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Abstract
Accounting for variability in generation and load and strategies to tackle variability 
cost-efficiently are key components of investment models for modern electricity sys-
tems. This work presents and evaluates the Hours-to-Decades (H2D) model, which 
builds upon a novel approach to account for strategies to manage variations in the 
electricity system covering several days, the variation management which is of par-
ticular relevance to wind power integration. The model discretizes the time dimen-
sion of the capacity expansion problem into 2-week segments, thereby exploiting 
the parallel processing capabilities of modern computers. Information between 
these segments is then exchanged in a consensus loop. The method is evaluated 
with regard to its ability to account for the impacts of strategies to manage varia-
tions in generation and load, regional resources and trade, and inter-annual linkages. 
Compared to a method with fully connected time, the proposed method provides 
solutions with an increase in total system cost of no more than 1.12%, while reduc-
ing memory requirements to 1/26’th of those of the original problem. For capacity 
expansion problems concerning two regions or more, it is found that the H2D model 
requires 1–2% of the calculation time relative to a model with fully connected time 
when solved on a computer with parallel processing capability.

Keywords  Flexibility measures · Variation management · Electricity system model · 
Capacity expansion model · Parallel computing · Hours-to-Decades model · Wind 
power integration · Consensus algorithm

1  Introduction

Given that the electricity system is undergoing a major transition, methods and 
models applied to assess investments in and operation of the electricity system must 
be adapted to capture the essential features of the electricity system in transition 
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as well as the properties of new electricity systems coming online. A major driver 
for change in the electricity system is the effort to produce electricity without emit-
ting carbon dioxide, so as to mitigate climate change. Wind power and solar power 
offer electricity that is associated with low or no emissions of carbon dioxide, and 
are also expected to be the most affordable electricity generation options in many 
parts of the world from 2040 and onwards [1]. For the locations where wind and 
solar power offer electricity at a lower cost relative to other options, the variability 
of wind and solar power generation is a key limiting factor for the shares of the elec-
tricity demand supplied by wind and solar power. Therefore, for electricity system 
investment models that examine future electricity system compositions, it is crucial 
to account for this variability [2, 3].

The most straightforward means to include variability in electricity system mod-
els is to adopt a high time resolution. However, electricity system investment mod-
els addressing the capacity expansion problem typically cover at least the 40 years a  
thermal power plant is in operation. Thus, an hourly time resolution implies that each  
type of generation technology in each region considered introduces 40 × 8760 varia-
bles. If thermal cycling is accounted for the number of variables representing electric- 
ity generation is doubled [4]. In order to reduce the computer memory requirements  
and computation time, long-term electricity system models therefore typically adopt  
some kind of simplified time representation. In a review of modelling tools for energy  
and electricity systems with large shares of variable renewable electricity (VRE) [5],  
the representation of short-term variability in long-term studies is identified as a key 
remaining challenge. In a methodological review of strategies to integrating short-
term variations of the power system into integrated energy system models, the tradi-
tional ways to representing time in long-term energy system optimization models are 
discussed relative proposed approaches for improved time representation [6]. The  
authors build on the work by [7], stating that the typical stylized temporal representa- 
tion in long-term energy system optimization models is in the form of a low number 
of integral or semi-dynamic time-slices, where integral time-slices represent aver-
age load levels during certain fractions of the year, while semi-dynamic time-slices 
represent typical or representative fractions of the year. Four distinct approaches to 
improve time representation in long-term energy system models are identified: 1) 
semi-dynamic balancing using typical days with increased resolution, 2) integral bal- 
ancing based on approximating the joint probability distribution of the load and VRE  
generation, 3) semi-dynamic balancing using representative historical periods, and 4)  
using stochastic programming as a means to address modelling uncertainties. Time-
slicing methods using integral balancing based on approximating the joint probability  
distribution of the load and VRE generation are developed by, for example, Wogrin 
et al. [8] (i.e., the system state method) and Lehtveer et al. [9]. Nahmmacher et al. 
[10] propose a method to reduce the size of the time representation, which is based on 
semi-dynamic balancing using representative historical periods, i.e., the identifica- 
tion of a number of days (24-hour segments) taken to represent the year. This method  
is referred to as the representative days approach. The choice of segments is based on  
the load, wind, and solar patterns over 24 hours. Both of the time reduction methods,  
as developed in [8] and [10], respectively, have been shown to satisfactorily represent  
variability in long-term electricity system models, and several investment models 
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have been updated in line with these or similar principles (see [11–14]). The perfor-
mance of integral balancing based on approximating the joint probability distribution  
of the load and VRE generation, and semi-dynamic balancing using representative 
historical periods, has been compared using an hourly unit commitment model as 
benchmark (see [15]).

Challenges remain, however, for long-term investment models to assess electricity  
systems with large shares of varying renewables. One challenge for integral balancing  
based on approximating the joint probability distribution of the load and VRE gener-
ation is that, in difference to load variations, variations in wind and solar generation  
do not follow a common pattern across a wide geographical scope. Thus, in mod-
els with a large geographical coverage, integral time-slicing which account for wind 
and solar variations cannot be adopted while considering energy balances on sub-
regional level representing limitations in transmission capacity [16]. The inclusion 
of strategies to manage variations poses additional challenges on the electricity sys-
tem models, as the implementation of strategies to manage variations, e.g., the state 
of an energy storage or thermal power plant, connects time sequences. While captur- 
ing the impact of flexibility provision within the time-slice of semi-dynamic balanc- 
ing using representative historical days is straightforward with the representative days  
approach, wind variation management over longer time periods requires substantial 
additions to the original method [17] increasing calculation times and complexity.

