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Abstract

We give a syntax independent formulation of finitely presented generalized algebraic theories as initial
objects in categories of categories with families (cwfs) with extra structure. To this end, we simultaneously
define the notion of a presentation X of a generalized algebraic theory and the associated category CwFy, of
small cwfs with a X-structure and cwf-morphisms that preserve X-structure on the nose. Our definition
refers to the purely semantic notion of uniform family of contexts, types, and terms in CwFy. Furthermore,
we show how to syntactically construct an initial cwf with a X -structure. This result can be viewed as a gen-
eralization of Birkhoff’s completeness theorem for equational logic. It is obtained by extending Castellan,
Clairambault, and Dybjer’s construction of an initial cwf. We provide examples of generalized algebraic
theories for monoids, categories, categories with families, and categories with families with extra struc-
ture for some type formers of Martin-Lof type theory. The models of these are internal monoids, internal
categories, and internal categories with families (with extra structure) in a small category with families.
Finally, we show how to extend our definition to some generalized algebraic theories that are not finitely
presented, such as the theory of contextual cwfs.

Keywords: Dependent type theory; generalized algebraic theory; category with families; initial model; internal category;
Martin-Lof type theory

1. Introduction

Martin-Lof type theory can be characterized in a syntax independent way as the initial category
with families (cwf) with extra structure for the type formers (Castellan et al., 2015, 2017). The main
contribution of this paper is a similar syntax independent characterization of finitely presented
generalized algebraic theories as initial cwfs with extra structure.

Generalized algebraic theories were introduced by Cartmell in his PhD thesis (Cartmell,
1978) as a dependently typed generalization of many sorted algebraic theories. Each generalized
algebraic theory is presented by (possibly infinite) sets of sort symbols, operator symbols, and
equations. Cartmell’s definition of generalized algebraic theories (Cartmell, 1978, 1986) is based
on a notion of derived rule expressed in terms of a traditional syntactic system for dependent type
theory. He also defines a notion of model whereby sort symbols are interpreted as families of sets.

Categories with families (cwfs) (Dybjer, 1996) were introduced as a new notion of model of
dependent type theory. Cwfs arise by reformulating the notion of category with attributes in
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Martin Hofmann’s sense (Hofmann, 1994). The key point is that cwfs arise as models of a cer-
tain generalized algebraic theory closely related to Martin-Lo6f’s substitution calculus (Martin-Lof,
1992). As such the notion of cwf becomes a useful intermediary between traditional syntactic
systems for dependent type theory and a variety of categorical notions of model.

The generalized algebraic theory of cwfs can be seen as a kind of idealized formal system for
dependent type theory. In contrast to Martin-Lof’s substitution calculus and other syntactic sys-
tems for dependent type theory, it is not formulated in terms of grammars and inference rules
for the forms of judgment of type theory. Instead it is formulated in terms of the sort symbols
(corresponding to the judgment forms), operator symbols (corresponding to the formation, intro-
duction, and elimination rules), and equations (corresponding to the equality rules for the type
formers) of the generalized algebraic theory. Some of the general reasoning (about equality, sub-
stitution, and assumptions) is taken care of by the underlying infrastructure of dependent types.
This makes it possible to abstract away from details in the formulation of grammars and inference
rules.

In this paper, we explore the interdependence between generalized algebraic theories and cwfs.
We already explained that cwfs can be defined as models of a generalized algebraic theory. In the
other direction, the notion of generalized algebraic theory relies on the notion of cwf, in the sense
that the latter models the underlying infrastructure of dependent types.

Our development can be formulated in a constructive set theory, as described for instance by
Aczel (1978, 1998), although the set theory we use for formulating the notion of cwf with a X-
structure is probably much weaker. In the general theory, we need to distinguish between small
and large sets, and hence we assume that our set theory comes with a Grothendieck universe V of
small sets. Furthermore, in order to give examples of small cwfs with internal monoids, categories
and cwfs, we shall assume two more Grothendieck universes V' and V”, where V' e V' € V.

