
Asymmetric Dual-Arm Task Execution Using an Extended Relative
Jacobian

Downloaded from: https://research.chalmers.se, 2024-03-13 10:43 UTC

Citation for the original published paper (version of record):
Almeida, D., Karayiannidis, Y. (2022). Asymmetric Dual-Arm Task Execution Using an Extended
Relative Jacobian. Springer Proceedings in Advanced Robotics, 20 SPAR: 18-34.
http://dx.doi.org/10.1007/978-3-030-95459-8_2

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Asymmetric Dual-Arm Task Execution
Using an Extended Relative Jacobian

Diogo Almeida1(B) and Yiannis Karayiannidis2

1 Division of Robotics, Perception and Learning, KTH Royal Institute of Technology,
100 44 Stockholm, Sweden

diogoa@kth.se
2 Department of Electrical Engineering, Chalmers University of Technology,

412 96 Gothenburg, Sweden
yiannis@chalmers.se

Abstract. Coordinated dual-arm manipulation tasks can be broadly
characterized as possessing absolute and relative motion components.
Relative motion tasks, in particular, are inherently redundant in the
way they can be distributed between end-effectors. In this work, we anal-
yse cooperative manipulation in terms of the asymmetric resolution of
relative motion tasks. We discuss how existing approaches enable the
asymmetric execution of a relative motion task, and show how an asym-
metric relative motion space can be defined. We leverage this result to
propose an extended relative Jacobian to model the cooperative system,
which allows a user to set a concrete degree of asymmetry in the task
execution. This is achieved without the need for prescribing an abso-
lute motion target. Instead, the absolute motion remains available as a
functional redundancy to the system. We illustrate the properties of our
proposed Jacobian through numerical simulations of a novel differential
Inverse Kinematics algorithm.

1 Introduction

Consider a dual-armed robotic system, tasked with executing a coordinated
manipulation task. As opposed to uncoordinated tasks, coordinated manipu-
lation benefits from treating the two arms in the robotic system as a single
kinematic chain. Concretely, the task space for coordinated manipulation can be
defined in terms of absolute and relative motion components. Absolute motion is
equivalent to the resultant motion from external forces applied to a jointly car-
ried object. Relative motion, conversely, refers to the motion of one end-effector
w.r.t the other [27,28]. This type of motion can be used to model tasks such as,
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e.g., assembly or tool manipulation. The formulation of the manipulation task
space in terms of absolute and relative motion is called the Cooperative Task
Space (CTS) [8].

We are interested in analysing the resolution of the CTS variables into end-
effector velocities. Recent work proposes an Extended CTS (ECTS) definition
which makes use of a novel definition of absolute motion to attain an asymmet-
ric resolution of the relative motion variable [24,25]. Alternatively, it is common
to model solely the relative motion as a primary task quantity, by using the
relative Jacobian formulation [17] when solving the dual-armed system’s differ-
ential Inverse Kinematics (IK). In many cases, a secondary task is added which
constrains the absolute motion of the system resulting in asymmetric relative
motion [1,11–13].

In the following text, we discuss the CTS formulations and observe how a
conflict between the definition of absolute and relative motion tasks is introduced
by the ECTS method, Sect. 3. In fact, ECTS relies on an asymmetric absolute
motion definition, which we argue is at odds with the concept of absolute motion:
commanding an ‘asymmetric absolute motion’ will result in the appearance of
relative motion components. If we consider an absolute motion task such as
jointly carrying an object, this will inevitably lead to internal forces on the
object. On the other hand, relative motion tasks are inherently redundant. The
resolution of the relative motion task into the robot end-effectors can be arbitrary
without any fundamental conflict with the concept of relative motion [3].

We leverage our observations to propose an asymmetric relative motion space,
which enables the asymmetric resolution of the relative motion without resorting
to a redefinition of the absolute motion space, Sect. 4. The new space leads
to the proposal of a novel relative Jacobian formulation and a corresponding
differential IK algorithm, Sect. 5. This allows a user to specify a concrete degree of
asymmetry in the relative task resolution, within a relative Jacobian framework.
We illustrate the key properties of our approach through numerical simulations,
Sect. 6, and make our code freely available, which, in addition to the simulations,
implements velocity controllers that employ all of the discussed methods1.