This work proposes a heuristic modeling methodology designed with these chal-
lenges in mind, i.e., a model structured to accommodate strategies to manage wind 
power variations as well as transmission limitations. Brown et al. [18] avoid reduc-
ing the time dimension by reducing the number of technologies included, excluding 
thermal generation with limited flexibility such as nuclear power and steam plants. 
The method proposed in this work suggests a heuristic approach to the capacity 
expansion problem with emphasis on strategies to manage wind variations, includ-
ing thermal cycling as well as transmission and trade. The method accounts for 
every third hour of the year while including thermal generation and considers ther-
mal cycling by decomposing the capacity expansion problem into 26 2-week seg-
ments, adopted to wind variation with typical duration of several days [19]. The 
2-week segments are solved in parallel, and a consensus loop gathers information 
from the initial solves and uses this information to form one capacity–cost curve 
for each technology and region, which form the basis for subsequent iterations. An 
iteration is in this work defined as parallel solves of the capacity expansion problem  
and formation of a capacity–cost curve based on the results. The decomposed prob-
lem is iterated until consensus is attained, and storage and transmission capacity no 
longer change between iterations. The model developed based on this methodology  
is referred to as the Hours-to-Decades (H2D) model and is of particular relevance for  
large interconnected regions with good conditions for wind power such as Europe. 
The method shares elements with mathematical decomposition methods, such as 
Lagrangian decomposition [20], where an optimization problem is decomposed into 
smaller subproblems that can be solved in parallel. An iterative loop, as, for exam-
ple, a subgradient [21] or bundle [22] method, applied to a dual problem [23]—here 
corresponding to the consensus loop—is then used to reach an optimal solution to 
the original problem.
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2 � Methodology

The H2D model developed in this work consists of two main parts: a decomposed 
electricity system investment model and a consensus loop that enables the exchange 
of information between 2-week segments of the electricity system model. Figure 1 
presents a schematic illustration of the modelling methodology.

The electricity system model represents the problem of meeting the demand for elec-
tricity while minimizing investment and operational costs for 26 separate 2-week seg-
ments. In the consensus loop, information from the solutions is gathered in capacity–cost 
curves in which the capacity invested in all 2-week segments has the lowest cost, while 
additional capacity invested in a subset of the segments is more expensive; further on, 
the smaller the subset of segments, the more expensive the capacity. The solution process 
is iterated until there is consensus, i.e., the capacity–cost curves are unchanged between 
iterations. This section provides a mathematical description of the investment model and 
the consensus loop followed by a description of the approach applied to connect years 
when investigating pathways for the electricity system. The section ends by outlining the 
method applied to evaluate the proposed modeling methodology.

2.1 � Electricity System Investment Model

The electricity system investment model identifies investments in electricity genera-
tion and storage technologies such that the demand for electricity can be met at the 
lowest cost. It is a linear, cost-minimizing model that is designed to account for varia-
bility and accommodate strategies to manage variations in the hourly to weekly time-
scale. Chronology in time is maintained using 2-week segments, enabling the inclu-
sion of thermal cycling and storage with hourly-to-weekly cycles, so as to represent 
the system responses to wind variations. Segments of full weeks have the advantage 
of capturing variations in electricity demand between day and night as well as work-
day and weekend. To maximize the usage of parallel computation capacity of modern 
computers, as short segments as possible are desired. However, one-week segments 
are too short to fully capture the wind power variability, for which a persistence of 
8 days is common on a hub height of 100m [24]. The advantage of two-week seg-
ments was confirmed in preliminary tests using one-week and four-week segments. 
In this work, the 2-week segments have a 3-hour time resolution. Seasonal variability 
is represented by accounting for all the 2-week segments in a year. However, dimen-
sioning of seasonal storage (i.e., storages shifting electricity from summer to winter 
or vice versa) is not possible with this approach; the implications of this are consid-
ered in the discussion, Sect. 4. The model includes thermal cycling as well as battery 
and hydrogen storage. Hydrogen storage investments are stimulated by introducing a 
demand for electricity in hydrogen production for industry corresponding to 20% of 
the annual electricity demand evenly distributed over the year.

All notations used in the electricity system model developed below are described in 
the nomenclature list provided in Appendix A, Tables 4, 5, and 6, in which also nonneg-
ativity constraints—as applicable—of the variables are indicated. In order to simplify the  
presentation, the years modelled are omitted in the relations (1)–(21).
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Fig. 1   A schematic illustration 
of the modelling methodology
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For each 2-week segment s ∈ S , the objective function to be minimized is 
expressed as

where (1) represents the costs for investments in the different technologies in the  
different regions, (2) the running costs of the different technologies in the differ-
ent regions at all time steps within the 2-week segment, (3) the costs for investments 
in technologies for transmission of electricity between the regions, and (4) the costs of  
transmitting electricity between the regions in each time step within the 2-week segment.

Let wipr denote the installed capacity in technology p, in region i and cost class r, 
and let hijqr denote the installed transmission capacity between regions i and j, using 
transmission technology q in cost class r. The investments in each cost class have to 
stay below the cost class potentials, Me

ipr
 and Mh

ijqr
 , respectively (computed by the 

consensus loop described in Sect. 2.2), which is modelled by the inequalities

Let dhydrogen
it

 denote the electricity consumption of the electrolyzer, let eijt denote 
the electricity exported from region i to region j in time step t, and let bcharge

ipt
 and 

b
discharge

ipt
 denote the charging and discharging, respectively, of battery technology p in 

region i and time step t. The demand for electricity, Dit , must be met in all regions at 
all times, which then implies the inequalities

The import and the export of electricity are required to be balanced, and the 
export may not exceed the installed transmission capacity, as expressed by the 
relations

(1)ctot
s

∶=
∑
i∈I

∑
p∈P

∑
r∈R

Cinv
p
�e
iprs

wipr

(2)+
∑
i∈I

∑
p∈P

∑
t∈Ts

(
Crun
pt

gipt + c
cycl

ipt

)

(3)+
∑
i∈I

∑
q∈Q

∑
j∈I�{i}

∑
r∈R

Ch-inv
q

�h
ijqrs

hijqr

(4)
+

∑
i∈I

∑
j∈I�{i}

∑
t∈Ts

C
exp

t e
pos

jit
,

(5)wipr ≤ Me
ipr
, i ∈ I, p ∈ P, r ∈ R,

(6)hijqr ≤ Mh
ijqr

, i ∈ I, j ∈ I, q ∈ Q, r ∈ R.

