and only if every knowledge set
of f is consistent with R.

This is just a reformulated specialisation of the observation
about generalised kernels from Section III, using the termi-
nology above together with the fact that tiling captures the
ordering relation in LoI.

Now we are in a position to formally state the informal
property that we were aiming for. Suppose f :

∨
i∈I Pi ⇒ Id.

We want to show, simply, that each knowledge set of f is
consistent with at least one of the disjuncts Pi. In fact we
will prove something slightly weaker, but not weaker in any
significant sense: we will show that there exists a function
f ′ satisfying this property, and that f can be obtained from
f ′ by post processing, i.e. there exists a function p such that
f = p ◦ f ′.

It is worth saying a few words about post processing. In any
notion of information or information flow which is based on
providing upper bounds on information then it is reasonable to
expect that if a given system satisfies the policy (in this case we
are talking about the ethical wall policy), then post-processing
the results of the system should also satisfy the same policy.
This closure under post-processing has been articulated, in
[20], as an axiom for any reasonable formal definition of
privacy.

The intuition here is that post-processing can at best pre-
serve information, and in general may throw information away.
So with this in mind, we will show that the intended property
is satisfied by some function f ′, and that f can be obtained
from f ′ by post-processing.

We begin with a general factorisation property:

Lemma 4 (Factorisation). Given f ∈ A→ B, if f : P ⇒ Id
and P v Q then f factors into a pair f ′ : A → C and
p : C → B such that f = p ◦ f ′ and Q is the kernel of f ′.

Proof: Let C = [Q] and let f ′ = q : A → [Q] be the
quotient map a 7→ [a]Q. First, note that Q is the kernel of q,
since aQa′ ⇐⇒ [a]Q = [a′]Q. Then define p : [Q] → B by
p([a]Q) = f(a). This is well-defined because: if aQa′ then
aPa′ (since P v Q) hence f(a) = f(a′) (since f : P ⇒ Id).
Let a ∈ A. Then p(q(a)) = p([a]Q) = f(a).

Theorem 1. If f :
∨
i∈I Pi ⇒ Id then f = p ◦ f ′ for some f ′

such that every knowledge set of f ′ is consistent with at least
one Pi.

Proof: Let P = {Pi}i∈I . From f :
∨
P ⇒ Id we have

f : Q⇒ Id for some Q ∈ tc(P) = ↓mix(P). So there is some
Q′ ∈ mix(P) such that Q v Q′, and by the lemma f factors
into p ◦ f ′ such that Q′ is the kernel of f ′. Since Q′ is the



kernel of f ′, the knowledge sets of f ′ are just the elements
of [Q′], and since Q′ ∈ mix(P), every element of [Q′] is an
element of at least one [Pi]. Thus every knowledge set of f ′

is an equivalence class of (and so is consistent with) at least
one Pi.

V. TILING-CLOSURE AS AN ABSTRACT DOMAIN
REFINEMENT

As remarked in the Introduction, many program analysis
and transformation systems have dependency analysis at their
core, and a common approach for imperative languages is to
represent dependencies by sets of program variables4.

In this section we show how the domains of simple de-
pendency analyses can be enriched in a systematic way by
adding in all disjunctions. It should, however, be noted up
front that this is only one possible route to the verification
of disjunctive policies; it is likely that more sophisticated
forms of dependency analysis, specifically those which are
path sensitive, and thus allow dependency properties to be
conditional on the control-flow path [27], would be able
to verify disjunctive policies directly. How this alternative
approach plays out is left to further work.

Semantically, each such set of variables X can be under-
stood to denote ∼X , an element of the lattice of information,
with larger sets denoting finer equivalence relations (higher
points in the lattice, with the usual LoI ordering). More pre-
cisely, the usual interpretation of X is ↓∼X - the downwards
closure of ∼X - since in most applications we use the points
of LoI to model upper bounds on information5. Figure 5
illustrates some examples, depicting the lattice of information
over stores with four of the interior points and their respective
downwards closures.

Id = ~Var

~xy

~xyz

~xy ~xz

~x ~x

All = ~⌀All = ~⌀

~xz

~xyz

Id = ~Var

c

c = kernel of some 
function corresponding 

to:
if b(x) then f(y)

else g(z)

tc{~xy, ~xz}

c

Fig. 5. Visualisation of some elements of LoI(Sto)

4For example, the “universal domain” of Hunt and Sands, [21], shown
to be dual to the Independ domain and analysis of Amtoft and Banerjee [2],
[22]. The Independ domain was also shown [23] to be isomorphic to Genaim,
Giacobazzi and Mastroeni’s IF domain for information flows [24]. Less formal
variants of similar ideas arise in earlier works on dependency analysis, e.g.
[25], [26].