2 Related Work

A common solution to the problem of bimanual cooperative manipulation is to
employ a completely asymmetrical leader-follower (or master-slave) approach
[2,4,18,29,30]. Alternatively, by considering the external and internal forces on
a jointly held rigid object, the task can be modelled in terms of absolute and
relative motion components [27,28]. The CTS definition results from a modelling
approach which is independent of the statics of the dual-armed system [7,8]. The
ECTS [24,25] is obtained by redefining the absolute motion space of the coor-
dinated system. CTS-based approaches have been used to describe coordinated
tasks in, e.g., human-robot interaction settings [20], the cooperative manipula-
tion of a mechanism [3] or the execution of a bimanual dexterous manipulation
task [9].
1 https://github.com/diogoalmeida/asymmetric manipulation.

https://github.com/diogoalmeida/asymmetric_manipulation
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(a) Symmetric execution. (b) Asymmetric execution

Fig. 1. A simple relative motion task is to open/close a pair of scissors. Note that an
asymmetric execution results in a change of the average orientation (green arrow) of
the two scissors’ pieces.

Relative Jacobian methods model solely the relative motion task [13,16,17],
making it a common choice when addressing tasks that require just the relative
motion space, such as machining [14,22,23], assembly [1] or drawing [15]. The
absolute motion is part of the relative Jacobian’s redundant space. This can
be exploited, e.g., to enhance self-collision and obstacle avoidance as secondary
tasks [19], or for joint-limit avoidance [11,12,21].

Hierarchical quadratic programs (HQP) [10] are an alternative approach to
obtain solutions to the problem of inverse differential kinematics. While in this
article we focus on pseudo-inverse solutions to the differential IK problem, all
the discussed Jacobian formulations can be employed in the context of HQP, as
showed in, e.g., [6] and [26] for the relative Jacobian.

3 Cooperative Motion Spaces

In this section, we perform a task-space analysis of existing cooperation strate-
gies. From the kinematic point of view, we will consider master-slave methods
as examples of purely asymmetric task execution, which, as we will show, are
covered by the analysed strategies.

CTS methods employ the full dual-arm task space, by defining an absolute
and a relative motion spaces. A possible approach to obtain asymmetric relative
motion is to redefine the absolute motion space, as is the case with ECTS. We
observe that this approach introduces conflicts between the relative and absolute
motion tasks.

3.1 Notation

Consider a dual-armed system composed by two robotic manipulators. Let {hi}
denote a generic coordinate frame, e.g., of the i-th manipulator’s end-effector,
where i ∈ {1, 2}. Each frame is defined by a position, pi ∈ R

3 and orientation
Ri ∈ SO(3), expressed in a common base frame. We write the angle-axis rep-
resentation of Ri as Rk(ϑi), where ϑi is the angle one must rotate about the
axis k to obtain Ri. The twist at each end-effector is defined as vi = [ṗ�

i ω�
i ]�,

where ωi ∈ R
3 denotes the end-effectors’ angular velocity. Finally, we denote the

nullspace of a matrix A ∈ R
n×m as N (A).
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3.2 Absolute and Relative Motion Spaces

The absolute and relative motion components can be derived from properly
defined motion frames.

Cooperative Task Space. In CTS [8], absolute and relative motion frames
are defined, respectively {ha} and {hr}, such that

pa =
1
2
(p1 + p2) and Ra = R1Rk1,2

(
ϑ1,2

2

)
, (1)

where k1,2 and ϑ1,2 are extracted from the angle-axis representation of 1R2 =
R�

1 R2, and
pr = p2 − p1, Rr = 1R2. (2)

The absolute and relative motion twists, respectively va and vr can be obtained
through differentiation,

va =
1
2
(v1 + v2) and vr = v2 − v1. (3)

In task space, this relation can be expressed by a linking matrix, Lcts ∈ R
12. Let

vcts = [v�
a v�

r ]� and v = [v�
1 v�

2 ]�. Then,

vcts = Lctsv, Lcts =
[

1
2I6

1
2I6−I6 I6

]
. (4)

The CTS linking matrix Lcts is square and nonsingular, and v can be recovered
through matrix inversion, [

v1

v2

]
=

[
I6 − 1

2I6
I6 1

2I6

] [
va

vr

]
. (5)

It is clear from (5) that the coordinated task is divided symmetrically between
the two end-effectors: each end-effector executes the prescribed absolute motion,
and the relative motion task is divided evenly among them.

