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Abstract

Accounting for variability in generation and load and strategies to tackle variability
cost-efficiently are key components of investment models for modern electricity sys-
tems. This work presents and evaluates the Hours-to-Decades (H2D) model, which
builds upon a novel approach to account for strategies to manage variations in the
electricity system covering several days, the variation management which is of par-
ticular relevance to wind power integration. The model discretizes the time dimen-
sion of the capacity expansion problem into 2-week segments, thereby exploiting
the parallel processing capabilities of modern computers. Information between
these segments is then exchanged in a consensus loop. The method is evaluated
with regard to its ability to account for the impacts of strategies to manage varia-
tions in generation and load, regional resources and trade, and inter-annual linkages.
Compared to a method with fully connected time, the proposed method provides
solutions with an increase in total system cost of no more than 1.12%, while reduc-
ing memory requirements to 1/26’th of those of the original problem. For capacity
expansion problems concerning two regions or more, it is found that the H2D model
requires 1-2% of the calculation time relative to a model with fully connected time
when solved on a computer with parallel processing capability.

Keywords Flexibility measures - Variation management - Electricity system model -
Capacity expansion model - Parallel computing - Hours-to-Decades model - Wind
power integration - Consensus algorithm

1 Introduction
Given that the electricity system is undergoing a major transition, methods and

models applied to assess investments in and operation of the electricity system must
be adapted to capture the essential features of the electricity system in transition
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as well as the properties of new electricity systems coming online. A major driver
for change in the electricity system is the effort to produce electricity without emit-
ting carbon dioxide, so as to mitigate climate change. Wind power and solar power
offer electricity that is associated with low or no emissions of carbon dioxide, and
are also expected to be the most affordable electricity generation options in many
parts of the world from 2040 and onwards [1]. For the locations where wind and
solar power offer electricity at a lower cost relative to other options, the variability
of wind and solar power generation is a key limiting factor for the shares of the elec-
tricity demand supplied by wind and solar power. Therefore, for electricity system
investment models that examine future electricity system compositions, it is crucial
to account for this variability [2, 3].

The most straightforward means to include variability in electricity system mod-
els is to adopt a high time resolution. However, electricity system investment mod-
els addressing the capacity expansion problem typically cover at least the 40 years a
thermal power plant is in operation. Thus, an hourly time resolution implies that each
type of generation technology in each region considered introduces 40 x 8760 varia-
bles. If thermal cycling is accounted for the number of variables representing electric-
ity generation is doubled [4]. In order to reduce the computer memory requirements
and computation time, long-term electricity system models therefore typically adopt
some kind of simplified time representation. In a review of modelling tools for energy
and electricity systems with large shares of variable renewable electricity (VRE) [5],
the representation of short-term variability in long-term studies is identified as a key
remaining challenge. In a methodological review of strategies to integrating short-
term variations of the power system into integrated energy system models, the tradi-
tional ways to representing time in long-term energy system optimization models are
discussed relative proposed approaches for improved time representation [6]. The
authors build on the work by [7], stating that the typical stylized temporal representa-
tion in long-term energy system optimization models is in the form of a low number
of integral or semi-dynamic time-slices, where integral time-slices represent aver-
age load levels during certain fractions of the year, while semi-dynamic time-slices
represent typical or representative fractions of the year. Four distinct approaches to
improve time representation in long-term energy system models are identified: 1)
semi-dynamic balancing using typical days with increased resolution, 2) integral bal-
ancing based on approximating the joint probability distribution of the load and VRE
generation, 3) semi-dynamic balancing using representative historical periods, and 4)
using stochastic programming as a means to address modelling uncertainties. Time-
slicing methods using integral balancing based on approximating the joint probability
distribution of the load and VRE generation are developed by, for example, Wogrin
et al. [8] (i.e., the system state method) and Lehtveer et al. [9]. Nahmmacher et al.
[10] propose a method to reduce the size of the time representation, which is based on
semi-dynamic balancing using representative historical periods, i.e., the identifica-
tion of a number of days (24-hour segments) taken to represent the year. This method
is referred to as the representative days approach. The choice of segments is based on
the load, wind, and solar patterns over 24 hours. Both of the time reduction methods,
as developed in [8] and [10], respectively, have been shown to satisfactorily represent
variability in long-term electricity system models, and several investment models
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have been updated in line with these or similar principles (see [11-14]). The perfor-
mance of integral balancing based on approximating the joint probability distribution
of the load and VRE generation, and semi-dynamic balancing using representative
historical periods, has been compared using an hourly unit commitment model as
benchmark (see [15]).

Challenges remain, however, for long-term investment models to assess electricity
systems with large shares of varying renewables. One challenge for integral balancing
based on approximating the joint probability distribution of the load and VRE gener-
ation is that, in difference to load variations, variations in wind and solar generation
do not follow a common pattern across a wide geographical scope. Thus, in mod-
els with a large geographical coverage, integral time-slicing which account for wind
and solar variations cannot be adopted while considering energy balances on sub-
regional level representing limitations in transmission capacity [16]. The inclusion
of strategies to manage variations poses additional challenges on the electricity sys-
tem models, as the implementation of strategies to manage variations, e.g., the state
of an energy storage or thermal power plant, connects time sequences. While captur-
ing the impact of flexibility provision within the time-slice of semi-dynamic balanc-
ing using representative historical days is straightforward with the representative days
approach, wind variation management over longer time periods requires substantial
additions to the original method [17] increasing calculation times and complexity.

