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Abstract

To enable optical interconnect fluidity in next-generation data centers, we propose adaptive transmission based on machine learning in a
wavelength-routing network. We consider programmable transmitters that can apply N possible code rates to connections based on predicted

it error rate (BER) values. To classify the BER, we employ a preprocessing algorithm to feed the traffic data to a neural network classifier.
e demonstrate the significance of our proposed preprocessing algorithm and the classifier performance for different values of N and switch

ort count.
2022 Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open access article

nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Data center network; Neural network; Adaptive transmission
1. Introduction

Programmable optical switching, based on software-defined
networking (SDN), is being examined to resolve the scalability
challenges of data centers and high-performance computing
systems. By exploiting SDN in a data center network, opti-
mizations can be performed to allow for data exchange with
code-rate adaptive, high-order modulation schemes [1]. Code-
rate adaptation is a promising technique for fine-tuning the
physical-layer performance in communication networks [2]
and adjusting the redundancy due to forward error correc-
tion [3]. This requires the possibility of monitoring or esti-
mating the performance at the transceiver level and using the
information collected from the physical layer to perform cross-
layer scheduling [4]. Multiplicity of nodes, the complexities
of models, and the scheduling constraints in data centers
pose significant challenges to estimating the signal quality for
code-rate adaptation.

With the recent advances in computing power and ma-
chine learning, it is now possible to support a wide range of
services in communication networks, including performance
monitoring, quality of transmission (QoT) estimation, failure
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detection, and resource allocation [5]. For instance, Rottondi
et al. [6] propose a machine-learning framework to optimize
the performance in long-haul optical networks by estimating
the QoT of unestablished lightpaths. By taking into account
important features such as traffic volume, modulation for-
mat, and route, their machine-learning algorithm determines
whether the bit error rate (BER) of a candidate connection
can meet the required system threshold. In [7] the probability
distribution of the generalized signal-to-noise ratio (GSNR) is
estimated by different regression methods in order to improve
the deployment of unestablished optical networks.

While QoT predictions can also be employed to optimize
the performance of data center networks, machine learning in
data centers today is being considered only for the problems
of flow classification and traffic scheduling. For example, [8]
employ machine learning to detect mice and elephants and
route them on data center links, considering an ideal physical
layer. However, in a short-reach optical data center network,
the accumulation of impairments along multiple switching
elements can render a signal irretrievable at the receiver side.
It has been shown that ignoring the physical-layer effects
in such a data center can lead to expensive and impractical
networking solutions [4]. As a result, it is imperative to come
up with cross-layer scheduling algorithms that address the
requirements in both the network and physical layers.
f Communications and Information Sciences. This is an open access article
.0/).
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Fig. 1. Optical switching architecture based on AWG and star couplers, AWG: arrayed waveguide grating, WSS: wavelength-selective switch, TF: tunable
filter.
Fig. 2. Signal path for (a) a global, and (b) a local connection.
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In this paper, we propose, for the first time, a cross-
layer machine-learning framework to enable adaptive trans-
mission in data centers. Instead of relying on purely theo-
retical models to estimate the QoT of lightpaths, our pro-
posed algorithm can be trained with realistic data captured
from the physical layer (for example, based on in-network
BER measurements as in [9]). The machine-learning-based
approach enables cross-layer scheduling without the need for
complex or inaccurate physical-layer models. Furthermore, as
opposed to model-based approaches, the proposed machine
learning method is less affected by the uncertainties of the
model parameters (such as amplifiers’ noise figure, insertion
losses, etc.), since it can learn these uncertainties. We ad-
dress the problem of adaptive transmission in data centers by
(1) employing pulse amplitude modulation (PAM) to gener-
ate the data required for training, validating, and testing a
neural network (NN), (2) incorporating a novel preprocess-
ing algorithm to refine the raw traffic data before feeding
it to the NN, and (3) performing BER classification in a
wavelength-routing scenario with a rich set of physical-layer
impairments. In particular, we demonstrate the effectiveness
of our preprocessing step by showing that the accuracy of
the NN with preprocessing is orders of magnitude better than
with a benchmark, in which the raw data is fed directly
to the NN. Our cross-layer resource allocation framework
can be generalized to other modulation formats and traffic
patterns.