(7)

∑
p∈Pgen

gipt ≥ Dit + d
hydrogen

it
+

∑
j∈I�{i}

eijt +
∑
p∈Pbat

(
b
charge

ipt
− b

discharge

ipt

)
, i ∈ I, t ∈ Ts, s ∈ S.
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The level of generation may not exceed the installed capacity weighted by the 
profile �ipt ∈ [0, 1] , which is weather-dependent for wind and solar power, but equals 
1 for all p ∈ Ptherm:

Flow batteries and lithium ion batteries are amongst the investment options in the 
model. For each storage, an energy balance constraint controls its state. Further, the 
storage level, gipt , the charging, �pb

charge

ipt
 , and the discharging, bdischarge

ipt
 , of the battery 

during the last time step of each 2-week segment s, constrain the battery storage 
level in the first time step of the same 2-week segment, where �p denotes the effi-
ciency of technology p:

The charging and discharging of batteries may not exceed the installed battery 
storage capacity, assuming a maximum C-rate of 1 (“1C rate” corresponds to the 
charge/discharge current that will charge/discharge the entire battery in one hour):

For the cases including hydrogen demand and hydrogen storage, there is a bal-
ance inequality assuring that the demand, Dhydrogen

i
 , for hydrogen from industry is 

met by hydrogen production, �pd
hydrogen

it
 , in the electrolyzer. Further, the storage 

level, and the charging and discharging of the hydrogen storage during the last time 
step of the 2-week segment are used to constrain the hydrogen storage level in the 
first time step of the same 2-week segment. Letting �p denote the efficiency of charg-
ing the hydrogen storage, this is modelled as

The electricity consumption of the electrolyzer, dhydrogen
it

 , may not exceed the 
installed electrolyzer capacity:

(8)−eijt = ejit ≤
∑

j∈I�{i}

∑
q∈Q

∑
r∈R

hijqr, i ∈ I, j ∈ I, t ∈ Ts, s ∈ S,

(9)e
pos

ijt
= |eijt| = max{eijt, ejit}, i ∈ I, j ∈ I, t ∈ Ts, s ∈ S.

(10)gipt ≤
∑
r∈R

wipr�ipt, i ∈ I, p ∈ P, t ∈ Ts, s ∈ S.

(11)

gipt + �pb
charge

ipt
− b

discharge

ipt
≥

{
gi,p,t+1, t ∈ Ts ⧵ {sT},

gi,p,t−(T−1), t = sT ,
i ∈ I, p ∈ Pbat, s ∈ S.

(12)b
charge

ipt
≤

∑
r∈R

wipr, i ∈ I, p ∈ Pbat, t ∈ Ts, s ∈ S,

(13)b
discharge

ipt
≤

∑
r∈R

wipr, i ∈ I, p ∈ Pbat, t ∈ Ts, s ∈ S.

(14)

gipt + �pd
hydrogen

it
− D

hydrogen

i
≥

{
gi,p,t+1, t ∈ Ts ⧵ {sT},

gi,p,t−(T−1), t = sT ,
i ∈ I, p ∈ Phydrogen, s ∈ S.
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Wind power sites are ordered in classes. Offshore sites are represented by one 
class, while onshore sites are organized into several classes corresponding to dif-
ferent wind conditions. Each class is represented as one generation technology 
p ∈ Pwind . Investments in wind power capacity cannot exceed the regional resources 
for the respective technology, Aip , according to

For solar power, there is a total resource constraint for each modeled region i:

Previous work has shown that the inclusion of thermal cycling has a substantial 
impact on the cost-optimal electricity system composition [25]. Thermal cycling is 
here accounted for by applying the relaxed unit commitment approach suggested by 
[26] and evaluated relative to the full-unit commitment by one of the authors in [4]. 
With this approach, the variables gactive

ipt
 represent the capacity that is active and 

available for generation in each time-step t, in each region i ∈ I  , and within each 
technology aggregate p ∈ Ptherm . Further, the level of generation may not be below 
the minimum load share, �min

p
 , of the active capacity, gactive

ipt
 , for the technology 

aggregate. These relations are modelled by the inequalities

The amount of capacity started in each time step is controlled by the variables gon
ipt

 . In 
each time step, the active capacity is limited by the sum of the capacity started and the 
active capacity in the previous time step. However, for the first time step of each 2-week 
segment, except the first segment, the active capacity in the previous time step is repre-
sented by the active capacity in the last time step of the previous segment, as given by 
the previous iteration of the consensus loop (see Sect. 2.2), i.e., by Gactive

i,p,t−1
 . Further, for 

the first time step of the first segment (i.e., for t = 1 ), the active capacity in the last time 
step of the last segment is used, as given by the previous iteration of the consensus 
loop, i.e., by Gactive

i,p,ST
 . These relations are modelled by the inequalities

The start-up cost is proportional to the started capacity gon
ipt

 , while the part-load 
cost is proportional to the difference between the active generation capacity and the 
generation level. To avoid boundary effects, a value for the thermal generation in 

(15)d
hydrogen

it
≤

∑
r∈R

wipr, i ∈ I, p ∈ Pelectrolysis, t ∈ Ts, s ∈ S.

(16)
∑
r∈R

wipr ≤ Aip, i ∈ I, p ∈ Pwind.

(17)
∑
r∈R

∑
p∈Psolar

wipr ≤

∑
p∈Psolar

Aip, i ∈ I.

(18)�min
p

gactive
ipt

≤ gipt ≤ gactive
ipt

, i ∈ I, p ∈ Ptherm, t ∈ Ts, s ∈ S.

(19)

gactive
ipt

≤ gon
ipt

+

⎧
⎪⎨⎪⎩

gactive
i,p,t−1

, t ∈ Ts ⧵ {(s − 1)T + 1}, s ∈ S,

Gactive
i,p,t−1

, t = (s − 1)T + 1, s ∈ S ⧵ {1},

Gactive
i,p,ST

, t = 1,

i ∈ I, p ∈ Ptherm.
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operation during the last time step of the 2-week segment is applied that is propor-
tional to the start-up cost paid in the first hour of the 2-week segment, based on the 
started capacity, Gon

i,p,sT+1
 , and the active capacity, Gactive

i,p,sT+1
 , in the first hour of the 

next segment, as given by the solution to the previous iteration. For each i ∈ I  and 
p ∈ Ptherm , these constraints are expressed as

Hence, if thermal capacity is active in the end of one 2-week segment and also in 
the beginning of the subsequent 2-week segment, the start-up cost for that capacity 
is shared equally between segments. Thermal generation is subject to a start-up time, 
i.e., it takes some time for a thermal power plant to heat up before it can deliver elec-
tricity. Thus, in the model, once capacity is deactivated, it cannot become active again  
during the interval Kp , which encompasses the time-steps k in the start-up interval:

2.2 � The Consensus Loop

When the investment problem has been solved for the 26 2-week segments, infor-
mation on investments in different types of generation, transmission, and variation 
management capacity in each 2-week segment is collected to form one capacity–cost 
curve per technology and region. The investments form the basis for the investment 
cost in the subsequent solve. The cost of the capacity that is invested in all 26 2-week 
segments is weighted by 1/26; however, if, for example, only k 2-week segments have 
made the investment, the capacity is weighted by 1/k’th of the investment cost for all 
2-week segments in the next iteration. In the initial solve, all 2-week segments share 
the investment cost equally, i.e., the capacity is weighted by 1/26. Below we present 
the construction of capacity–cost curves for generation technologies. An analogous 
construction for transmission technologies has also been made.