This work proposes a heuristic modeling methodology designed with these chal-
lenges in mind, i.e., a model structured to accommodate strategies to manage wind
power variations as well as transmission limitations. Brown et al. [18] avoid reduc-
ing the time dimension by reducing the number of technologies included, excluding
thermal generation with limited flexibility such as nuclear power and steam plants.
The method proposed in this work suggests a heuristic approach to the capacity
expansion problem with emphasis on strategies to manage wind variations, includ-
ing thermal cycling as well as transmission and trade. The method accounts for
every third hour of the year while including thermal generation and considers ther-
mal cycling by decomposing the capacity expansion problem into 26 2-week seg-
ments, adopted to wind variation with typical duration of several days [19]. The
2-week segments are solved in parallel, and a consensus loop gathers information
from the initial solves and uses this information to form one capacity—cost curve
for each technology and region, which form the basis for subsequent iterations. An
iteration is in this work defined as parallel solves of the capacity expansion problem
and formation of a capacity—cost curve based on the results. The decomposed prob-
lem is iterated until consensus is attained, and storage and transmission capacity no
longer change between iterations. The model developed based on this methodology
is referred to as the Hours-to-Decades (H2D) model and is of particular relevance for
large interconnected regions with good conditions for wind power such as Europe.
The method shares elements with mathematical decomposition methods, such as
Lagrangian decomposition [20], where an optimization problem is decomposed into
smaller subproblems that can be solved in parallel. An iterative loop, as, for exam-
ple, a subgradient [21] or bundle [22] method, applied to a dual problem [23]—here
corresponding to the consensus loop—is then used to reach an optimal solution to
the original problem.
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2 Methodology

The H2D model developed in this work consists of two main parts: a decomposed
electricity system investment model and a consensus loop that enables the exchange
of information between 2-week segments of the electricity system model. Figure 1
presents a schematic illustration of the modelling methodology.

The electricity system model represents the problem of meeting the demand for elec-
tricity while minimizing investment and operational costs for 26 separate 2-week seg-
ments. In the consensus loop, information from the solutions is gathered in capacity—cost
curves in which the capacity invested in all 2-week segments has the lowest cost, while
additional capacity invested in a subset of the segments is more expensive; further on,
the smaller the subset of segments, the more expensive the capacity. The solution process
is iterated until there is consensus, i.e., the capacity—cost curves are unchanged between
iterations. This section provides a mathematical description of the investment model and
the consensus loop followed by a description of the approach applied to connect years
when investigating pathways for the electricity system. The section ends by outlining the
method applied to evaluate the proposed modeling methodology.

2.1 Electricity System Investment Model

The electricity system investment model identifies investments in electricity genera-
tion and storage technologies such that the demand for electricity can be met at the
lowest cost. It is a linear, cost-minimizing model that is designed to account for varia-
bility and accommodate strategies to manage variations in the hourly to weekly time-
scale. Chronology in time is maintained using 2-week segments, enabling the inclu-
sion of thermal cycling and storage with hourly-to-weekly cycles, so as to represent
the system responses to wind variations. Segments of full weeks have the advantage
of capturing variations in electricity demand between day and night as well as work-
day and weekend. To maximize the usage of parallel computation capacity of modern
computers, as short segments as possible are desired. However, one-week segments
are too short to fully capture the wind power variability, for which a persistence of
8 days is common on a hub height of 100m [24]. The advantage of two-week seg-
ments was confirmed in preliminary tests using one-week and four-week segments.
In this work, the 2-week segments have a 3-hour time resolution. Seasonal variability
is represented by accounting for all the 2-week segments in a year. However, dimen-
sioning of seasonal storage (i.e., storages shifting electricity from summer to winter
or vice versa) is not possible with this approach; the implications of this are consid-
ered in the discussion, Sect. 4. The model includes thermal cycling as well as battery
and hydrogen storage. Hydrogen storage investments are stimulated by introducing a
demand for electricity in hydrogen production for industry corresponding to 20% of
the annual electricity demand evenly distributed over the year.

All notations used in the electricity system model developed below are described in
the nomenclature list provided in Appendix A, Tables 4, 5, and 6, in which also nonneg-
ativity constraints—as applicable—of the variables are indicated. In order to simplify the
presentation, the years modelled are omitted in the relations (1)—(21).
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Fig. 1 A schematic illustration
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For each 2-week segment s € S, the objective function to be minimized is
expressed as

EEI YD IP I ST AT )

i€Z pePrerR
run cycl
+ XY X (Grem+ ) @
i€T pePteT;

DD DD I S 3)

i€l qeQ jeI\{i} reR

NP IEAT S 4

i€Z jeI\{i} reT;

where (1) represents the costs for investments in the different technologies in the
different regions, (2) the running costs of the different technologies in the differ-
ent regions at all time steps within the 2-week segment, (3) the costs for investments
in technologies for transmission of electricity between the regions, and (4) the costs of
transmitting electricity between the regions in each time step within the 2-week segment.

Let w;,, denote the installed capacity in technology p, in region i and cost class r,
and let h;,, denote the installed transmission capacity between regions / and j, using
transmission technology ¢ in cost class 7. The investments in each cost class have to
stay below the cost class potentials, prr and M;.qr, respectively (computed by the

consensus loop described in Sect. 2.2), which is modelled by the inequalities

Wiy < M?pr, iel,peP, reRrR, 5)
hijquMf-}q,» i€l jel qeQ, reR. (6)

Let d?ty drogen Jenote the electricity consumption of the electrolyzer, let € denote
arge

the electricity exported from region i to region j in time step ¢, and let bl.p . and
discharge . . . . .
bip . denote the charging and discharging, respectively, of battery technology p in

region i and time step ¢. The demand for electricity, D;,, must be met in all regions at
all times, which then implies the inequalities

Z S 2 Dy + dihtyd“’ge" + Z e+ Z (bfl':f“ge - bgifCharge>, i€, teT,seS.
pePEn JE\{i} pepP
@)
The import and the export of electricity are required to be balanced, and the
export may not exceed the installed transmission capacity, as expressed by the
relations
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—ey =< Y, D Dy i€LjEL 1eT, sES, ®
JEI\{i} geQ reR
ey = ley| = max{ey.e;), i€ jE€L te€T, sES. )

The level of generation may not exceed the installed capacity weighted by the

profile 8,,, € [0, 1], which is weather-dependent for wind and solar power, but equals
1 for all p € Phe™;
gzpt<zwlpr ipt» lEI pEPlE ,SES. (10)
rer

