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Abstract

Heterogeneity is a vital feature in emerging processor chip designing. Asym-
metric multicore-clusters such as high-performance cluster and power efficient
cluster are common in modern edge devices. One example is Intel’s Alder Lake
featuring Golden Cove high-performance cores and Gracemont power-efficient
cores [1]. Chiplet-based technology allows organization of multi cores in form
of multi-chip-modules, thus housing large number of cores in a processor. In-
terposer based packaging has enabled embedding High Bandwidth Memory
(HBM) on chip and reduced transmission latency and energy consumption of
chiplet-chiplet interconnect. For Instance Intel’s XeHPC Ponte Vecchio pack-
age integrates multi-chip GPU organization along with HBM modules. Since
new devices feature heterogeneity at the level of cores, memory and on-chip
interconnect, it has become important to steer optimization at application level
in order to leverage the new heterogeneous, high-performing and power-efficient
features of underlying computing platforms. An important high-performance
application paradigm is Convolution Neural Networks (CNN). CNNs are widely
used in many practical applications. The pipelined parallel implementation of
CNN is favored for inference on edge devices.

In this Licentiate thesis we present a novel scheme for automatic scheduling
of CNN pipelines on heterogeneous devices. A pipeline schedule is a configura-
tion that provides information on depth of pipeline, grouping of CNN layers
into pipeline stages and mapping of pipeline stages onto computing units. We
utilize simple compile-time hints which consists of workload information of
individual CNN layers and performance hints of computing units. The pro-
posed approach provides near optimal solution for a throughput maximizing
pipeline. We model the problem as a design space exploration technique. We
developed a time-efficient design space navigation through heuristics extracted
from the knowledge of CNN structure and underlying computing platform. The
proposed search scheme converges faster and utilizes real-time performance
measurements as fitness values. The results demonstrate that the proposed
scheme converges faster and can scale when used with larger networks and com-
puting platforms. Since the scheme utilizes online performance measurements,
one of the challenges is to avoid expensive configurations during online tuning.
The results demonstrate that on average, ∼ 80% of the tested configurations
are sub-optimal solutions. Another challenge is to reduce convergence time.
The experiments show that proposed approach is 35× faster than stochastic
optimization algorithms. Since the design space is large and complex, We show
that the proposed scheme explores only ∼ 0.1% of the total design space in
case of large CNNs (having 50+ layers) and results in near-optimal solution.

Keywords

CNN parallel pipelines, Online tuning, Design space exploration, Heterogeneous
computing units, Processing on chiplets
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Chapter 1

Introduction

Convolutional Neural Networks (CNNs) have gained popularity in many prac-
tical applications, such as image classification and natural language processing.
The computational, bandwidth and memory capacity requirements of CNNs
is high due to the large amount of weights (up to 1.6 trillion parameters for
large switch transformers [2]). Existing frameworks for implementing CNNs,
such as TensorFlow [3], Cafe [4], Torch [5] and Theano [6] provide a well
optimized implementations for GPU based computing platforms. However,
these implementations are not optimized for heterogeneous processors, which
are common in embedded devices.

Modern processors are equipped with powerful and energy efficient compute
resources. Edge devices feature a combination of different execution units
packed on the same chip. For instance, cores with different power-performance
area characteristics but share the same Instruction Set Architecture (ISA) [7],
one such example is NVIDIA Jetson TX2 [8]. Recent chip design technologies,
such as 3D stacking, chiplet and interposer based packaging have added hetero-
geneity at the level of cores, memory subsystems and Network on Chip (NoC).
Advancement in 3D stacking enabled Processing In Memory (PIM) [9,10], while
interposer-based packaging technology enabled low latency and high bandwidth
transmission to memory devices such as HBM. Chiplet architecture, considered
as future processor design [11] feature Multi-Chip-Module (MCM) technology.
Chip manufacturers adopt a mix of these technologies to produce high perfor-
mance processors. For example, Nvidia’s Simba [12] is packaged with several
chiplets with heterogeneous interconnect bandwidth and Intel’s XeHPC Ponte
Vecchio [13] consists of multi-chiplet GPUs with HBM. Moreover, owing to
the wide application domain of CNNs, there is a wide variety of heterogeneous
computing architectures being used for running CNNs. There is no single
standard architecture that can represent such a wide variety of systems in order
to optimize CNN implementation [14].

CNNs consists of a sequence of compute intensive layers. The common
parallelization strategy in above mention frameworks is layer-wise model paral-
lelism. The individual layers in CNNs are parallelised over available computing
resources. This approach is well suited for homogeneous computing resources.
In heterogeneous computing platforms, this implementation ends up under/over-
utilizing available resources. Layer pipelining coupled with model parallelism is
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2 CHAPTER 1. INTRODUCTION

used for streaming CNN applications. This approach reduces communication
volume and points across CNN layers and eliminate the need for copying weights
on all computing resources, thus reducing memory capacity requirement [15].
CNN pipelines are implemented by various platforms, such as Pipe-It [16],
PipeDream [17], Chimera [18] and Gpipe [19]. Scheduling of CNN pipelines on
a computing platform which is heterogeneous at many levels (core performance,
memory capacity and interconnect bandwidth) is a challenging task. A pipeline
schedule comprises of packaging CNN layers into pipeline stages and mapping
pipeline stages to computing units in order to generate a throughput maximis-
ing pipeline. In order to group CNN layers into pipeline stages, the scheduler
must be augmented with the information regarding computational load of
CNN layers and performance critical knowledge of computing platform such
as memory requirement, bandwidth and core performance. Existing solutions
utilize offline profiling of the representative workloads of CNNs coupled with
cost models to predict layer performance along with design space exploration.
This approach has following downfalls:

1. It is not portable. The offline profiling and schedule explorations need to
be repeated for every computing platform and CNN.

2. In some cases, as reported in [16], prediction error leads to less effective
pipeline configuration.

3. In terms of usability, these approaches require expert knowledge of com-
puting hardware and CNN architecture to augment schedulers with
performance related information.

In this thesis I investigate the requirements for automatizing the generation
of pipeline schedule and propose a fast method of formulating a through-
put maximizing and balanced CNN pipelines on a heterogeneous computing
platform.

1.1 Problem Statements

Prior works present an offline approach for generating a throughput maxi-
mizing pipeline schedule. In this thesis we propose an online and automatic
way of producing pipeline schedule for CNNs targeting heterogeneity at the
level of core performance and memory bandwidth. Following are the problem
statements investigated in this thesis:

Problem 1

There is no online search scheme for finding out a CNN pipeline schedule for
on-chip heterogeneous cores.
Producing a schedule is a design space exploration problem. In online setting,
exploring a huge space without heuristics is impractical. We divide the problem
into following research questions:

Q1. The computational complexity of CNN layers vary across the network.
Therefore grouping CNN layers into pipeline stages such that the workload
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is balanced is NP-complete task. Moreover, the computational complexity
of CNN layers is extracted from network descriptors. Therefore, our first
challenge is, grouping layers into stages such that the work load
is balanced up-to maximum possibility by leveraging the meta
data of CNN description.

Q2. The design space of pipeline schedule is complex and large. It requires
tens of thousands of trials by classical search algorithms to explore a
near optimal solution. Moreover many configurations are expensive in
terms of time and resources, ultimately slowing down the exploration.
Our second challenge is, to navigate through the search space such
that solution could be found in limited number of trials and that
the individual trials should not be expensive ones.

Q3. Modeling design space i.e a database of all possible pipeline schedules
is a challenge. As discussed earlier, design space is large and complex
and it scales with large networks and computing platforms. Our third
challenge is, to model design space and arrange the schedules for
smart navigation at the time of exploration.

Problem 2

A fully online and scalable CNN pipeline scheduling approach is required, that
targets heterogeneity in memory bandwidth in addition to core heterogeneity.
In this problem we mainly target chiplet architectures that are available in
wide variety of processor designs adding heterogeneity in on-chip memory and
core clusters.

Q4. In a chiplet architecture, execution units are organized into MCMs.
Assuming that there is a heterogeneity between the chip-modules, we
need to leverage this information for generating pipeline schedules. Our
fourth challenge is to leverage the knowledge of heterogeneity
for designing a heuristic based exploration of CNN pipeline
schedules.

Q5. Online exploration is aimed to be portable for any scale-length of CNN
and computing platforms. Both layers in CNNs and execution units in
targeted platforms are scaling higher in modern CNNs and processor
designs. Our fifth challenge is, to design a fully online and scalable
exploration scheme.

1.2 Contributions

This thesis is based on two papers. The aim of this works is to automatically
schedule CNN pipelines on heterogeneous platforms. First paper is the first
ever attempt of developing an online search scheme for CNNs. Paper I answers
question 1, 2 and 3. The main contributions are:

• A full-stack framework for generation and online scheduling of CNN
pipelines. We designed a tuning algorithm which leverages task moldabil-
ity and online performance measurements to find a near-optimal schedule
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for throughput maximizing pipeline. The scheme adapts to performance
asymmetries between the core clusters. We developed a tensor template
language interface to describe CNN descriptors which are utilized to
formulate initial schedule (referred to as seeds) for online design space
exploration.

In Paper II we target chiplet based heterogeneous architectures. We applied an
approach that utilizes easily available information of computing platform and
CNN structure without human intervention. In this paper we answer question
4 and 5 by proposing a fully online and scalable pipeline schedule exploration
for chiplets. Following are the main contributions in Paper II:

• We propose a faster way of generating seed by leveraging platform knowl-
edge . The approach is compared to a set of representative exploration
algorithms including scheme in Paper I.

• Paper I has a requirement of generation and pre-processing of design space
before online phase. This is limitation when larger platforms and deeper
CNNs are used as use cases. In Paper II the need for pre-processing
phase is eliminated.

• We show that scheme proposed in Paper II scales better with CNNs
which have 50+ compute intensive layers.