The capacity–cost curves are composed by 26 steps, where the length of the first 
step corresponds to the capacity investment level that is common to all 26 2-week 
segments. The length of the second step represents the capacity investment addi-
tional to the first step shared by all the 2-week segments except one, and so on. In 
order to determine the lengths of the steps, the number Rips of 2-week segments that 
have lower or equal levels of installed capacity of technology p in region i than the 
2-week segment s is calculated as1

(20)

c
cycl

ipt
≥ Con

ipt
gon
ipt

+ C
part

ipt

�
gactive
ipt

− gipt

�
−

gactive
ipt

2
⋅

⎧
⎪⎪⎨⎪⎪⎩

0, t ∈ Ts ⧵ {sT}, s ∈ S,
Con
i,p,t+1

Gon
i,p,t+1

Gactive
i,p,t+1

, t = sT , s ∈ S ⧵ {S},

Con
ip1
Gon

ip1

Gactive
ip1

, t = ST .

(21)

gon
ipt

≤

∑
r∈R

wipr − gactive
i,p,t−k

, i ∈ I, p ∈ Ptherm, t ∈ Ts, s ∈ S, k ∈ Kp ⧵ {t,… , sT}.

1  The Iverson bracket [27] returns 1 if the expression within the brackets is true; otherwise it returns 0.
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where S is the set of 2-week segments. It follows that the length of the first step in 
the capacity–cost curve Me

i,p,r1
 is given by

where r1 is the first element in the set of cost classes R . The lengths of the subse-
quent steps in the capacity–cost curve are calculated sequentially as

The length of the last step in the capacity–cost curve is set to be very large, i.e., 
three times the maximum annual load in the respective region. The height of each 
step in the capacity–cost curve, i.e., the weight of the investment, is given by the 
number of 2-week segments sharing the investment, as

This cost is slightly modified in two ways: 1) the cost share is lower in the first 
iterations in order to enable the capacity with a high investment cost to stabilize 
before extinction, and 2) the cost share is lower for those 2-week segments that have 
not invested in the capacity that other 2-week segments have. This “rebate” is then 
reduced with the iteration number. Hence, it holds that

where the choices for the parameters �nips and �n in each iteration n are listed in 
Table 1. The parameter �nips can take on a high ( �high

nips
 ) or low ( �low

nips
 ) value depending 

on whether or not investments have been made for the corresponding region, tech-
nology, and 2-week segment (i, p, s).

The construction of the capacity–cost curve is summarized in Algorithm 1 and 
illustrated for a small instance in Fig. 2. 

Rips = 1 + S −
∑
u∈S

[wipu ≤ wips], i ∈ I, p ∈ P, s ∈ S,

(22)Me
i,p,r1

=

∑
s∈S[Rips = 1]wips∑

s∈S[Rips = 1]
, i ∈ I, p ∈ P,

(23)

Me
i,p,rm

=

∑
s∈S[Rips = m]wips∑

s∈S[Rips = m]
−

m−1�
n=1

Me
i,p,rn

, i ∈ I, p ∈ P, m ∈ {2,… , �R�}.

(24)�e
i,p,s,rm

=
1

S − (m − 1)
, m ∈ {1,… , |R|}.

(25)

�e
i,p,s,rm

=
�nips

S − �n(m − 1)
, m ∈ {1,… , |R|}, i ∈ I, p ∈ P, s ∈ S, n ∈ {1,… , 10},
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2.3 � Yearly Linkages

In traditional electricity system investment models, the represented years are linked 
by the investment variables. The H2D model disregards any possible influence that 
future years might have on investments, based on the hypothesis that investments 
are made only to meet exactly the demand for electricity in the cost-optimal sys-
tem, largely ignoring future needs in terms of capacity. This hypothesis is tested 
in the evaluation when the results are compared to the model with connected time. 

Table 1   Parameter values used 
in the consensus loop

Iteration number (n) �low
nips

�n �
high

nips

1 0.5 0.5 0.1
2 0.6 0.6 0.1
3 0.7 0.7 0.2
4 0.8 0.8 0.2
5 0.8 0.9 0.3
6 0.8 1.0 0.4
7 0.8 1.0 0.5
≥ 8 0.8 1.0 0.6

Fig. 2   An example of a capacity–cost curve
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The cost of CO2 emissions, investment costs (due to learning), efficiencies and dis-
count rate can change between years and may influence the investment decision. For 
scenarios with gradually increasing costs for generation capacity or operation over 
the years, this increase is likely to impact investments and needs to be transferred 
to prior years. Electricity generation technologies that rely on fossil fuels are, for 
example, typically subject to a gradual increase in operational costs over the dec-
ades considered, which reduces the cost-competitiveness of these technologies in the 
long-term perspective. Assuming that the total cost for investments and operation of 
a power plant is evenly distributed across all of its hours of operation, some of the 
operational costs from later years need to be shifted to earlier years. The net present 
value of these future operational cost (with interest rate � ) is added to the objective 
function. Thus, we define the additional operational costs, Cadd

pty
 , as

where y is the year considered, i.e., the year in which investments are made, and Zp 
is the lifetime of technology p. The costs (26) are added to the running cost Crun

pt
 , in 

the objective function (1)–(4) for the respective year.