Notation: Vectors and scalars are denoted by lowercase
letters (e.g., a) and matrices by capital ones (e.g., D). The i th
lement of the vector a is specified as ai ; also, the entry of the
matrix D in the i th row and j th column is specified as di, j . o

38
2. Switch architecture and impairments

To demonstrate machine-learning-based adaptive coding in
a data center environment, we study an optical switch fabric
that is operated in a realistic setting. These impairments in-
clude amplifier noise, linear interference, and filtering effects.
Due to the short reach of data center networks, we disregard
dispersion and nonlinear effects in our analysis.

We consider the switching architecture presented in Fig. 1,
which is based on an arrayed waveguide grating (AWG) in-
terconnecting L star couplers [4,10]. Each transmitter can
modulate its signal to one of L different wavelengths. Each
coupler broadcasts the signal at each of its entry ports to all
of its outputs. The AWG guides the signal at its i th input port
to its j th output if and only if the signal has the wavelength

wi, j = mod(i + j − 2, L) + 1. (1)

ssuming an L × L AWG and L K × K star couplers, a
avelength-routing switch can support up to M = L(K − 1)
odes. Consider a connection request from a node in coupler
∈ {1, . . . , L} to a node in coupler j ∈ {1, . . . , L}. The

onnection is local if i = j and global if i ̸= j . With
ocal connections, the signal from the transmitter is broad-
ast to all nodes connected to the coupler. The tunable filter
TF) at the receiver is then tuned to the transmitted signal’s
avelength and blocks other signals. With global connections,

fter being broadcast by the coupler, the signal passes though
wavelength-selective switch (WSS) to the AWG. Then ac-

ording to its wavelength the signal is routed to its destination
oupler and then to the receiver.

The signal paths of a global and a local connection are
epicted in Fig. 2(a) and Fig. 2(b), respectively. The chain
f components might include optical amplifiers, AWG, star



K. Keykhosravi, A. Hamednia, H. Rastegarfar et al. ICT Express 8 (2022) 37–43

h
t

3

m
i
m
w
n
t

l

T

a
n
t
w
O
a
c
r
w
c
m
u

Fig. 3. Input and output for (a) fully ML-based approach (b) hybrid
approach.

couplers, WSSs, and TFs. In this letter, we focus on global
connections as they are more susceptible to impairments due
to traversing a longer chain of optical components.

3. BER calculation methods

Without loss of generality, we focus on a global connection
transmitted from node 1 of coupler 1 (i = 1) and destined to
coupler j ∈ {2, . . . , L}. Due to various hardware impairments,
this connection encounters errors. There are three different
ways to calculate or classify the connection’s BER: (i) ana-
lytical physical models, (ii) fully ML-based approaches (iii)
ybrid approaches. In the rest of this section we study these
hree methods and we explain how they are used in the paper.

.1. Analytical physical model

In this approach, the physical properties of different ele-
ents of the switch are taken to consideration to model all the

mpairments and based on that the BER is calculated. Such a
odel is described in [4, Appendix] for M-PAM modulation,
here the BER [4, Eq. (4)] is calculated by modeling various
oise mechanisms, which can be classified into the following
hree classes:

• The constant noises added at the transmitter, receiver,
and amplifiers (see Fig. 2(a)), which are independent of
the scheduled traffic. These noises include thermal noise,
shot noise, laser intensity noise, signal–spontaneous beat
noise, and spontaneous–spontaneous beat noise, which
can be calculated based on [4, Eqs. (6)–(10)], respec-
tively.
39
• The in-band interference (linear crosstalk) induced by
the co-existing signals in the AWG. These noises include
signal-in-band crosstalk beat noise, in-band crosstalk–
crosstalk beat noise, in-band crosstalk–spontaneous beat
noise, whose variances can be calculated in [4, Eqs.
(15)–(17)], respectively.

• The out-of-band (OOB) interference induced by other
signals that appear in destination coupler j . It includes
the OOB–OOB beat noise, whose variance can be found
in [4, Eq. (18)].

The noises in Class 1 depend on the physical properties of
the components in the switch and can be assumed constant for
every global connection. The noises in Class 2 and 3 originate
from imperfections in AWGs and TFs, respectively, and de-
pend on the traffic traversing the switch. The AWG crosstalk
(interferences in Class 2) can be calculated by keeping track
of the number of connections from coupler l to coupler k ̸= l
for all l, k ∈ {1, . . . , L} that satisfy

+ k ≡ i + j (mod L). (2)

his is due to the fact that if (2) holds, then wi, j = wl,k accord-
ing to (1). Therefore, the two signals propagate through the
AWG with the same wavelength and interfere with each other
due to AWG imperfections. To determine OOB interference in
Class 3, one needs to know the type (global/local) of all con-
nections destined to coupler j . Apart from this, the wavelength
of these connections also impacts the OOB interference.