ExtendedCooperative Task Space. The CTS formulation has been extended
in [24,25]. A different definition for the absolute frame is adopted,

pa = αp1 + (1 − α)p2, Ra = R1Rk1,2 ((1 − α)ϑ1,2) , (6)

with 0 ≤ α ≤ 1. The ECTS linking matrix is given by

LE(α) =
[
αI6 (1 − α)I6
−I6 I6,

]
(7)

and vcts = LE(α)v, as in (4). The effect of the cooperation parameter α is clear
through the inversion of (7),

LE(α)−1 =
[
I6 −(1 − α)I6
I6 αI6

]
, (8)
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(a) (b) (c)

Fig. 2. The absolute motion of the cooperative system is redundant w.r.t the relative
motion task.

That is, by setting α, asymmetric relative motion can be achieved, such that
va = 0 in the new absolute frame. The relative motion task can be solved in
a serial (master-slave, α = 0 or α = 1), blended (asymmetrical, α �= 0.5) or
parallel (symmetrical, α = 0.5) mode of cooperation. Note that the introduction
of asymmetries in the relative motion affects the symmetric absolute pose, Fig. 1.

Both Lcts and LE(α) are composed by an absolute and a relative part,

Lcts =
[
La

Lr

]
LE(α) =

[La(α)
Lr

]
, (9)

where La,Lr,La(α) ∈ R
6×12. These matrices depend on the definition of the

frames where the absolute and relative motion are expressed. For both CTS
and ECTS, the relative motion is given by vr = Lrv. CTS adopts the symmet-
ric resolution of the absolute motion, va = Lav while ECTS makes use of an
asymmetric formulation, va = La(α)v.

The (E)CTS motion space fully specifies the cooperative motion in terms
of absolute and relative variables. In many tasks, however, this overconstrains
the problem. For example, a peg-in-hole assembly can be executed by having
each robot arm grasp a part and executing a relative motion between its end-
effectors. The absolute motion is a functional redundancy in this case, Fig. 2.
Other examples include machining [23] or drawing [15].

Relative Motion Space. For tasks which can be solved exclusively through
relative motion, it is possible to specify a desired vr only. This removes the need
to adopt the 12×12 dimensional linking matrices in (9). In this scenario, we can
use the Moore-Penrose pseudo-inverse, L†

r = L�
r (LrL�

r )−1, to resolve a desired
relative motion into velocities of each robot end-effector,

v = L†
rvr =

1
2

[−I6
I6

]
vr, (10)

which matches the relative part of the CTS solution (5). An homogenous solution
can be added through a nullspace projection, e.g.,

v = L†
rvr + (I12 − L†

rLr)[I6 06]†v1d

=
1
2

[
v1d − vr

v1d + vr

]
=

1
2

[
I6 −I6
I6 I6

] [
v1d

vr

]
. (11)

In this solution, a secondary task {h1} is being mapped to the absolute motion
space, with va = 1

2v1d . The resulting velocity distribution is analogous to the
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Fig. 3. Numerical simulation of the point-system (12). Different values of K affect the
degree of asymmetry α in the execution of the relative motion task.

CTS case, Eq. (5). However, if the secondary objective is not prescribed in {ha},
a conflict between primary and secondary tasks is introduced which will induce
asymmetries in the motion of the system’s end-effectors.