5There are very few exceptions, for example Chong’s work on required
information release [28] and Foley’s work on ”separation” policies [29]

In the terminology of Abstract Interpretation6 [30] we might
say that such approaches use ℘(Var) as an abstract domain
together with a concretisation function

γL : ℘(Var)→ ℘(LoI)

where γL(X) = ↓∼X . This abstraction has many advantages:
it is intuitive and it is easy to implement in practical tools.
More technically, it has the very pleasant property that it
corresponds to a sublattice of LoI:

γL(X ∪ Y ) = ↓(∼X t ∼Y )
γL(X ∩ Y ) = ↓(∼X u ∼Y )

However, as we have argued, such an abstraction is unable
to capture disjunctive dependency properties. This is shown
in fig. 5: the best available abstraction of c - the kernel of a
conditional function - is ∼xyz . Note also that it would not help
to use the obvious “disjunctive completion” of this abstraction;
that would give us an abstract domain point corresponding to
the union ↓∼xy ∪ ↓∼xz , but this is no improvement since c
belongs to neither set. Instead, we use tiling closure to lift the
℘(Var) abstraction of LoI to an abstraction of QoI, thus lifting
a purely conjunctive model of dependency to one that can
also capture disjunctive dependencies. (The same construction
could actually be used to lift any LoI abstraction to QoI.)

The lifting construction has two parts:
1) Elements of the new abstract domain are sets of elements

from the original. So, for the sets-of-variables abstrac-
tion, we lift to sets of sets of variables. Given such a set
of sets, for example {X,Y, Z}, our new concretisation
function uses tiling closure to combine the equivalence
relations corresponding to X , Y and Z:

γQ : ℘(℘(Var))→ QoI

where γQ(X) = tc(
⋃
X∈X γL(X)).

2) We impose a quantale structure on the new abstract
domain, thus:

X ∨ Y = X ∪ Y
X⊗ Y = {X ∪ Y |X ∈ X, Y ∈ Y}

It is easy to verify that this does indeed have the structure of a
quantale (in particular that ⊗ distributes over ∪) and that the
quantale structure is preserved by γQ.

Actually, using arbitrary sets of sets entails some redun-
dancy (some distinct abstract domain points represent the same
property). For example, γQ({{x, y}, {x}}) = γQ({x, y}),
since ∼x v ∼xy . To obtain an irredundant abstraction we
can either restrict to downwards closed sets of sets (with
respect to subset inclusion of the element sets) or to sets of
sets which are irredundant with respect to subset inclusion
(Y ∈ X ∧ Z ∈ X =⇒ Y 6⊂ Z). These are equivalent:
the former can be more convenient in proofs; the latter is

6The analogy is not perfect. In some sense ℘(LoI) here plays the role of
the “collecting interpretation”, which would usually be a lifting to sets of the
concrete semantics. We are effectively taking the kernel of a function to be
its concrete semantics.



more useful for implementation purposes and for readable
presentation of examples.

In fig. 6 we illustrate the tiling closure of {∼xy,∼xz},
which is the γQ concretisation of the abstract domain point
{{x, y}, {x, z}}. Note how the tiling closure includes the ker-
nel c while lying strictly between ↓∼xyz and (↓∼xy)∪(↓∼xz).
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else g(z)

tc{~xy, ~xz}

c

Fig. 6. Visualisation of some elements of QoI(Sto)

Example correspondences between the two abstractions are
summarised in fig. 7, noting that for R ∈ LoI we have
tc{R} = ↓R, and for R ⊆ LoI we have tc(↓R) = tc(R).

VI. TOWARDS PROVING PROPERTIES OF PROGRAMS

In this section we establish some basic lemmas which
support compositional reasoning about program properties
involving QoI. We address sequential composition, condition-
als and pairing. We also establish the existence of weakest
precondition and strongest post conditions, providing semantic
support for Hoare-style logical reasoning.

For simplicity we assume a semantics in which programs
denote functions in D → D for some domain D. We assume
that 0, 1 ∈ D and that these are interpreted as Boolean values
in conditionals (in fact, we assume that conditionals treat 0 as
false, and all other values as true).