Flow batteries and lithium ion batteries are amongst the investment options in the
model. For each storage, an energy balance constraint controls its state. Further, the
storage level, g, . the charging, npbih , and the discharging, b, ; discharge o f the battery
during the last time step of each 2-week segment s, constraln the battery storage
level in the first time step of the same 2-week segment, where My denotes the effi-
ciency of technology p:

charge discharge 8ipi+1> te 7:. \ {sT}, . at
ipt T Mpby, - — b, > {gi,p,t—(T—l)’ i— ST, ieT, peP™ ses.
(11

The charging and discharging of batteries may not exceed the installed battery
storage capacity, assuming a maximum C-rate of 1 (“1C rate” corresponds to the
charge/discharge current that will charge/discharge the entire battery in one hour):

charge . at
bipt S ;Q,Wipr, lEI,pE'Pb N tE']:, SES, (12)
r

discharge . at
by SZWW’ ieT,peP™ teT,
rer

For the cases including hydrogen demand and hydrogen storage, there is a bal-
ance inequality assuring that the demand, Df‘ydmgen for hydrogen from industry is
met by hydrogen production, npdhydmgen, in the electrolyzer. Further, the storage
level, and the charging and discharging of the hydrogen storage during the last time
step of the 2-week segment are used to constrain the hydrogen storage level in the
first time step of the same 2-week segment. Letting 7, denote the efficiency of charg-

ing the hydrogen storage, this is modelled as

; s te T\ {sT}, . Ny
S + r]pdf;ydmgen _ Di‘lydrogen > {gl.,p,H—l o %\ {sT} ieT, pe 7)}\ydrog>en’ ses.
8ipi—(T-1)> =si,
(14)

hyd
YEOEN may not exceed the

The electricity consumption of the electrolyzer, d,
installed electrolyzer capacity:
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ydrogen . lectrolysis
dit Séwipr’ lEI,pEPC . te'];, s€eS. (15)
T

Wind power sites are ordered in classes. Offshore sites are represented by one
class, while onshore sites are organized into several classes corresponding to dif-
ferent wind conditions. Each class is represented as one generation technology
p € P¥ Investments in wind power capacity cannot exceed the regional resources
for the respective technology, A,,, according to
Y Wy, <A, i€Z peP™ (16)
reR

For solar power, there is a total resource constraint for each modeled region i:

YD w < DA, Q€L (7

rerR pefpsolar pe«’)solar

Previous work has shown that the inclusion of thermal cycling has a substantial
impact on the cost-optimal electricity system composition [25]. Thermal cycling is
here accounted for by applying the relaxed unit commitment approach suggested by
[26] and evaluated relative to the full-unit commitment by one of the authors in [4].
With this approach, the variables g;ft‘ive represent the capacity that is active and
available for generation in each time-step ¢, in each region i € 7, and within each
technology aggregate p € P™™. Further, the level of generation may not be below

the minimum load share, ég‘i“, of the active capacity, g?‘Ctive, for the technology

ipt
aggregate. These relations are modelled by the inequalities

é;ning?;ltive < gipt < gizttive’ ie I, pe thherm’ te 7;’ se S (18)

The amount of capacity started in each time step is controlled by the variables g". In
ipt

each time step, the active capacity is limited by the sum of the capacity started and the
active capacity in the previous time step. However, for the first time step of each 2-week
segment, except the first segment, the active capacity in the previous time step is repre-
sented by the active capacity in the last time step of the previous segment, as given by
the previous iteration of the consensus loop (see Sect. 2.2), i.e., by G?’;t’itv_el. Further, for
the first time step of the first segment (i.e., for # = 1), the active capacity in the last time
step of the last segment is used, as given by the previous iteration of the consensus
loop, i.e., by G;‘,;‘”e. These relations are modelled by the inequalities

ST
g e T\ (6= DT+1), s€S,
g?;tuvesg%—k Gi;t’ltv_ela l=(S—1)T+1, SES\{I}, ieI,peP‘hefm,
active _
Gi,p,sr’ r=1,

19)
The start-up cost is proportional to the started capacity 3;?;’ while the part-load

cost is proportional to the difference between the active generation capacity and the
generation level. To avoid boundary effects, a value for the thermal generation in
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operation during the last time step of the 2-week segment is applied that is propor-
tional to the start-up cost paid in the first hour of the 2-week segment, based on the

. on : : active .
started capacity, Gi’p’sT e and the active capacity, Gi’p?sT L 10 the first hour of the

next segment, as given by the solution to the previous iteration. For each i € 7 and
p € P"™ these constraints are expressed as

] 0, te T \{sT}, ses,
active con on
) ipa+l Jipit]
¥l > congon Pt (gactive _ g ) _ i Jmmenl =T, se S\ {5},
ipt iptOipt ipt ipt pt 2 on 1.(‘Jr.‘r+l
C;,:lel
t=45T.

active  *
Gipl

(20)

Hence, if thermal capacity is active in the end of one 2-week segment and also in

the beginning of the subsequent 2-week segment, the start-up cost for that capacity

is shared equally between segments. Thermal generation is subject to a start-up time,

i.e., it takes some time for a thermal power plant to heat up before it can deliver elec-

tricity. Thus, in the model, once capacity is deactivated, it cannot become active again
during the interval KC), which encompasses the time-steps & in the start-up interval:

ti . herm
gn < Y Wy, — g, i€, peP™ ™ €T, s€S keK,\{t,....sT).
rerR

2L

2.2 The Consensus Loop

When the investment problem has been solved for the 26 2-week segments, infor-
mation on investments in different types of generation, transmission, and variation
management capacity in each 2-week segment is collected to form one capacity—cost
curve per technology and region. The investments form the basis for the investment
cost in the subsequent solve. The cost of the capacity that is invested in all 26 2-week
segments is weighted by 1/26; however, if, for example, only k 2-week segments have
made the investment, the capacity is weighted by 1/k’th of the investment cost for all
2-week segments in the next iteration. In the initial solve, all 2-week segments share
the investment cost equally, i.e., the capacity is weighted by 1/26. Below we present
the construction of capacity—cost curves for generation technologies. An analogous
construction for transmission technologies has also been made.