The model-based approaches in general have two short-
comings, (i) it may be unavailable (or hard to derive) for
the considered switching architecture or the modulation (ii) it
may not be accurate due to system parameters’ uncertainties.
Therefore, we need also data-driven ML-based approaches. In
this paper, due to lack of experimental data, we use the ana-
lytical model explained in this section to calculated the BER
for 4-PAM signal modulation. These data are used to train and
test the two ML-based approaches, which are described in the
following sections.

3.2. Fully ML-based approach

In this approach, we use the NN to classify the BER of the
connection of interest (from coupler 1 to j) for a given set of
traffic connection requests. As illustrated in Fig. 3 (a), the input
to the NN is the destination coupler j as a one-hot vector1

nd an L × L traffic matrix D whose elements dl,k denote the
umber of connections from coupler l to coupler k. In order
o manage the complexity of our machine-learning algorithm,
e neglect wavelength occupancy information to calculate
OB interference. Neglecting this information prevents the

lgorithm from considering the frequency gap between the two
onnections in calculating the interference between them. Our
esults in Section 4 indicate that the NN performs well even
ithout this information. For training and testing the NN, we

alculate the BER for each example according to the analytical
odel described in Section 3.1. In this paper this approach is

sed as a benchmark.
1 The one-hot vector is the standard format for inputs whose values do

not indicate their importance.
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Fig. 4. Generating matrix A from D (K = L = 4, i = 1, j = 3).

3.3. Hybrid approach

In this section, we propose a hybrid approach, which ben-
efits from the known properties of the switch structure, and
specifically the AWG, and also uses an NN with a reduced
interface to classify the BER. Here, instead of directly feeding
j and D to the NN, we apply a preprocessing algorithm before
the NN (see Fig. 3 (b)). In our proposal, the NN is fed an L×L
matrix A, which is constructed by applying a permutation to D
uch that the in-band and OOB interferences can be calculated
rom A regardless of j .

To generate A, we first construct an auxiliary L × L matrix
Ã by applying a ( j − 1)-step circular rotation to the columns
of D. Specifically, for all m, n ∈ {1, . . . , L} we let

˜m,n = dm,(n+ j−2 mod L)+1. (3)

quivalently, (3) can be written as

l,k = ãl,(k− j mod L)+1. (4)

or all l, k ∈ {1, . . . , L}. Specifically if l and k satisfy (2) with
= 1, we have that k − j = 1 − l and hence

l,k = ãl,(1−l mod L)+1. (5)

herefore, the in-band interference can be calculated from Ã
egardless of j . Furthermore, as was mentioned earlier in this
ection, the OOB interference is a function of the number of
ocal and global connections destined to coupler j . The former
s equal to d j, j = ã j,1 by (4). To make this independent of j ,
e switch the two elements ã j,1 and ã2,1. Specifically we build

he matrix A as

m,n =

⎧⎪⎨⎪⎩
ã2,1 if (m, n) = ( j, 1)
ã j,1 if (m, n) = (2, 1)
ãm,n otherwise.

(6)

lso, the number of global connections destined to coupler j
s

∑
l ̸= j dl, j =

∑
l ̸=1 ãl,1 =

∑
l ̸=2 al,1. Therefore, the in-band

nd OOB interference can be calculated from A regardless of
j (one can see that for all j ̸= 1, (5) still holds if ã is replaced
y a).

xample 1. Fig. 4 illustrates the process of generating A from
traffic matrix D for K = L = 4. In the example, the

onnection of interest is sent from coupler i = 1 to coupler
j = 3. The matrix Ã is generated by applying a 2-step
ircular rotation to the columns of D, and A is constructed
y swapping elements ã and ã in Ã.
2,1 3,1

40
Table 1
BER thresholds in Example 2, computed to give uniform BER distributions

N BER (K = L = 32) BER (K = L = 16)

2 {0, 10−5, 1} {0, 10−7, 1}
3 {0, 10−6, 10−4, 1} {0, 10−9, 7 · 10−7, 1}
4 {0, 10−7, 10−5, 10−4, 1} {0, 10−12, 10−8, 10−6, 1}

4. System evaluation

In this section, we detail our machine-learning simulations
including data generation, NN design, training, validating, and
testing the NN. In this section, we focus on the NN structure
for the hybrid approach. The NN for the fully ML-based
approach has the same structure but with an extended input
layer (it has L2

+ L inputs instead of L2).