A. Sequential Composition
Reasoning about sequential compositions f1; f2 (that is,

function composition f2◦f1) is supported by a standard “chain
rule”, whereby the postcondition of f1 implies the precondition
of f2:

Lemma 5. The following inference is valid:

f1 : P⇒ Q Q w Q′ f2 : Q′ ⇒ R
f1; f2 : P⇒ R

Proof: Use f1 : P ⇒ Q′ ∧ f2 : Q′ ⇒ R implies
(f2 ◦ f1) : P ⇒ R and a routine unwinding of ∀∃ in
the definitions, working from right to left. Note that Q w Q′
is just Q ⊇ Q′, so Q′ ∈ Q′ =⇒ Q′ ∈ Q.

B. Conditionals

For simplicity, we restrict attention to the case that the
output property is the embedding emb(Q) of a single Q ∈ LoI.
To avoid notational clutter in what follows we abuse notation
(as previously in Section IV) and simply write Q to mean ↓Q.

Let f, g1, g2 : D → D. Define cond(f, g1, g2) : D → D
by:

cond(f, g1, g2)(d) =

{
g2(d) if f(d) = 0
g1(d) otherwise

Let is0 ∈ LoI(D) be the equivalence relation which distin-
guishes 0 from all other values, i.e. is0 has just two equivalence
classes: {(0, 0)} and (D ×D) \ {(0, 0)}. Then:

Lemma 6. The following inference is valid:

f : P⇒ is0 g1 : R1 ⇒ Q g2 : R2 ⇒ Q

cond(f, g1, g2) : P⊗ (R1 ∨ R2)⇒ Q

Proof: (Sketch) Extend Q to Q̂ ∈ LoI({0, 1}×D) where
(i, d) Q̂ (j, d′) iff i = j ∧ d Q d′. Note that the map untag =
(i, d) 7→ d satisfies untag : Q̂⇒ Q.

Define a “tagged conditional” tcond(f, g1, g2) : D →
{0, 1} × D which pairs its output with 0 if f returns
0, or with 1 otherwise. Note that cond(f, g1, g2) =
tcond(f, g1, g2); untag. Since untag : Q̂ ⇒ Q, it will suffice
to show tcond(f, g1, g2) : P ⊗ (R1 ∨ R2) ⇒ Q̂ and apply
Lemma 5.

Let h = tcond(f, g1, g2). By the assumptions, there exist
Ri ∈ Ri such that gi : Ri ⇒ Q. Then by the definitions of
QoI ⊗ and ∨ it will suffice to show that there exists P ∈ P
such that h−1(Q̂) is tiled by {P tR1, P tR2}. This follows
with an easy argument by cases on X ∈ [Q̂], according to
whether X = {0} × Y or X = {1} × Y , with Y ∈ [Q] (note
that X = {0} × Y entails f(d) = 0 for all d ∈ h−1(X), and
X = {1} × Y entails f(d) 6= 0 for all d ∈ h−1(X)).

Together with Lemma 5, Lemma 6 is sufficient to establish
the correctness of the examples considered in Section III. Note:
in the examples of Section III, the functions corresponding to
the fi, gi in the above lemmas are actually projections of a
store onto a variable, but there is nothing in the lemmas which
restricts their application to functions of this specific form.

C. Pairing

By pairing we mean pairing of functions in the sense of a
categorical product. Our QoI inference rule for pairing turns
out to be essentially just a lifting of the corresponding LoI rule
to sets of equivalence relations. This is perhaps unsurprising
since pairing is inherently conjunctive; LoI already provides a
satisfactory representation of conjunctive information and this
is inherited by QoI.

First we present an LoI inference rule. For P1 ∈ LoI(A),
P2 ∈ LoI(B), define P1 × P2 ∈ LoI(A×B) by:

(a, b) (P1 × P2) (a′, b′) iff (a P1 a
′) ∧ (b P2 b

′)



Dependency Domain ℘(Var) Disjunctive Dependency Domain ℘(℘(Var))

Abstract value Concrete property Abstract value Concrete property

{x, y} γL{x, y} = ↓∼xy {{x, y}}
γQ{{x, y}}
= tc(γL{x, y})
= ↓∼xy

{x, y} ∪ {x, z}
= {x, y, z} γL{x, y, z} = ↓∼xyz

{{x, y}} ⊗ {{x, z}}
= {{x, y, z}}

γQ{{x, y, z}}
= tc(γL{x, y, z})
= ↓∼xyz

- -
{{x, y}} ∨ {{x, z}}
= {{x, y}, {x, z}}

γQ{{x, y}, {x, z}}
= tc((γL{x, y}) ∪ (γL{x, z}))
= tc{∼xy,∼xz}

Fig. 7. Comparison of Dependency Abstractions

Validity of the following rule follows easily from the
definitions:

f1 : P1 ⇒ Q1 f2 : P2 ⇒ Q2

〈f1, f2〉 : P1 t P2 ⇒ Q1 ×Q2

We then lift × to sets of equivalence relations in the
obvious way:

P1 ×̂ P2 = {P1 × P2|P1 ∈ P1, P2 ∈ P2}

(Note: so far this is just an operator on unstructured sets of
equivalence relations, not on QoI.)