The capacity—cost curves are composed by 26 steps, where the length of the first
step corresponds to the capacity investment level that is common to all 26 2-week
segments. The length of the second step represents the capacity investment addi-
tional to the first step shared by all the 2-week segments except one, and so on. In
order to determine the lengths of the steps, the number R,,; of 2-week segments that
have lower or equal levels of installed capacity of technology p in region i than the
2-week segment s is calculated as'

' The Iverson bracket [27] returns 1 if the expression within the brackets is true; otherwise it returns 0.
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RS=1+S—Z[w[pu§wips], i€, peP, seS,

uesS

where S is the set of 2-week segments. It follows that the length of the first step in
the capacity—cost curve pr . is given by

e _ ZseS[Rips = l]wips
P ZSES[RipS = 1]

where r, is the first element in the set of cost classes R. The lengths of the subse-
quent steps in the capacity—cost curve are calculated sequentially as

e _ ZSES[RipS
b ESES[Rip - m]

., I1€L peP, (22)

Z “ve €L pPEP, me (2. |RI}L

(23)

The length of the last step in the capacity—cost curve is set to be very large, i.e.,
three times the maximum annual load in the respective region. The height of each
step in the capacity—cost curve, i.e., the weight of the investment, is given by the
number of 2-week segments sharing the investment, as

e L e R 24)
S §—(m—1)

This cost is slightly modified in two ways: 1) the cost share is lower in the first
iterations in order to enable the capacity with a high investment cost to stabilize
before extinction, and 2) the cost share is lower for those 2-week segments that have
not invested in the capacity that other 2-week segments have. This “rebate” is then
reduced with the iteration number. Hence, it holds that

= el [RI), €T, pEP, s€S ne(l,..., 10}

i,p,S.1, S — ﬂn(m _ 1)

(25)
where the choices for the parameters a,,,, and ﬂ in each iteration n are listed in
Table 1. The parameter «

nips an take on a high (a, .g ) or low (alow) value depending
on whether or not investments have been made for the Correspondlng region, tech-
nology, and 2-week segment (i, p, s).

The construction of the capacity—cost curve is summarized in Algorithm 1 and
illustrated for a small instance in Fig. 2.

Algorithm 1 Creating the capacity—cost curve

—-

: Create a list L of the capacities such that L := (wip1, wip2, ..., Wips)

2: Sort the list L in ascending capacity size order. Each unique element represents a step in the capacity—cost curve.

3: The height of each step in the capacity—cost curve, i.e., AS  _, is determined by the number of 2-week segments sharing the
investment. For each element, the number of 2-week segments sharing the investment corresponds to S reduced by the order of
the element in the list L.

4: if 3 duplicates in list L then

remove duplicates from the list L

IS

: The length of the steps corresponds to capacities, such that each new step occurs at the values present in the reduced list L.
The potential of each cost class, M Pt is given by the capacity in the capacity—cost curve reduced by the capacity of the
prior step.
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Table 1 Parameter values used

in the consensus loop lteration number () a:;r\x b :z‘/%t]
1 0.5 0.5 0.1
2 0.6 0.6 0.1
3 0.7 0.7 0.2
4 0.8 0.8 0.2
5 0.8 0.9 0.3
6 0.8 1.0 0.4
7 0.8 1.0 0.5
>8 0.8 1.0 0.6

2.3 Yearly Linkages

In traditional electricity system investment models, the represented years are linked
by the investment variables. The H2D model disregards any possible influence that
future years might have on investments, based on the hypothesis that investments
are made only to meet exactly the demand for electricity in the cost-optimal sys-
tem, largely ignoring future needs in terms of capacity. This hypothesis is tested
in the evaluation when the results are compared to the model with connected time.

Wq= 20, Wy= 40, W3= 100, Wy= 55, Wg= 40, Wg= 80,
L={W1, W3, W3, Wy, W5, WG}
sorted L={w1, Wy, Ws, W4, Wg, W3}

cost share

3

6/6-———————

5/6 jum mm - - —

4/6 | == m—="—

I
2/6 | = I
1/6 I I
1 2 ! » capacity
Wq Wy Ws Wy Wg W3

Fig.2 An example of a capacity—cost curve
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The cost of CO, emissions, investment costs (due to learning), efficiencies and dis-
count rate can change between years and may influence the investment decision. For
scenarios with gradually increasing costs for generation capacity or operation over
the years, this increase is likely to impact investments and needs to be transferred
to prior years. Electricity generation technologies that rely on fossil fuels are, for
example, typically subject to a gradual increase in operational costs over the dec-
ades considered, which reduces the cost-competitiveness of these technologies in the
long-term perspective. Assuming that the total cost for investments and operation of
a power plant is evenly distributed across all of its hours of operation, some of the
operational costs from later years need to be shifted to earlier years. The net present
value of these future operational cost (with interest rate §) is added to the objective
function. Thus, we define the additional operational costs, C;‘tj‘fi, as

y+Z,

1 1 ,
add . _ un,n _ ~Tun,y
Cpry 1= Z_p nzzy —(1 ST (C;r Co ) peP, tel,seS ye),

(26)
where y is the year considered, i.e., the year in which investments are made, and Zp
is the lifetime of technology p. The costs (26) are added to the running cost C]r)‘t‘“, in
the objective function (1)—(4) for the respective year.