Chapter 2

Summary of the papers

2.1 Summary of Paper I

This paper aims at producing throughput maximizing pipelines for CNNs on
platforms that feature performance asymmetry among core clusters. Widely
used CNN frameworks [3, 4] are well optimized implementation for platforms
with discrete GPUs couples with high performance CPU clusters. These frame-
works commonly parallelize CNNs in data parallel fashion. The heterogeneous
devices also called edge devices targeted in this paper have resource constraints
in terms of power, memory and compute capability. These constraints are
not directly addressed in existing frameworks. Moreover, prior work [16] that
proposes CNN pipelines for heterogeneous devices relies on empirical cost model
and offline profiling.

In this paper we introduce an online tuning algorithm termed as Pipe-
Search . It is based on evolutionary search with a pre-processed design space.
We leverage the compile-time hints computed from CNN descriptors to pre-
process design space such that the navigation during online tuning is guided
and leads to faster convergence. The online performance profiling aids in guided
navigation and enables the detection of performance issues such as contention
due to memory system and inter-cluster communication [20]. We propose
adaptive CNN pipelines using task moldability, a concept borrowed from job
scheduling. Moldable tasks are the ones in which resource assignment (number
of cores) is decided when it is first activated [21]. Figure 2.1 represents the
full-stack overview of the proposed framework. We developed tensor template
language interface to describe CNN architectures. Computational hits are
extracted and layers are converted into moldable tasks. The next step is to
generate design space for pipeline schedules and sort it with respect to the
degree of work load balance with in a single schedule. The configuration which
balances the computational load among pipeline stages the most, is taken as
the best available schedule in the pre-processed database. The next phase is
online tuning, when CNN is executed and real time performance measurements
are used to navigate through the search space.

In experiments, we tested pipelines of VGG16 and compared the solution
quality against exhaustive search. The navigational heuristics of Pipe-Search
are effective, on average, 80% of the tested configurations are sub-optimal

5
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Conv1 = CONV(ip1, op1, W1);
Conv2 = CONV(Conv1, op2, W2);
....
nework.add(Conv1);
network.add(Conv2);
....
network.execute();
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Figure 2.1: An overview of framework for generation and schedule exploration
for moldable CNN pipeline

solutions. In the paper I we further show that Pipe-Search is 11× faster than
Random Walk and 70× faster than exhaustive search.

2.2 Summary of Paper II

Chiplet based processor design is a major trend nowadays. Recent advancements
in 3D stacking, interposer based packaging and chiplet based core organization
has added heterogeneity at many levels. Such as memory capacity, core
performance and bandwidth of on-chip network. In paper II we propose
scheduling of CNN pipelines for chiplet architectures. Finding out a schedule
for CNN pipelines comprises of two modules. One is exploration strategy and
other modules provide fitness value. Prior work [18, 21], except Pipe-search,
does offline performance modeling and exploration of schedules. We propose a
strategy in Paper II named as Shisha . Instead of offline performance modeling
we utilize compile-time hints to generate initial configuration. We incorporate
simple hints from hardware to generate initial seed. The online tuning is then
steered based on the seed generated. This eliminated the need for pre-processing
the design space.

Figure 2.2 shows the overview of Shisha. We utilize compile-time hits and
hardware categorization information to generate seed for exploration. The
hardware categorization is done based on performance. A heterogeneous system
can comprise of Fast Execution Places (FEP) and Slow Execution Places (SEP).
This information helps in assigning pipeline stages to execution places initially.
Our approach does not require exact information on performance difference for
mapping pipeline stages. The initial assignment is a sub-optimal solution but
in online phase, the solution is further improved to maximize throughput of the
pipeline. During online tuning phase, We again leverage the knowledge of SEP
and FEP to move layers from one to another pipeline stage in order to balance
execution time of all pipeline stages while maximizing overall throughput.

To measure the quality of solution explored by Shisha we modeled the same
problem for stochastic optimization algorithms such as Simulated Annealing
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Figure 2.2: System overview in Paper II

and Hill Climbing. We also show the comparison against exhaustive search in
the cases where exhaustive search finished in practical time limits. The results
show that in case of large networks such as YOLOv3 and ResNet50 and larger
computing platforms, Shisha is able to explore near-optimal solution by just
exploring ∼ 0.1% of the total design space. We further demonstrate that the
convergence time of Shisha is improved by 35× compared to pipe-search and
other exploration algorithms.
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Chapter 3

Conclusion and Future
Directions

CNN pipelines running on heterogeneous architectures can increase the through-
put by exploiting high performance features of the underlying systems. This
Licentiate thesis presents an in-depth analysis on the implementation, seed
generation and auto-tuning of CNN pipelines leading to better scalability and
requiring less human intervention. Our approach does not require expert knowl-
edge of CNNs or performance critical knowledge of the computing platform
such as memory bandwidth, SIMD vector length, etc. Moreover, the approach
should be applicable to other types of accelerators such as GPUs and FPGAs,
as it considers execution places for mapping pipeline stages and the execution
places is an abstract representation of a set of processing elements . With
the advancement in processor design and CNN architectures, scalability of
the approach is crucial to enable portability. Paper II shows that the scheme
proposed is scalable by testing CNNs with 50+ layers on eight execution places.
Both algorithms, Pipe-Search and Shisha, converge faster and their solution is
near-optimal in all the tested cases. We present a comparison of our exploration
strategies, quality of seeds and solution found against a representative set of
exploration algorithms.

The importance of CNNs is widespread and it is backbone of many au-
tomated applications. Moreover an interesting shift in processor design has
opened several challenges for optimizing existing applications. Processing In
Memory (PIM) [9,10], for instance, is an emerging processing technology. This
opens several research directions, such as:

• To adapt CNN pipelines on such an architecture requires an in depth
analysis of performance gains for CNN operators when computed in the
memory.

• The placement of large CNN parameters on PIM based chiplets also
needs to be investigated.

• Energy and power efficiency is a crucial requirement. Therefore, it is
important to investigate pipeline schedules with the goal of reducing
energy consumption while maximizing throughput of the pipeline.

9
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Abstract
Modern edge and mobile devices are equipped with powerful

computing resources. These are often organized as heterogeneous
multicores, featuring performance-asymmetric core clusters. This
raises the question on how to effectively execute the inference pass
of convolutional neural networks (CNN) on such devices. Existing
CNN implementations on edge devices leverage offline profiling
data to determine a better schedule for CNN applications. This
approach requires a time consuming phase of generating a perfor-
mance profile for each type of representative kernel on various core
configurations available on the device, coupled with a search space
exploration. We propose an online tuning technique which uti-
lizes compile time hints and online profiling data to generate high
throughput CNN pipelines. We explore core heterogeneity and com-
patible core-layer configurations through an online guided search.
Unlike exhaustive search, we adopt an evolutionary approach with
a guided starting point in order to find the solution. We show that
by pruning and navigating through the complex search space using
compile time hints, 79% of the tested configurations turn out to be
near-optimal candidates for a throughput maximizing pipeline on
NVIDIA Jetson TX2 platform.

CCS Concepts
• Computing methodologies→ Parallel computing method-
ologies; Machine learning.

Keywords
CNN pipelines, Online tuning, Design space exploration, Edge de-
vices, Heterogeneous core clusters, Evolutionary algorithm, Task
moldability, Task parallel runtimes
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1 Introduction
Over the last decade, convolutional neural networks (CNN) have

gained attention in many practical applications, such as image clas-
sification [1, 2] or natural language processing [3], among others.
The training of neural networks is usually performed in the cloud
while inference, which is a single forward pass of a neural net-
work, is now often being executed on edge and mobile devices
[4]. This is because offloading inference to the cloud often leads
to unpredictable delays that are not acceptable for time-stringent
IoT/mobile applications. Bringing streaming data analytics closer
to the source of data not only reduces latency but also eliminates
the communication cost [5, 6].

Modern edge devices are equipped with powerful and energy ef-
ficient compute resources which can be used to run CNNs on the de-
vice. This improves the real time performance of CNN applications
and eliminates risks of communication delays due to poor network
status [7]. Widely used DNN (Deep Neural Networks) frameworks
such as Tensorflow [8], caffe [9], Torch [10], or Theano [11] are
optimized for computing platforms with discrete GPUs coupled
with high performance CPU clusters. Compute intensive kernels
are optimized for GPUs while data preparation and communication
is handled by the cores of the computing platform. On the other
hand, the resource constraints of edge devices such as power, mem-
ory and compute capability are not directly addressed by existing
server-side CNN implementations [12]. The inference performance
on core clusters is comparable to GPUs in edge devices, therefore,
many vendors prefer to use CPU clusters for inference. In fact,
only 11% of Android smartphones contain a GPU which is at least
3x more powerful than the CPU cores [13]. Bringing inference to
edge devices, however, comes with a new set of challenges. For
instance, there is a wide diversity among SoCs for edge devices and
not a single representative SoC architecture can be used to target
for generalized optimizations [13, 14]. Many modern edge devices
feature a combination of heterogeneous execution units packed on
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the same chip, such as cores with different power-performance-
area characteristics but share the same Instruction Set Architecture
(ISA) [15]. Keeping the energy consumption in focus, some cores
are energy efficient but slow, while others are high performance
cores but consume more energy. Two examples are the NVIDIA
Jetson TX2 [16] and the Apple A14 [17]. The TX2 platform contains
a dual-core NVIDIA Denver 2 64-bit CPU and a quad-core ARM
A57 cluster.

The common parallelization strategy in the above mentioned
frameworks is a layer-wise data parallel implementation of CNNs
[18, 19]. Furthermore, certain DNN libraries such as NNPACK [20],
QNNPACK [21] and ARM-CL [22] provide CNN operations tai-
lored for CPUs on edge devices but implement the same execution
model i.e. layer-wise data parallelism. Since CNNs by nature consist
of a sequence of data parallel layers, existing frameworks exploit
the data level parallelism and apply optimizations at the level of
kernel and/or network model, such as loop fusion, vectorization,
compact image and weight representations, channel pruning and
quantization among others [5]. However, running data parallel im-
plementations on heterogeneous compute devices is challenging
as it requires to perform an asymmetric partitioning that depends
on the performance of each core. An alternative option is to run
independent frames on different sets of cores, but this has sev-
eral undesirable features: First, it results in variable latency across
frames and, second, frames complete out of order.