Plan of the paper

In Section 2, we recall the definition of the category CwF of small cwfs and morphisms preserv-
ing cwf-structure on the nose. Section 3 contains our main definition of a syntax independent
notion of presentation ¥ of a generalized algebraic theory and the category CwFyx of small cwfs
with a ¥-structure. In Section 4, we construct an initial object 7y in CwFyx. In Section 5 we
show several examples of generalized algebraic theories: for monoids, categories, cwfs, and cwfs
with extra structure for IT-types, a type of natural numbers, and a universe. We point out that
small cwfs with extra structure for generalized algebraic theories of monoids, categories, and cwfs
have an internal monoid, internal category, and internal cwf, respectively. We also sketch how
to extend our approach to some countably presented generalized algebraic theories and show the
example of contextual cwfs, a variant of Cartmell’s contextual categories (Cartmell, 1978, 1986).
Finally, in Section 6, we discuss related work with connections to Voevodsky’s initiality conjecture
(Voevodsky, 2017) and to Altenkirch and Kaposi’s quotient inductive-inductive types (Altenkirch
and Kaposi, 2016).

Remarks on terminology and notation

Like Cartmell, we have chosen to use the term sort symbol from many-sorted universal algebra.
However, in our semantic notion of presentation sort symbols are interpreted by type families
in a cwf. A cwf consists of a base category where the objects are (semantic) contexts and the
morphisms are (semantic) substitutions. Moreover, we have a family-valued presheaf mapping
contexts to families of (semantic) terms indexed by (semantic) types. Thus, the reader should be
aware of the mismatch between the word sort from universal algebra and the word type in the cwf
semantics.
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Another possible source of confusion is that cwfs appear on two different levels. In Section 2,
we recall the definition of cwf in set-theoretic metalanguage, where we use Ty to denote the family
of types indexed by contexts and Tm to denote the family of terms indexed by contexts and types.
This notion of cwf is then used to define the semantic notions of presentation and category of
models of a generalized algebraic theory. Then in Section 5.3, we define the generalized algebraic
theory of cwfs. This generalized algebraic theory has sort symbols ty for internal types and tm for
internal terms using lower case to highlight the difference from Ty and Tm in the model cwf.

Furthermore, we often use the same notation both on the semantic and the syntactic level. For
example, in Section 3, where we are syntax independent, we use the same letter S as in Section 4,
where we syntactically construct the initial model.

As emphasized by Voevodsky (2017), we study structures invariant under isomorphisms and
not under equivalences, and it is actually misleading to call them “category” (and this is why
Voevodsky used the term “C-system” for what Cartmell called “contextual category”). As he also
noticed, this important distinction between categories and notions invariant under isomorphisms
becomes precise in the setting of univalent foundations where not all collections of objects are
constructed from sets.

To the memory of Martin Hofmann

We have written this paper to honour the memory of Martin Hofmann. The topic is categorical
models of dependent type theory, an area that Martin made seminal contributions to. In particular,
he did much to clarify the relationship between intensional and extensional type theory. His the-
sis was the first investigation of the setoid model (Hofmann, 1997). His and Streicher’s groupoid
model (Hofmann and Streicher, 1994) refutes uniqueness of identity proofs and identity reflec-
tion, the two rules that separate extensional from intensional type theory. The groupoid model
also validates the principle of universe extensionality, a special case of Voevodsky’s univalence
axiom. As a consequence, this work is a forerunner to Voevodsky’s univalent foundations.

Other notable contributions to dependent type theory include the interpretation of extensional
type theory in locally cartesian closed categories (Curien et al., 2014; Hofmann, 1994), the use
of a presheaf model to prove that the Logical Framework version of Martin-Lof type theory is a
conservative extension of the original version (Hofmann, 1996), and a method for eliminating
extensional identity types (Hofmann, 1995). Martin also wrote a widely read introduction to the
syntax and semantics of dependent types (Hofmann, 1996).

Martin was an extremely gifted and generous person, many researchers have benefited from his
collaboration. He is truly missed.

2. Categories with Families

Definition 1. Fam is a category whose objects are set-indexed families of sets (Uy)xex. A morphism
of Fam with source (Uy)xex and target (V,),cy consists of a re-indexing function f : X — Y together
with a family (gx)xex of functions g : Ux — Vi (y).

The next step is to define the category CwF. We split this definition in two: first the objects,
which are called categories with families, in Definition 2, and then the morphisms in Definition 3.
Since CwF has been developed as a categorical framework for the semantics of type theory, much
of the terminology (contexts, substitutions, types, terms) refers to the syntax of type theory,
suggesting the intended interpretation of this syntax in the so-called CwF-semantics.

