
Generating Optimized Trajectories for Robotic Spray Painting

Downloaded from: https://research.chalmers.se, 2024-03-13 09:21 UTC

Citation for the original published paper (version of record):
Gleeson, D., Jakobsson, S., Salman, R. et al (2022). Generating Optimized Trajectories for Robotic
Spray Painting. IEEE Transactions on Automation Science and Engineering, 19(3): 1380-1391.
http://dx.doi.org/10.1109/TASE.2022.3156803

N.B. When citing this work, cite the original published paper.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Generating Optimized Trajectories
for Robotic Spray Painting

Daniel Gleeson , Stefan Jakobsson, Raad Salman, Fredrik Ekstedt, Niklas Sandgren, Fredrik Edelvik,

Johan S. Carlson, and Bengt Lennartson , Fellow, IEEE

Abstract— In the manufacturing industry, spray painting is
often an important part of the manufacturing process. Especially
in the automotive industry, the perceived quality of the final
product is closely linked to the exactness and smoothness of
the painting process. For complex products or low batch size
production, manual spray painting is often used. But in large
scale production with a high degree of automation, the painting
is usually performed by industrial robots. There is a need
to improve and simplify the generation of robot trajectories
used in industrial paint booths. A novel method for spray
paint optimization is presented, which can be used to smooth
out a generated initial trajectory and minimize paint thickness
deviations from a target thickness. The smoothed out trajectory
is found by solving, using an interior point solver, a continuous
non-linear optimization problem. A two-dimensional reference
function of the applied paint thickness is selected by fitting a
spline function to experimental data. This applicator footprint
profile is then projected to the geometry and used as a paint
deposition model. After generating an initial trajectory, the
position and duration of each trajectory segment are used as
optimization variables. The primary goal of the optimization
is to obtain a paint applicator trajectory, which would closely
match a target paint thickness when executed. The algorithm
has been shown to produce satisfactory results on both a simple
2-dimensional test example, and a non-trivial industrial case of

Manuscript received October 8, 2021; revised January 7, 2022; accepted
February 15, 2022. This article was recommended for publication by Associate
Editor W. Shen and Editor M. Dotoli upon evaluation of the reviewers’
comments. This work was supported in part by the Project SelfPaint funded
by the Fraunhofer Gesellshaft and the Internal Program for Business
Oriented Strategic Alliances [Wissenschaftsorientierte Strategische
Allianzen (WISA)], in part by the Formas—a Swedish Research
Council for Sustainable Development and the Project Roboclean
(2019-02264), and in part by the Project Sustainable Motions—SmoothIT
funded by the Swedish Governmental Agency for Innovation Systems
(Vinnova). (Corresponding author: Daniel Gleeson.)

Daniel Gleeson is with the Geometry and Motion Planning Department,
Fraunhofer-Chalmers Centre, 412 88 Gothenburg, Sweden, and also with
the Automation Research Group, Department of Electrical Engineering,
Chalmers University of Technology, 412 96 Gothenburg, Sweden (e-mail:
daniel.gleeson@fcc.chalmers.se).

Stefan Jakobsson is with Arcam EBM, GE Additive Company,
435 33 Mölnlycke, Sweden.

Raad Salman, Fredrik Ekstedt, and Johan S. Carlson are with the
Geometry and Motion Planning Department, Fraunhofer-Chalmers Centre,
412 88 Gothenburg, Sweden.

Niklas Sandgren and Fredrik Edelvik are with the Computational Engineer-
ing and Design Department, Fraunhofer-Chalmers Centre, 412 88 Gothenburg,
Sweden.

Bengt Lennartson is with the Automation Research Group, Depart-
ment of Electrical Engineering, Chalmers University of Technology,
412 96 Gothenburg, Sweden.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2022.3156803.

Digital Object Identifier 10.1109/TASE.2022.3156803

painting a tractor fender. The resulting trajectory is also proven
feasible to be executed by an industrial robot.

Note to Practitioners—The work is motivated by the need to
generate well performing robot trajectories in robotized spray-
painting booths. The described method applies to cases where
robotic spray painting is to be used for painting a surface with
an even layer of paint at a specified thickness. The method
generates and optimizes robot trajectories and is shown to be
able to generate a satisfactory paint cover for simple test cases
as well as more realistic industrial cases. For a user it could be
implemented as is, or be obtained as a standalone service, but
there are some prerequisites that need to be fulfilled to make use
of the optimization method. It is assumed that the surface to be
painted is available as a CAD-model and that physical testing has
been performed to determine the characteristics of the paint and
nozzle. These physical tests amount to spraying paint on a flat
piece of material at a few different distances from the surface and
measuring the cross section of the paint thickness. The resulting
trajectory can be executed on any industrial painting robot that
can handle linear motion commands.

Index Terms— Industrial robots, manufacturing automation,
robot motion, spray painting, trajectory optimization.

I. INTRODUCTION

SPRAY painting has been used for more than a century
as an efficient way to apply an even layer of paint to

details and parts of all sizes. Initially this was a purely manual
process, using airbrushes or other handheld devices. Manual
spray painting is still used, even in industries which are
otherwise highly automated. However, a significant part of
industrial spray painting is now automated. The degree of
automation is bound to increase, since it is one of the key
drivers for increasing quality and lowering costs [1]. Early
automation developments included automated linear spray
systems, which have advanced to the fully automated and
robotized spray-painting booths used in many industries today.

Robotic spray painting is a commonly used painting tech-
nique in highly automated production processes, such as in the
automotive industry. Often a manual teaching pendant is used
to time-consumingly generate robot trajectories. By simulating
the process offline, it is possible to create tools that simplify
the work for a spray-painting engineer. Accurately simulating
the resulting paint thickness for a given robot trajectory and
providing this as feedback to the operator, makes it possible
to modify and improve robotic trajectories before, or ideally
instead of, physical testing.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1656-8544
https://orcid.org/0000-0002-3406-3881


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

After an accurate forward simulation of a process is
achieved, the focus is generally shifted towards solving the
inverse problem. In this case, where the forward simulation
finds a resulting paint thickness for a given robotic painting
trajectory, the inverse problem becomes finding a painting
trajectory given a desired paint thickness. More precisely, the
problem could be stated as follows: given a desired paint
thickness and a triangulated model of a fixed geometry to
be painted, find a painting trajectory that when executed
produces a paint thickness that as closely as possible matches
the target thickness. The optimization problem was described
in [2] where an initial trajectory was assumed to be previ-
ously generated. This paper aims to provide a more complete
description of the process of going from a specified surface
to be painted, to executable robot trajectories. To achieve
this, the initial trajectories, which are an important starting
point of the optimization, need to be generated with a focus
on the feasibility and structure of the trajectory. The initial
curve generation is done by covering a rectangular area with
a sweeping curve using a specified sweep width, projecting
this curve onto the specified surface, and finally modifying
the curve with extra waypoints and extended sweeps.