A preferable approach to scale CNN inference on streaming
data is to use model parallelism [23]. Consecutive CNN layers are
grouped into pipeline stages, thus multiple input units can be pro-
cessed at the same time by different pipeline stages, similar to
processing multiple video frames. This approach avoids reordering
and keeps inference latency similar across frames. Furthermore,
it reduces the total amount of weights that need to be loaded by
each core, which makes caches more effective. Frameworks exploit-
ing pipeline parallelism include PipeIt [24], which targets hetero-
geneous core clusters, and graphi [25], which targets many-core
platforms. These frameworks use offline analytical performance
models to build efficient pipeline stages since the problem space
becomes prohibitively complex with increased number of execution
units and number of layers.

There are two limitations to offline solutions based on perfor-
mance prediction models. Firstly, the performance is modeled using
prediction models which only utilize workload and profiled execu-
tion time of representative kernels, as in PipeIt [24] andAUGUR [26].
These models do not take real-time performance degrading factors
into account, such as resource contention that occurs when multi-
ple tasks are scheduled to run in parallel. In fact, this discrepancy is
already reported by PipeIt [24] when comparing the pipeline config-
urations picked by the algorithm based on predicted execution time
versus actual execution time of the CNN layers. Hence, such offline
empirical prediction schemes can lead to choosing sub-optimal
configurations, resulting in performance loss. As platforms become
increasingly heterogeneous and hierarchical (i.e. more cache levels
and NUMA domains), shortcomings of analytical model are only ex-
pected to increase. Secondly, performance sampling and throughput
maximization need to be repeated whenever the platform config-
uration is changed, which requires additional efforts. An online
approach that relies on real-time performance measurements can

potentially eliminate both these limitations. The main challenge of
the online approach is the complex design space. To the best of our
knowledge, there is no online solution that can effectively prune
the design space and quickly converge to a near-optimal solution,
while adapting to the performance asymmetry present at runtime.

In this paper, we introduce an online tuning algorithm that uses
an evolutionary approach for design space exploration. In evolu-
tionary algorithms, the set of initial search configurations can have
a big impact on the quality of the final solution. In our work, we
utilize compile-time hints generated from CNN descriptors to accel-
erate the convergence of the algorithm. Network layer descriptors
are an effective source of information for determining the computa-
tional intensity of each layer. This approach has also been explored
by PipeIt [24], Graphi [25], AUGUR [26] and S.Minakova et al[18].
We leverage this information coupled with online performance pro-
filing to efficiently navigate the complex multidimensional design
space in order to find a near-optimal configuration point. Online
profiling enables the detection of performance issues such as con-
tention due to memory systems and inter-cluster communication
[27]. The goal of this work is to find a near-optimal throughput
maximizing pipeline configuration which defines layer distribu-
tion for pipeline stages and core assignment to each stage. If more
than one execution unit is assigned to a pipeline stage, we utilize
inherent data parallelism of the layers.

To demonstrate our approachwe introduce amulti-layer solution
with language, compiler and runtime support. For programmability,
we develop a simple tensor template language to implement CNNs
which generates compile time hints. The language is akin to many
other tensor languages used in machine learning frameworks. To
enable adaptive pipelines for CNNs, we exploit moldable tasks in
the state-of-the-art XiTAO task-based runtime [28]. In this setup,
the number of processors assigned cannot be changed while the
task is in execution, but it can be changed across tasks.

Our evaluation shows that the use of computational hints in-
creases the chances of finding near optimal solutions. For example,
provided an exhaustive search results with VGG16 CNN on TX2
platform, 79% of the configurations tested by our Pipe-search al-
gorithm are good candidates for a near-optimal case and the config-
uration suggested by Pipe-search is close to the one chosen by the
exhaustive exploration. We observe that Pipe-search converges 70×
faster than exhaustive search and 11× faster than random walk. We
also demonstrate that the solution explored by Pipe-search yields a
balanced pipeline for state of the art CNNs. This paper makes the
following contributions:

• We propose a tuning algorithm which leverages task mold-
ability and online performance measurement to find an opti-
mal configuration for throughput maximizing CNN pipelines
while adapting to performance asymmetries in the underly-
ing computing platform.
• We show how to use seeds to effectively shortcut the explo-
ration in a complex multi-dimensional design space.
• We demonstrate a multi-layer solution, integrating a tensor
template language interface to describe the CNN descriptors
and generate the seeds, and the XiTAO runtime to provide
low-overhead, locality-aware and moldable execution.
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The rest of the paper is organized in the following way: Section
2 discusses the essentials of CNNs and pipeline parallelism required
for establishing CNN pipelines for a heterogeneous computing
platform. Section 3 details the design challenges for CNN pipelines.
Section 4 provides details of the proposed approach along with
the discussion on proposed online tuning algorithm; Pipe-search.
Section 5 provides the implementation details of the framework.
Section 6 presents the evaluation of the proposed scheme. The
related work is discussed in Section 7. The work is concluded in
Section 8.

2 Background
To understand the foundation of CNN pipelines we first elaborate

the computational breakdown of CNNs in Section 2.1, then we
discuss the essentials of modeling CNN pipelines in Section 2.2.

2.1 Convolutional neural networks
The forward pass of CNNs mainly consists of convolutional and

fully-connected layers. The most time-consuming part of CNNs is
comprised of convolutional layers. There are a set of filters called
weights which are learned during the training phase. Weights are
convolved across the height, width and depth of the input tensor.
The main operation is a dot product between the weight tensor
and the local input region, which can be formulated as matrix-
multiplication. The computational complexity of convolutional lay-
ers is given by equation 1. Here, [H ,W ,C] refer to height, width
and depth of the input tensor, respectively, and [R, S,K] refer to
height, width and depth of convolutional kernel, respectively.

WC = H ×W ×C × R × S × K (1)

Fully connected layers, in turn, appear towards the end of CNN
architectures. Each neuron is connected to all activations of the
previous layer. These layers contain a huge number of parameters
due to full connectivity resulting into dense computations and high
memory usage. Fully connected layers are the second most com-
putationally heavy category of layers in CNNs. The computational
complexity is given by equation 2. Here, F refers to the number of
output categories.

Wf c = H ×W ×C × F (2)

Since there are various algorithms for implementing convolution,
the parameters we selected for representing computational intensity
are generic and have been used also in prior works for modeling
computational intensity [18, 24–26]. The intermediate pooling layer
is for downsampling the spatial size (height and width) of the
forwarded input tensor. There are no learned parameters in the
pooling layer, therefore computations are simple. We use input
tensor dimension as a computational weight for pooling layer.

2.2 Pipeline parallel implementation of CNNs
The computations in CNNs are orchestrated in the form of layers,

where the output of one layer is fed into the following layer. The
task graph of a CNN can be represented as a linear task chain where
the input of a task is the output of the previous task, thus creating
a dependency. CNN inference can be viewed as an application
which processes streaming input data on a persistent, chain-like
task graph. This task DAG can be split into sub-DAGs making a
pipeline stage, where a single node represents a layer.

A pipeline achieves highest efficiency when the execution time
of all pipeline stages is balanced, ie. all stages take almost the same
time to complete. In addition, the end-to-end latency should be
minimized. The latency gap between the pipeline stages is com-
monly referred to as the bubble [29]. The smaller the bubble size,
the higher will be the throughput. The performance of the pipeline
is defined by the slowest stage, also called the bottleneck. In con-
clusion, a high throughput CNN pipeline is the one in which the
bottleneck is smallest possible and the bubble size is also smallest.
Hence, the search goal is to find a layer distribution in a pipeline
such that it minimizes the latency of the bottleneck.

3 Problem Definition
On platforms like NVIDIA Jeston TX2, there are more than one

type of core clusters with different properties in terms of perfor-
mance and efficiency, a feature commonly called core asymme-
try [30]. On such devices, the performance of kernels varies from
one type of core cluster to another. Performance asymmetry can
also arise due to other reasons. For example, the OS power gover-
nor policy impacts DVFS settings, which by itself influences core
performance and can introduce asymmetry even on homogeneous
platforms. Figure 1 shows the execution time of the slowest stage
in a two-stage VGG16 pipeline, when tested with two different
governor settings on an NVIDIA Jetson TX2. The governor settings
are listed in Table 1, the terminology will be used int the rest of
the paper. Ten different configurations have been tested, sorted
by most balanced weight assignment to least balanced. The main
observation is that the best configuration is different depending on
the governor setting. This shows how core performance variations
impact the adding or dropping layers among stages. Hence, com-
putational hints are not enough to determine the optimal pipeline,
but as we will see, they can be used to achieve a balanced state in a
shorter period of time.

Given the CNN layers structure and variable performance of
the underlying computing platform, we can formally define the
problem of finding a near-optimal pipeline configuration. CNN
layers are characterized by the number of computations performed,
we refer to it as the weight associated with layers. The initial idea
is to divide the layers into pipeline stages such that the number of
computations are balanced. Note that the order of layers needs to be
preserved because CNNs have a chain-like dependency task-DAG.
In an ideal scenario, if there was no performance variation among
core clusters, an equal division of layers based on weights would
be the best configuration. However, in practice, due to effects such
as core asymmetry or resource contention, it is practically difficult
to find the best configuration by an analytical method based solely
on computational weights.

4 Framework overview
The proposed approach comprises two parts: 1) A Pre-Processing

to generate seed heuristics and 2) an Online Tuning (using the gen-
erated seeds) followed by pipelining. Figure 2 presents an overview
of both modules. The CNN network is implemented using a tensor
template language, described in Section 4.1 along with details on
designing and launching CNN pipelines as moldable tasks. The next
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Table 1: Governor settings of core clusters in NVIDIA Jetson
TX2 board. "Performance" refers to highest frequency set-
ting, while "Powersave" refers to the lowest frequency set-
ting

Governor Setting A57 Cluster Denver Cluster
1 Performance Performance
2 Performance Powersave
3 Powersave Performance
4 Powersave Powersave

[8,13][9,12][10,11][7,14][11,10][6,15][5,16][12,9][4,17][3,18]
Layer distribution in a 2 Stage pipeline
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Figure 1: Execution time of the slowest stagewith top 10 con-
figurations generated based on computational hints, tested
on governor setting 2 and 3. [X,Y] represent X layers as-
signed to pipeline stage 1 and Y layers assigned to pipeline
stage 2.

step consists in generating a search space for the Pipe-search algo-
rithm. Section 4.3 describes how the search space is generated and
the criteria for selecting configurations. The online tuning phase
implements the Pipe-search algorithm which is explained in Section
4.4.