The main novelty of this paper is to use CwF as a framework for defining a notion of finitely
presented generalized algebraic theory. Contexts, substitutions, types, and terms also make sense
in relation to generalized algebraic theories.
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Definition 2. A category with families (cwf) consists of the following data:

— A category C;

— A Fam-valued presheaf on C, that is, a functor T : C°’ — Fam;

— A terminal object 1 € C, and unique maps ()r € C(I', 1) for all objects T" of C;

— Operations ., (_,_), p and q explained in the following paragraphs. These four operations and
their associated equations are referred to as context comprehension.

Welet ', A, ... range over objects of C, and refer to them as contexts. We let 8, y, . . . range over
morphisms, and refer to them as substitutions. We refer to 1 as the empty context; the terminal
maps ()r represent the empty substitutions.

If T(T") = (Uy)xex, we write Ty(I") for the set X. We call the elements of Ty(I") types in context
', and let A, B, C range over such types. Furthermore, for A € Ty(I"), we write Tm(T", A) for the set
Ua and call the elements of Tm(I", A) terms of type A in context I'.

Fory : A — T, the functorial action of T yields a morphism

T(y) € Fam ((Tm(T", A)) aety(r)> (Tm(A, B))gety(a))

consisting of a reindexing function _[y]: Ty(I') = Ty(A) referred to as substitution in types,
and for each A € Ty(I") a function _[y]: Tm(I', A) = Tm(A, Aly]), referred to as substitution
in terms.

Now we turn to the explanation of the operations ., {_,_), p, q. GivenT' €C, AeTy(I'), y :
A — T, anda € Tm(A, Aly]), we have

rAecC pra:TA—T qr.a € Tm(I".A, Alpr.al) (y,a)a: A — T.A.

We call T'.A the extended context and (y, a) 4 the extended substitution.
The operations ., (_,_), p, q satisfy the following universal property: (y,a)a is the unique
substitution satisfying

prao(y,a)a=vy and  qral(y.a)al=a.

We refer (colloquially) to p as the first projection, and to q as the second projection. Note that the

first equation implies that Tm(A, Alpr.all(y,a)]) = Tm(A, A[y]) so that qral{y,a)] and a are
elements of the same set. Here and below, subscripts are omitted from ., {_,_), p, q when they can
be reconstructed from the context (no pun intended). (End Definition 2.)

A cwtis thus a structure (C, 1, (), T, ., (_, _), p> q)> subject to equations, for the category and the
presheaf, and universal properties, formulated purely equationally, for the terminal object and for
context comprehension. The morphisms to be defined next preserve this structure, even in a strict
way, “on the nose”. We often shorten the notation of a cwf to (C, T), or even just C, leaving the
remaining structure implicit.

If V is a Grothendieck universe, then Sety is the cwf where C is the category of V-small sets and
functions, Ty(I') =V and Tm(I', A) =T — A.

Definition 3. A (strict) cwf-morphism F between cwfs (C, T¢) and (D, T'p) consists of

— A functor Fgyy : C — D;

— A natural transformation Fpa : Te = (Tp o F?fn);

— The terminal object is preserved on the nose: Fgyn(1¢) = 1p;
— Context comprehension is preserved on the nose, see below.

Since Fnyt is a natural transformation between Fam-valued presheaves, Fnat has a component for
any object " of C, and these components are morphisms in Fam(Tc(I"), Tp(Fgn(I'))). Recall that
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morphisms in Fam consist of a reindexing function and a family of functions. It is convenient to
denote Fgyy, all reindexing functions, as well as all members of the families of functions, simply by
F. Thus, we have F(A) € Ty (F(I')) and F(a) € Tmp(F(I"), F(A)), for all T and A € Ty (I") and
aeTme(T,A).

Naturality of Fnar amounts to preservation of substitution, i.e., for all y : A — T" in C, we have

F(A[y]) =F(A)[F(y)] F(aly]) = F(a)[F(y)] .

Last but not least, we turn to the preservation of context comprehension on the nose, and require

F(I'.A) = F(T").F(A) F(pr,A) = PR(r),F(a) F(qr,a) = Qrr),F(A) -

Note that the universal property implies that F((y, a)) = (F(y), F(a)). The same is true for the
terminal maps: F(()r) = () pr). (End Definition 3.)

V-small cwfs with strict cwfs-morphisms form a category, written CwF. If V' € V is another
Grothendieck universe, then Sety is a V-small cwf.

3. Presentations and Models of Generalized Algebraic Theories

In universal algebra one has the notion of a signature, which consists of a set of sort symbols and
a set of typed operator symbols. Using the vocabulary of the signature one then specifies the set of
equational axioms.