Apart from the paint thickness objective, there are some
additional requirements placed on the final trajectory. These
mainly relate to executability. It is also important that the gen-
erated trajectory lies within the set of parameter combinations,
where the chosen projection-based paint deposition model
gives accurate results. This is an accuracy problem, which
is not easy to specify or include in the optimization problem,
since there are no strict borders of the feasible region. Some
parameters behave quite regularly and predictably. For exam-
ple, the linear scaling of the projection profile with increasing
perpendicular distance to the target has been experimentally
verified. For other parameters the accuracy degrades rapidly,
for example when approximating the paint deposition on parts
of the geometry with very high curvature. These problems are
handled in the cost function by penalising several deviation
measures from the feasible initial trajectory.

Related problems within the area of robotics that have been
extensively studied include trajectory generation for point-
like features, such as spot welding [3]. It also includes curve
following applications, such as lay down of sealant material,
where the curve is already defined by the seam between the
sheet metal parts [4]. The added complexity of features with
higher degrees of freedom and higher model uncertainty makes
the optimization of paint applicator trajectories a compara-
tively harder problem to solve. The overall goal is to formulate
a paint thickness optimization problem that accurately captures
the behaviour of the physical system.

The main contributions of the work presented in this paper
can be summarized as follows:

• An algorithm for generating initial spray painting trajec-
tories, that cover the surface with sufficient paint, while
having a simple topology with few or no intersections
and twists.

• Incorporating an accurate paint deposition model in the
trajectory optimization based on experimental data.

• Generating solution trajectories that are feasible to
directly execute on industrial painting robots.

Just as it is important for the optimization problem to
accurately capture the physical system, it also has to be
solvable within reasonable execution times. This is something
that will be application dependent. The trajectory optimization
has initially been used in an offline stage, meant to be used in
a setup stage of an industrial painting line. In an offline stage,
short execution times are not critical. Instead, computationally
expensive droplet tracing algorithms can be used in a post
processing step to verify or improve the solution trajectories.
Using the optimization problem formulation presented in this
paper, solutions are found in a matter of minutes even for rea-
sonably complex industrial cases. This opens up the possibility
of using the solution trajectories in low batch size painting
booths, where incoming objects are scanned in connection with
their arrival at the painting booth.

The proposed iterative optimization procedure is shown
to produce an even paint thickness for typical non-trivial
industrial use cases of robotic paint coating, and the proposed
paint deposition model has been tuned to closely match
physical experiments of rotary bell applicators. Additionally,
later stages of the development have been performed in parallel
with physical testing in order to be able to handle practical
considerations for typical cases. The optimization problem is
specialized for spray painting applications, but the proposed
problem formulation is quite general and could be applied in
similar situations with a defined goal function over a con-
tinuous surface. Similar applications might include automated
cleaning of non-trivial surfaces or refining a laser measurement
mapping of a complex geometry.

Some background and motivation for the work as well as
a brief summary of previous work and contributions can be
found in Section II. A description of the overall problem to
be solved is given in Section III, along with an overview
of how the work presented here fits into a modularized
workflow to find a solution. The method for generating initial
painting trajectories is described in Section IV, while the paint
optimization problem is defined in Section V. Plots of the
resulting paint thickness when running the optimization on a
simple test-geometry, as well as an industrial case of a tractor
fender to be painted, are presented in Section VI. A discussion
about the method, model and the results can be found in
Section VII. Finally, some conclusions and recommendations
for further research are given in Section VIII.

II. BACKGROUND

Paint deposition modelling is a field which has received
attention from both industry and academia, and multiple
different models have been developed and are used in dif-
ferent settings. These models include simple cover checking,
projection methods using for example a composite Gaussian
formulation [5], or even full dynamic simulation of elec-
trically charged paint droplets dispersed from a rotary bell
nozzle [6]–[9].

In the general case, to accurately simulate the paint thick-
ness produced by a given paint applicator trajectory, a set of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GLEESON et al.: GENERATING OPTIMIZED TRAJECTORIES FOR ROBOTIC SPRAY PAINTING 3

coupled non-linear differential equations needs to be solved.
Such a computationally expensive simulation is infeasible to
be used directly in an optimization routine. But it is possible
to simplify the paint deposition problem, and we are satisfied
to find a reasonable approximation to the resulting paint
thickness. This is done by fitting parameters to experimentally
found thickness measures of simple test trajectories. The
simplified deposition model is based on projecting a footprint
profile onto a target geometry. This experimentally verified
model is reasonably accurate in a region of parameter values,
as long as they do not deviate too much from the different sets
of parameters used to tune the model. The initial trajectory is
assumed to be in this feasible region. During the optimization
the deviations from the initial trajectory is limited to ensure
that the final solution is within a region of acceptable model
accuracy. The main parts of the paint projection method is
described in Section V, and a thorough explanation can be
found in [10]. The necessary calculations can be divided into
a paint flow calculation and a paint projection scaling.

Optimizing or creating a painting trajectory, given a repre-
sentation of a geometry, has been a research topic for many
years. Examples of contributions in the area from the early
‘90s include both trajectory planning for uniform circular paint
deposition on early CAD-models [11], and more analytical
treatment of the underlying functions in the optimization
problem [12]. Later work has expanded this to more general
surfaces, while still focusing on finding an optimal overlap
for adjacent sweeps. A common method, where intersecting
planes parallel to the bounding box of the surface generate the
painting trajectory, is outlined in [13]. The same technique is
used in [14], but an additional post-processing step is intro-
duced in order to achieve uniform overlap between adjacent
passes on surfaces with heavy curvature. In [15] the proposed
method produces a painting trajectory on a triangulated 2D
surface by computing curves with minimized geodesic curva-
ture, and a comparison to the method of intersecting planes
is performed. An integer programming approach is described
in [16], while [17] outlines a constrained multi-objective
optimization problem for achieving uniform thickness while
minimizing both cycle time and material waste.

More recent work on optimizing trajectories for thermal
spraying [10] has directly influenced the formulation of the tra-
jectory optimization problem presented here. However, in this
paper a more accurate paint projection profile is directly
included into the optimization problem, with the parameters
of the deposition model tuned to physical experiments. The
objective function is also extended to model more precise
behaviour of the physical robot system, which will execute
the solution trajectory.