4.1 Tensor programming interface for
Pipe-search

The computational hints adopted by Pipe-search are derived
from network layer descriptors. To facilitate programmability, we
design a simple tensor template language embedded in C++ [31]
that is used to define the CNN layout. This could be added to any
other DNN descriptors based on NNEF or ONNX interoperability
standards. A sample program is shown in Figure 2. The network
descriptors are then analyzed to generate computational hints ac-
cording to Equations 1 and 2. Figure 2 depicts the conversion of a
CNN into a 2-staged pipeline on an arbitrary 4-core cluster. The
interface compiles down to a task DAG, where each layer is con-
verted into a moldable task. Using moldable tasks contributes to
our goals, as the online search for an optimal pipeline configuration
must be able to dynamically map tasks to resources (e.g. cores).

Conv1 = CONV(ip1, op1, W1);
Conv2 = CONV(Conv1, op2, W2);
....
nework.add(Conv1);
network.add(Conv2);
....
network.execute();

Core 0 Core 1 Core 2 Core 3

Layer
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p+2

Layer m

Layer 1

Layer 2
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Pipeline stage 1 Pipeline stage 2

Layer  to pipeline assignment and
mapping to execution places

Network description in template
tensor language
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Moldable tasks

Network  design expressed in
tensor template language

Extract computational hints and
generate moldable tasks for

network layers

Generate configurations

Find Optimal Pipeline Configuration

Preprocessing

Online Tuning

Figure 2: Left: An overview of the proposed approach, Right:
Implementation of a CNN pipeline using the tensor tem-
plate language, a set of moldable tasks, and two pipeline
stages executing on a 4-core device.

4.2 Problem formalization
We now formally define the problem addressed by the Pipe-

search algorithm. Let L be a set containing the weight correspond-
ing to each layer L = {LW1, LW1, .., LWM−1, LWM }, whereM is the
number of layers in the network. Let Pc be a set defining a possible
pipeline configuration that groups layers into pipeline stages, i.e.
Pc = {P0, P1, .., PN },N ≤ C , such that C is the number of avail-
able cores/threads in the system and a pipeline stage Pn represents
number of layers assigned to a stage. Finally, let PScount be the
number of stages in a given Pc (PScount ∈ {2, ..,C}). The objective
of Pipe-search is to find Pc that maximizes throughput (layers/s) by
minimizing the execution time of the slowest stage within a given
Pc .

4.3 Generation of the initial population
Our hypothesis is that an optimal pipeline configuration Pc lies

near those with the most balanced weights. However, we do not
know in advance which PScount will yield an optimal configu-
ration. For example, for each possible PScount , we may have an
arrangement that results in nearly equal weights, but this does not
guarantee that all such arrangements will have an optimal solution
(e.g. due to core performance asymmetry). Therefore, we initially
generate all possible configurations for each PScount .
4.3.1 Selecting candidates for Pipe-search: Trying all possible con-
figurations is impractical since the number of search points in-
creases exponentially with the dimensionality of the search space.
Consider a network with M layers, the search space consists of the
permutations of all possible Pc and PScount andM . This is shown
in equation 4. Since we will not try all configurations during our
online tuning phase, we select a subset that is likely to be near
the optimal point. To validate our hypothesis on the importance
of balancing the weights, we consider the coefficient of variation
(CV) [32] as an indicator of the degree of weight balance. Hence, we
calculate CV of the weights distribution among the pipeline stages,
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given by Eq. 3. Higher CV means higher imbalance of weights
among pipeline stages, which may cause computational imbalance
among the pipeline stages. We order the configurations based by
the CV value. For each PScount , configurations are explored in an
increasing order of CV in Pipe-search. The first configuration in
the sorted list serves as a seed for a given PScount .

CV =
σ (W )
µ(W ) (3)

WhereW is the set of weights calculated for each pipeline stage
for a given PScount and layer distribution, σ stands for standard
deviation and µ stands for average.
The pre-processing step is applied once for each CNN architecture
for a specific set of PScount . Algorithm 1 lists the steps of generating
initial population. For each pipeline stage count, a set of layer
distribution is generated using Eq. 4.

L = {1, 2, 3, ...M}, P = {2, 3, ....C}
Sc = ∀p ∈ P, C(L,p), if

∑
C(L,p) = M

S = ∀s ∈ Sc , P(s, smax )
where, C = Combinations and P = Permutations

(4)

4.4 Pipe-search Algorithm
Pipe-search requires three inputs: the sorted configurations (S),

the maximum number of stages (C) and a tunable α parameter,
which serves as an upper limit for the number of points to explore
around a particular configuration.

To explain the algorithm we consider the following example.
We want to run a network that consists of 7 layers with a weight
distribution ofW = {1, 4, 8, 4, 8, 8, 4} (normalized to the smallest
value) on a 4-core platform. Possible values for PScount are {2, 3, 4}.
Pipe-search has two phases of exploration. The first phase (Lines 2 -
14) tests at least α search points around the seeds for each value
of PScount . The global minimum, which is the configuration that
minimizes the execution time of the slowest stage, is updated and
saved in Smin during exploration. For each PScount value we test
the top α configurations from S (Lines 3 - 13). If any configuration
results in a better performance than Smin , the global minimum is
updated and the confidence variable γ is reset (Lines 9 - 10). The
purpose of α is to limit the exploration around the found minimum.
Note that Smin is initialized to the seed that yields the best perfor-
mance among all seeds. Although the exploration phase is limited
by α , the number of search points per PScount can vary if the global
minimum is updated. After phase one, the algorithm is able to find
the PScount value around which the optimal solution lies. At this
stage, Pipe-search has managed to reduce the dimensionality of the
search space by 1. The second phase (depicted by Lines 16 - 28) ex-
plores the configurations that have the number of stages (PScount )
that achieves the best performance during the start-up phase. The
extent of exploration is still controlled by α , which is the accepted
limit at which the algorithm ceases to attempt further search points
after a new minimum is found. In the best case, one of the seeds
could be the optimal solution. Hence, the total number of trials is a
function of α and the size of C (Eq. 5).

trials = α(PScountMax + 1) (5)

Algorithm 1 Generate Configurations
Require: L,C
1: for PScount in [2..C] do
2: pc ← layer_distributions(PScount , L)
3: for c in pc do
4: CV ← calculate_CV(c)
5: end for
6: (pc ,CV ) ← sort(CV )
7: S[p] ← pc , add first k samples in Samples, about dimension
8: end for
9: return S , initial population

Algorithm 2 Pipe-search
Require: S,C,α
1: Smin = S[0], seed which yielded minimum execution time for

slowest stage.
2: for PScount in [2..C] do
3: p ← PScount
4: c ← 0
5: while γ < α do
6: t ← execute(S[p][c]) , execute network using configura-

tion s
7: Ts ← max(t) , Time of slowest stage corresponding to

configuration S[p][c]
8: if Ts > Ts [Smin ] then
9: γ + +
10: else
11: Smin ← S[p][c], found a new minimum
12: γ ← 0
13: end if
14: visited[p] ← c + +;
15: end while
16: end for
17: p ← PScount (Smin )
18: c ← visited[p]
19: γ ← 0
20: while γ <α do
21: t ← execute(S[p][c])
22: Ts ←max(t)
23: if Ts > Ts [[Smin ] then
24: γ + +
25: else
26: Smin ← S[p][c], found a new minimum
27: γ ← 0
28: end if
29: c + +
30: end while
31: return Smin

5 Implementation
This section describes how Pipe-search can be implemented on

a task parallel runtime by using the XiTAO runtime [33] as a case
study. We then conclude with a description of the experimental
setup for the evaluation of the proposed scheme.
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Table 2: Description of symbols used in Pipe-search algo-
rithm

Symbols Description
L Weights per layer, derived from computational

hints.
PScount pipeline stage count
C maximum number of pipeline stages
CV Co-efficient of variation of weights distribution

of a given pipeline configuration. Calculated by 3
S A data structure that contains all configuration

sorted by the corresponding CV value.
Ts Execution time of the slowest stage
Smin pipeline configuration with least Ts
α The confidence on found Smin , this parameter is

tunable

5.1 Moldable pipelines using XiTAO
XiTAO [33] is a runtime for executingmixed-mode computations

in which the individual tasks of a task-DAG are themselves parallel
computations. These parallel computations are usually data-parallel,
but any sort of parallel structure is possible. XiTAO supports the
aforementioned task moldability, that is, the ability to assign n
tasks to m resources (n-to-m mapping). Such decision can be made
dynamically. This includes the choice of the task width, which is
the number of resources (e.g. cores or threads) to assign to a certain
task, and the location (place) where to execute the task [28]. Thus,
dynamically selecting the task’s location and width facilitates the
online tuning of pipeline stage configurations. To accomplish this,
each layer is encapsulated into a task. We further define dependen-
cies between XiTAO tasks to create pipeline stages. Hence, a single
pipeline stage consists of a task-DAG, in which all layers(tasks)
share the same location and width. While handling the dependen-
cies across the stages, the runtime executes multiple task-DAGs in
parallel (one DAG per pipeline stage). This enables pipeline par-
allel execution, (Figure 2 also depicts the XiTAO task-DAGS for
two staged pipeline). The task-DAGs are adjusted according to
given pipeline configuration during online tuning phase. Note that
we do not execute layers in pipeline fashion during tuning phase,
the pipeline is launched once a configuration is selected by the
Pipe-search algorithm.

5.2 Testbed
For evaluation, we use an NVIDIA Jetson TX2 development

board, featuring a dual-core NVIDIA Denver 2 64-bit CPU, a quad-
core ARM A57 Complex (each with 2 MB L2 cache) and an NVIDIA
Pascal Architecture GPU with 256 CUDA cores. Both the Denver 2
and the A57 cores implement the ARMv8 64-bit instruction set and
are cache coherent. For the purpose of this work, we consider only
the two ARMv8 cores, and leave GPU scheduling as future work.