For generalized algebraic theories, the situation is more complicated. First, sorts may depend
on other sorts and even on operators, so that sorts and operators cannot be presented as two
separated sets. Even more so, sorts and operators may depend on equations to be well-typed,
so that separation of these three syntactic categories is not possible. We give an example of the
interdependency in the next paragraph, more examples can be found in Section 5.

For readability, we give this example in the language of type theory. Consider a sort X with two
operators xp : X and x; : X and an axiom xp = x, all in the empty context. Consider now a sort
Y(x) in the context x : X, and a sort Z(y, ) in the context y : Y(xy),y : Y(x1). Finally, consider a
sort W(y, z) in the context y : Y(xo), z : Z(y, ). The sort W(y, z) is only well-typed since xo = x;.
The same is true for an operator w(y, z) : W(y, z) in the same context as W(y, z). The equation
xo = x1 could come after the sorts Y(x) and Z(y, y), but has to come before W(y, z).

For reasons mentioned above, we need a more general notion than that of signature in universal
algebra, encompassing not only the types of the sort and operator symbols but also the equations.
We call this notion the presentation of a generalized algebraic theory, or presentation for short. It
is nontrivial to define what a presentation is and how it presents a generalized algebraic theory.
This requires several steps.

We first define the notion of a presentation X and the associated category CwFyx of V-small
cwfs with a ¥ -structure. Each object of CwFy, is a V-small cwf with extra structure and each mor-
phism is a cwf-morphism preserving X-structure. For this definition, we will need the following
auxiliary notions.

A uniform family of contexts is a family I' = (I¢) with I'¢ a context in C for each C € CwFy,
such that F(I'¢) = I'p for all morphisms F € CwFx (C, D). If I is such a family, a uniform family
of types over I' is a family of types A = (A¢) with A¢ a type over I'¢ and F(A¢) = Ap for all
morphisms F € CwFx (C, D). Finally, given I' and A, a uniform family of terms is a family of terms
a = (ac) with ac € Tm¢(I'¢, Ac) such that F(ac) = ap for all morphisms F € CwFx (C, D).

Remark 1. Uniform families appear in Freyd’s proof of the adjoint functor theorem (Freyd, 1964),
in Reynolds’ (1984) and Reynolds and Plotkin’s construction (Reynolds and Plotkin, 1993) of an
initial algebra for an endofunctor from an impredicative encoding of an inductive type, and in
Awodey et al. (2018) construction of an impredicative encoding of a higher inductive type. The
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common idea in these works is to first construct a weakly initial object and then the initial object
is obtained by taking uniform families.

Definition 4. We define the notion of a presentation ¥ and the category CwFsx, of cwfs with a -
structure and cwf-morphisms that preserve X-structure. The definition is by induction on the length
of . We have the following base case:

The empty presentation. The only presentation of length zero is the empty one ). We let CwFy =
CwF.

Assume now that we have defined a presentation X of length n and the associated category CwFsx.
Then we define ¥’ of length n + 1 and the associated category CwFy, where ¥/ is obtained from T
by adding a new sort symbol, or a new operator symbol, or a new equation, as follows.

Adding a sort symbol. Let I' = (I'¢) be a uniform family of contexts indexed by C € CwFsy.
Then we can extend ¥ with a new sort symbol S relative to T', to obtain the generalized
algebraic theory X' = (%, (T, S)). The objects of CwFy are pairs (C,Sc), where C is an
object of CwFx, and Sc € Ty.(I'¢c). A morphism in CwFx/((C, S¢), (D, Sp)) is a morphism
F € CwFx(C, D) such that F(S¢) = Sp.

Adding an operator symbol. If " is a uniform family of contexts and A a uniform family of types
over I', then we can extend X with a new operator symbol f relative to I and A, to obtain the
generalized algebraic theory ¥/ = (X, (T, A, f)). An object of CwFy is a pair (C, f¢) where
C is an object in CwFy, and fc € Tme(Ie, Ac). A morphism in CwFyx/ ((C, f¢), (D, fp)) is a
morphism F € CwFx (C, D) such that F(fc) = fp.

Adding an equation. If T is a uniform family of contexts, A is a uniform family of types over I'
and a, a’ are uniform families of terms in A, then we can extend ¥ with a new equation a = a’
relative to T and A, to obtain the generalized algebraic theory ¥’ = (X, (T, A, a, d')). In this
case, CwFyy is a full subcategory of CwFx,. An object C in CwFyy is an object C of CwFy, such
that ac = ag,.