III. PROBLEM DESCRIPTION

The painting trajectory optimization approach presented in
this paper has been developed and refined during a project
called SelfPaint, where the goal is to automate the full process
of spray-painting parts in a painting booth [18]. The overall
problem is to handle an incoming geometry to be painted, with
the goal of automatically finding a robot trajectory that can be
executed in the painting booth. The resulting paint coverage

Fig. 1. Sketch of a paint applicator trajectory showing the applicator at
four different waypoints. At each of these waypoints a simplified visual
representation of the applicator is shown, as well as the area of the projected
paint thickness profile onto the static geometry to be painted.

should closely match the target thickness and always be within
specification.

The trajectory optimization has been included as one of
the modules of the self-programming painting cell. The full
SelfPaint workflow [19] also includes earlier modules such
as point cloud scanning with CAD model fitting, and later
modules that include physics-based simulations as well as
physical testing and verification.

The following two sections describe the initial curve gener-
ation and the optimization problem definition, but first some
notations and concepts that will be used later are briefly
introduced. The applicator trajectory that is generated and
then optimized is assumed to be piecewise linear. The sketch
of a paint applicator trajectory seen in Fig. 1, shows how
a typical robotic paint trajectory is defined. The trajectory
consists of trajectory segments, each one starting and ending
in a waypoint with specified values for applicator position
and orientation. It is these waypoints along with the segment
durations that are modified in order to obtain a satisfactory
paint coating.

IV. INITIAL CURVE GENERATION

The trajectory optimization can be initialized using any
defined curve, which could be manually specified. But in order
to automate the process of finding a trajectory for a specified
surface, this initial curve needs to be algorithmically generated.
The initial curve generation does not need to find a perfect
applicator trajectory, but the generated initial curve still needs
to have some positive traits, all of which might be difficult or
impossible for the subsequent optimization to fix. The main
points in this regard are: i) It needs to cover the surface with
sufficient paint. ii) It should have a simple topology with few
or no intersections and twists.

For the latter, we decided to follow the typical paint program
pattern of having a sequence of sweeps. Each sweep has
relatively low curvature, starts at one edge of the surface and
ends at the opposite edge. After turning around at the edge,
possibly both outside the surface and with the painting turned
off, a new sweep follows parallel to the previous sweep but
in the opposite direction. The distance between subsequent
sweeps should be kept around a user specified value, based



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 2. Illustration of the steps when generating the initial curve. The
spherical pivot markers, , are used to indicate the position and orientation of
the projected points. In the first figure the points are initialized on the initial
rectangle, shown in light gray. In the next two figures they are projected
onto the triangulated surface, S, or its extension. Green points indicate paint
nozzle positions at each waypoint, given by moving projected points a certain
offset in the surface normal direction. The light green piecewise linear curve
indicates the path the paint nozzle would follow when executing the painting
instruction.

on the paint dispersion pattern of the bell. If the distance
between sweeps becomes too large, it might be difficult,
or even impossible, to get enough paint everywhere. Having
too tight sweeps is not acceptable either.

We have strived for an initial curve generation algorithm
that is simple and robust and can handle surfaces with low
to moderate complexity. More specifically, we assume low to
moderate curvature with no sharp corners. Further we assume
a simple topology with a simply connected surface without
holes, even though some number of smaller holes seems to
be handled well. Using the trajectory optimization for more
complex surfaces might require more information from the
user when selecting an initial curve.

A. Algorithm Description

We are given a triangulated surface S to be painted, and a
user-defined point and normal direction that together specify a

Fig. 3. Sketch of a simplified case of the pseudo projection method for a
point, p, with parallel planes and right angles for the ray tracing direction,
n, and the search direction, u. The surface, S, to be painted is here divided
into an inner part, with small variations of the surface normal, and the edge
effect area, which could have large surface normal variation and is avoided for
surface normal calculations. The magnified circle represents the calculation
of stable surface normals. Sampled surface normals shown as gray arrows in
the shaded edge effect area are too close to the surface boundary and are not
included in the calculation. The remaining samples, shown as black arrows,
are used to calculate the new normal, ñ.

plane P . We further have access to an efficient implementation
of a ray tracing projection operator PS(p, v), that given any
point p and direction v computes the point on S closest to
p along the line {p + αv, α ∈ R}, if any such points exist.
If no ray tracing projection onto S is found, we say that p is
outside S.

The user may also influence the algorithm with the fol-
lowing parameters, which also are represented in Fig. 2a and
Fig. 3.

• wsweep, the required distance between consecutive
sweeps.

• dmax, the maximum allowed segment length.
• dedgeMax, the maximum distance to the surface edge for

keeping waypoints outside the surface
• dedgeOffset, the required distance to the surface edge for

interior waypoints to be considered stable for normal
estimation.

• rcyl, a radius/distance used for surface normal smoothing.

With these input data and tools, the following steps, which
are described in detail below, outline the method:

1) Compute a rectangle R on the plane P , onto which all
surface points can be orthogonally projected. Generate
a regular raster-based curve CR on R.

2) Project each sweep of CR onto S in a generalized sense
to be defined in Section IV-B.

3) Modify the sweep to properly fit S.

The results after each of these steps are shown for a model
example in Fig. 2. A simplified representation of the second
step of the algorithm, along with a schematic description of
most parameters can be found in Fig. 3.

Step 1: All surface mesh vertices of S are orthogonally
projected onto the plane P , and a rectangle R is created
on P containing all projected points with a certain margin.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GLEESON et al.: GENERATING OPTIMIZED TRAJECTORIES FOR ROBOTIC SPRAY PAINTING 5

A curve CR is created as a simple raster, i.e., the sweeps are
straight lines, spaced wsweep apart, along one of the rectangle
directions. The segment length is uniform and chosen as large
as possible without exceeding dmax.

Step 2: Each sweep of CR is projected onto S in a general-
ized sense. A key concept is whether a point is feasible. This
means that it is possible to compute a pseudo-projection onto
S, as described in Section IV-B. For now, it is enough to point
out that it does not only include points that actually project
directly onto the surface using PS , but the pseudo-projection
also extends outside the surface. The reason to allow points
that in effect project outside the surface, is that these points
also contribute paint to the surface, in particular close to
surface edges.

Step 3: In steps 3a-d the sweep is modified to fix cases
where consecutive waypoints are too close or too far apart, and
to move the endpoints to the boundary of the feasible area.

Step 3a: Sequences of infeasible waypoints are removed
at both ends of the sweep, while feasible points are projected
onto S or its extension using pseudo projection. Sweeps where
less than two points are feasible are discarded altogether. For
interior non-feasible points, due to holes for instance, a new
position is computed from neighbouring feasible points by
linear interpolation.

Step 3b: The end points of the sweep are maximally
extended tangentially while maintaining feasibility, i.e. extend-
ing them slightly further would render them infeasible.