2.4 Evaluation

All the computations are done in GAMS using CPLEX on a system with 32 cores, and
256 GB RAM. The CPLEX solver was set to deploy the barrier algorithm. The H2D
model is evaluated in terms of three aspects that are challenging to combine in elec-
tricity system investment models: (1) the ability to account for strategies to manage
variations; (2) the ability to consider geographically uneven resource distribution and
trade; and (3) the ability to define pathways from today into the future. The capacity
mix and total system cost of the solution provided by the H2D model are compared to
the respective properties of solutions derived from the electricity system investment
part of the H2D model in which time is fully connected, and the adjustments used to
compensate for the discretization of time are removed. For cases when several years
are investigated, the net present value of future costs is considered in the model with
fully connected time. In the absence of time discretization, the investigated geographic
scope must be kept sufficiently narrow to retain the electricity system investment
model within the boundaries of the computer capacity. Therefore, one or a small set of
regions is evaluated at a time. Two regions are chosen for the evaluation: Ireland (IE),
representing a region with good conditions for wind power, and central Spain (ES),
representing a region with good conditions for solar power. When investigating the
ability to consider an uneven distribution of resources and trade, neighboring regions
are incorporated into the analysis, such that the model is applied to the UK and Ireland
(regions UK1, UK2, UK3, and IE) and the Iberian Peninsula (regions ES1, ES2, ES3,
ES, and PT). For these cases, investments in overhead power lines, as well as in under-
ground (or sub-sea), cables are available. Table 2 details all the cases investigated.
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Table2 Key characteristics of the cases investigated. The cost of CO, is gradually increased over the
year investigated, and values given in the table correspond to 2020, 2030, 2040, and 2050, respectively

Case Geographic  Year, Variation Transmis- Cco, CO, cost [€/
region (s) period management  sion options  limit [ton/ ton]
options year]

1IE Ireland 2050 — — 0 —
ES Central Spain 2050 — — 0 —
IE_BAT Ireland 2050 Flow bat + — 0 —

Li-ion bat
ES_BAT Central Spain 2050 Flow bat + — 0 —

Li-ion bat
IE_H2 Ireland 2050 Hydrogen — 0 —

storage
ES_H2 Central Spain 2050 Hydrogen — 0 —

storage
1IE_BIO Ireland 2050 Low-cost —_ 0 —_

biomass
ES_BIO Central Spain 2050 Low-cost —_ 0 —_

biomass
IE_TRADE Ireland + UK 2050 — OHAC + 0 —

SCDC
ES_TRADE  Iberia 2050 — OHAC + 0 —
SCDC
IE_YEARS Ireland 2020-2050 — — — —
ES_YEARS  Central Spain 2020-2050 — — — —
IE_YEARS_ Ireland 2020-2050 — — — 15/40/100/400
co2
ES_YEARS_ Central Spain 2020-2050 — — — 15/40/100/400
co2

Table 3 gives the eleven different types of electricity generation technologies
included in the modelling of this work, including fossil and bio-based thermal gen-
eration, onshore and offshore wind power, and solar PV. Thermal generation units
are aggregated based on technology type and the thermal process, including start-up
time, start-up cost and minimum load level, are represented by linear approxima-
tions as suggested by [26] and evaluated by [4]. Onshore wind power is subdivided
into twelve investment classes, representing sites with different wind resources.
Additional generation technologies, representing, for example, different wind tur-
bine technologies, can easily be integrated into the model structure. The costs and
properties of the generation technologies are detailed in Appendix B. When evaluat-
ing the ability of the H2D model to identify pathways for the electricity system, both
models are solved for one year per decade, i.e., 2020, 2030, 2040, and 2050, with a
cost of CO, of 15, 40, 100, and 400 €/MWHh, respectively. An interest rate of 5% is
applied throughout the work.

The ability to account for strategies to manage variations is tested by offering
three types of variation management to the model: (1) the possibility to invest in
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Table 3 Generation and storage
technologies included in the
modelling of this work and their Coal ST

Abbreviation Technology

Coal steam turbine

abbreviations

NG CCGT Natural gas combined cycle gas turbine

NG GT Natural gas open cycle gas turbine

Biomass ST Biomass steam turbine

Biogas CCGT Biogas combined cycle gas turbine

Biogas GT Biogas open cycle gas turbine

Bio-coal CCS Bio-coal steam turbine with carbon
capture and storage

Nuclear Nuclear power

Solar photovoltaics Solar PV

Onshore wind Onshore wind power

Offshore wind Offshore wind power

BAT Lithium-ion battery

H2 Lined rock underground hydrogen
storage

Li-ion batteries and flow batteries; (2) access to low-cost biomass (i.e., 30 €/MWh
instead of 40 €/MWh); and (3) the generation and storage of hydrogen. In the hydro-
gen storage case, a constant hydrogen demand is added exogenously to the model
such that the annual electricity demand is increased by 20%, and investments in
hydrogen storage and additional electrolyzer capacity are made available. The costs
and properties of the variation management technologies are listed in Appendix B.

For a fair comparison of the total system costs, the investments in electricity gen-
eration capacity provided by the H2D model were fixed in the electricity system
investment model with connected time, and the total system cost of the solution of
the H2D model was accepted as provided by the model with connected time. Invest-
ments in hydrogen storage capacity provided by the H2D model is not transferred to
the model with connected time, since the low cost of this storage makes it suitable
for seasonal storage which the H2D model does not aspire to account for.

3 Results

The capabilities of the H2D model to account for variation management, uneven
distribution of resources and trade, and yearly linkages are evaluated in this sec-
tion. The section ends with an evaluation of model run times. However, prior to the
evaluation, the model is tested for convergence. Figure 3 gives the share of installed
capacity which is different in the H2D solution compared to the least-cost solution
provided by the model with connected time, for each iteration. As the figure shows,
this share is consistently reduced for up to 10 iterations, after which the installed
capacity provided by the H2D model stabilizes and remains stable for the next 40
iterations. Based on this test, subsequent model runs iterate the consensus loop ten
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times. For the IE region, the share of installed capacity, which differ between the
H2D solution and the least-cost solution, is 0.7% after ten iterations and subse-
quently plateaus at 0.4%. For the ES region, the share of installed capacity, which
differ between the H2D model and the least-cost solution, is 8.8%. However, after
inspection, the difference in installed capacity in the ES region is mainly due to dif-
ferences in investments between the different wind classes.