This definition is syntax independent. In the next section, we show how to syntactically con-
struct an initial object Ty, in CwFyx (for an arbitrary presentation X) in terms of grammars and
inference rules. A context in 7y will be an equivalence class [I'] of raw contexts, and similarly for
substitutions, types, and terms.

We refer to Section 5.1 where we show a simple instance of this definition: a presentation X of
internal monoids and its associated category of models CwFyx of cwfs with an internal monoid.
We also show how to construct the initial cwf 75 with an internal monoid.

Remark 2. There is a bijective correspondence between contexts in 7y and uniform families
of contexts indexed by C € CwFyx. To each context [I'] in 75, we associate the uniform family
([IT]]c) where [—]c¢ is the unique morphism from 7y to C. To each family (I'¢) indexed by
C € CwFyx, we associate the context I'7;, in Tx. Moreover, [[I']]7; = [I'] since 7Ty is initial, and
[I'73]lc = I'c because of uniformity and since [—]¢ is a morphism in CwFy. For similar reasons,
there are bijective correspondences between types and terms in 7y and uniform families of types
and terms.

Remark 3. Note that in general a presentation X is a large set, since uniform families over CwFy,
are. However, because of the bijective correspondence these uniform families can be replaced by
contexts, types, and terms in 7x. This replacement will turn the semantic ¥ into a small syntactic
version.
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Remark 4. Cartmell’s notion of generalized algebraic theory (Cartmell, 1978, 1986) also makes it
possible to stipulate equations between type expressions. However, none of our examples makes
use of this extra generality. In particular, in Section 5, we present the generalized algebraic the-
ory of cwfs with extra structure for N, IT and a first universe Uy without needing type equations.
The reason is that equations between types become equations between terms in our rendering of
dependent type theory as a generalized algebraic theory. See Remark 7 in Section 5.6 for more
explanation.

Like Cartmell, we could consider generalized algebraic theories with type equations, but we
prefer not to make such equations part of our notion.

4. The Construction of an Initial Object in CwFyx

In Section 3, we gave a syntax independent specification of a generalized algebraic theory as the
initial object of the category CwFyx of models of a (semantic) presentation X. Now we show our
main theorem: the syntactic construction of such an initial object 7x. This construction is done
in several steps. We first define the “raw” syntactic expressions. Then we define four families of
partial equivalence relations (pers) over those raw expressions, corresponding to the four equality
judgments. The term model 7y is obtained by quotienting with these pers.

The following theorem can be viewed as a generalization of Birkhoff’s completeness theorem
for equational logic (Birkhoff, 1935).

Theorem 1. The category CwFyx has an initial object Ty, for every presentation ¥ of a generalized
algebraic theory.

The construction of Ty, will be by induction on the construction of X. It is based on construc-
tion of initial cwfs in Castellan et al. (2015, 2017) and we refer the reader to those papers for more
details. Here we only provide a sketch and focus on how to extend the construction to 7x.

For each ¥ we will define the following.

(1) A grammar for the raw syntax, that is, raw contexts in Ctxy, raw substitutions in Suby,
raw types in Tyy., and raw terms in Tmy.

(2) A system of inference rules that generate four families of partial equivalence relations (pers)
by a mutual inductive definition:

F=I"Fx kA=A Absy=y":T MFysa=d:A

where ', I'" € Ctxyx, v,y € Suby, A, A’ € Tyy,and g, a’ € Tmy. These pers define the valid
equality judgments of a variable-free version of dependent type theory with explicit sub-
stitutions based on the cwf-combinators. The ordinary judgments will be defined as the
reflexive instances of these equality judgments. For example, I -5, meaning that I" is a
valid context, is defined as the reflexive instance ' =" F-x.

(3) A cwf Ty is then constructed from the equivalence classes of derivable judgments. For
example, the contexts in Ty, are equivalence classes [I'], such that " 5. We will show that
Ty is a cwf with a X-structure, that is, an object of CwFx.

(4) A CwFx-morphism [—]: 7y — C for every C € CwFx. This is the interpretation mor-
phism. This morphism is a partial function defined by induction on the raw syntax, that
(whenever it is defined) maps raw contexts to contexts in C, raw substitutions to substitu-
tions in C, raw types to types in C, and raw terms to terms in C. We show that these partial
functions preserve the partial equivalence relations so that we can define the interpretation
morphism on the equivalence classes. Finally we show that it indeed is a CwFy-morphism
and the unique such into C.
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We begin with the construction for the base case: the empty presentation ¢J.