Example 1 (Constructing asymmetric relative motion). Let p1, p2 ∈ R, with
initial state p1(0) = 0 and p2(0) = 1, and consider the relative velocity command
ṗrd = p1 − p2. Additionally, let ṗ1d = −Kp1, with K > 0. The solution (11),
applied to this one-dimensional case, yields the autonomous system

[
ṗ1
ṗ2

]
=

1
2

[−(K + 1) 1
1 − K −1

] [
p1
p2

]
. (12)

The relative velocity of this system is given by ṗr = ṗ2 − ṗ1 = ṗrd , i.e., the
desired relative command is attained. The degree of asymmetry in the motion
of the two points can be computed through α = |ṗ2|

|ṗ1|+|ṗ2| and will depend on
the secondary task gain K. We depict the time evolution of system (12), as well
as α for different values of K in Fig. 3. It is clear that for a larger K the more
asymmetric is the motion of the two points, since the induced absolute motion
will regulate p1 to remain at the origin. For K = 8 in particular, it can be seen
that the injected absolute motion ṗa allows p2 to contribute the most to the
relative motion task.

3.3 Asymmetric Resolution of the CTS Variables

We have seen in Sect. 3.2 that inverting the mapping (4) yields a symmetric
distribution of the CTS variables into the two robot end-effectors. In the cur-
rent literature, two predominant coordination approaches achieve an asymmetric
execution of the CTS variables:

1. In the ECTS [24,25], a redefined absolute motion space constrains the reso-
lution of the relative motion to be asymmetric, Sect. 3.2.

2. Methods which consider only the relative motion space often add a secondary
task to one of the end-effectors [1,11–13], which results in asymmetric behav-
ior, see Example 1.
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Both methods combine the CTS variables to achieve asymmetric behavior. The
ECTS solution for the absolute motion introduces relative motion components,

vr = LrLa(α)†va =
1 − 2α

α2 + (1 − α)2
va, (13)

while the nullspace projection (11) maps the secondary task of the system to
the absolute motion space. We will show how this projection can be modified
to introduce a deliberate degree of asymmetry in the execution of the relative
motion task.

4 Defining an Asymmetric Relative Motion Space

Consider that we wish to control the relative motion between the end-effectors
in an asymmetric manner. Analogously to the ECTS approach, we would like
to be able to specify a degree of cooperation between the arms. This can be
achieved through a redefined relative motion frame. If we denote the angle-axis
representations of R1 = Rk1(ϑ1) and R2 = Rk2(ϑ2), then the asymmetric
relative motion frame {hr} can be defined as

pr =
αp2 − (1 − α)p1

(1 − α)2 + α2

Rr = R�
k1

(
(1 − α)ϑ1

(1 − α)2 + α2

)
Rk2

(
αϑ2

(1 − α)2 + α2

)
.

(14)

Asymmetric relative motion can be obtained through the differentiation of (14),

vr = Lr(α)v, (15)

where the asymmetric relative linking matrix Lr(α) is

Lr(α) =
1

(1 − α)2 + α2

[−(1 − α)I6 αI6
]
. (16)

The particular solution to (15) is analogous to (10) and corresponds to the ECTS
asymmetric distribution of the relative motion (8),

v = Lr(α)†vr =
[−(1 − α)I6

αI6

]
vr. (17)

Theorem 1. The motion space defined by {hr} in (14) is characterized by the
following properties:

1. Commanding a relative velocity in {hr}, Eq. (17), renders the asymmetric
absolute motion space (6) invariant.

2. The inverse mapping Lr(α)† is a generalized inverse of Lr.
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Proof. Let
va = La(α)v, (18)

and consider the solution (17). We have,

va = La(α)Lr(α)†vr = 0, (19)

and thus, the asymmetric absolute motion frame (6) remains invariant to veloc-
ities commanded in the motion frame from (14). Lr(α) acts as a generalized
inverse to Lr since

LrLr(α)† =
[−I6 I6

] [−(1 − α)I6
αI6

]
= I6. (20)

Corollary 1. The solution for the asymmetric relative motion space (17) can
be obtained by adding an homogeneous component to (10).