5.3 Benchmarks
This work is mainly focused on inference pass of CNN net-

works. Our framework does not use any neural network library,
instead, we implemented our own library which is compatible with
underlying XiTAO runtime. To evaluate the contribution of this

work, we ported both, widely used CNNs and synthetic neural net-
works. Among widely used networks, we implemented VGG16 [34],
AlexNet [35] and ResNet50 [36]. VGG16 is composed of 21 layers,
out which 16 are compute intensive. AlexNet is composed of 11
layers, out which 8 are compute intensive. ResNet50 is comprised of
52 layers, out of which 50 are compute-intensive. We designed syn-
thetic networks which not only represent usual CNNs but consists
of interesting weight distributions particularly to stress test the
capabilities of the Pipe-search algorithm. The synthetic networks
are further discussed in section 6.3.

6 Experiments
This section evaluates the impact of the different components

that constitue Pipe-search. We start by studying the convergence
speed and the quality of the explored configurations in Section 6.1.
Section 6.2 evaluates the importance of using computational hints
in Pipe-search. Section 6.3 demonstrates the capability of Pipe-search
in adapting to various levels of core heterogeneity while searching
for a balanced pipeline configuration. It calibrates the capability of
Pipe-search in the situation when optimal configuration is farther
away from the seeds. we study the overall impact of using the
online tuning in Pipe-search versus using only the pre-processed
seeds (offline), in the presence of performance asymmetry due to
cluster-level DVFS settings.

6.1 Quality of solution and convergence of
Pipe-search

The search space for a CNN with M layers on a platform with
{2, 3, ..,C−1,C} possible PScount values is represented by Equation
4. The size and dimension of the search space grow exponentially
with increased number of layers and PScount . We, therefore, design
an experiment for a rather small search space to compare exhaustive
search and Pipe-search algorithm. This is done to understand the
convergence and quality of the solutions found by Pipe-search. We
use 4 cores from our testing platform to run VGG16 with Lmax = 21
and P = {2, 3, 4} under governor setting 1 (Table 1). The exhaustive
search algorithm prunes 1970 pipeline configurations compared
to 34 in the case of Pipe-search. The results from Pipe-search are
reported in Table 3. Only 2% of the total search space points are
visited by Pipe-search. For the sake of higher expectancy of finding
an optimal configuration, we set α = 10. Pipe-search successfully
found the best configuration in much less number of trials. We
further investigate the quality of pipeline configurations tested by
Pipe-search. Table 4 shows that 79% configurations lie in the best
range (1s - 1.5s) of high throughput pipeline configuration. We
further observe that non of the trials from Pipe-search lie in the
lowest throughput region visited by the exhaustive search (2.0s -
5.0s). Pipe-search favors the high-throughput configurations during
the search because it prioritizes those with the least CV values.
This speeds up convergence to an optimal solution and reduces the
number of steps of the search to a factor of Equation 5, which is a
70x reduction in convergence time in this case.

6.2 Impact of using computational hints
Pipe-search traverses the possible pipeline stage lengths. For

example, if PScount ∈ {2, 3, 4}, then the different configurations
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Table 3: Comparison between exhaustive search and Pipe-
search using Vgg16 on NVIDIA Jetson TX2

Algorithm Trials Opt. Conf. Seed
Pipe-search 38 [7,4,10] [6,5,10]

Exhaustive Search 1970 [7,4,10] N/A

Table 4: Distribution of all pipeline configuration based on
throughput for VGG16 on 4 cores.

Algorithm 1.0 - 1.5 (sec) 1.5 - 2.0 (sec) 2.0 - 5.0 (sec)
Pipe-search 79% 21% 0%

Exhaustive Search 11% 18.3% 70.7%

Table 5: Tuning time and throughput(frames/sec) of pipe
searchwith andwithout hints, compared to Random search.

With hints Without hints Random
Throughput [f/s] 1.2 0.6 0.9
Training time [s] 0.1 0.1 1.1

pertaining to each PScount are explored starting from the respec-
tive seeds. The seeds are calculated based on the best CV value of
weights for each configuration with PScount stages, and are pro-
vided as input to Pipe-search algorithm. We investigate the impact
of using computational hints by executing the algorithm with and
without the knowledge of weight based seeds. In random walk, we
set the stopping condition to a throughput value (0.9 frames/s) to
reduce search time. Also, in Pipe-search (no hints), we just balance
the number of layers per pipeline stage. Results are shown in Ta-
ble 5. The training time in both Pipe-search variants is 90% less
than random walk. However, we observe that the throughput of
the resulting pipeline configuration with Pipe-search is 50% better
than the version with no computational hints.

6.3 Impact of performance asymmetry on the
solution and convergence

Our testing platform can be configured in four different governor
settings which can determine the performance of the two clusters.
The configurations are listed in Table 1. Note that the cases with
clusters on different frequency levels are the most performance
asymmetric. Hence, each setting exhibits a different level of hetero-
geneity in the platform. This means that a pipeline configuration
that is effective in one governor setting cannot be as effective in
another. Table 6 shows the optimal configurations reached by Pipe-
search for the VGG16 network under different governor settings.
We observe that not only does asymmetry affect layer partitioning,
but it also impacts the PScount . This shows that Pipe-search tends to
adapt to the heterogeneity while finding the optimal configuration.
Section 6.4 discusses the quality of the found optimal in more detail.

Now we compare the number of convergence steps (rank) and
the solutions in the case of symmetric and asymmetric governor
settings (1 and 3) using synthetic networks. The synthetic networks
have 1 or 2 perfect seeds (CV ≈ 0) with different stage counts. The
weight distribution of these synthetic networks are listed in Table 7.

Table 6: VGG-16 executed with different governor settings

Governor Setting Opt. Conf Ranks Throughput
1 [6,5,10] 1 1.22 Frames/s
2 [5,16] 7 0.36 Frames/s
3 [9,12] 2 0.21 Frames/s
4 [7,4,10] 3 0.17 Frames/s

Figure 3: Pipe-search exploration timeline for Synth2 under
governor setting 3

Note that we consider only convolutional layers for these networks
in order to be the representative of state of the art CNNs.We observe
that in different governor settings, different optimal configurations
were selected away from seed, and in some cases, with different
stage counts (PScount ) from the perfect seeds. The rank represents
the location of the solution in the search space sorted by CV values.
In the case of governor setting 3, there is high asymmetry in the
core performance so a configuration with higher rank is selected,
which means that, unlike the symmetric case, a higher CV value can
be selected in such cases. Therefore, Pipe-search adapts to both low
and high performance asymmetry. Figure 3 shows the exploration
timeline of Pipe-search for “Synth 2” under governor setting 3. Each
point represents execution time of slowest stage achieved by the
configuration tested by Pipe-search. We observe that the optimal
configuration lies in PScount = 3. The algorithm walks through all
PScount , and later on focuses the search on PScount = 3 region. The
exploration seizes after reaching a confidence limit of α = 15.

6.4 Pipe-search on common CNN networks
In this study, we aim at showing the effectiveness of adopting

the dynamic online approach (using Pipe-search) compared to only
using computational hints. To investigate this, we execute ResNet,
AlexNet and VGG16 under governor setting 3 as this entails the
highest level of performance asymmetry between the core clus-
ters of TX2. We use 2 Denver cores on “highperformance” and 2
A57 cores on “powersave” mode (at lowest frequency). Pipe-search
concludes that a pipeline of two stages would yield higher through-
put based on the online search. This is because of the fact that for
PScount = 3 or 4, the pipeline stages will be mapped across the core
cluster which causes performance degradation due to inter-cluster
communication overhead. Figure 4 shows the execution time of two
pipeline stages when tested using seeds from preprocessing stage
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Table 7: Pipe-search exploration for synthetic networks

Network Design Governor setting 1 Governor setting 2
Networks layers Weight distributions Best seed CV Optimal Rank CV Optimal Rank CV
Synth 1 7 {1,4,8,4,8,8,4} [3,2,2] 3.8 [4,1,1,1] 6 51.4 [5,1,1] 10 73.8
Synth 2 15 {1,9,4,8,5,4,8,5,7,1,1,1,4,8,22} [8,7] or [4,4,6,1] 0 [4,7,4] 8 18.5 [8,6,1] 22 35
Synth 3 13 {1,9,4,8,20,2,22,3,4,8,7,11,11} [4,2,1,4,2] 0 [3,1,2,1,4,2] 9 29.8 [7,4,2] 22 56.5
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Figure 4: Percentage execution time of CNN pipelines with
seeds and optimal configurations

compared to the optimal configuration. It is evident form the results
that the offline approach produces unbalanced configurations espe-
cially during high performance asymmetry but with exploration,
Pipe-search is able to find a configuration which balances out the
execution time for two pipeline stages. In these experiments, we
have used α in the range of [3, 15].

7 Related Work
Common neural network frameworks such as TenserFlow [8],

Caffe [9] and ARMCL [22] provide efficient implementation of
CNNs by leveraging, for example, optimized GEMMs and fused
and vectorized MAC (Multiply and Accumulate) operations, among
others. These implementations do not provide platform specific
optimizations, especially when edge devices are considered as com-
puting platforms for CNN inference. It is shown in literature that the
most suitable implementation for CNN inference on edge devices
is a task-based parallel implementation [18, 24]. Therefore, devel-
opers need to extend the existing frameworks to enable task level
parallelism to exploit the benefits of the heterogeneous computing
environments present in edge devices. Efforts have been made for
CNN inference on edge devices as well. Minakova et al. [18] convert
CNN models into Synchronous DataFlow (SDF) model to represent
computational and communication cost of CNN layers. Annotated
SDF models are then used by a genetic algorithm to find a mapping
of tasks on embedded CPUs and GPUs. The main focus of their
work is to balance the workload among the cores and GPUs in the
embedded system utilizing task and data level parallelism. Their
approach suggests to assign the heaviest SDF node to the core that
accompanies the GPU so that dense layers can exploit data level par-
allelism while assigning the rest of the nodes to the remaining cores
in order to balance the workload. The heterogeneity of embedded
CPUs is not explicitly highlighted in this approach. Additionally,
the SDF to core mapping is agnostic to dynamic system changes (e.g.
DVFS). To construct a balanced pipeline targeting heterogeneous
computing platforms, we require the performance estimation of

each type of core. Two closely related works that propose a predic-
tion model to provide an estimation of CNN performance on a given
architecture are AUGUR [26] and Pipe-It [24]. AUGUR is a tool that
provides performance prediction of CNNs on CPUs and GPUs using
CNN layer descriptors. Pipe-It also utilizes CNN layer descriptors
and a regression model to approximate the performance of different
types of cores in an embedded device. The prediction model in [24]
is an enhanced version of AUGUR’s prediction model [26], which
greatly reduces the prediction error. The average prediction error
reported by the authors is 13% on big cores and 11% on little cores
in a big.LITTLE architecture. Since the prediction error leads to a
throughput degradation in a pipeline, it is desirable to eliminate
the effects caused by prediction error. This shows that scheduling
decisions taken from prediction models may lead to performance
degradation, therefore, we propose an online tuning approach that
can reduce the chances of choosing the wrong layer to pipeline
stage distribution.