(1)

2)

A3)

(4)

We start with the raw syntax for the initial pure cwf 7y . It is specified by the following
grammar for raw contexts, raw substitutions, raw types, and raw terms.

FeCtxpu=1|T.A

y €Suby =yoy |idr|{(r|pal(y,a)a
AeTyy = Aly]
aeTmy ==aly]|qy

This grammar generates a language of cwf-combinators.

The system of inference rules for 7 is displayed in Castellan et al. (2015, 2017). It is a

system of general rules, rules for dependent type theory which come before we introduce

any sort symbols and operator symbols and equations (or any rules for the type formers of

intuitionistic type theory). We do not have room here to display them, but note that they

can be divided into four groups:

- the per rules, amounting to symmetry and transitivity for the four forms of equality
judgments;

- preservation rules for judgments, amounting to substitution of equals for equals (an
example of such a rule is the type equality rule);

- congruence rules for operators expressing that the cwf-combinators preserve equality;

- conversion rules for the cwf-combinators.

Note that the initial cwf 7y is trivial: its category of contexts contains only a terminal object

(the empty context), and there are no types and terms. Nevertheless, the grammar and

inference rules used in its definition form a starting point. The grammar for raw types

and raw terms will be extended each time we add a new sort symbol or operator symbol,

respectively. For each such new symbol and each new equation, we will add a new inference

rule. As a consequence, we will generate nontrivial 7.

The definition of the interpretation morphism [—] : 7y — C and its proof of uniqueness

are routine and can be found in Castellan et al. (2015, 2017).

Assume now for the induction step that we have defined the grammar, the inference rules, Tx
and the interpretation morphism [—]: 7z — C in CwFx. Let £’ be ¥ extended by a new sort
symbol, a new operator symbol, or a new equation. We shall now explain how to define 7y.

Adding a sort symbol. If I -5, then we can introduce a new sort symbol S in the context I'

representing the sequence of types of the arguments of S.
1 We add a new production for raw types

A:=S

to the productions for 7x.

2 We add the inference rule
Ty S

to the inference rules for 7x.

3 We define S7,, = [S] and X' = (T, [S]).

4 We extend the definition of the interpretation morphism [—] to an interpretation
morphism [—]": Tz — C by

[[S1) =S¢

It follows that this is a morphism in CwFy- and that it is unique.
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Adding an operator symbol. If " -5 A, then we can introduce a new operator symbol f, where
the context I' represents the sequence of types of the arguments and A is the type of the

result.
1 We add a new production for raw terms
an=f
to the productions for 7.
2 We add the inference rule
My fiA

to the inference rules for Tx.

3 We define fr,, = [f] and Tz = (Tx, [f]).

4 We extend the definition of the interpretation morphism [—] to an interpretation
morphism [—]": Txr — C by

[ =fe

It follows that this is a morphism in CwFy/ and that it is unique.
Adding an equation. If 'y a: Aand I 5 a’ : A, we can introduce a new equation a =d’.
1 Ty has the same productions as Tx.
2 We add the inference rule

IFsa=d: A

to the inference rules for 7x.

3 Ty is based on the same raw syntax as 7y, but the equivalence relation has changed.
To show that 75y € CwFy/ we just need to show that [a] = [a'] but this follows from the
inferencerule 'y a=4d': A.

4 In order to define [—]’ we first define the partial function on the raw syntax to be iden-
tical to the partial function on the raw syntax for [—]. We then prove that this partial
function preserves the extended partial equivalence relation and define [—]’ on the new
equivalence classes. It follows that [—]’ is unique.

This concludes the proof of the theorem.

5. Examples of Generalized Algebraic Theories

We will now display the sort symbols, operator symbols, and equations for the generalized alge-
braic theories of monoids, categories, and cwfs. We will then show how to add operator symbols
and equations when extending cwfs with IT-types, natural numbers N, and a universe closed under
IT and N. The models of these theories (the objects of CwFy, for the respective X) are small cwfs
with internal monoids, internal categories, and internal cwfs (possibly with extra structure for
internal IT, N, and universes), respectively.

We begin by using the recipe in Definition 4 to construct the presentation of monoids and its
associated category of models, that is, of cwfs with an internal monoid. We then follow the recipe
in Theorem 1 and construct the initial cwf with an internal monoid.