Figure 4 gives the increase in costs to meet the demand for electricity if the H2D
solution is applied instead of the least-cost solution provided by the model with con-
nected time. As the figure shows, the solution provided by the H2D model is less
than 1.12% more expensive than the least-cost solution. Among the variation man-
agement strategies investigated, the impact of batteries on the cost-optimal system
composition is the most challenging to capture. Including the investment in battery
capacity in the cost-optimal system composition, the total system cost is around 1%
higher for the system suggested by the H2D model than for the system suggested by
the model in which time is connected for both regions investigated. The total system
cost of the H2D solution is also around 1% higher than the least-cost solution for the
cases in which several regions are considered. Another challenging case for the H2D
model is when several years are connected and there is a gradual change in policy
between the years, which in this work is exemplified by a gradually increasing cost
of CO,. The following sections analyze the differences in system composition for
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the cases investigated, in order to explain the higher total system cost of the H2D
solution relative to the least-cost solution and interpret the results provided by the
H2D model.

3.1 Ability to Account for Strategies to Manage Variations

The key motivation for using the H2D model is that it provides a tool that allows
accounting for the impact of strategies to manage variations on the electricity system
composition in wind-dominated systems. Figure 5a gives the installed capacity in the
IE system, with the requirement that CO, emissions are avoided, as given by the model
that involves connected time. One by one, hydrogen demand and storage, batteries,
and low-cost biomass are introduced into the system. As shown in Fig. 5a, the demand
for hydrogen is mainly met by additional investments in wind power in the IE region.

a) IE connected time b) IE H2D
z = 5
o le m 2ol
z . z
S 15 T 15 . .
2 B R []
S S
< 10 < 10 7
g 9
ERER 2 s+
£ £
0 - 0 -
base H2 BIO  BAT base H2 BIO  BAT
C)ES connected time d) ES H2D
5 60 [ 5 60 |
2 2 [
] (9]
8 40 4 I H % 40 4 I |
S S
el ©
g 9
= 20 I T 20
@ I
£ £
0 - 0 -
base H2 BIO  BAT base H2 BIO  BAT
Il Nuclear Il Biomass ST Solar PV Biogas GT
I Bio-Coal CCS mm Wind [ Biogas CCGT

Fig.5 Installed capacities for a the IE case with connected time, b the IE case with H2D, ¢ the ES case
with connected time, and d the ES case with H2D, with and without variation management being avail-
able
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Investments in solar PV also increase slightly, whereas investments in biogas com-
bined cycle units and biogas gas turbines remain more or less unchanged. There is an
investment in 2.97 GW of electrolyzer capacity and in 50.94 GW of hydrogen storage
to meet the demand for hydrogen flexibly. Low-cost biomass competes with variable
renewable electricity (VRE) in this region and reduces investments, mainly in solar
PV but also slightly in wind power, while investments in biogas combined cycle units
increase. Batteries have a weak impact on VRE investments in this wind-dominated
region, although they reduce the need for biogas-fired peak generation.

Figure 5b reveals the installed capacities given by the H2D model, in which the
investment problem is split into 2-week segments. As the figure shows, investments
without the strategies to manage variations provided by the H2D model are very
similar to those provided by the model with connected time. In addition, the impacts
of hydrogen consumption and low-cost biomass on the installed capacity are
closely mimicked by the H2D model. The investment in electrolyzer capacity given
by the H2D model is 3.1 GW, which is an overestimation of 6.0%. The level of hydro-
gen storage suggested by the H2D model is, as expected, highly underestimated as
hydrogen storage is associated with a low cost and can be applied to store hydrogen
between seasons. However, the ability of the H2D model to provide a good estimate
of the impact of hydrogen storage on all types of generation capacity indicates that it
is the impact of the hydrogen storage on timescales of up to two weeks which mainly
impact the electricity system design, rather than the system services it provides on
seasonal basis. As indicated in Fig. 5, the impact of batteries on the cost-optimal sys-
tem composition is the variation management strategy that is the most challenging to
capture for the H2D model. This is partly due to the fact that in the case of hydrogen
storage, the power rating of the storage charging (i.e., the electrolyzer capacity) is
here distinguished from the sizing of the storage and the method proposed disregards
the sizing of the hydrogen storage, whereas the power rating of the batteries follows
from the choice of storage capacity and is dimensioned with the H2D model.

Figure 5c gives the installed capacities in the ES system, as given by the model with
connected time. As the figure indicates, solar PV plays a greater role in this system
compared to the IE system, and this role is enhanced by both hydrogen consumption
and storage, and by batteries. Hydrogen consumption and storage is the only variation
management strategy that increases the wind power capacity of the system. Figure 5d
gives the system composition from the H2D model and shows that the response to
variation management is very similar to that given by the model with connected time.

3.2 Ability to Account for Trade

Figure 6 shows the cost optimal system compositions for Ireland and the UK, as
given by the model with connected time (a), by the H2D model (b), and the corre-
sponding figures for the Iberian Peninsula (c and d). The introduction of trade sug-
gests many more solutions that are almost equivalent in terms of total system cost,
in particular if the regions are similar and the cost of trade is low. The differences
in installed capacity between the solution given by H2D model (Fig. 6b) and the
model with connected time (Fig. 6a) are larger compared to the single-region cases.
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Fig.6 The installed capacities for a the IE-trade case with connected time, b the IE-trade case with H2D,
¢ the ES-trade case with connected time, and d the ES-trade case with H2D

Moreover, investments in transmission capacity vary considerably between the solu-
tions provided by the H2D model and the fully connected model. The differences
between the solutions are attributed to slight differences in wind and solar resources
between the neighboring regions, and the option to invest in the region with best
resources and transmission capacity or settle for slightly worse resources and avoid
transmission capacity investments. However, if the generation capacities of the indi-
vidual regions are summed, the results provided by the two models are again very
similar and the total cost of the H2D solution is at the most 1.1% above the least-
cost solution for the regions investigated.