.1. Data generation

To generate the data, we simulate the switch performance
sing a nonuniform Bernoulli traffic model and offline schedul-
ng (see [4]). In a scheduling step, each node in each coupler
enerates a connection with probability ρ ∈ {0.1, 0.2, . . . ,
}, except Node 1 of Coupler 1, which requests a global
onnection with probability 1. We focus on this connection
nd calculate its BER using the model in [4] for M-PAM.2

ll parameters are selected based on [4, Table I] (we do not
onsider any parameter variations). The calculated BER data
s partitioned into N intervals of approximately the same
ize. The thresholds specifying the intervals are denoted by
ERthd,0, . . . , BERthd,N . For each step, based on the traffic

equests, the matrix A is constructed using the description in
ection 3. These data values along with the calculated BER
lasses are then used to train and test the NN.

We simulate 100 000 instances (10 000 per ρ) for each
ombination of N , K , and L . Then, we divide the data set
nto three distinct subsets for training (60%), validation (20%),
nd test (20%) (see [11, Sec. II-A] for definitions of these sub-
ets).3 Each generated connection is local with probability 0.75
nd the destination is selected uniformly over all local/global
odes (with the exception that the source does not transmit to
tself).

xample 2: Table 1 shows an example of the BER thresholds
or different values of N , K , and L . The thresholds are
alculated based on our data, such that the number of instances
re almost the same within each BER class. Throughout the
est of the paper, we consider these values when classifying
ERs.

2 Note that our solution in this paper is not restricted by the modulation
format. The same solution can be applied to coherent systems with other
modulation formats such as quadrature amplitude modulation (QAM) by
training the NN via experimental data [9].

3 The validation data set is used to tune the hyperparameters of the NN.
The test data set is never used in training and thus enables an unbiased
evaluation of the final NN.
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Fig. 5. NN architecture for the hybrid approach and the structure of a
idden-layer neuron. The fully ML-based approach follows the same NN
rchitecture, but with an extended input interface (the number of inputs is

L2
+ L instead of L2).

.2. Neural network setup

To classify the BER in the data center switch, we consider
n NN with two fully connected hidden layers (Fig. 5). There
re 64 neurons in each hidden layer. The hyperparameters
e.g., the number of hidden layers and the number of neurons)
ere manually set to avoid over- or under-fitting. The NN

s trained using the training data set, which comprises pairs
f (Ai , yi ), where Ai is the i th input matrix and yi is its

corresponding BER class label. The input layer is fed with
elements a[0]

1 , . . . , a[0]
L2 of the L × L matrix A. Then linear

combinations of the input layer are calculated within each
neuron of the first layer, i.e.,

z[1]
= W [1]a[0]

+ b[1] (7)

here the superscripts denote the layer number, z[1] is a vector
f length 64, W [1] is the 64 × L2 weight matrix, and b[1] is a
ias vector of length 64. Next, the output of the kth neuron
an be calculated as â[1]

k = fr(z
[1]
k ), where fr(·) is the relu

ctivation function, i.e., fr(z
[1]
k ) = max{0, z[1]

k }. To improve
he performance and stability of the NN, we apply batch nor-

alization (BN) to â[1] to obtain a[1], i.e., a[1]
k = BN(â[1]

k ) for
k ∈ {1, . . . , 64}. The BN function applies an affine transform
to its input with parameters that are learned during the training
phase of the NN (see [12, Algorithm 1] for more information).
In the second hidden layer, we obtain a[2] from a[1] in the same
fashion as was explained for the first hidden layer. Finally, the
output layer takes a[2] as an input and calculates z[2] the same
way as in (7). Then, to achieve classification, we use softmax
as the activation function. The function maps the input vector
z[3] to the output vector a[3] such that a[3]

m = ez[3]
m /

∑N
k=1 ez[3]

k .
It appears that a[3] is a probability vector with length N . The
label of the input vector is predicted by choosing the one that
corresponds to the highest probability, i.e., y = arg maxm a[3]

m .
We employ mini-batch gradient descent (see [13, Sec. 2.2])

with a batch size of 128 to train this network. To optimize the
NN parameters (W [ j] and b[ j] for j = 1, 2, 3 and also the BN

parameters), the algorithm runs over the training data multiple

41
Fig. 6. Accuracy of test data for different percentages of training data: (a)
K = L = 16, and (b) K = L = 32. The solid and dashed lines represent
results with and without preprocessing, respectively.

times using the outcome of the previous iteration as the initial
state of the current iteration. Each iteration is called an epoch.
We consider 30 epochs. We use the optimizer Adam [14] in
order to minimize the loss function, which is set to categorical
cross-entropy [13, Sec. 2.1.1].