Proof. This follows straightforwardly from the fact that Lr(α) acts as a gener-
alized inverse to Lr (20),

v = L†
rvr + (I12 − L†

rLr)Lr(α)†vr = Lr(α)†vr. (21)

The solution (21) generates the required absolute motion to ensure the degree
of asymmetry α in the execution of the prescribed relative velocity vr,

va = LaLr(α)†vr =
2α − 1

2
vr. (22)

We can use this result to construct a relative Jacobian method for solving the
system’s differential IK which takes into account a desired degree of asymmetry.

5 Differential Inverse Kinematics

The prescribed cooperative motion can be distributed between the two end-
effectors, as seen in the previous section, and each arm can solve its differential IK
separately. Alternatively, we can derive differential IK algorithms which directly
resolve a desired cooperative motion to the joint state of the complete dual-arm
chain.

5.1 Notation

Let qi ∈ R
n represent the joint variables of the i-th manipulator, with n ≥ 6,

and Ji(qi) ∈ R
6×n its Jacobian, such that vi = Ji(qi)q̇i. We will omit the

Jacobian’s dependency on the joint variables for the remaining of this text, and
assume that the manipulators’ Jacobians are full rank, i.e., the manipulators
are not operating in a singular configuration. Finally, let S(a) ∈ R

3×3 be the
skew-symmetric matrix such that, for a,b ∈ R

3, S(a)b = a × b.
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5.2 Joint Jacobians

Let J =
[

J1 06×n

06×n J2

]
. We can solve the cooperative task by using any of the

methods in Sect. 3 and computing the differential IK for each individual manip-
ulator. As an example, a relative motion task can be solved into joint space by
computing

q̇ = J†L†
rvr, (23)

where q = [q�
1 , q�

2 ]�. The nullspace of J has dimension dim(N (J)) = 2n − 12.
Alternatively, all the previously discussed cooperative motion definitions can be
extended to a mapping from task to joint spaces through the construction of
joint Jacobians. This is equivalent to treating the two manipulators as a single
kinematic chain. We can obtain the joint Jacobians through a pre-multiplication
with the appropriate linking matrix, e.g., Jcts = LctsJ ∈ R

12×2n. It is often
convenient, however, to express the cooperative task w.r.t object frames rigidly
connected to each end-effector, {hoi}. These can represent, e.g., the tip of the
peg and the center of the hole in a peg-in-hole type of assembly task. In this
case, a transformation between the twists at {hoi} and the corresponding {hi}
is needed.

We define two virtual sticks, which connect poi to the end-effector’s positions
pi, such that ri = poi − pi. The necessary screw transformation is defined as

Wi =
[
I3 −S(ri)
O3 I3

]
, such that voi = Wivi. Let W =

[
W1 06

06 W2

]
. The joint

Jacobians are
Jcts = LctsWJ JE(α) = LE(α)WJ, (24)

for the CTS formulations, where Jcts, JE(α) ∈ R
12×2n and

Jr = LrWJ, (25)

in case only a relative motion task is specified, with Jr ∈ R
6×2n. Note that, in

general, J†
r �= J†W†L†

r. In fact, treating the dual-armed system as a single kine-
matic chain results, in general, in a larger dimension of the Jacobian nullspace,
as rank(Jr) ≤ 6 and thus

dim(N (Jr)) ≥ dim(N (J)) = dim(N (J1)) + dim(N (J2)). (26)

In practice, the larger nullspace includes absolute motion components which
are not present when solving (23). The Jacobian in (25) is often called relative
Jacobian.

The forward differential kinematics for a relative motion task are expressed as

vr = Jrq̇. (27)

In the following, we will focus on finding feasible joint space solutions for (27).
It is well known that such solutions have the general form

q̇ = J†
rvr + (I2n − J†

rJr)ζ, (28)
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(a) (b) (c) (d)

Fig. 4. Initial robot configurations for the case studies. Figure 4a and 4b: linear dis-
placement between frames seen from a front and a top view. Figure 4c and 4d: rotational
displacement seen from a front and a top view.

with (I2n − J†
rJr)ζ being part of the homogeneous solution to (27). The joint

space vector ζ ∈ R
2n composes a secondary task, added to vr in a task-priority

manner. By setting ζ = 0 we get the minimum norm solution for q̇. The sym-
metric absolute motion space is orthogonal to the relative motion space used in
the relative Jacobian definition (25),