3.3 Ability to Account for Yearly Linkages

Figure 7 shows the investments in new capacity in the IE and ES systems over time
when they are subject to an increasing cost for CO,. The corresponding figure without
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Fig.7 The installed capacities for a the IE-years-CO2 case with connected time, b the IE-years-CO2
case with H2D, and ¢ the years 2020-2050 for the two IE cases compared, d the ES-years-CO2 case with
connected time, e the ES-years-CO2 case with H2D, and f the years 2020-2050 for the two ES cases
compared

a cost for CO, can be found in Appendix C. This is a brown-field case, with existing
generation capacity as given by Kjarstad and colleagues [28] as the starting point.
Figure 7b, d shows the investments in generation capacity for the four decades con-
sidered by the H2D model, and it can be seen that the reallocation of running costs
between years, as presented in the methodology section, prevents investments in coal-
fired generation and also late investments in natural gas-fired generation. However,
comparing the investments given by the H2D model to those given by the model with
connected time, there are clear visual differences in both the IE and ES cases, indicat-
ing that investments in electricity generation associated with CO, emissions are faced
out slightly too fast with the approach applied in the H2D model. There is an additional
difference between the solutions provided by the two models related to the timing of
solar PV investments, which are made earlier in the H2D model than in the model with
connected time. This is the case because the model with connected time has informa-
tion that the investment costs of solar drastically decline (exogenously) over time. How-
ever, it can be argued that the myopic H2D model better reflects the behaviors of wind
and solar PV investors for whom future cost reductions are uncertain. Figures 7c and 7f
compare the total investments over the years investigated, as given by the two models and
reveals that, overall, the difference in investments is very small.
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Fig. 8 Model run times for the model with connected time and the H2D model when applied to problems
covering several regions and years

3.4 Computing Time Requirements

Although the accuracy of the model can be evaluated by tests limited in geographical
and temporal scope, the motivation for decomposing the capacity expansion problem
is first evident when several geographical regions and multiple years are considered.
Figure 8 gives the model run times for the model with connected time and the H2D
model when applied to a problem covering 1, 2, and 12 regions. Results are based
on model runs for Germany, the UK, Sweden and Poland, except for the 12 region
case which was only performed with the H2D model for one set of regions (northern
Europe). All cases have temporal scope of four decades, represented by one year per
decade, and a three-hour time resolution. Furthermore, all cases apply a low cost
for biomass (i.e., 30 €/MWh) and include the possibility to invest in batteries and
hydrogen storage. As previously stated, all model runs are carried out on a computer
with 256 GB RAM and 32 CPU:s. As Fig. 8 illustrates, both models have accept-
able model run times when one region is considered, and in one case the model with
connected time can match the time of the H2D model. However, when two regions
are considered, the run time for the model with connected time rises dramatically to
levels corresponding to between one and two days, while the run time for the H2D
model is less than half an hour. It is found that the H2D model solves the capacity
expansion problem for northern Europe, here represented by twelve regions includ-
ing all regions considered in the 2-region model runs, in fifteen hours.

4 Discussion

The method proposed in this paper applies a parallel computing approach to solve
the electricity system capacity expansion problem, thereby efficiently reducing
computer memory requirements. The method is also shown to reduce calculation
times, although the extent of this reduction depends on the computer and problem
properties. In contrast to the now widely applied representative days method, the
method proposed here discretizes time into 2-week periods rather than days, to
ensure the capture of high-wind and low-wind events that last several days. The
2-week segments cover the cycling of thermal generation and hydrogen storage as
responses to wind variability. For electricity systems dominated by variability on
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other timescales, the method proposed can be applied to discretize the time dimen-
sion into segments of any number of weeks. It should be noted, though, that longer
week segments result in lower resolution of the capacity—cost curves in the consen-
sus loop and may therefore reduce the accuracy of the method.

One drawback of the method proposed here is that it cannot dimension seasonal stor-
ages. While the operation of seasonal storage can likely be captured well, as all hours
(or every third hour in this work) of the year are represented, this remains to be proven.
However, from the present work, it can be observed that energy storage between 2-week
segments (captured with the fully connected time model but not with the H2D model)
has a low impact on the cost-optimal system composition for the cases investigated.
This indicates that seasonal storage capacity could be dimensioned in a post-process.

The proposed method offers the possibility to solve large capacity expansion prob-
lems on normal computers, since model segments can be solved independently after one
another. However, the method is preferably applied to a computer or a cluster with a large
number of CPUs (ideally, 26 or more) to achieve an efficient reduction in model run time.

The modelling methodology proposed targets the challenging combination of
wind variation management and trade in electricity system investment models. If
wind power or trade is not of relevance for the region investigated, representative
days or time-slicing is likely more efficient modelling methodologies.

5 Conclusion

The Hours-to-Decades model, which is an electricity system investment model that
is designed to account for strategies to manage wind power variations, is presented
and evaluated. The model maintains chronology in time within 2-week segments,
thereby providing a detailed description of the ways in which wind power variations,
with a typical duration of several days, are accommodated by the electricity system.
Instead of reducing the time, the H2D model discretizes time such that the capac-
ity expansion problem can be solved separately for each time period. This drasti-
cally reduces the memory requirements. When utilizing computers with a number
of CPUs or computer clusters, the H2D model reduces model run times drastically
compared to a model with fully connected time.

When evaluated for one region with very good wind resources and for one region with
very good solar resources, the model is found to provide solutions for which the total sys-
tem cost is no more than 1.12% higher than for a model with connected time. Accuracy is
retained, even if the system is exposed to a range of strategies to manage variations.