2.4 � Evaluation

All the computations are done in GAMS using CPLEX on a system with 32 cores, and 
256 GB RAM. The CPLEX solver was set to deploy the barrier algorithm. The H2D 
model is evaluated in terms of three aspects that are challenging to combine in elec-
tricity system investment models: (1) the ability to account for strategies to manage 
variations; (2) the ability to consider geographically uneven resource distribution and 
trade; and (3) the ability to define pathways from today into the future. The capacity 
mix and total system cost of the solution provided by the H2D model are compared to 
the respective properties of solutions derived from the electricity system investment 
part of the H2D model in which time is fully connected, and the adjustments used to 
compensate for the discretization of time are removed. For cases when several years 
are investigated, the net present value of future costs is considered in the model with 
fully connected time. In the absence of time discretization, the investigated geographic 
scope must be kept sufficiently narrow to retain the electricity system investment 
model within the boundaries of the computer capacity. Therefore, one or a small set of 
regions is evaluated at a time. Two regions are chosen for the evaluation: Ireland (IE), 
representing a region with good conditions for wind power, and central Spain (ES), 
representing a region with good conditions for solar power. When investigating the 
ability to consider an uneven distribution of resources and trade, neighboring regions 
are incorporated into the analysis, such that the model is applied to the UK and Ireland 
(regions UK1, UK2, UK3, and IE) and the Iberian Peninsula (regions ES1, ES2, ES3, 
ES, and PT). For these cases, investments in overhead power lines, as well as in under-
ground (or sub-sea), cables are available. Table 2 details all the cases investigated.

(26)

Cadd
pty

∶=
1

Zp

y+Zp∑
n=y

1

(1 + �)(n−y)
(Crun,n

pt
− C

run,y
pt ), p ∈ P, t ∈ Ts, s ∈ S, y ∈ Y,
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Table  3 gives the eleven different types of electricity generation technologies 
included in the modelling of this work, including fossil and bio-based thermal gen-
eration, onshore and offshore wind power, and solar PV. Thermal generation units 
are aggregated based on technology type and the thermal process, including start-up 
time, start-up cost and minimum load level, are represented by linear approxima-
tions as suggested by [26] and evaluated by [4]. Onshore wind power is subdivided 
into twelve investment classes, representing sites with different wind resources. 
Additional generation technologies, representing, for example, different wind tur-
bine technologies, can easily be integrated into the model structure. The costs and 
properties of the generation technologies are detailed in Appendix B. When evaluat-
ing the ability of the H2D model to identify pathways for the electricity system, both 
models are solved for one year per decade, i.e., 2020, 2030, 2040, and 2050, with a 
cost of CO2 of 15, 40, 100, and 400 €/MWh, respectively. An interest rate of 5% is 
applied throughout the work.

The ability to account for strategies to manage variations is tested by offering 
three types of variation management to the model: (1) the possibility to invest in 

Table 2   Key characteristics of the cases investigated. The cost of CO2  is gradually increased over the 
year investigated, and values given in the table correspond to 2020, 2030, 2040, and 2050, respectively

Case Geographic 
region (s)

Year, 
period

Variation 
management 
options

Transmis-
sion options

CO2 
limit [ton/
year]

CO2 cost [€/
ton]

IE Ireland 2050 — — 0 —
ES Central Spain 2050 — — 0 —
IE_BAT Ireland 2050 Flow bat + 

Li-ion bat
— 0 —

ES_BAT Central Spain 2050 Flow bat + 
Li-ion bat

— 0 —

IE_H2 Ireland 2050 Hydrogen 
storage

— 0 —

ES_H2 Central Spain 2050 Hydrogen 
storage

— 0 —

IE_BIO Ireland 2050 Low-cost 
biomass

— 0 —

ES_BIO Central Spain 2050 Low-cost 
biomass

— 0 —

IE_TRADE Ireland + UK 2050 — OHAC + 
SCDC

0 —

ES_TRADE Iberia 2050 — OHAC + 
SCDC

0 —

IE_YEARS Ireland 2020–2050 — — — —
ES_YEARS Central Spain 2020–2050 — — — —
IE_YEARS_

CO2
Ireland 2020–2050 — — — 15/40/100/400

ES_YEARS_
CO2

Central Spain 2020–2050 — — — 15/40/100/400
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Li-ion batteries and flow batteries; (2) access to low-cost biomass (i.e., 30 €/MWh 
instead of 40 €/MWh); and (3) the generation and storage of hydrogen. In the hydro-
gen storage case, a constant hydrogen demand is added exogenously to the model 
such that the annual electricity demand is increased by 20%, and investments in 
hydrogen storage and additional electrolyzer capacity are made available. The costs 
and properties of the variation management technologies are listed in Appendix B.

For a fair comparison of the total system costs, the investments in electricity gen-
eration capacity provided by the H2D model were fixed in the electricity system 
investment model with connected time, and the total system cost of the solution of 
the H2D model was accepted as provided by the model with connected time. Invest-
ments in hydrogen storage capacity provided by the H2D model is not transferred to 
the model with connected time, since the low cost of this storage makes it suitable 
for seasonal storage which the H2D model does not aspire to account for.

3 � Results

The capabilities of the H2D model to account for variation management, uneven 
distribution of resources and trade, and yearly linkages are evaluated in this sec-
tion. The section ends with an evaluation of model run times. However, prior to the 
evaluation, the model is tested for convergence. Figure 3 gives the share of installed 
capacity which is different in the H2D solution compared to the least-cost solution 
provided by the model with connected time, for each iteration. As the figure shows, 
this share is consistently reduced for up to 10 iterations, after which the installed 
capacity provided by the H2D model stabilizes and remains stable for the next 40 
iterations. Based on this test, subsequent model runs iterate the consensus loop ten 

Table 3   Generation and storage 
technologies included in the 
modelling of this work and their 
abbreviations

Abbreviation Technology

Coal ST Coal steam turbine
NG CCGT​ Natural gas combined cycle gas turbine
NG GT Natural gas open cycle gas turbine
Biomass ST Biomass steam turbine
Biogas CCGT​ Biogas combined cycle gas turbine
Biogas GT Biogas open cycle gas turbine
Bio-coal CCS Bio-coal steam turbine with carbon 

capture and storage
Nuclear Nuclear power
Solar photovoltaics Solar PV
Onshore wind Onshore wind power
Offshore wind Offshore wind power
BAT Lithium-ion battery
H2 Lined rock underground hydrogen 

storage
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times. For the IE region, the share of installed capacity, which differ between the 
H2D solution and the least-cost solution, is 0.7% after ten iterations and subse-
quently plateaus at 0.4%. For the ES region, the share of installed capacity, which 
differ between the H2D model and the least-cost solution, is 8.8%. However, after 
inspection, the difference in installed capacity in the ES region is mainly due to dif-
ferences in investments between the different wind classes.