LrL†
a = 0. (29)

This absolute motion is then a functional redundancy to (27) and thus, in
general, its minimum norm solution can contain absolute motion components,
depending on the manipulators’ design. The desirability of this property depends
on the task requirements. If the absolute motion must be prescribed, using the
CTS is ideal. In light of the discussion in Sect. 3.3, we argue that the ECTS can
be used to achieve asymmetric relative motion when va = 0. However, if va �= 0
is to be commanded, ECTS requires α = 0.52. Otherwise, the resulting asymmet-
ric absolute motion command will contain relative motion components, which is
undesirable. Alternatively, using (23) prevents any non-specified absolute motion
from occurring. When it is acceptable for absolute motion to be exploited as a
functional redundancy, exploitation strategies include, e.g., workspace obstacle
and self-collisions avoidance [19].

5.3 Asymmetric Relative Jacobian

A common choice for ζ is to specify a motion for one of the system’s end-effectors
[1,11–13], e.g.,

ζ = [J1 0]†v1. (30)

As seen in Example 1, this secondary task will be mapped into the system’s abso-
lute motion space and induce asymmetries in the execution of vr. We propose
instead to use the asymmetric relative motion space defined in Sect. 4 to extend
the relative Jacobian methods and allow for setting the degree of cooperation
through a parameter. We use (16) to define an asymmetric Jacobian,

Jr(α) = Lr(α)WJ. (31)

2 In fact, this is the case in [25].
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(a) Translational relative motion task. (b) Rotational relative motion task.

Fig. 5. Evolution of the relative errors in the two types of motion task, when α = 0.8.
The dashed lines represent the solution when using ζ from (32) as a primary task. The
solid lines use (32) in a task priority manner (28).

We can now solve the differential IK by defining

ζ = Jr(α)†vr. (32)

Imposing (32) as a secondary task will filter out undesired asymmetric absolute
motion, which can occur as part of the minimum norm solution represented by
the pseudoinverse, since it belongs to an orthogonal motion space, Eq. (19). The
desired task space relative motion will be preserved, however, as shown in Corol-
lary 1, and as we will illustrate in Sect. 6. Note that asymmetric absolute motion
necessarily contains relative motion components, which is in general undesirable:
for many tasks, non-prescribed relative motion can lead to internal stresses on
the robot manipulator.

5.4 Relative Task

The choice of vr in (28) defines the relative motion task. This can be set as the
output of a task-specific controller [3], a feedforward command from a teleoper-
ator, or as an error signal from a pose regulation task [5,25]. In our examples,
we will assume without loss of generality that the task is to align the coordinate
frames {hoi}. The alignment error is given by p̃ = po2 − po1 for the displace-
ment between frames and R̃ = R�

o1Ro2 for the orientation. If we denote the
error quaternion as Q̃ = (ξ̃, w), where ξ̃ is the vector and w the scalar part, we
set vr as the feedback control law [5],

vr = −Kp

[
p̃

Ro1 ξ̃

]
, (33)

where Kp ∈ R
6×6 is positive definite.
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(a) ECTS (b) Proposed

Fig. 6. Results for the execution of a pure translational task.

6 Case Studies

We illustrate different properties of the novel relative Jacobian (31) with two
case studies, in which the primary task is a relative motion task given by (33)
with Kp = I6. The case studies are based on a simulated Rethink Robotics’ Bax-
ter dual-armed robot. Two relative motion tasks are considered, one where the
alignment error is purely translational, Fig. 4a–4b, the other where the error is
purely rotational, Fig. 4c–4d. The initial poses of the object frames, expressed in
the reference frame (Baxter’s torso frame), are given by po1 = [0.36, 0.15, 0.36]�

and po2 = [0.45, 0.0, 0.21]�, with Ro1 = Ro2 = I3. The subscript index i = 1
corresponds to the left and i = 2 to the right manipulator.

6.1 Nullspace Projection of the Extended Relative Jacobian
Solution

(a) ECTS (b) Proposed

Fig. 7. Results for the execution of a pure rotational task.