Step 3c: Waypoints closer than dmax/2 to each other are
recursively merged until no such too-short segments remain.
Merging of two waypoints is done by first replacing them with
their average. If this new point is feasible, its pseudo projection
is used, otherwise it is kept unchanged. An exception applies
when one of the original points is an endpoint of a sweep.
In that case, the endpoint is used, and the other waypoint
point is discarded.

Step 3d: Segments longer than dmax are recursively divided
into two segments until no such segments exist. Segment
division is done by inserting a new point in the middle of the
segment, and pseudo projection is applied to the new point if
feasible.

B. Computing Normals and Pseudo-Projection

When a ray tracing projection is successful, the underlying
surface model provides a surface normal at the projected point.
A rather abrupt change in normal direction could be caused
by natural irregularities of the surface, or at points close to the
surface edges, where there is usually a flange, or an area with
large curvature. This will lead to possibly large fluctuations of
the normal, which from a painting perspective is something
we would like to avoid. As previously discussed, we would
also like to be able to project down points even if they are
outside the surface. These are the main motivations for the
pseudo-projection operation described below and shown in
Fig. 3; to stabilize the surface normal computation against
edge effects and small surface variations, and to extend the
computation outside the surface.

Conceptually, the aim of the pseudo-projection and normal
calculation is to reliably handle the projection of points, even if

they like point p in Fig. 3 project outside the surface onto the
surface extension. The calculation should also handle points
that project onto an area close to the edge, referred to in the
figure as the edge effect area, and shown as a gray shaded
area. For these cases, we want to find a point p′ that projects
onto the inner part of the surface, where a stable normal can
be calculated, and use this normal instead. The three surfaces
seen in the figure, the inner surface, the edge effect area, and
the surface extension, are not well-defined. They are rather
meant to give a simplified, but useful, mental picture of how
the user parameters specified in Section IV-A affect the ray
tracing and line search steps presented in this section.

For each point p that we try to project onto the surface
during the various phases of the method, its orientation is
described by a right-handed orthonormal frame (t, b, n). The
tangent, t , points along the direction of the curve, and the nor-
mal, n, typically points toward the surface. The bi-direction,
b, is uniquely determined by the other two; b = n × t .
For points of the initial raster curve CR , n is given by the
user-defined normal direction of P and t is given as the sweep
direction. For all subsequent points, n and t are outputs of the
pseudo-projection algorithm as described below.

The main idea behind computing stable normals is to avoid
edge effects by only using surface points on the inner part
of S, or to otherwise use the closest such point. To do this
we introduce a concept of edge distance dedge(p, u) to the
surface edge ∂S, given a point p and a direction u. The
edge distance is calculated using a simple line search along
u based on ray tracing projections along the direction n, see
the simplified sketch in Fig. 3. The search finds the transition
point between being on or outside S. For simplicity we only
consider the search directions u = ±t and u = ±b. For a
point outside S, we require that dedge < dedgeMax for some of
the four directions, otherwise the point is deemed infeasible.
If dedge < dedgeMax for some directions, or p is on the surface
but dedge < dedgeOffset for some directions, we search along
these directions to the surface interior for a new point p′ such
that dedge > dedgeOffset for all directions. If this is not possible,
p is deemed infeasible.

The new interior point p′ is the basis for the surface normal
computation, but to make the calculation more robust, we also
sample 8 points on the tangent plane spanned by p′, t and b,
uniformly sampled at distance rcyl from p′. Points that are
closer than dedgeOffset to the edge are discarded, see Fig. 3.
The remaining normals are fed into a simple cluster algorithm,
with the aim to avoid the influence of outlier normals when
averaging.

After a new normal ñ has been computed according to
above, a new tangent is given by

t̃ = t − (t · ñ)̃n.

The projected point is given by

p̃ = p + d ñ,

where d is the distance between p′ and its projection on S.
The point p̃ and the unit vector ñ combined are the result of a
successful pseudo projection of the right-handed orthonormal
frame (t, b, n) onto S.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

C. A Modified Method

The procedure described in Section IV-A has one major
drawback. If the surface has a slope with respect to P
in the direction perpendicular to the sweep directions, the
distance between sweeps will increase after projection. This
is illustrated in Fig. 4a. The way we deal with this is to use
the projection method to create only a single, stable sweep.
This sweep is then propagated sideways in both directions at
proper distances. Each waypoint in the new sweep is moved
in a direction perpendicular to both the normal direction and
the mean of the direction of the incoming and outgoing seg-
ments. Thereafter, the sweep is pseudo projected and modified
according to Section IV-A. The result of the modified method
is shown in Fig. 4b. Here the sweeps cover the full surface,
and they are more evenly spaced. This is a simpler version of
the same basic method employed by [15], where an advanced
geometrical analysis is used to pick the first sweep.

V. OPTIMIZATION PROBLEM DEFINITION

After generating initial trajectories, the next step is to
formulate an optimization problem that modifies the trajectory
waypoints, in order to produce an even paint cover matching
the target thickness. The problem is formulated as a continuous
non-linear optimization problem, and the general form of
the optimization problem can be stated using the following
notation:

min
x∈X

J (x),

such that g(x) ≥ 0,

h(x) = 0.

The cost function, J , is minimized over the variable space,
X , to find optimal variable values, x , while fulfilling both
inequality constraints, g, and equality constraints, h.

A. Variables

The variables in the optimization problem consist of all
segment durations and all waypoints of the painting trajec-
tory, including the direction of the applicator nozzle. This is
described as a quaternion along with time durations of each
segment between two consecutive waypoints. The notation
used is x for waypoint positions, q for quaternion applicator
directions and �τ for segment durations. Here the notation
is fully indexed for both n number of applicator waypoints
and the variable dimensions at each waypoint, but often a
simplified notation will be used, where one or more indices
are dropped.

xi, j , i ∈ {1, . . . , n}, j ∈ {1, . . . , 3},
qi, j , i ∈ {1, . . . , n}, j ∈ {1, . . . , 4},
�τi , i ∈ {1, . . . , n − 1}

The index j is used for the three spacial dimensions of
the position and the four quaternion values that specify the
orientation.

Fig. 4. Illustration highlighting the differences in the initial curve when
using the modified method described in Section IV-C. The example geometry
is a simple curved geometry, with a side view shown on the right-hand side.
Spherical pivot markers, , are used to indicate the position and orientation
of waypoints projected on the surface or its extension. The light green curve
shows the path of the paint nozzle, with green points marking its position at
each waypoint.

B. Goal Function

The goal function combines different aspects of what an
optimal trajectory should fulfill. The main consideration is
to obtain a paint thickness that matches the target thickness
as closely as possible for all areas of the painted geometry.
The paint projection used to calculate the paint thickness
is exemplified by Fig. 5 and consists of a reference paint
thickness which is projected to the target geometry. The
reference thickness is a radially symmetric spline curve that
can be fitted to experimental data of spray painting along a
straight line, by reversing the integration exemplified by the
projection distributions of Fig. 6.