Figure 4 gives the increase in costs to meet the demand for electricity if the H2D 
solution is applied instead of the least-cost solution provided by the model with con-
nected time. As the figure shows, the solution provided by the H2D model is less 
than 1.12% more expensive than the least-cost solution. Among the variation man-
agement strategies investigated, the impact of batteries on the cost-optimal system 
composition is the most challenging to capture. Including the investment in battery 
capacity in the cost-optimal system composition, the total system cost is around 1% 
higher for the system suggested by the H2D model than for the system suggested by 
the model in which time is connected for both regions investigated. The total system 
cost of the H2D solution is also around 1% higher than the least-cost solution for the 
cases in which several regions are considered. Another challenging case for the H2D 
model is when several years are connected and there is a gradual change in policy 
between the years, which in this work is exemplified by a gradually increasing cost 
of CO2 . The following sections analyze the differences in system composition for 

Fig. 3   The share of the installed 
capacity which is different in the 
H2D solution as compared to 
the least-cost solution provided 
by the corresponding model 
with connected time

Fig. 4   Increase in the total sys-
tem cost with the H2D solution 
relative to the least-cost solution 
provided by the model with 
connected time for the cases 
investigated

SN Oper. Res. Forum (2021) 2: 25 Page 15 of 30 25



the cases investigated, in order to explain the higher total system cost of the H2D 
solution relative to the least-cost solution and interpret the results provided by the 
H2D model.

3.1 � Ability to Account for Strategies to Manage Variations

The key motivation for using the H2D model is that it provides a tool that allows 
accounting for the impact of strategies to manage variations on the electricity system  
composition in wind-dominated systems. Figure 5a gives the installed capacity in the  
IE system, with the requirement that CO2 emissions are avoided, as given by the model  
that involves connected time. One by one, hydrogen demand and storage, batteries,  
and low-cost biomass are introduced into the system. As shown in Fig. 5a, the demand  
for hydrogen is mainly met by additional investments in wind power in the IE region. 

a) b)

c) d)

Fig. 5   Installed capacities for a the IE case with connected time, b the IE case with H2D, c the ES case 
with connected time, and d the ES case with H2D, with and without variation management being avail-
able
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Investments in solar PV also increase slightly, whereas investments in biogas com-
bined cycle units and biogas gas turbines remain more or less unchanged. There is an  
investment in 2.97 GW of electrolyzer capacity and in 50.94 GW of hydrogen storage  
to meet the demand for hydrogen flexibly. Low-cost biomass competes with variable 
renewable electricity (vRE) in this region and reduces investments, mainly in solar 
PV but also slightly in wind power, while investments in biogas combined cycle units  
increase. Batteries have a weak impact on vRE investments in this wind-dominated 
region, although they reduce the need for biogas-fired peak generation.

Figure 5b reveals the installed capacities given by the H2D model, in which the 
investment problem is split into 2-week segments. As the figure shows, investments 
without the strategies to manage variations provided by the H2D model are very 
similar to those provided by the model with connected time. In addition, the impacts 
of hydrogen consumption and low-cost biomass on the installed capacity are  
closely mimicked by the H2D model. The investment in electrolyzer capacity given 
by the H2D model is 3.1 GW, which is an overestimation of 6.0%. The level of hydro- 
gen storage suggested by the H2D model is, as expected, highly underestimated as 
hydrogen storage is associated with a low cost and can be applied to store hydrogen 
between seasons. However, the ability of the H2D model to provide a good estimate  
of the impact of hydrogen storage on all types of generation capacity indicates that it  
is the impact of the hydrogen storage on timescales of up to two weeks which mainly  
impact the electricity system design, rather than the system services it provides on 
seasonal basis. As indicated in Fig. 5, the impact of batteries on the cost-optimal sys- 
tem composition is the variation management strategy that is the most challenging to  
capture for the H2D model. This is partly due to the fact that in the case of hydrogen  
storage, the power rating of the storage charging (i.e., the electrolyzer capacity) is 
here distinguished from the sizing of the storage and the method proposed disregards  
the sizing of the hydrogen storage, whereas the power rating of the batteries follows 
from the choice of storage capacity and is dimensioned with the H2D model.

Figure 5c gives the installed capacities in the ES system, as given by the model with 
connected time. As the figure indicates, solar PV plays a greater role in this system 
compared to the IE system, and this role is enhanced by both hydrogen consumption 
and storage, and by batteries. Hydrogen consumption and storage is the only variation 
management strategy that increases the wind power capacity of the system. Figure 5d 
gives the system composition from the H2D model and shows that the response to 
variation management is very similar to that given by the model with connected time.

3.2 � Ability to Account for Trade

Figure  6 shows the cost optimal system compositions for Ireland and the UK, as 
given by the model with connected time (a), by the H2D model (b), and the corre-
sponding figures for the Iberian Peninsula (c and d). The introduction of trade sug-
gests many more solutions that are almost equivalent in terms of total system cost, 
in particular if the regions are similar and the cost of trade is low. The differences 
in installed capacity between the solution given by H2D model (Fig.  6b) and the 
model with connected time (Fig. 6a) are larger compared to the single-region cases. 
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Moreover, investments in transmission capacity vary considerably between the solu-
tions provided by the H2D model and the fully connected model. The differences 
between the solutions are attributed to slight differences in wind and solar resources 
between the neighboring regions, and the option to invest in the region with best 
resources and transmission capacity or settle for slightly worse resources and avoid 
transmission capacity investments. However, if the generation capacities of the indi-
vidual regions are summed, the results provided by the two models are again very 
similar and the total cost of the H2D solution is at the most 1.1% above the least-
cost solution for the regions investigated.