4.3. Numerical results

We assess the performance of our physical-layer NN in
terms of accuracy, i.e., the fraction of the examples classified
correctly in each data set. All results are averaged over ρ.
Fig. 6 depicts the accuracy of the NN on the test data for
different values of N , where the size of the training data set
varies between 10% to 100% of its original size (60% of the
total data), and the sizes of validation and test data sets remain
unchanged. We consider two switch sizes K = L = 16 in

ig. 6 (a) and K = L = 32 in Fig. 6 (b). Apart from the
roposed hybrid approach (with preprocessing) described in
ection 3.3, we present the accuracy of the fully ML-based
pproach (without preprocessing) described in Section 3.2 as a
enchmark. As we show in this section, our proposal achieves
much higher accuracy than the benchmark because of the

reprocessing performed on D and j to achieve A.
It can be seen that with the proposed scheme, a much

igher accuracy can be achieved and a lower amount of data is
equired for training the NN. Also, the gap between the bench-
ark and our algorithm increases with the switch size. This is
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Table 2
Confusion probabilities in percent between N = 4 BER classes, with and
without preprocessing. The switch size is K = L = 32. Rows and columns
indicate true and predicted BER classs, resp.

with preprocessing without preprocessing⎡⎢⎢⎣
21.1 1.9 0 0
1.9 18.7 1 0
0.0 2.1 26 0.5
0 0.0 1.2 22.6

⎤⎥⎥⎦
⎡⎢⎢⎣

13.3 7.6 4.2 0.8
8.5 6.2 5.2 1.6
6.4 6.4 9.8 6
1.4 2 6.6 13.9

⎤⎥⎥⎦

due to the fact that, for the benchmark, the NN is unable to
process the value of j properly to calculate the BER. However,
with the proposed preprocessing step, given the matrix A, the

ependence of BER to j is removed. The effectiveness of
preprocessing becomes more pronounced when its negligible
computational complexity is taken into account (it involves
only circular rotation of the traffic matrix). Specifically, the
limiting behavior of the computational complexity is the same
for both the proposed method and the benchmark, that is
O(L2). Therefore, our comparison with the benchmark is fair.
We note that, in general, any constant permutation does not
affect the performance of a fully-connected NN. However,
the permutation used in the preprocessing step is a function
of j and therefore is different for different traffic connection
requests. Finally, it can be seen that with increasing N the
accuracy decreases. This is due to the fact that with larger
values of N , the number of classes is larger and class borders
become closer together, therefore, there is a higher chance that
the predicted BER ends up in a wrong class.

Table 2 represents two confusion matrices for the case
with N = 4 and K = L = 32, where we compare the
results with and without the preprocessing step. An element
of the confusion matrix in the i th row and the j th column
epresents the percentage of the examples in the i th class that

were predicted to be in the j th one by the NN. It provides a
more comprehensive metric for the NN performance than the
accuracy as it illustrates the distribution of the classification
errors. It can be seen that with the preprocessing step, in the
case of an error, almost always the NN selects a class adjacent
to the true one. However, without the preprocessing step, such
characteristic is no longer present.

5. Concluding remarks

We proposed, for the first time, a BER classifier whose
output can be used to adjust the coding rate in an optical
data center network. We developed a preprocessing algorithm
that converts data traffic values for optimal classifier operation.
Our preprocessing algorithm consists of permutations on the
traffic matrix, which depend on the coupler destination j .
Based on our results, the NN cannot effectively learn this
input-dependent permutation function, and therefore the pro-
posed preprocessing step can have a significant impact on the
classifier performance. This work illustrates how incorporat-
ing a stage of theoretical calculations can improve conven-
tional machine learning-based designs that are directly fed raw
data.
42
In this work, we used simulations based on a physical-layer
model to acquire the data needed to train, validate, and test
the NN. However, we did not use the model to design the
NN structure. Our proposed algorithm can also be employed
for different modulation formats or different traffic patterns.
This is due to the fact that by altering the properties of the
transmitted signal, the set of connections that interfere with
each other do not change, but only the noises scale. This
scaling can be learned by the NN via experimental data.
Future work should examine the performance of the proposed
algorithm using experimental data.
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