Apart from the paint thickness, there are other aspects of
the applicator trajectory which also need to be included in the
goal function, in order to obtain a trajectory that is executable.
The goal function is therefore a sum of Jpaint, which relates
to the paint thickness objective, and Jpath, which includes all
costs related to the applicator trajectory.

The part of the objective function related to paint thickness
is the sum of squared paint differences compared to the desired
paint thickness Tref

Jpaint =
∑

k

Ak (T (pk) − Tref)
2 .



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GLEESON et al.: GENERATING OPTIMIZED TRAJECTORIES FOR ROBOTIC SPRAY PAINTING 7

Fig. 5. Representation of the main components of the paint projection.
The position of the modeled point source effects how the footprint profile is
projected to the static geometry. The figure shows notations for spray cone
distances and angles, a TCP-centered coordinate system as well as the position
and normal vector of a point on the static geometry.

Here T (pk) is the paint thickness at node pk of the surface,
and Ak is the surface area represented by pk . The regions
Ak must partition the surface, and there are multiple such
representations that could be used. The partitioning has been
implemented using triangle vertices as nodes, and a third of
the sum of the area of all triangles connected to the vertex as
the corresponding area.

The goal function concerning the applicator path, Jpath,
consists of a weighted sum of objectives. It includes the
squared difference of consecutive waypoints for the position
and orientation of the applicator nozzle as well as the total
duration of the application motion,

Jpath = wx

n−1∑
i=1

3∑
j=1

(
xi+1, j − xi, j

)2

+ wq

n−1∑
i=1

4∑
j=1

(
qi+1, j − qi, j

)2 + wt

n−1∑
i=1

�τi .

The positional and orientational objectives act similar to
spring forces, evenly distributing points along the trajectory.
The weights wx and wq determine how much changes in
position and orientation along the trajectory are penalised.
These minimization terms guide the search towards a trajectory
that will be easier for a robot to execute. Smoothing changes
between segments is also beneficial for the accuracy of the
projection model, which is calibrated using long sweeps with
constant velocity.

Including durations in the objective function makes it
possible to prioritize short execution time by increasing the
corresponding weight wt . This constraint also has the added
benefit that it will directly affect the amount of paint consumed

when executing the trajectory, since the primary use case is an
applicator with constant paint flow. Handling changes of paint
flow at discrete trajectory points has also been implemented,
but will not be further addressed here.

The paint thickness calculation is performed for each node
of the target geometry, by integrating the amount of paint
that each node receives over the span of the painting trajec-
tory. Assuming the velocity of the paint applicator nozzle is
constant over a single segment between waypoints, the paint
thickness calculation is a sum of local paint flow contributions

T (pk) =
n−1∑
i=1

(
�τi

∑
�

�T (x�, pk)

)
.

Here �τi is the segment time and �T (x�, pk) is the calculated
paint thickness contribution at a point, pk , on the geometry for
a paint applicator with its tool center point (TCP) at x�. The
summation over index � consists of the subdivision of each
segment according to a user supplied time step. This thickness
calculation can be seen as a discrete version of integrating
a brush function B(x, p) over the continuously parametrized
path x(s),

T (p) =
∫

B(x(s), p)ds.

The brush function, B(x, p), uses the current position of the
applicator TCP, x , calculates the projection source point, xsrc,
and projects a footprint profile, f (r), down on a specified
point, p, on the fixed geometry. The footprint profile used here
is an experimentally fitted curve of spline functions that tries to
approximate the paint distribution obtained when spraying in
a line over a flat surface at a specified distance, see Fig. 6. The
brush function calculation consists of three parts, the footprint
profile, a scalar product of the surface normal and the direction
of the applied paint, and finally a scaling factor,

B(x(s), p) = f (r)(−vnormal · −→px)

(
dsr

d

)2

.

Here, d is the distance in the z-direction from the projection
source to the current point on the geometry, with surface
normal vnormal, see Fig. 5. The vector −→px represents the vector
of the applied paint, which is a scaled vector from the position
of the applicator projection source xsrc(s) to the point p on
the geometry,

−→px = p − xsrc(s)

d
.

Describing the projection method in a bit more detail, it starts
by defining a projection cone. This gives a reasonable approx-
imation to the deposition of paint for a range of distances to
the target geometry. The paint applicator is modelled as a point
source a distance dsrc behind the TCP of the applicator, see
Fig. 5. This distance dsrc is calculated by using two defined
points on the cone, one at the edge of the footprint profile and
one point closer to the TCP. Using an (r, z)-plane with the TCP
as origin, these two points are described by their displacements
from the TCP, (rfar, dref) and (rnear, doffset) respectively. The
displacement values can be used to calculate the angle of the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 6. A footprint profile has been obtained experimentally by measuring the paint thickness across a stroke of paint on a flat surface from a specified
height. A cross section of the footprint profile of the brush function is shown for a) a fitted spline to the experimental data and b) after smoothing is applied
and the data is made symmetric. The resulting projection distribution is also shown to the right using a color map range covering the obtained values.

projection cone,

tan θ = rfar − rnear

dref − doffset
,

which makes it possible to find the distance from the TCP to
the point source,

dsrc = rnear

tan θ
− doffset.

The distance dsr from the point source to the reference
footprint profile is calculated and is used when projecting the
footprint profile to the target geometry,

dsr = dsrc + dref.

C. Constraints

The solution is improved in an iterative procedure with an
upper bound on how much each variable can change between
iterations. These limitations are set using box bounds, lower
and upper limits of the variables xi, j , qi, j and �τi that are
modified at each iteration. There are also absolute upper and/or
lower limits on most included variables, for example segment
durations, along with constraints limiting a number of derived
properties. These include limits on velocity, step length, devi-
ations from a target distance from the geometry, applicator
angle deviations from the surface normal and constraints to
keep all quaternions normalized.

Selecting in what way the variables should be constrained is
important, since the solver will be able to exploit inaccuracies
in the model or cost function. As an example, the accuracy

of the deposition model is only satisfactory in a region of
parameter values around the combination of parameters where
it was experimentally verified. If it was experimentally tested
at a painting distance of 400 mm, then it might only be
sufficiently accurate for distances in the range 300-600 mm.
Another, more exploitable, issue is that the model is most
accurate when the applicator direction is perpendicular to the
surface. Without constraining the trajectory, the optimizer will
find solutions with the applicator down close to and almost
parallel to the surface, where the deposition cone is spread
out over a larger area.