Appendix

A Nomenclature

Tables 4, 5, and 6 list the index sets, the variables, and the parameters, respectively,
used in the electricity system model.
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Table 4 The index sets used in the electricity system model

Symbol Representation Member
A set of all regions i,J
P ;= jpPat  pprlectrolysis | ;phydrogen | peen, et of a]] technology aggregates p
pbat set of all battery technologies P
prlectrolysis set of all electrolyzer technologies p
phydrogen set of all hydrogen storage technologies p
peen s = pind  piherm | psolar, et of al] electricity generation technologies p
pwind set of all wind technologies p
ptherm set of all thermal technologies P
ppolar set of all solar technologies P
Q set of technologies for transmission q
S :={1,...,S}; set of all 2-week segments (typically, S = 26) s
7, :={(s— DT +1,...,sT}; set of all time steps in the 2-week segment s € S t
N set of iterations n
R set of cost classes, i.e., the steps in the cost—supply curve r
K, :={0,...}; set of hours in the start-up interval for technology p € Phem™ k
y set of years y

B Data

Table 7 gives the investment and variable costs for the electricity generation technol-
ogies considered in the model. The investment costs and fixed operation and mainte-
nance costs are based on IEA World Energy Outlook 2016 [29], with the exception
of the costs for onshore wind power, which are based on the costs presented by Mone
et al. [30], with a yearly learning rate of 0.4%. In the model, annualized investment
costs are applied assuming a 5% interest rate. Technology learning for thermal gen-
eration is included as gradual improvement in the efficiencies of these technologies,
reflected as a reduced variable cost in Table 7. The variable costs listed in Table 7
exclude the cost of carbon dioxide, which vary between years. The cost of cycling
thermal generation is not part of the variable cost. Instead, the start-up costs and part-
load costs are included explicitly in the optimization. The start-up costs, part-load
costs, and minimum load level applied here are based on the report of Jordan and Ven-
kataraman [31], in which all the technologies that employ solid fuels use the cycling
costs given for large sub-critical coal power plants. The start-up fuel is, however,
changed to biogas rather than oil in all bio-based generation in the present work. The
cost of carbon dioxide emissions related to starting thermal generation varies from
year to year and is therefore not included in the start-up costs in Table 7. The cycling
properties of nuclear power are based on the paper by Persson et al. [32] who describe
a start-up time of 20h and a minimum load level of 70%. Biogas is assumed to be pro-
duced through the gasification of solid biomass, with 70% conversion efficiency. The
cost of the gasifier equipment is included in the form of 20 €/MWh added to the fuel
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Table 8 Full-load hours (FLH) and maximum capacity limits (Cap) for onshore wind classes 4—12, off-
shore wind, and solar PV. The absence of available sites is indicated by @, while an unlimited availability
of sites is indicated by co

Technology Windclass ES3FLH Cap HUFLH Cap IEFLH Cap SE2FLH Cap

[h] [GW]  [h] [GW] [h] [GW] [h] [GW]

Onshore 4 2310 7.1 2370 7.8 [7} @ 2230 4.5
Onshore 5 2560 6.1 2570 24 7] [/} 2440 6.9
Onshore 6 2790 6.3 2750 1.3 /] [/} 2620 9.9
Onshore 7 3020 4.6 3070 24 7] [/} 2900 9.1
Onshore 8 3300 1.3 3350 0.2 4] [} 3270 11.6
Onshore 9 @ /] ] ] 7} ] 3700 1.5
Onshore 10 ] ] @ [ 4240 0.3 4120 1.7
Onshore 11 [} [} ] [} 4640 13.8 4600 0.5
Onshore 12 ] 0 /] ) 5360 2.1 5260 0.1
Offshore — [/} [} [} ] 5360 ) 5260 )
Solar PV — 1770 24.7 1360 12.5 1000 9.6 1050 25.6

cost, rather than being incorporated into the investment cost of the biogas technolo-
gies, since biogas is storable, which means that the gasifier equipment may attain a
much higher number of full-load hours compared to the power plant consuming the
biogas. The total cost of the gasification equipment is taken from Thunman et al. [33],
and 8,000 full-load hours are assumed.

The wind power generation profiles are calculated for wind turbines with low
specific power (200 W/m2), with the power curve and losses proposed by Johansson
et al. [34]. The wind speed input data are a combination of the MERRA and
ECMWF ERA-Interim data for year 2012, whereby the profiles from the former
are re-scaled with the average wind speeds from the latter (see [35—37]). The high
resolution of the wind profiles from the ERA-Interim data was processed into wind
power generation profiles and put together into 12 wind classes for each region,
for which the full-load hours (FLH) and the maximum capacities (Cap) for classes
4-12, as well as the offshore wind and solar PV, are shown in Table 8. The wind
farm density is set to 3.2 MW/(km)? and is assumed to be limited to 10% of the
available land area, accounting for protected areas, lakes, water streams, roads, and
cities [38].

Table9 Costs and technical data for the variation management technologies

Technology Investment cost Efficiency Fixed O&M costs  Lifetime
[ME€/MWh]  [M€/MW] [%] [k€/MWhyr] [k€/MW,yr] [yr]

Battery, Li-ion  0.15 — 90 25 — 15

Battery, flow 0.18 —_ 70 13 —_ 30

Electrolyser — 1.0 62 — 20 10

H, storage 0.011 — 100 — — 30
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Solar PV is modelled as mono-crystalline silicon cells installed with optimal tilt
with one generation profile for each region. Solar radiation data from MERRA are
used to calculate the generation with the model presented by Norwood et al. [39],
including thermal efficiency losses. The full-load hours of solar PV in each region
are shown in Table 8. The cost and technical data for VMSs are shown in Table 9 and
based on [40]. The hydrogen storage is assumed to be of the large-scale, steel-lined
cavern type.

C Additional Results

Figure 9 shows the investments in new capacity in the IE and ES systems over time
without a cost for CO, (see Sect. 3.3).

a) IE connected time b) IE H2D c) IE 2020-2050
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Fig.9 The installed capacities for a the IE-years case with connected time and b the IE-years case with
H2D, and c the years 2020-2050 for the two IE cases compared; d the ES-years case with connected
time and e the ES-years case with H2D, and f the years 2020-2050 for the two ES-cases compared
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