8 Conclusion
This paper presents a novel online tuning approach for through-

put maximizing CNN inference pipelines that adapts to perfor-
mance asymmetry in core clusters. We leverage compile-time hints
to generate seeds for faster design space exploration via our novel
evolutionary algorithm called Pipe-search. We evaluate Pipe-search
on a set of three state of the art CNNs and three synthetic CNNs.
Our results show that our approach effectively prunes the design
space, and that guided navigation results in faster convergence
making it a feasible approach for processing streaming data on
edge devices.
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Abstract. Chiplets have become a common methodology in modern
chip design. Chiplets improve yield and enable heterogeneity at the level
of cores, memory subsystem and the interconnect. Convolutional Neural
Networks (CNNs) have high computational, bandwidth and memory ca-
pacity requirements owing to the increasingly large amount of weights.
Thus to exploit chiplet-based architectures, CNNs must be optimized
in terms of scheduling and workload distribution among computing re-
sources. We propose Shisha, an online approach to generate and schedule
parallel CNN pipelines on chiplet architectures. Shisha targets hetero-
geneity in compute performance and memory bandwidth and tunes the
pipeline schedule through a fast online exploration technique. We com-
pare Shisha with Simulated Annealing, Hill Climbing and Pipe-Search.
On average, the convergence time is improved by ∼ 35× in Shisha com-
pared to other exploration algorithms. Despite the quick exploration,
Shisha’s solution is often better than that of other heuristic exploration
algorithms.

Keywords: CNN parallel pipelines · Online tuning · Design space ex-
ploration · Heterogeneous computing units · Processing on chiplets

1 Introduction

Chiplet-based heterogeneous integration has been touted as the future of proces-
sor design [15]. Chiplet technology has evolved from Multi-Chip-Module (MCM)
technology [34], which enables low cost during design and improves yield (i.e.
by reducing chip area) [14]. Furthermore, when combined with interposer-based
packaging technology, it enables lower latency and high bandwidth transmis-
sion to memory devices such as High Bandwidth Memory (HBM) [7]. Recent
advancements in 3D stacking have also opened ways for enabling Processing-In-
Memory (PIM) technology [37], which can be combined with chiplets to provide
a solution for workloads that require large data processing. Chip manufacturers
are adopting a mix of these technologies in order to design high performance
processors, resulting in heterogeneity at the level of the cores, memory subsys-
tem and the Network on Chip (NoC). For example, Nvidia’s Simba research
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prototype [28] features several chiplets with heterogeneous interconnect band-
width, which in this case means that the intra-chiplet bandwidth is significantly
higher than inter-chiplet bandwidth. Another example, Intel’s XeHPC Ponte
Vecchio [6] package, integrates a multi-chiplet GPU organization along with
high bandwidth memory (HBM) modules.In order to effectively exploit such ar-
chitectures, applications must be optimized considering the impact of different
levels of heterogeneity present in the computing platform.

Due to their high potential memory throughput, chiplet and 3D stacked archi-
tectures have become a prominent target for emerging machine learning applica-
tions [13]. Deep Neural Networks (DNNs) have high computational, bandwidth
and memory capacity requirements owing to the large amount of weights (up
to 1.6 trillion parameters for large switch transformers [9]) and the increasing
size of inputs that need to be transferred between layers. Parallel pipelining has
the potential to address these requirements by partitioning the whole network
across devices, and requiring only the inputs to be exchanged among stages. In
chiplet architectures, DNNs could be efficiently pipelined by distributing DNN
layers across chiplets so as to reduce inter-chiplet communication.

In order to partition and schedule pipelines, current approaches rely on de-
signing cost models to steer design space exploration [1, 3]. For instance, the
auto-scheduler in [1] explores over ten thousand schedules for a single CNN-
layer Halide [24] pipelines. The effectiveness of these approaches depends on the
accuracy of the cost model and the scalability of the exploration algorithm. So-
phisticated cost models, some of them using ML-models themselves, have been
proposed and used in [1, 2, 16, 20, 33, 35, 38]. These models, however, require
extensive training for near-optimal solutions [3], are sensitive to changes in the
execution environment (e.g., DVFS) and architectural parameters, need in-depth
architectural knowledge for model updates, and do not consider the impact of
heterogeneous or chiplet architectures. As heterogeneity at different levels of pro-
cessing (e.g. core performance, memory bandwidth and/or MCM organization)
is expected to increase in future HPC platforms, static pipeline partitioning and
scheduling become inflexible. Online auto-tuning of the pipeline schedule would
help to ensure performance portability to future architectures. However, to make
it practical, it is critical that online pipeline partitioning and scheduling finds
an acceptable configuration with low time overhead.

Existing works rely on predicted fitness and offline exploration. In this con-
text, trying and testing hundreds of schedules is acceptable, including schedules
that are too expensive to test in an online setting [1,2]. Pipe-Search [30] adopts
an online exploration approach for finding a pipeline configuration. Pipe-Search
generates a database of pipeline configurations which is space-intensive and pro-
hibitively slow for larger systems and deeper CNNs. In this paper, we propose
a quick method to determine a meaningful starting point, or seed, for the ex-
ploration coupled with a simple navigation heuristic for efficient runtime auto-
tuning. In Shisha, we leverage statically available information from the CNN
and from the target platform to reduce the number of exploration points and
find a near-optimal solution within reasonable time. A configuration explored
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by Shisha suggests grouping CNN layers into pipeline stages and mapping of
pipeline stages onto available sets of processing units referred to as Execution
Places (EPs). When generating initial configurations, Shisha aims at balancing
the load among pipeline stages while considering the allocation of stages to EPs.
Shisha improves upon related work in two ways:

– Shisha achieves faster convergence by introducing two novel schemes: (i)
the seed generation and (ii) the online tuning. We demonstrate that Shisha
is able to converge faster than existing algorithms (Simulated Annealing,
Hill Climbing and Pipe-Search) and that it is able to find a solution within
practical time limits.

– We show that Shisha scales better with deeper CNNs and with larger
amount of EPs per processing unit which is one of the limitations of prior
online tuning approaches such as Pipe-Search [30].

Shisha maps pipeline stages to EPs, which could be any type and number of
processing units, such as multicores or manycores. To measure the quality of
schedules explored by Shisha we compare our results to conventional search ex-
ploration algorithms such as Simulated Annealing (also used by TVM [38]), Hill
Climbing, Exhaustive Search and Random Walk (executed for a longer period of
time), and to Pipe-search, an earlier online tuning approach. We test Shisha on
state of the art CNNs such as ResNet50 [11] and YOLOv3 [26]. The results show
that, despite exploring only a tiny portion of the design space (∼ 0.1% of design
space for ResNet50 and YOLOv3), Shisha finds a solution that is equivalent
to exhaustive search. Moreover, due to the guided exploration, the convergence
time is improved by ∼ 35× in Shisha compared to the other representative
exploration algorithms.

2 Motivation and problem definition

In a computing platform with different types of memories, the assignment of
workload and data objects becomes crucial for better performance. To investi-
gate the impact of different thread and data assignment strategies, we test the
STREAM Triad benchmark [18] on Intel’s Knights Landing (KNL) [29].KNL
has two types of memories, 16 GB of high bandwidth memory(HBM), also called
MCDRAM, and 90 GB of DDR4 DRAM. The bandwidth of HBM is 4× higher
than that of DDR [27]. This suggests that most of the application data should
be placed in HBM. It also means that HBM should be able to handle more par-
allelism until the bandwidth is saturated. We tested two sizes of data objects,
19 GB and 31 GB, to run STREAM Triad on KNL. For each data size, 15 GB
of data are placed in MCDRAM and the remainder of the data are placed in
DDR. In Figure 1, we show three cases, namely, 1) when all data is placed in
DDR (DDR only), 2) when MCDRAM is used as a cache (cache mode), and
3) when data is distributed across the two memories. As can be seen, with a
sensible thread assignment, the latter yields the best performance. This shows
that a clever data partitioning and thread assignment are key to achieve high
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Fig. 1: Comparison of case 1,2 and 3

2 4 8 16
DDR

16
32

64
12

8
M

C
D

R
A

M

0.7 0.61 0.61 0.45

0.55 0.4 0.33 0.22

0.45 0.31 0.23 0.12

0.43 0.31 0.24 0.15 0.2

0.3

0.4

0.5

0.6

0.7

(a) [15-4]

2 4 8 16
DDR

16
32

64
12

8
M

C
D

R
A

M

1.5 1.1 0.88 0.47

1.4 1.1 0.85 0.47

1.1 1 0.84 0.47

1 1 0.85 0.5 0.6

0.8

1.0

1.2

1.4

(b) [15-16]

2 4 8 16
DDR

16
32

64
12

8
M

C
D

R
A

M

12.7 12.2 14.6 14.4

18.7 14.5 13.1 10.5

29.7 21.1 16.6 9.52

55.5 40.8 32.4 20.9
10

20

30

40

50

(c) [15 -4]

2 4 8 16
DDR

16
32

64
12

8
M

C
D

R
A

M

27.2 22 21.1 15

46.5 39.5 33.9 22.6

72.5 68.3 60.1 37.5

134 136 115 72
20

40

60

80

100

120

(d) [15 -16]

Fig. 2: (a) & (b) Execution time [s], (c) & (d) Parallel cost (Core count ×
execution time) of STREAM Triad with data distribution [X-Y], where X =
GBs placed in MCDRAM and Y = GBs placed in DDR

performance in the presence of memory heterogeneity. Further analyzing case 3,
Figure 2 shows the heatmap of the execution time of STREAM Triad with differ-
ent thread assignments to MCDRAM [16, 32, 64, 128] and DDR [2, 4, 8, 16]. The
optimal number of threads is determined by the a) memory bandwidth of each
memory type, b) the additional bandwidth consumed by each extra thread, and
c) the amount of data to be processed. Results from the experiment show that
for each data partitioning between HBM and DDR there is a different optimal
thread partitioning. Figure 2 represents the parallel cost of the same experiment.
We observed that an optimal distribution does not always lead to a minimal par-
allel cost. A suboptimal distribution can, in turn, reduce the parallel cost. An
important observation from Figures 2b–2d is that better performance can be
achieved by assigning less number of threads per memory type, rather than opt-
ing for assigning maximum number of threads. Therefore finding a distribution
that results into better performance and parallel cost is challenging.