D. Optimization

With the problem formulated as a continuous non-linear
optimization problem, a solution trajectory is found by using
an interior point non-linear solver, IPOPT [20]. Ideally the
optimization would be run to convergence, since this would
represent a trajectory where, given user supplied preferences
of weights, the different parts of the objective function are
optimally balanced against each other. The weights in the
objective function can be used to guide the optimization, but
we also want to make use of information contained in the
initial trajectory. Assuming the initial trajectory is generated to
be feasible, both in terms of executability and model accuracy,
limiting deviations from it is beneficial with respect to both of
these aspects. The solver is run for a fixed number of iterations,
in order to improve the initial solution, while keeping the
solution in the feasible region. The deviation limits of each
variable are reset in each run of the optimization, allowing



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GLEESON et al.: GENERATING OPTIMIZED TRAJECTORIES FOR ROBOTIC SPRAY PAINTING 9

Fig. 7. Test case of a square plate with a side length of 1.0 m, an initial path with a sweep width of 180 mm, and a target thickness of 50 μm. The figures
show from left to right the resulting paint thickness for the initial trajectory with a constant velocity, the thickness after applying a speed optimization but
leaving the path unchanged, and after performing a full optimization where the trajectory points are also allowed to move.

Fig. 8. Industrial test case of tractor fender to be painted, along with a
representation of an example of an initial path.

the trajectory to iteratively improve, even if the deviations
are strictly limited in each iteration. The execution time for
a single iteration increases with the size of the trajectory and
the complexity of the geometry, which is why limiting the
number of optimization steps is included as an option. This
non-convergence in each iteration is not optimal but can be
seen as a tolerable trade-off, especially when viewed as a local
update of deviation limits during the iterative improvement of
the trajectory.

VI. RESULTS

A number of test cases have been setup to validate the
accuracy of the process simulation and optimization. As an
academic test example, to exemplify the performance of the
optimization, a simple square plate is used. Fig. 7 shows an
initial trajectory with a sweep width of 180 mm, where the
typical banded thickness of the dual peak applicator function
can be clearly seen. After optimizing the speed along the
trajectory, the thickness differences are clearly reduced, but
the banded structure is still clearly visible. Finally utilizing
full optimization, where the trajectory points are also allowed
to be moved and reoriented during the optimization, the result
is further improved and most of the banded structure of
the resulting paint thickness is smoothed out. As previously
discussed, points outside the geometry can still contribute paint
to the surface. Here we can see that the optimization solver
has moved the top and bottom sweep away from the geometry.
The sweeps are still contributing paint to the surface, but this
might be a sign that it is possible to achieve a similar paint
coverage even if the number of sweeps is reduced.

Fig. 9. The figures show the simulated paint thickness that is obtained when
using the same paint projection as is used in the optimization. The results are
for an initial path with constant velocity, and an optimized trajectory, where
the target thickness is 50 μm.

An example of an industrial case is seen in Fig. 8 where
a CAD-model of a tractor fender is used as the target to
be painted. Also visible in the figure is an example of an
initial path, which consists of a few sweeps, curved around
the geometry. The paint thickness obtained for an initial
trajectory with four sweeps can be seen in Fig. 9 along with
the thickness obtained after running the optimization. The
optimized trajectory has a similar shape as the initial trajectory
with most of the points only moved short distances. It also
produces a paint thickness that for almost all regions of the
target geometry is close to the target thickness of 50 μm.

A comparison between the projection-based deposition
model described in this article and physical painting exper-
iments is provided in Fig. 10. We refer to [19] for an explana-
tion of the physical testing setup, while providing an overview
of the results here. The graphs show that the optimization
model has, based on the projection-based deposition model,
provided a painting trajectory which gives a fairly uniform
paint thickness close to the target of 50 μm. However, for
measurement lines L4, L5, and L6 the agreement with the
physical experiments is less than desirable. This was found to
be due to the fact that the applicator gave a radically different



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 10. Paint thickness measured on a physically painted tractor fender and a virtually simulated fender along six lines of measurement points. The red line
in the graphs is the paint thickness from the projection-based deposition model and the black line from the physical experiments. The green lines represent
the acceptable deviation from the target thickness 50 μm.

footprint when painting on a much narrower surface than the
one painted when obtaining the footprint profile (which was
a 1 × 1 metre plate). Furthermore, in the experiments there
is an electrostatic effect which draws the paint towards the
edge of the surface even when painting outside of it. This
effect is also not captured by the projection-based deposition
model and therefore the optimization model is unable to
compensate for it. This effect can be observed clearly at
the end of measurement line L6. This is an area where the
painting trajectory turns outside of the surface such that the
projection footprint does not hit the fender, but in the physical
experiments the paint is accumulated on the edge of the fender
due to the electrostatic effect. A discussion about these edge
cases can be found in Section VII, and handling them is one
of the main goals of later physics-based simulation modules
in the SelfPaint workflow [18].

VII. DISCUSSION

Both physical and virtual experiments found the results to be
fairly insensitive to changes to the positional and orientational
penalty weights wx and wq , or to the box bounds in the opti-
mization model. Given an initial path that covers the surface
and a normal industrial painting robot, these parameters do not
need to be tuned in order to achieve an executable trajectory
that gives uniform thickness. However, the parameter wt ,
which penalizes the total time of the trajectory, may affect
the result of the optimization drastically. A value that is too
large will give a shorter execution time for the path, but at the
cost of paint uniformity, and therefore this parameter should
be tuned depending on the desired result.

How trajectories are formulated and how the initial curve
is generated will affect the final result. The optimization step
cannot alter the main outline of the initial curve. If the sweep

width is chosen too large for instance, there will not be enough
paint everywhere on the surface after optimization. Choosing
too long segments will provide too few waypoints and too
little flexibility for the optimization step. Too short segments,
on the other hand, may lead to erratic behaviour. There is a
fairly big window for the maximum segment length where the
final result is not significantly affected. The same can be said
for other moderate variations of the initial curve.

The modified version of the initial curve generation algo-
rithm suffers from one potential problem. When propagating
the first sweep forward and backward, small irregularities, like
bending, tend to be accumulated and increased. This problem
is addressed in [15], and is the motivation for using a start
curve with low geodesic curvature that in effect splits the
Gaussian curvature in two equal parts. The same principles
could be used to select the best projected sweep. Another
possible improvement could be to generate the full set of
sweeps, and moving them closer to each other whenever they
are too far apart. A few new sweeps might still have to be
added at the ends, but clearly fewer than in the present method.