In this case study, we show how the joint space solution (32) introduces undesir-
able relative motion components, as a consequence of the asymmetric orthogo-
nality from Eq. (19). This property implies that asymmetric absolute motion lies
in the nullspace of (31), which contains relative motion components, Eq. (13). As
such, the nullspace projection (28) is required to use our proposed extended rel-
ative Jacobian. In the numerical simulations, we set α = 0.8 to denote a blended
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(a) ECTS (b) Proposed

Fig. 8. Translational relative task.

mode where the right manipulator (i = 2) executes most of the relative task.
Figure 5a depicts the evolution of the relative error for a purely translational
task. Conversely, Fig. 5b shows the error progression in a purely rotational task.
The solution (32) induces undesired relative motion in both tasks. This is clearly
visible in the rotational error for the translational task and in the translational
error for the rotational task. The nullspace projection of (32) in (28) filters out
these undesired components.

6.2 Asymmetric Relative Motion

The nullspace projection of the asymmetric solution (32) removes some motion
components which are redundant to the asymmetric relative task. In this case
study, we show that the symmetric absolute motion still remains as an exploitable
functional redundancy, and that asymmetric relative motion is achieved, by com-
paring our method against the ECTS solution with va = 0, for different values
of the coefficient α. Note that when α = 0.5, we obtain the default CTS and
relative Jacobian solutions, respectively.

We depict the joint solutions when α = 0.8 in Fig. 6, for the translational rel-
ative motion task and in Fig. 7 for the rotational task, where it can be observed
that the asymmetric task execution results in distinct final configurations for the
system. The norm of the joint space trajectory

∫ ||q̇||dt was 1.48 for the ECTS
solution and 0.84 for ours, showing that the availability of the larger redundant
space allows for a smaller norm of joint velocities to be computed by the differen-
tial IK method. In addition, we show the induced symmetrical absolute motion
in both cases in Fig. 8 and 9. We provide the source code required to test other
values of α3.

3 https://github.com/diogoalmeida/asymmetric manipulation.

https://github.com/diogoalmeida/asymmetric_manipulation
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(a) ECTS (b) Proposed

Fig. 9. Rotational relative task.

The smaller joint trajectory norm of our method is a result of the exploita-
tion of the absolute motion as a functional redundancy. In the translational
motion task our method changes the absolute orientation of the system, Fig. 8b,
and conversely a linear component is introduced in the rotational motion task,
Fig. 9b. In comparison, ECTS will induce symmetrical absolute motion on the
system when α �= 0.5, Fig. 8a and 9a, however, this is only along the dimensions
commanded by vr, as noted in Eq. (22).

7 Conclusions

We study how existing methods to model the differential kinematics of dual-
armed robotic systems distribute the relative motion between end-effectors, in
the context of cooperative manipulation tasks. The asymmetric execution of a
relative motion task can be achieved by redefining the absolute motion space,
as in the ECTS formulation, or through the addition of a secondary task in a
relative Jacobian setting. The ECTS approach requires absolute motion to be
part of the system’s primary task, and relies on an unintuitive definition of an
asymmetric absolute motion space, which is useful solely for the purpose of the
asymmetric execution of the relative task. In a relative Jacobian setting, adding
a secondary task induces time-varying asymmetries which are a function of the
secondary task’s definition, as we illustrated in Example 1.

In contrast, we show how a deliberate degree of asymmetry can be imposed
on the execution of a relative motion task within a relative Jacobian formu-
lation. This approach allows for, e.g., a master-slave execution of the relative
motion task, as opposed to the time-varying asymmetric execution of other rel-
ative Jacobian methods. We illustrate the properties of this approach with two
case studies. In the first study, we show that the asymmetric absolute motion
which lies in the nullspace of our proposed Jacobian includes undesirable relative
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motion components, and we illustrate how our proposed differential IK method
filters out these components. Then, in our second case study, we show how the
absolute motion space is retained as a functional redundancy even after applying
our differential IK scheme, through a comparison with the ECTS approach: for
the same relative motion task, our method obtains smaller joint velocity norms,
thanks to the induced absolute motion.
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