For ease of readability, we will only present the sort symbols, operator symbols, and equations
in the remaining examples by using an informal notation with named variables, rather than the
formal notations using cwf-combinators employed in Definitions 3 and 1.

Our final example is the generalized algebraic theory of contextual cwfs, a variant of Cartmell’s
contextual categories. The contexts in such contextual cwfs come with a length n. We sketch
how this can be axiomatized as a generalized algebraic theory with countably many sort sym-
bols ctxy, suby, ty,, tm, for an external natural number # (and similarly for the operator symbols
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and equations). We also indicate how our framework can be extended to cover such generalized
algebraic theories.

5.1 Internal monoids

The one-sorted algebraic theory of monoids has two operator symbols, e for identity and * for
composition, and associativity and identity laws as equations. As any other one-sorted algebraic
theory, the theory of monoids yields a generalized algebraic theory. In ordinary notation with
variables it might be rendered as follows, where M is the only sort:

=M
Fe:M
%y :ME x(x,y): M
y:MEx(e,y)=y:M
x:MEx(x,e)=x:M
X% 9,2 M E x(x(x, y), 2) = *(x, %(y,2)) : M

We now show how the corresponding official (in the sense of Definition 4) presentation of
monoids ¥ and its associated category of models CwFy are constructed step-wise.
As always, we begin with the empty presentation ¢J and its category of models CwFy = CwF.

Adding the sort symbol M. Each cwf C has a chosen empty context (terminal object) 1¢. Since
cwf-morphisms preserve empty contexts on the nose, 1 = (1¢) is a uniform family of con-
texts in CwFy. Hence, we can introduce a new sort symbol M in the empty context. The
resulting presentation is

2:1 = (@s (1) M))

The objects of CwFy;, are pairs (C, M¢), where C is a cwf and M¢ € Ty, (1¢).

Adding the operator symbol for the identity. Since, morphisms in CwFy, preserve both
empty contexts 1¢ and types M¢ on the nose, we have a uniform family of contexts 1 = (1¢)
and a uniform family of types M = (M) in CwFy, . Hence, we can introduce a new operator
symbol e (the identity of the monoid). The resulting presentation is

22 = (217 (1’ M, 3))

The objects of CwFy, are triples (C, Mc, ec), where C is a cwf, M¢ € Ty,(1¢) and ec €
Tme (1, Me).

Adding the operator symbol for composition. Again using that cwf-morphisms preserve all
cwf-structure and M¢, we deduce that we have a uniform family of contexts 1.M.M[p] and
a uniform family of types M[p][p] in CwFsy,. Thus we can add a binary operator symbol .
The resulting presentation is

Y3 = (X, (LM.M[p], M[p][p], %))

The objects of CwFy, are quadruples (C, Mc, ec, *¢), where C is a cwf, M¢ € Ty, (1¢), ec €
Tme(1¢, Mc), and #¢ € Tme((LM.M(p])e, (M[p][p])c)-

Adding the left identity law. Furthermore, we extend the presentation with the equations
stating that e is a left identity as follows:

Ty = (%3, (1M, M[p], =[{{(}, e[(}]), 9)], @)

The uniform family of contexts 1.M expresses that the equation has one variable of type
M, the uniform family of types M[p] expresses that the two sides of the equation have type
M, and the uniform families of terms *[(((), e[()]), q)] and q express the two sides of the
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equation. CwFy, is the full subcategory of CwFyx, with objects C such that («[(((), e[{()]),
9 1c =qc.

Adding the right identity and the associativity laws. Finally, we add the right identity
equation and the associativity equation to get the presentations ¥s5 and X¢. We omit the
details.

We define the presentation of monoids to be ¥ = 4. The category CwFy is the category of V-
small cwfs with an internal monoid. This is a cwf-version of the notion of internal monoid which
can be defined in any category with finite products. As we mentioned in Section 2, Sety is an
example of a V-small cwf, for a Grothendieck universe V' € V. An internal monoid in Sety is a
monoid in the usual sense with a V’-small carrier set.

We now sketch the construction of the initial object Ty of CwFy, following the recipe for intro-
ducing sort symbols, operators symbols, and equations in Section 1. (We omit the index ¥ in
Fx.)

