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Abstract— We present the theoretical investigation and the 
experimental demonstration of second harmonic generation in 
the mid-infrared by hole-doped Ge/SiGe asymmetric quantum 
wells. 

I. INTRODUCTION  
Mid-infrared (MIR) photonics is receiving considerable 

attention due to the variety of envisaged applications in 
medical diagnostics, biochemistry studies, chemical analytics, 
and environmental monitoring for safety and security [1]. 
Nowadays, commercially available MIR spectroscopic 
systems are based on bulky and expensive instruments and, as 
a consequence, there is an increasing demand for compact 
sensing solutions. In this framework, group IV photonics is 
emerging as a promising option to realize portable MIR 
spectroscopic systems. Since broadband MIR light sources 
integrated on silicon are still not available, wavelength 
conversion through nonlinear effects is under investigation. 
Second-order nonlinear effects are forbidden in bulk Si and 
Ge for their centrosymmetric crystalline structure, but this 
limitation can be overcome by creating asymmetric potential 
profiles through quantum confinement and by exploiting 
intersubband optical transitions (ISBT).  In this work we 
present the theoretical investigation and the experimental 
demonstration of mid-infrared second harmonic generation 
(SHG) in hole-doped Ge/SiGe asymmetric quantum wells 
(ACQW). 

II. THEORY 
The Ge/SiGe quantum well used in this work has been 
designed by using a semi-empirical first-neighbor 
tight-binding Hamiltonian which includes spin-orbit 
interaction in order to calculate the electronic band structure. 
The results have been then used to calculate the second-order 
nonlinear optical susceptibilities as a function of the 

temperature, doping, pump wavelength and polarization. The 
model predicts second-order non-linear susceptibilities as 
high as 12x104 pm/V at T = 10 K for TM polarization [2]. 
The calculated wavefunctions are reported in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Calculated wavefunctions. The energy levels 
involved in the SHG process are highlighted as E0,E1,E2. 
 

III. MATERIAL GROWTH AND CHARACTERIZATION 
 

We have grown four samples by Low-Energy Plasma-
Enhanced chemical vapor deposition (LEPECVD) [3] and 
they consist of 20 Ge/SiGe ACQWs (the epitaxial schemes 
are reported in Fig. 1) grown on top of a Si0.3Ge0.7 virtual 
substrate deposited on silicon. The larger wells of samples 
A,B and C have been p-doped (B) in-situ. The doping 
densities are NA  ≈ 4x1011 cm-2 for samples A and C, NA  ≈ 
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4x1011 cm-2 for sample B. Sample D is nominally undoped. 
The epitaxial structure of the samples is reported in Fig. 2 (a) 
and (b). The samples have been structurally characterized by 
means of high-resolution X-Ray diffraction (HRXRD) and 
scanning transmission electron microscopy (STEM). The 
HRXRD reciprocal space map with respect to the (224) Si 
reflection (Fig. 2(c)) shows that the ACQW stack is coherent 
with the virtual substrate and the STEM image reported in 
Fig. 2(d) shows that the ACQW layers are well defined and 
separated by sharp interfaces. 

 
Figure 2: Epitaxial structure of the samples A,B, D (a) and C 
(b). Reciprocal space map with respect to the (224) Si 
reflection (c) and STEM image (d) of the sample A.  

IV. OPTICAL CHARACTERIZATION 
For optical measurements, samples were cut in a 2 mm 
single-pass surface-plasmon waveguide with the side facets 
shaped to 70° with respect to the growth plane and the top 
facet close to the ACQWs region coated by a Pt/Au layer. 
SHG has been demonstrated in two configurations. In the first 
one, the samples (cooled at 10 K) have been pumped with a 
CW quantum cascade laser emitting at λ =10.3 μm.  
 

Figure 3: SHG emission power recorded at 10 K as a function 
of the input power for samples A B and C. 
 
The light coming out from the samples have been then filtered 
and collected by an MCT detector. The second harmonic 

emission has been recorded as a function of the input power 
for the three samples (see fig. 3). The sample A shows the 
higher conversion efficiency. A c(2) = 6x104 pm/V has been 
extracted from the measurement for sample A, in good 
agreement with the theoretical prediction [2]. No SHG has 
been observed for sample D, confirming that the SHG is due 
to the intersubband transitions and not to the multiple 
interfaces of the sample. In order to investigate the spectral 
dependence of the second harmonic emission, we have 
performed a second experiment where the samples have been 
pumped with non-monochromatic pulses centered at λ0 = 
10.4 μm and the output has been spectrally resolved with a 
grating spectrometer. The pulses were obtained from a 
nonlinear optical parametric amplifier (NOPA). A clear 
second harmonic emission has been observed at λ = 5.2 μm 
at room temperature, as shown in Fig. 4. 

 
Figure 4:  Second harmonic emission of sample A as a 
function of the wavelength for different input powers . 
 

V. CONCLUSIONS 
In conclusion we have investigated second harmonic 
emission from Ge/SiGe ACQWs in the mid-infrared. A clear 
second harmonic emission has been measured in CW and 
pulsed configurations.  This result paves the way toward the 
exploitation of second-order nonlinear effect in group-IV 
materials. 
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