The painting trajectories have been modeled as a piecewise
linear curve where the waypoints are used as optimization
variables. In reality, a robot trajectory will often be smoothed
out in the vicinity of waypoints to avoid the robot stopping
at each waypoint. Larger deviations from the piecewise linear
trajectory will typically further smooth out the velocity profile
of the movement. One possible extension will be to more
closely model the robot trajectory and incorporate additional
robot code parameters into the trajectory optimization and
generation, making use of previous work on robot controller
modelling [21].

The projection-based deposition model used in the opti-
mization has accuracy limitations, that in some cases might
significantly affect the final result. It is therefore an ongoing



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GLEESON et al.: GENERATING OPTIMIZED TRAJECTORIES FOR ROBOTIC SPRAY PAINTING 11

work to make use of more accurate physics-based simulations
of the paint deposition, to further improve the applicator tra-
jectory. The proposed workflow is to use the projection-based
optimization to improve the geometric path of the applicator,
and then use results from the physics-based deposition model
to further improve the velocity profile along the path. The
last step is particularly important in order to compensate for
changing footprints along the geometry, due to for example
electrostatic effects, which the projection-based deposition
model does not capture.

In the presented method, there is no inherent time depen-
dent behaviour of the paint application process. In reality,
such application dependent processes must be considered. For
example, it is often desirable to paint neighbouring regions
within a limited time frame. Also, the number of second
passes over an area are often minimized in order to avoid
degrading the surface finish. For future work, this is an
interesting extension, to try to model the time dependent
behaviour.

The presented solution is developed for single robot work-
stations. For multiple robots working on the same work piece,
the time dependent behaviour as well as spatial interactions,
for example airflow or electric potential, might warrant special
consideration. However, if these effects are deemed minor
enough to only marginally effect the paint distribution, the
trajectory optimization presented here could be used inde-
pendently for each robot. By even introducing some terms
describing the interaction between robots, it might still be
possible to use the presented solution to formulate a largely
decoupled optimization problem.

VIII. CONCLUSION

The proposed optimization method is able to find a solution
that satisfies many of the overall goals of a painting instruction.
Its search is guided by generated initial trajectories that
manage to cover the surface while minimizing intersections
and twists. The optimization method makes use of a paint
projection method, which has been accurately tuned to phys-
ical experiments on flat surfaces. The solution trajectories are
feasible and have been executed on robots in an industrial
test case to perform a physical evaluation of the results.
The evaluation shows good agreement with physical results,
especially in low curvature areas, while high curvature and
edge effects are not fully captured with the presented method.

Going forward, the goal is to increase the usability and
accuracy of the painting trajectory optimization. The presented
results show feasibility of the method, and that it can be
used to generate implementable solutions. When the resulting
trajectory is evaluated using the projection method, the result
is very promising. This shows that the optimization itself is
not a significant cause of paint thickness deviations. For a
given paint deposition model the optimization manages to
find good solutions. It is however important to try to limit
the possibility of the optimization algorithm taking advantage
of weaknesses in the projection method. The accuracy of
the paint deposition model will directly affect the resulting
paint thickness. Physical testing for a large set of industrial

cases will be needed to further evaluate deposition models and
design choices in the optimization. Determining and handling
problem cases with high paint thickness deviations will aid
further development of the optimization workflow.

ACKNOWLEDGMENT

This work was carried out within the Production Area of
Advance at the Chalmers University of Technology. The fender
geometry was provided by John Deere, Bruchsal, Germany.

REFERENCES

[1] H.-J. Streitberger and K.-F. Dossel, Automotive Paints and Coatings.
Hoboken, NJ, USA: Wiley, 2008.

[2] D. Gleeson et al., “Robot spray painting trajectory optimization,” in
Proc. IEEE 16th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2020,
pp. 1135–1140.

[3] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Proc.
Millennium Conf. IEEE Int. Conf. Robot. Automat. Symposia (ICRA),
vol. 1, Apr. 2000, pp. 521–528.

[4] A. Mark, R. Bohlin, D. Segerdahl, F. Edelvik, and J. S. Carlson,
“Optimisation of robotised sealing stations in paint shops by process
simulation and automatic path planning,” Int. J. Manuf. Res., vol. 59,
no. 1, pp. 4–26, 2014.

[5] D. C. Conner, A. Greenfield, P. N. Atkar, A. A. Rizzi, and H. Choset,
“Paint deposition modeling for trajectory planning on automotive sur-
faces,” IEEE Trans. Autom. Sci. Eng., vol. 2, no. 4, pp. 381–392,
Oct. 2005.

[6] A. Mark et al., “Simulation of electrostatic rotary bell spray painting in
automotive paint shops,” Atomization Sprays, vol. 23, no. 1, pp. 25–45,
2013.

[7] B. Andersson et al., “A modified TAB model for simulation of atom-
ization in rotary bell spray painting,” J. Mech. Eng. Automat., vol. 3,
no. 2, pp. 54–61, 2013.

[8] T. Johnson, S. Jakobsson, B. Wettervik, B. Andersson, A. Mark, and
F. Edelvik, “A finite volume method for electrostatic three species
negative corona discharge simulations with application to externally
charged powder bells,” J. Electrostatics, vol. 74, pp. 27–36, Apr. 2015.

[9] F. Edelvik, A. Mark, N. Karlsson, T. Johnson, and J. S. Carlson,
“Math-based algorithms and software for virtual product realization
implemented in automotive paint shops,” in Math for the Digital Factory.
Cham, Switzerland: Springer, 2017, pp. 231–251.

[10] D. Hegels, T. Wiederkehr, and H. Müller, “Simulation based iterative
post-optimization of paths of robot guided thermal spraying,” Robot.
Comput.-Integr. Manuf., vol. 35, pp. 1–15, Oct. 2015.

[11] S.-H. Suh, I.-K. Woo, and S.-K. Noh, “Development of an automatic
trajectory planning system (ATPS) for spray painting robots,” in Proc.
IEEE Int. Conf. Robot. Autom., Apr. 1991, pp. 1948–1955.

[12] J. K. Antonio, “Optimal trajectory planning for spray coating,” in Proc.
IEEE Int. Conf. Robot. Autom., May 1994, pp. 2570–2577.

[13] H. Chen, W. Sheng, N. Xi, M. Song, and Y. Chen, “Automated
robot trajectory planning for spray painting of free-form surfaces in
automotive manufacturing,” in Proc. IEEE Int. Conf. Robot. Autom.,
vol. 1, May 2002, pp. 450–455.

[14] Q. Yu, G. Wang, and K. Chen, “A robotic spraying path generation
algorithm for free-form surface based on constant coating overlapping
width,” in Proc. IEEE Int. Conf. Cyber Technol. Autom., Control, Intell.
Syst. (CYBER), Jun. 2015, pp. 1045–1049.