Problem definition and general approach of the solution:
This work considers a computing platform which is composed of a set of clus-
ters consisting of high performance cores attached to a high-bandwidth memory
(referred to as Fast Execution Place – FEP) and clusters of relatively slower
cores attached to a low-bandwidth memory (referred to as Slow Execution Place
– SEP). This MCM based scenario is expected for chiplet architectures with
heterogeneous integration and is shown in Figure 3. Our goal is to run through-
put maximizing CNN inference pipelines on such an architecture. In this paper
we demonstrate a dynamic approach to map pipeline stages, while considering
heterogeneity. Shisha aims at grouping layers into pipeline stages such that it
balances out the workload among all the stages. However a fully balanced distri-
bution is not possible since the distribution of weights among layers is variable.
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Fig. 3: System targeted in this paper. Memory type X and Y represent different
memory bandwidths.

On the hardware side, the EPs are also heterogeneous in performance. Shisha
maps pipeline stages of higher weights to FEPs. Shisha investigates chiplet ar-
chitectures but the approach is not restricted to such platforms only. Computing
platforms that are composed of processing elements each having own memory
space, for instance, PIM based chiplets, can be targeted by Shisha. Moreover
Shisha does not require additional human effort to adapt to changes in the
computing units which makes it portable and adaptive.

3 Background

In layer pipelining [4] the work is partitioned by distributing network layers
among computational resources. Model parallelism is combined with layer pipelin-
ing by arranging computational resources into multiple teams of workers. This
hybrid parallelism has following benefits: 1) there is no need to replicate weight
and input tensors on all devices, 2) the communication volume and points are
reduced, and 3) the weights can remain cached, thus decreasing memory round-
trips. In the rest of the paper we will refer CNN pipeline in which network layers
are grouped into pipeline stages. Each pipeline stage is assigned a unique set of
computational resources, referred to as EPs.

Finding out the right schedule and mapping of CNN pipelines on chiplet ar-
chitectures is a design space exploration problem, where we are interested in the
configuration that achieves the highest throughput. The configuration consists
of the number of pipeline stages, CNN layers per pipeline stage and a mapping
of pipeline stages to EPs. In the literature, various stochastic optimization and
machine learning algorithms have been used such as Simulated Annealing [38],
evolutionary algorithms [1,30], reinforcement learning [2,23] and deep neural net-
work techniques [3]. The design space under consideration is large and complex,
requiring tens of thousands of trials in order to reach a near optimum with cur-
rent search schemes. In this paper we introduce an exploration algorithm which
starts with an acceptable configuration and later on is guided by heuristics that
avoid trying bad configurations and taking longer time to converge.

4 Related work

Pipeline parallelism is an effective tool to fully control workload assignment to
various processing elements. Pipeline parallelism is at the core of Halide [24], a
language originally designed to program imaging pipelines, but which can also
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be used to implement DNN inference [1,36]. Parallel pipelines for CNN training
have been applied in practice [8, 12, 21, 22]. Recently, Chimera [16] generates a
schedule for bi-directional pipelines by using complex cost models that represent
the execution time of one network pass and calculate the depth and parallelism
per pipeline stage. In Halide, [1] the pipeline scheduling approach uses a cost
model that considers 66 platform and application specific features. For the cost
model, 26 out of 66 feature values are predicted by a neural network trained on
random representative programs. According to the specifications, one training
point takes at most 320 minutes to train the neural network using different
schedule configuration. To predict a schedule for Halide pipelines of a single
CNN layer, the scheduler considers 10k configurations. In comparison, we show
that for a 52 layer large YOLOv3 Shisha takes 24 minutes to converge and
considers only 18 configurations.

Schedule space exploration has also been studied extensively. State of the
art schedulers such as TVM’s auto-scheduler, Ansor [38] use a trained DNN
to predict fitness values for an evolutionary search approach. Chameleon [2]
also adopts an adaptive sampling approach over exploration techniques such as
simulated annealing and reinforcement learning to reduce the exploration time.

5 Shisha exploration approach

As mentioned, a pipeline configuration consists of two components: 1) the num-
ber of CNN layers assigned to each pipeline stage, and 2) the assignment of each
pipeline stage to EPs. An EP can be a single or multiple cores attached to a
memory module. Therefore, we classify the EPs according to the type of memory.
For example, in Figure 3 EPs are colored in green or red. We use this classifi-
cation in Shisha to provide hints about the characteristics of the computing
platforms with heterogeneous modules.

Shisha is a two-step approach. The first step is the “seed generation”, in
which we use a simplified cost-model to come up with an initial solution. This
initial solution is used in the second “online tuning” step for faster convergence.

5.1 Seed generation

The goal of the seed generation is to determine a sensible starting configuration
using only static information.

Firstly, Equation 1 is used to calculate the weights of the CNN layers [17,
19, 32, 33]. For each layer, H,W,C denote the height, width and depth of the
input tensor. R,S represent the height and width of the underlying convolutional
kernel and k is the number of filters of the convolutional kernel.

W = H ×W × C ×R× S ×K (1)

Secondly, we capture the heterogeneity of the system to support the seed
generation. This is used to guide the mapping of pipeline stages to EPs together
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Algorithm 1 Seed Generation

Require: Wl, He, N, L,C
1: seed[N ]
2: E[N ]
3: for passes in [0..|L−N |] do
4: minw ← min(Wl)
5: n← min(minw − 1,minw + 1)
6: Wl ← merge(minw, n)
7: seed← merge layers(minw, n)
8: end for
9: R← rank(seed,Wl, C)

10: for i in [0...N ] do
11: E[Ri]← assign(Ri, Hei)
12: end for
13: return seed,E

Algorithm 2 Online Tuning

Require: seed,E,He, α
1: conf ← seed
2: throughput = execute(conf)
3: γ ← 0
4: while γ <α do
5: stage← slowest stage(conf)
6: t stage← nearestFEP (E)
7: conf ← move(conf, t stage)
8: Tp = execute(conf)
9: if Tp ≤ throughput then

10: γ + +
11: else
12: γ ← 0
13: throughput← Tp
14: end if
15: end while
16: return conf

with the total weight of each pipeline stage. We rank the EPs in a decreasing
order of performance, for example, from Figure 3 green EPs have rank 1 (FEP)
and all red ones have rank 2 (SEP). This is a hint to Shisha to balance the
workload considering static knowledge about the heterogeneity of the system.

The seed generation process is described in Algorithm 1.Wl = [wl1, wl2, ....wlL]
is the weight list, where a layer weight wli is calculated using Equation 1.
He = [e1, e2, ...eN ] is a list of EPs sorted in descending order w.r.t. performance.
For example, for Figure 3 He = [G1, G2, ..Gp, R1, R2, ..Rq] represents the EPs
that belong to memory types X (green) and Y (red). L is the total number of
layers in a given CNN. N is the total number of pipeline stages in final pipeline
(N ≤ L) and C is assignment choice which is discussed in Section 5.1 . The
output of Algorithm 1 is a pipeline configuration Seed = [PS1, PS2, ...PSN ],
where PSi represents the number of CNN layers assigned to ith pipeline stage.
Output E = [e1, e2, ...eN ] is a list of EPs from He and the corresponding assign-
ment to pipeline stages. Algorithm 1 comprises two phases. In phase 1 (Lines
from 3-8) we generate pipeline stages by combining CNN layers. The goal of
this phase is to merge layers into groups in order to balance out the cumulative
weight of groups. These groups eventually become pipeline stages. The idea is to
look for the layer with lowest weight (Line 4) and merge it with the immediate
neighbour with the smallest weight (Line 5,6). Typically, the weight distribution
in CNN layers does not follow any order, i.e. a light weight layer can be found
between two layers with heavy weights. Since CNN layers make a chain like di-
rected acyclic graph, therefore we can only merge consecutive layers to respect
the input/output relationship across the layers within a pipeline stage.

The second phase of Algorithm 1 (Lines 9-11) assigns the pipeline stages
output by phase 1 to EPs. In principle, heavy pipeline stages should be assigned
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to high performance EPs, however, the assignment is not trivial in practice and
requires to examine the impact of a few heuristics. Eventually, this will help in
balancing execution time per pipeline stage, thus achieving a balanced pipeline.

Stage-to-chiplet assignment heuristics: Once CNN layers are grouped
into pipeline stages, we then assign an EP to each pipeline stage. Since we have
information about performance heterogeneity among EPs, we can make different
choices, such as;

– Rank pipeline stags w.r.t. number of layers assigned to each pipeline stage
(Rankl). While merging layers into stages, it is sometimes inevitable to have
pipeline stages which are heavy in terms of aggregated weight with many
light weight layers as opposed to a pipeline stage with one heavy layer. The
highest rank corresponds to the pipeline stage with highest number of layers.
We assign higher ranks to SEPs. This facilitates the online tuning phase later
to greedily move the layers among pipeline stages to reach a solution.