3.3 � Ability to Account for Yearly Linkages

Figure 7 shows the investments in new capacity in the IE and ES systems over time 
when they are subject to an increasing cost for CO2 . The corresponding figure without 

a)

c)

b)

d)

Fig. 6   The installed capacities for a the IE-trade case with connected time, b the IE-trade case with H2D, 
c the ES-trade case with connected time, and d the ES-trade case with H2D
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a cost for CO2 can be found in Appendix C. This is a brown-field case, with existing 
generation capacity as given by Kjärstad and colleagues  [28] as the starting point. 
Figure 7b, d shows the investments in generation capacity for the four decades con-
sidered by the H2D model, and it can be seen that the reallocation of running costs 
between years, as presented in the methodology section, prevents investments in coal-
fired generation and also late investments in natural gas-fired generation. However, 
comparing the investments given by the H2D model to those given by the model with 
connected time, there are clear visual differences in both the IE and ES cases, indicat- 
ing that investments in electricity generation associated with CO2 emissions are faced 
out slightly too fast with the approach applied in the H2D model. There is an additional  
difference between the solutions provided by the two models related to the timing of 
solar PV investments, which are made earlier in the H2D model than in the model with  
connected time. This is the case because the model with connected time has informa-
tion that the investment costs of solar drastically decline (exogenously) over time. How- 
ever, it can be argued that the myopic H2D model better reflects the behaviors of wind  
and solar PV investors for whom future cost reductions are uncertain. Figures 7c and 7f 
compare the total investments over the years investigated, as given by the two models and  
reveals that, overall, the difference in investments is very small.

a) b) c)

d) e) f)

Fig. 7   The installed capacities for a the IE-years-CO2 case with connected time, b the IE-years-CO2 
case with H2D, and c the years 2020–2050 for the two IE cases compared, d the ES-years-CO2 case with 
connected time, e  the ES-years-CO2 case with H2D, and f the years 2020–2050 for the two ES cases 
compared
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3.4 � Computing Time Requirements

Although the accuracy of the model can be evaluated by tests limited in geographical 
and temporal scope, the motivation for decomposing the capacity expansion problem 
is first evident when several geographical regions and multiple years are considered. 
Figure 8 gives the model run times for the model with connected time and the H2D 
model when applied to a problem covering 1, 2, and 12 regions. Results are based 
on model runs for Germany, the UK, Sweden and Poland, except for the 12 region 
case which was only performed with the H2D model for one set of regions (northern 
Europe). All cases have temporal scope of four decades, represented by one year per 
decade, and a three-hour time resolution. Furthermore, all cases apply a low cost 
for biomass (i.e., 30 €/MWh) and include the possibility to invest in batteries and 
hydrogen storage. As previously stated, all model runs are carried out on a computer 
with 256 GB RAM and 32 CPU:s. As Fig. 8 illustrates, both models have accept-
able model run times when one region is considered, and in one case the model with 
connected time can match the time of the H2D model. However, when two regions 
are considered, the run time for the model with connected time rises dramatically to 
levels corresponding to between one and two days, while the run time for the H2D 
model is less than half an hour. It is found that the H2D model solves the capacity 
expansion problem for northern Europe, here represented by twelve regions includ-
ing all regions considered in the 2-region model runs, in fifteen hours.

4 � Discussion

The method proposed in this paper applies a parallel computing approach to solve 
the electricity system capacity expansion problem, thereby efficiently reducing 
computer memory requirements. The method is also shown to reduce calculation 
times, although the extent of this reduction depends on the computer and problem 
properties. In contrast to the now widely applied representative days method, the 
method proposed here discretizes time into 2-week periods rather than days, to 
ensure the capture of high-wind and low-wind events that last several days. The 
2-week segments cover the cycling of thermal generation and hydrogen storage as 
responses to wind variability. For electricity systems dominated by variability on 

Fig. 8   Model run times for the model with connected time and the H2D model when applied to problems 
covering several regions and years
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other timescales, the method proposed can be applied to discretize the time dimen-
sion into segments of any number of weeks. It should be noted, though, that longer 
week segments result in lower resolution of the capacity–cost curves in the consen-
sus loop and may therefore reduce the accuracy of the method.

One drawback of the method proposed here is that it cannot dimension seasonal stor-
ages. While the operation of seasonal storage can likely be captured well, as all hours 
(or every third hour in this work) of the year are represented, this remains to be proven. 
However, from the present work, it can be observed that energy storage between 2-week 
segments (captured with the fully connected time model but not with the H2D model) 
has a low impact on the cost-optimal system composition for the cases investigated. 
This indicates that seasonal storage capacity could be dimensioned in a post-process.

The proposed method offers the possibility to solve large capacity expansion prob-
lems on normal computers, since model segments can be solved independently after one 
another. However, the method is preferably applied to a computer or a cluster with a large 
number of CPUs (ideally, 26 or more) to achieve an efficient reduction in model run time.

The modelling methodology proposed targets the challenging combination of 
wind variation management and trade in electricity system investment models. If 
wind power or trade is not of relevance for the region investigated, representative 
days or time-slicing is likely more efficient modelling methodologies.

5 � Conclusion

The Hours-to-Decades model, which is an electricity system investment model that 
is designed to account for strategies to manage wind power variations, is presented 
and evaluated. The model maintains chronology in time within 2-week segments, 
thereby providing a detailed description of the ways in which wind power variations, 
with a typical duration of several days, are accommodated by the electricity system. 
Instead of reducing the time, the H2D model discretizes time such that the capac-
ity expansion problem can be solved separately for each time period. This drasti-
cally reduces the memory requirements. When utilizing computers with a number 
of CPUs or computer clusters, the H2D model reduces model run times drastically 
compared to a model with fully connected time.

When evaluated for one region with very good wind resources and for one region with 
very good solar resources, the model is found to provide solutions for which the total sys-
tem cost is no more than 1.12% higher than for a model with connected time. Accuracy is 
retained, even if the system is exposed to a range of strategies to manage variations.