The key to showing that the LoI rule lifts to QoI is the
following:

Lemma 7. The ×̂ operator preserves mix-closure, i.e. if P1

and P2 are both mix-closed, then so is P1 ×̂ P2.
Proof: (Sketch) In essence, P × Q only combines the

equivalence classes of P and Q in an inherently reversible
way: every equivalence class of P × Q is a full Cartesian
product A×B where A ∈ [P ] and B ∈ [Q]. As a consequence,
P1 ×̂ P2 doesn’t create any new opportunities for mixing.

Lemma 7 ensures that the following is well-defined (note
the use of downward-closure: no need to mix).

Definition 11. Let P1 ∈ QoI(A) and let P2 ∈ QoI(B). Then
P1 × P2 ∈ QoI(A×B) is defined to be ↓(P1 ×̂ P2).

Finally:

Lemma 8. The following inference rule is valid for QoI:

f1 : P1 ⇒ Q1 f2 : P2 ⇒ Q2

〈f1, f2〉 : P1 ⊗ P2 ⇒ Q1 ×Q2

Proof: By the definitions of ⊗ and ×, together with
Proposition 2 and the fact that mix is a closure operator,
it suffices to show that the hypotheses of the rule ensure:

〈f1, f2〉 : {P1 t P2|Pi ∈ Pi} ⇒ {Q1 ×Q2|Qi ∈ Qi}

So let Qi ∈ Qi. We must show that there exist Pi ∈ Pi such
that 〈f1, f2〉 : P1 t P2 ⇒ Q1 ×Q2. For each choice of Qi,
the hypotheses of the QoI pairing rule imply the existence of
Pi ∈ Pi such that fi : Pi ⇒ Qi, so the result follows by the
LoI pairing rule.

D. Weakest Preconditions and Strongest Postconditions

We conclude this section by showing the existence of
weakest preconditions and strongest postconditions.

Proposition 7. Let f : A → B. Let P ∈ QoI(A) and let
Q ∈ QoI(B). Then there exist:

1) A smallest P∗ ∈ QoI(A) such that f : P∗ ⇒ Q
2) A greatest Q∗ ∈ QoI(B) such that f : P⇒ Q∗

Proof:
1) Let P∗ = tc({f−1(Q)|Q ∈ Q}). All elements of QoI are

tiling-closed, hence downwards closed: by the definition
of ⇒ it then follows that we require a tiling-closed set
which contains all the inverse images f−1(Q). P∗ as
defined is the smallest such set because tc is a closure
operator.

2) Let Q∗ = {Q ∈ LoI(B)|f−1(Q) ∈ P}. Clearly, this
is the largest set for which f : P ⇒ Q∗. It remains
to show that it belongs to QoI(B), i.e. that it is tiling-
closed. Let Q ∈ LoI(B) such that Q is tiled by Q∗.
Then all the tiles covering Q belong to some Q′ such
that f−1(Q′) ∈ P. But then f−1(Q) can also be tiled by
P, hence f−1(Q) ∈ P (since P is tiling-closed), hence
Q ∈ Q∗.

VII. RELATED WORK

The Brewer-Nash model for ethical wall policies is an
access-control model [9]. As such, in contrast with the
information-flow semantics that we propose in the current
paper, it has nothing to say about how information flows
once it has been accessed (legitimately or otherwise). Of
more relevance is the later work of Foley: [29] proposes a
policy framework that aims, in part, to allow the expression
of ethical wall policies, while [31] proposes a semantics for
this policy framework, using the non-interference (NI) model
of Goguen and Meseguer [17]. In addition to policies which
constrain what information flows are permitted, the framework
of [29] attempts also to allow the expression of policies
which require certain flows (Foley refers to the latter as
“separation” policies); we model only permitted flows, so we
do not consider this aspect of the work further. A direct formal



comparison between Foley’s semantics and the QoI semantics
is difficult, though our basic semantic setting – the lattice
of information – is certainly more general than the specific
deterministic system model and trace-purge NI definitions of
[17] (a key benefit of this generality is the ability to talk about
information flows at arbitrarily fine levels of granularity). For a
given trace t and a given “class” a of output observer, Foley’s
NI semantics is based on a definition7 of the set of all those
classes of input providers which can interfere with the output
(i.e. purging actions attributed to those classes from trace t
would result in a different output observation at class a). We
might try to encode this definition in our setting, by something
like: ⋃