– Rank pipeline stags w.r.t. aggregated weight of each pipeline stage (Rankw)
Here, we assign the pipeline stages with large weights to fast EPs to balance
the load.

Line 9 controls this choice in Algorithm 1.

5.2 Online tuning

For the exploration phase, we strive to reduce the exploration time so that it
is still practical to carry out an online exploration without causing a significant
overhead on execution time. This is particularly challenging given the size of
the multidimensional pipeline configuration space, which often includes an over-
whelming majority of slow configurations. We avoid visiting such configurations
by starting from the seed configuration and incrementally adjusting load distri-
bution by moving layers from one pipeline stage to an adjacent lighter stage.

In Algorithm 2, we describe the auto-tuning scheme of Shisha . The required
input is a pipeline configuration generated as a seed. A list of EPs E which rep-
resent a mapping of pipeline stages to the computing platform. The α parameter
controls how many configurations are attempted after a configuration that out-
performs the seed and recently found solution has been detected. The rationale
behind Algorithm 2 is to gradually reduce the load of the slowest pipeline stage
in order to improve the overall throughput of the pipeline. Hence, Shisha finds
the slowest stage (Line 5) and remaps one layer at a time to the nearest faster
EPs (Line 6). Once a better configuration is found than any previous one, we
try α more times to search for a better configuration. In Line 6 we balance the
workload by moving layers to a nearest fast EP (nFEP ). However, this is not
the only choice that can be made. The nearest lightest fast EP (nlFEP ) is also a
good target to move layers as well. Therefore we keep both options open for the
user to select. The complexity of Shisha is negligible therefore it does not cause
much work to test different choices for a given CNN and computing platform.
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Table 1: Gem5 System configuration
Conf # Memory bandwidth Core type # of cores

1 40 GB/s arm Big 4
2 40 GB/s arm Big 8
3 20 GB/s arm Little 4
4 20 GB/s arm Little 8

6 Experimental setup

Shisha targets systems that are heterogeneous in core performance and memory
bandwidth. As discussed in Section 2 the system under consideration consists of
different types of cores attached to different memory modules. This is common
in chiplet architectures such as Nvidia’s Simba [28], Intel XeHPC ponte Vec-
chio [6] and AMD Zen 2 [31]. We simulated such an architecture using the gem5
simulator [5]. To simulate different core performances we used ARM’s Big and
Little cores‘ [10] and to test different memory types, we used the simple memory
design in gem5 and changed the bandwidth value to get performance numbers.
Table 1 summarizes various configurations simulated for evaluating Shisha. Fig-
ure 3 shows a configuration for EPs that can be used with the database generated
using gem5. We will use these configurations to test Shisha in Section 7

To obtain performance number for CNNs, we simulated convolutional ker-
nels of widely used representative CNNs such as Resnet50 and YOLOv3. A
GEMM-based implementation [25] consists of two operators; 1) Im2Col and 2)
GEneralized Matrix Multiplication (GEMM). We include both operators to sim-
ulate performance numbers for CNN layers of ResNet50, YOLOv3 and AlexNet.
A fixed fraction of each layer is simulated for every configuration from Table
1, which is then scaled to the full size of the layer. In our experiments we use
database to query execution time of layers which is used to calculate execution
time of pipeline stages. All exploration algorithms use this database which, on
actual machine, is a runtime performance value.

7 Evaluation

As highlighted previously, Shisha includes a seed generation component and an
online tuning heuristic. In this section, we evaluate the quality of the seed and
the final solution generated by Shisha and analyze the convergence of the online
auto-tuning phase.

7.1 Baseline and test applications

Pipe-Search [30] is an online approach that uses a database of pipeline configu-
rations sorted w.r.t the distribution of workload among pipeline stages. It tests
pipeline configurations of various depth and converges to a solution when no
better solution is found by a time limit set by the user. This approach incurs a
high overhead when generating the database of pipeline configurations which also
limits its scalability. Another limitation is that the algorithm does not consider
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heterogeneity of the platform and thus converges before trying configurations
with a higher variance in computational workload among pipeline stages. We
compare Shisha’s auto-tuning module with a set of exploration algorithms com-
monly used in literature, such as Hill Climbing (HC), Simulated Annealing (SA)
Random walk (RW) and in selected cases, Exhaustive Search (ES).

We use three CNNs in our experiments. ResNet50 [11] and YOLOv3 [26] are
widely used image classification CNNs. There are 50 compute intensive layers
in ResNet50 and 52 compute intensive layers in YOLOv3. The generation of
sorted configurations, as required by Pipe-Search and ES, incurs an impractical
time overhead when running ResNet50 and YOLOv3 for pipline depth > 4.
Therefore, we extend our benchmark set with a synthetic network (SynthNet)
consisting of 18 convolutional layers. SynthNet consists of the a replication of
AlexNet convolutional layers. This is to analyze CNNs that can be run on a
higher number of EPs (i.e. EP > 8) and have a compute complexity matching
widely used CNNs.

7.2 Comparison of Shisha with exploration algorithms

Figure 4 shows the convergence behavior of all exploration algorithms. The so-
lution found by Shisha is equal to the best solution found by ES. For a fair
comparison we run SA and HC using the same seed (SAs, HCs) generated by
Shisha as a starting configuration. HC tries configurations in close proximity,
both versions of HC and SA managed to find a better solution (throughput
= 0.80) compared to the best solution (throughput = 0.94). However, the time
of convergence of representative exploration approaches is high, this is because
of using many configurations out of which some are very slow. ES and PS, on
the other hand, incur the overhead of generating a database of configuration,
as shown in Figure 4, it took 1200s, after that ES and PS started exploring.
Shisha explores 0.12% of the total design space as compared to Pipe-search
which explores 2.03% of the design space. On average, the convergence time is
improved by ∼ 35× in Shisha compared to other search algorithms. In our ap-
proach, the stopping condition is controlled by α as mentioned in Section 5.2.
We used α = 10 in our experiments.
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7.3 Analysis of optimality

To quantify the confidence on Shisha solutions, we compared against ES using
larger CNNs. In this experiment we configured a system of four EPs as it takes a
lot of time for ResNet50 and YOLOv3 to run ES for higher number of EPs. Figure
5 shows the throughput of the solution found by Shisha and other algorithms
normalized to best solution found by ES. In case of ResNet50 and YOLOv3,
Shisha found the best solution by exploring 0.1% of the design space. In case of
SynthNet, Shisha explored 2.5% of design space to find best solution. This is due
to the fact that design space of SynthNet (18 layers) is smaller than ResNet50
(50 layers) and Shisha on average tries 25 − 35 exploration points with α = 10.

7.4 Importance of seed in auto-tuning phase of Shisha

The seed generated by Shisha contains the mapping of pipeline stages to EPs.
The goal of online tuning in Shisha is to adjust the layer distribution among
pipeline stages such that a final solution yields a balanced pipeline for improved
throughput. Shisha’s seed is significant for fast convergence with a high quality
solution. Figure 6 represent the throughput and convergence time of Shisha

when initiated with the seed generated by Algorithm 1, represented as Shisha

mark compared to a set of 100 random seeds and solutions obtained with random
seeds. In case of ResNet50, the solution quality in both cases is similar but
convergence time is increased by 35% when started with a random seed. In case
of YOLOv3, the throughput of the solution found using Shisha seed is 16%
better and the convergence time is always better than a solution found using a
set of 100 random seeds.

7.5 Assignment and balancing schemes in Shisha

Section 5.1 and 5.2 discuss various choices that Shisha makes while assigning
EPs and balancing workload among pipeline stages. We investigate the impact of
each of these choices, with results shown in Figure 7. Table 2 lists the heuristics
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to be configured in Shisha. Assignment of EPs in H5 and H6 is random, this
is done to study the impact on convergence when no heuristic is used. Table 3
lists various configurations of computing platform used to run this sensitivity
analysis. The balancing scheme lightest FEP is effective in all cases as Shisha

tries to move workload to an FEP which takes least time to execute assigned
pipeline stage. This helps in balancing the pipeline as well as maximizing the
throughput of the pipeline. In 80% of the cases, H1 and H3 yield better results.
The likelihood of H1 and H3 is similar, we investigated the convergence time
of both schemes in order to determine the effectiveness of H1 and H3. Figure 8
Shows that the convergence time of H3 is less than H1 in 90% of the cases. This
is due to the fact that in H3 assignment is done w.r.t. weights which means the
configurations tested during exploration take reasonably less time than in H1.
We recommend to use H3 because it converges faster and yields a near optimal
solution.

Heuristic # Assignment of EPs Balancing

H1 Rankl nlFEP
H2 Rankl nFEP
H3 Rankw nlFEP
H4 Rankw nFEP
H5 random nlFEP
H6 random nFEP

Table 2: Heuristics of Shisha

Conf. FEPs SEPs

C1 1 8-core 1 8-core
C2 2 8-core 2 8-core
C3 4 4-core 2 8-core
C4 2 8-core 4 4-core
C5 4 4-core 4 4-core

Table 3: EPs

7.6 Impact of inter-chiplet latency on pipeline stages

To study the impact of communication latency among pipeline stages on chiplet
architecture, we executed SynthNet using best solution found after exploration.
We added extra latency ranging between 1ns to 1s in all chip-to-chip data trans-
fers. Figure 9 shows that the pipeline throughput is not impacted by inter-chiplet
latency unless one considers very large latencies above 1ms. This is because the
latency of pipeline stage execution is orders of magnitude higher than inter-
chiplet latency. In cases when interconnect latency > 1ms, pipeline throughput
is impacted but Shisha still finds near optimal solutions. However, such a high
value of interconnect latency is unlikely to appear in chiplet architectures.
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8 Conclusion

In this work we demonstrate a fast approach to scheduling CNN pipelines on
heterogeneous computing platforms consisting of fast and slow cores. In princi-
ple, the approach is generic and can be used also on platforms featuring GPUs or
FPGAs, in addition to CPUs. We utilize compile time information in combina-
tion with a brief and guided online search for auto-tuning the CNN layers into
parallel pipelines. Our experimental evaluation shows that the solution found
by Shisha is as good as one produced by an exhaustive search of the design
space. The results also show that Shisha scales well with larger networks and
computing platforms.
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