Appendix

A Nomenclature

Tables 4, 5, and 6 list the index sets, the variables, and the parameters, respectively, 
used in the electricity system model.
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B Data

Table 7 gives the investment and variable costs for the electricity generation technol-
ogies considered in the model. The investment costs and fixed operation and mainte-
nance costs are based on IEA World Energy Outlook 2016 [29], with the exception 
of the costs for onshore wind power, which are based on the costs presented by Mone 
et al. [30], with a yearly learning rate of 0.4%. In the model, annualized investment 
costs are applied assuming a 5% interest rate. Technology learning for thermal gen-
eration is included as gradual improvement in the efficiencies of these technologies, 
reflected as a reduced variable cost in Table 7. The variable costs listed in Table 7 
exclude the cost of carbon dioxide, which vary between years. The cost of cycling 
thermal generation is not part of the variable cost. Instead, the start-up costs and part-
load costs are included explicitly in the optimization. The start-up costs, part-load 
costs, and minimum load level applied here are based on the report of Jordan and Ven- 
kataraman [31], in which all the technologies that employ solid fuels use the cycling 
costs given for large sub-critical coal power plants. The start-up fuel is, however, 
changed to biogas rather than oil in all bio-based generation in the present work. The  
cost of carbon dioxide emissions related to starting thermal generation varies from 
year to year and is therefore not included in the start-up costs in Table 7. The cycling 
properties of nuclear power are based on the paper by Persson et al. [32] who describe 
a start-up time of 20h and a minimum load level of 70%. Biogas is assumed to be pro- 
duced through the gasification of solid biomass, with 70% conversion efficiency. The 
cost of the gasifier equipment is included in the form of 20 €/MWh added to the fuel  

Table 4   The index sets used in the electricity system model

Symbol Representation Member

I set of all regions i, j
P ∶= Pbat ∪ Pelectrolysis ∪ Phydrogen ∪ Pgen ; set of all technology aggregates p

Pbat set of all battery technologies p

Pelectrolysis set of all electrolyzer technologies p

Phydrogen set of all hydrogen storage technologies p

Pgen
∶= Pwind ∪ Ptherm ∪ Psolar ; set of all electricity generation technologies p

Pwind set of all wind technologies p

Ptherm set of all thermal technologies p

Psolar set of all solar technologies p

Q set of technologies for transmission q
S ∶= {1,… , S} ; set of all 2-week segments (typically, S = 26) s
Ts ∶= {(s − 1)T + 1,… , sT} ; set of all time steps in the 2-week segment s ∈ S t
N set of iterations n
R set of cost classes, i.e., the steps in the cost–supply curve r
Kp ∶= {0,…} ; set of hours in the start-up interval for technology p ∈ Ptherm k

Y set of years y
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cost, rather than being incorporated into the investment cost of the biogas technolo-
gies, since biogas is storable, which means that the gasifier equipment may attain a  
much higher number of full-load hours compared to the power plant consuming the 
biogas. The total cost of the gasification equipment is taken from Thunman et al. [33],  
and 8,000 full-load hours are assumed.

The wind power generation profiles are calculated for wind turbines with low 
specific power (200 W/m2), with the power curve and losses proposed by Johansson  
et  al. [34]. The wind speed input data are a combination of the MERRA and 
ECMWF ERA-Interim data for year 2012, whereby the profiles from the former 
are re-scaled with the average wind speeds from the latter (see [35–37]). The high 
resolution of the wind profiles from the ERA-Interim data was processed into wind 
power generation profiles and put together into 12 wind classes for each region, 
for which the full-load hours (FLH) and the maximum capacities (Cap) for classes 
4–12, as well as the offshore wind and solar PV, are shown in Table 8. The wind 
farm density is set to 3.2  MW/(km)2 and is assumed to be limited to 10% of the 
available land area, accounting for protected areas, lakes, water streams, roads, and 
cities [38].

Table 8   Full-load hours (FLH) and maximum capacity limits (Cap) for onshore wind classes 4–12, off-
shore wind, and solar PV. The absence of available sites is indicated by ∅ , while an unlimited availability 
of sites is indicated by ∞

Technology Wind class ES3 FLH Cap HU FLH Cap IE FLH Cap SE2 FLH Cap
[h] [GW] [h] [GW] [h] [GW] [h] [GW]

Onshore 4 2310 7.1 2370 7.8 ∅ ∅ 2230 4.5
Onshore 5 2560 6.1 2570 2.4 ∅ ∅ 2440 6.9
Onshore 6 2790 6.3 2750 1.3 ∅ ∅ 2620 9.9
Onshore 7 3020 4.6 3070 2.4 ∅ ∅ 2900 9.1
Onshore 8 3300 1.3 3350 0.2 ∅ ∅ 3270 11.6
Onshore 9 ∅ ∅ ∅ ∅ ∅ ∅ 3700 1.5
Onshore 10 ∅ ∅ ∅ ∅ 4240 0.3 4120 1.7
Onshore 11 ∅ ∅ ∅ ∅ 4640 13.8 4600 0.5
Onshore 12 ∅ ∅ ∅ ∅ 5360 2.1 5260 0.1
Offshore — ∅ ∅ ∅ ∅ 5360 ∞ 5260 ∞

Solar PV — 1770 24.7 1360 12.5 1000 9.6 1050 25.6

Table 9   Costs and technical data for the variation management technologies

Technology Investment cost Efficiency Fixed O&M costs Lifetime

[M€/MWh] [M€/MW] [%] [k€/MWh,yr] [k€/MW,yr] [yr]

Battery, Li-ion 0.15 — 90 25 — 15
Battery, flow 0.18 — 70 13 — 30
Electrolyser — 1.0 62 — 20 10
H2 storage 0.011 — 100 — — 30
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Solar PV is modelled as mono-crystalline silicon cells installed with optimal tilt 
with one generation profile for each region. Solar radiation data from MERRA are 
used to calculate the generation with the model presented by Norwood et al. [39], 
including thermal efficiency losses. The full-load hours of solar PV in each region 
are shown in Table 8. The cost and technical data for VMSs are shown in Table 9 and  
based on [40]. The hydrogen storage is assumed to be of the large-scale, steel-lined 
cavern type.

C Additional Results

Figure 9 shows the investments in new capacity in the IE and ES systems over time 
without a cost for CO2 (see Sect. 3.3).

a) b) c)

d) e) f)

Fig. 9   The installed capacities for a the IE-years case with connected time and b the IE-years case with 
H2D, and c the years 2020–2050 for the two IE cases compared; d the ES-years case with connected 
time and e the ES-years case with H2D, and f the years 2020–2050 for the two ES-cases compared
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