[15] P. N. Atkar, H. Choset, and A. A. Rizzi, “Towards optimal coverage
of 2-dimensional surfaces embedded in I R3: Choice of start curve,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), vol. 4, Oct. 2003,
pp. 3581–3587.

[16] W. Sheng, H. Chen, N. Xi, and Y. Chen, “Tool path planning for
compound surfaces in spray forming processes,” IEEE Trans. Autom.
Sci. Eng., vol. 2, no. 3, pp. 240–249, Jul. 2005.

[17] W. Chen and D. Zhao, “Path planning for spray painting robot of
workpiece surfaces,” Math. Problems Eng., vol. 2013, Aug. 2013,
Art. no. 659457.

[18] F. Edelvik, O. Tiedje, J. Jonuscheit, and J. S. Carlson, “SelfPaint–A self-
programming paint booth,” Proc. CIRP, vol. 72, pp. 474–479, Feb. 2018.

[19] N. Güttler et al., “A self-programming painting cell ‘SelfPaint’:
Simulation-based path generation with automized quality control for
painting in small lot sizes,” in Proc. Adv. Automot. Prod. Technol.-Theory
Appl., Stuttgart Conf. Automot. Prod. (SCAP), 2021, pp. 302–310.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[20] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Math. Program., vol. 106, no. 1, pp. 25–57, 2006.

[21] D. Gleeson, C. Larsen, J. S. Carlson, and B. Lennartson, “Implemen-
tation of a rapidly executing robot controller,” in Proc. IEEE 15th Int.
Conf. Autom. Sci. Eng. (CASE), Aug. 2019, pp. 1341–1346.

Daniel Gleeson was born in Säter, Sweden, in 1988.
He received the M.Sc. degree in engineering
physics from the Chalmers University of Technol-
ogy, Gothenburg, Sweden, in 2012, where he is cur-
rently pursuing the Ph.D. degree with the Electrical
Engineering Department, with a part time employ-
ment. After his M.Sc. degree, he has been employed
by the Fraunhofer-Chalmers Research Centre for
Industrial Mathematics, Gothenburg, where he has
worked in robotics within the Department of Geom-
etry and Motion Planning. His research focus is on

robot trajectory optimization and robot controller emulation.

Stefan Jakobsson was born in Uppsala in 1970.
He received the Ph.D. degree in mathematics from
Lund University in 2000. Between 2001 and 2006,
he worked at the Swedish Defence Research Agency,
FOI, and at the Fraunhofer Chalmers Centre between
2006 and 2017. Since 2018, he has been working
with GE Additive with process modelling and sim-
ulations for additive manufacturing.

Raad Salman moved from Luleå in 2009 and
started his studies with the Mathematics Department,
Gothenburg University, in 2010. He received the
Licentiate degree in applied mathematics in 2017,
after studying algorithms for variants of the trav-
elling salesperson problem. He currently works as
a Research Engineer at the Fraunhofer-Chalmers
Centre, Gothenburg, mainly working with robotics
for surface treatment applications and optimization
problems in production systems.

Fredrik Ekstedt received the M.S. and Ph.Lic.
degrees in applied mathematics from Gothenburg
University, Gothenburg, Sweden, in 1994 and 1997,
respectively. In 1999, he joined Ericsson Microwave
Systems, Gothenburg, developing algorithms for
radar target tracking. In 2002, he joined the
Fraunhofer-Chalmers Centre for Industrial Math-
ematics, Gothenburg, as an Applied Researcher,
where his fields of research has ranged from image
and signal processing to computational geometry
and combinatorial optimization.

Niklas Sandgren received the M.Sc. degree in engi-
neering physics and complex adaptive systems from
the Chalmers University of Technology in 2013.
His passion is the cross-section between science
and new technologies where he has been developing
tools and algorithms for GPU computations, cloud
computations, and VR applications. He has started
a company developing a cloud native workflow for
engineering calculations. For many years, he has
been active in research of algorithms, methodolo-
gies, and tools for virtual manufacturing in general

and paint shop processes in particular. He is currently enabling virtual product
realization for manufacturing companies at Industrial Path Solutions and the
Fraunhofer-Chalmers Research Centre for Industrial Mathematics.

Fredrik Edelvik was born in Örebro, Sweden,
in 1972. He received the M.S. degree in engineering
physics and the Ph.D. degree in scientific comput-
ing from Uppsala University, Uppsala, Sweden, in
1997 and 2002, respectively. From 2003 to 2004,
he was a Post-Doctoral Research Associate at
the Institut für Theorie Elektromagnetischer Felder
(TEMF), Technische Universität Darmstadt, Darm-
stadt, Germany. In 2006, he was appointed as
an Associate Professor in Scientific Computing
at Uppsala University. Since 2005, he has been

with the Fraunhofer-Chalmers Research Centre for Industrial Mathematics,
Gothenburg, Sweden, where he is the Vice Director and the Head of the
Computational Engineering Department. He has authored and coauthored
more than 130 publications in the computational engineering area. He has
co-founded two software companies that develop simulation tools to support
virtual product and process development.

Johan S. Carlson was born in 1972. He received
the Ph.D. degree in mathematical statistics on how to
reduce geometrical variation in assembled products
from the Chalmers University of Technology in
2000. He is the Director of the Fraunhofer-Chalmers
Research Centre for Industrial Mathematics, FCC,
and is heading the Department of Geometry and
Motion Planning. He has over 20 years of experience
with industrial development and implementation
related to mathematics as a leading edge in virtual
product realization and most of the results have been

transferred into commercial software products and working procedures. His
research interests include methods, algorithms, and tools for virtual product
realization and in particular geometry simulation and assurance.

Bengt Lennartson (Fellow, IEEE) was born in
Gnosjö, Sweden, in 1956. He received the Ph.D.
degree from the Chalmers University of Technology,
Gothenburg, Sweden, in 1986.

Since 1999, he has been a Professor of the Chair of
Automation, Department of Electrical Engineering.
From 2004 to 2007, he was the Dean of Educa-
tion at the Chalmers University of Technology, and
since 2005, he has been a part-time Professor with
University West, Trollhättan. He is a (co)author of
two books and over 300 peer-reviewed papers in

international journals and conferences. His main areas of interest include
discrete event and hybrid systems, AI planning and learning, as well as
robust feedback control. He is a fellow of IEEE for his contributions to
hybrid and discrete event systems for automation and sustainable production.
He was the General Chair of the 11th IEEE Conference on Automation
Science and Engineering (CASE) 2015 and the 9th International Workshop on
Discrete Event Systems (WODES’08), and an Associate Editor of Automatica
from 2002 to 2005 and IEEE TRANSACTIONS ON AUTOMATION SCIENCE
AND ENGINEERING from 2012 to 2015.