{X|∃s ∈ [t]∼X
.f(s) 6∈ [f(t)]∼a

}

where X is the set of all observer classes not in X . However,
this is rather convoluted and bears no obvious similarity to the
QoI semantics. Of course, better encodings may be possible,
but in any case it is not immediately clear how to develop
a fully formal comparison of the two approaches. On the
other hand, it is possible to construct informal analogues
of our prototypical “if x then y else z” example in Foley’s
model. The essential idea is to define a system such that
the observable state is insensitive to either the effects of “y-
actions” or “z-actions” prior to a “write-once x-action”, after
which the observable state becomes sensitive either only to
y-actions or only to z-actions. The corresponding policy in
Foley’s framework would include permitted flows {x, y} 7→ a
and {x, z} 7→ a, but not {x, y, z} 7→ a. In this simple
case, the NI semantics of [31] does confirm that the expected
disjunctive flow policy is respected. Our intuition is that, like
ours, Foley’s model is able to capture such disjunctive flows
because it builds on a per-run definition (the choice of trace
t above) which gives it an implicitly epistemic character (c.f.
Section IV).

In a setting of database queries [32], [33] define a notion of
disclosure lattice built from sets of database “views”, which
is said to be a strict generalisation of LoI. It is not explained
exactly what form of generalisation is achieved, but join in
a disclosure lattice still appears to combine information in a
purely conjunctive manner (the information content of a set of
views is all the queries which can be answered by combining
the views). The earlier paper [32] does propose a form of
ethical wall policy – as a cut across the disclosure lattice
– but this is a conventional logical disjunction; principals
must choose a query which satisfies a specific disjunct, thus
prohibiting the use of queries which make a choice between
disjuncts dynamically, based on the state of the database.

We are aware of just one other line of work which builds
a related semantics for disjunctive dependency. Morgan [34]
observes that the lattice of information arises from consider-
ing information flow in deterministic systems, and seeks to
find a corresponding structure for nondeterministic systems
(rather than by viewing nondeterminism in terms of set-valued

7The definition of δ in [31], Section 3.

functions [13]). Nondeterminism can be thought of as a form
of disjunction, and Morgan’s proposed model eliminates the
equivalence relation structure altogether, using sets of sets of
values with no constraints on overlap (indeed, overlap corre-
sponds in some sense to the sources of nondeterminism). The
“demonic” lattice of information is built by taking these sets
of sets and closing them under all unions, ordered by superset
inclusion. Our tiling-closure can be thought of as a union-
closure, but only applied to disjoint sets. The fundamental
difference, however, is that we are building a richer set of
abstractions than those provided by the lattice of information,
but for the same underlying computation model, whereas
Morgan’s Demonic lattice is built as an analogue of the lattice
of information for nondeterministic systems. It is not obvious
how to combine Morgan’s model with our model of disjunctive
dependency.

In classical abstract interpretation the idea of lifting an
analysis to include disjunctive properties (a process called
disjunctive completion) is well known [35], going back to
Cousot and Cousot’s foundational work showing how disjunc-
tive completion of an abstract domain gives a representation
of meet-over-all-paths [36]. However these works deal with
abstract domain elements which represent simple sets of
concrete values, and thus the semantics of disjunction amounts
to a logical disjunction of properties in the concrete world.
This is not appropriate to model disjunction in a relational
analysis like information flow, where the meanings of abstract
domain points are relations on the concrete values, not just sets
of values. Cousot and Cousot introduced comportment analysis
[37] as an arguably more direct formulation of relational
program properties as abstract interpretation, by working with
a less constrained space of concrete objects, just sets of
sets of values. Spoto shows that certain abstract lattices for
dependency analysis, (namely Amtoft and Banerjee’s lattice
of independence properties Independ [2], [22], and Genaim,
Giacobazzi and Mastroeni’s IF domain for information flows
[24]) are isomorphic and moreover already disjunctively com-
plete.

Cousot and Cousot note some limitations in expressive
power of equivalence-relation-based models, in particular
when it comes to certain disjunctive combinations of prop-
erties, although these are likely more related to the disjunctive
combination of information flow properties with other kinds
of properties (such as strictness). In recent work, Cousot [38]
defines a general semantics for dependency between inputs
and program points, and shows how it can be systematically
abstracted using abstract interpretation without resorting to a
new collecting semantics.

Giacobazzi and Mastroeni [14] introduced a framework for
information flow properties based on the idea of using abstract
interpretations as a means to specify both the data “released”
and the power of the observer. It should be noted that since any
abstraction is a function, it induces an equivalence relation via
its kernel, so the semantic content of the approach is similar to
the use of LoI in specifying properties [15], but the approach
accrues benefits from the abstract interpretation framework



[39]. Abstract noninterference allows one to ask questions
within a particular subset of the lattice of information which
is identified by an abstract interpretation, such as what is the
strongest observer (within that family) that we can allow for a
given amount of information we wish to release on the input,
or for a given observer, what is the most information (among
the family) that we can release.

Quantale structures arise in the work of Giacobazzi et al [40]
when refining abstract domains to achieve certain completness
properties. In their terminology, tiling-closure may be seen
as a complete abstraction with respect to the tensor of the
“free” powerset quantale obtained by lifting LoI join to sets.
However, there appears to be no way to derive tiling-closure
using the techniques described in that paper. In particular,
there is no evident “prototype” abstraction such that tiling-
closure is the best (i.e., most abstract) complete refinement of
the prototype. Modelling disjunctive dependencies appears to
require a “eureka step” such as our definition of tiling-closure.

VIII. CONCLUSIONS AND FURTHER WORK

We have described a novel generalisation of the lattice
of information that captures a disjunctive form of informa-
tion flow. The resulting structure, QoI, is a quantale – a
lattice equipped with some additional structure – and the
corresponding definition of information flow is well behaved
in the sense that it has useful compositional properties. We
have demonstrated a practical application of QoI by giving a
semantics to ethical wall policies. These are clearly just first
steps. What we need to consider next is how to compute sound
disjunctive information flow properties, and where they can be
further applied.

A. Static Analysis of Disjunctive Information Flow

The semantic framework developed in this paper lays the
foundation for the development of provably sound static
program analyses which can be applied in the automatic
verification and enforcement of disjunctive policies.

A direct approach would be driven by the properties of the
quantale of information in section III-D, which provide the
core ingredients for describing approximations to disjunctive
information flow in a compositional way. A promising strategy
in this direction would be to adapt the flow-sensitive depen-
dency analysis of Hunt and Sands [21] to include disjunctive
dependencies, using the abstract lattice described in Section V
as the basis of the language of types, and the properties
of Section VI as key ingredients in a semantic soundness
proof. An interesting aspect of this approach is that the
addition of disjunctive dependencies creates a new dimension
in precision which is not present in standard dependency anal-
ysis, namely the distinction between an independent attribute
analysis (where the dependency of each output is described
individually) and a relational analysis where one can say, for
example, “outputs a and b depend on input x or y”. In standard
analysis of dependency there is no extra expressivity obtained
from such relational abstractions, as shown in [23]. However,
in the presence of disjunctive information this is no longer

true, a there is a hierarchy of relational (i.e. non independent-
attribute) variants of dependency analysis to explore.

Another approach, as mentioned in Section V, would be to
build instead on existing forms of path-sensitive static analysis
(e.g. [27]). The intuition here is that a path-sensitive analysis
should be able to establish a disjunctive flow property by virtue
of the fact that it can describe the precise path conditions under
which the disjuncts arise.

To see a potential advantage of this approach, suppose we
have a sequence of two conditionals, each of which gives rise
to a disjunctive dependency on input variables {x, y}∨{x, z}.
Even supposing that neither conditional modifies the input
variables, a naive compositional approach could never assume
that the sequence as a whole satisfies the same disjunctive
dependency, since, for a given value of x, the first conditional
may choose a branch which depends on y while the second
chooses a branch which depends on z. A path-sensitive ap-
proach, on the other hand, might also be able to establish that
in any given run, both conditionals always branch the same
way, and thereby establish that the program as a whole satisfies
a disjunctive policy.

It remains to establish precisely how a path-sensitive anal-
ysis can be used for disjunctive dependency policies, and
to compare and contrast the relative merits of these two
approaches.
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