Adding the sort symbol M. First, we have 1 for the empty presentation, so we can add a
production for the sort symbol M and the inference rule:

1FM

For later use we infer 1.M - and, using p: 1.M — 1, .M M[p], so LM.M[p] I-. (Here and
in the following we sometimes drop indices on raw expressions and for example write p
instead of the official py, as prescribed by the grammar for the raw syntax.)

Adding the operator symbol for identity. We then add a production for the operator symbol
e and the inference rule:

l1Fe:M

Again for later use we infer 1.M I e[p] : M[p]. Note that here p = (), the empty substitution
1.M — 1, since there is only one substitution 1.M — 1.

Adding the operator symbol for composition. We then add a production for the binary oper-
ator symbol *. Using another p: 1.M.M[p] — 1.M (note the different type), we can derive
1L.M.M[p] - M[p][p], so we can add the inference rule

LM.M][p] = *: M[p][p]

Note that we project M on the right twice, reflecting that  is binary.

Adding the left identity law. We can derive 1.M I~ q: M[p]. With some effort, using previous
inferences, we can derive 1.M F x[(((), e[()]), q)] : M[p]. Hence we can add the inference
rule for the equation (e is a left identity):

LM = #[(((),e[(]), )] = q: M[p]
Adding the right identity and the associativity laws. We omit the details.

The resulting initial object Tx = 75, is generated by a system of grammar and inference rules for
dependent type theory with an internal monoid. In this theory, we can prove statements such as

'-a:M
stating that a is a well-formed monoid expression in the context I" and
lFa=d:M

stating that a = a’ is a derivable equation between monoid expressions in the context I'. Note that
both contexts and monoid expressions use cwf-combinators and are variable-free.

Of course, using dependent type theory for reasoning about monoid expressions is overkill;
monoids form a single-sorted algebraic theory in the usual sense. The remaining examples will use
dependent types in an essential way. However, for reasons of readability we will from now on only
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use ordinary notation with named variables. Hopefully, it is clear from the above how to formally
construct the corresponding official presentations, categories of models, and initial models using
cwf-combinators. For example, these constructions for the theory of internal categories are similar
to the constructions for the theory of internal monoids.

5.2 Internal categories
The generalized algebraic theory of categories was one of Cartmell’s motivating examples. It has
the following sort symbols, operator symbols, and equations.

Sort symbols:

F obj
A,T :obj - hom(A,T)

Operator symbols:
I :obj F idr : hom(T", I')
8, A, T :obj,y :hom(A,T),8 :hom(E,A) -y oé:hom(E,I')
Equations:
A,T :obj,y :hom(A,T) Fidr oy =y :hom(A, T')
A,T :obj,y thom(A,T') F y oidpy =y :hom(A, T")
0, E, A, T :obj,y :hom(A,T"),8 :hom(E, A), & :hom(®, E) - (yod)o&=yo(§0&):hom(®,I')

Note that composition is officially an operator symbol with five arguments. In the official notation,
we should write y og A 8, but we suppress the context arguments &, A, I'. We will do so for some
other operations too.

The rendering of the generalized algebraic theory of categories in cwf-combinator language
and the proof that it indeed yields a presentation are similar to what they were for the general-
ized algebraic theory of monoids. The inference rules for the two sort symbols in cwf-combinator
language are

1 - obj
1.obj.obj[p] F hom
and the operator symbols for identity
1.obj F e :homl[(id, q)]

We omit the verbose cwf-renderings of the operator symbol for composition and the equations.

A small cwf with extra structure for the generalized algebraic theory of categories is a small cwf
with an internal category. This is a cwf-based analogue of the usual notion of internal category in a
category with finite limits. As shown by Martin Hofmann (1994, 1996), every category with finite
limits yields a category with attributes, and hence a cwf. However, not every cwf has finite limits.
To achieve this we need more structure. As shown by Clairambault and Dybjer (2011, 2014), the
2-category of categories with finite limits is biequivalent to the 2-category of democratic cwfs that
support X-types and extensional identity types.

An internal category in the V-small cwf Sety- is a category in the usual sense with a V/-small set
of objects. For example, if V" € V' is yet another Grothendieck universe, then Sety~ is an internal
category in Sety:.

5.3 Internal cwfs

The generalized algebraic theory of cwfs is obtained by extending the generalized algebraic theory
of categories with new sort symbols, operator symbols, and equations for a family valued functor,
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a terminal object, and context comprehension. We here rename the sort obj of objects of the
category of contexts to ctx. To emphasize the difference between the internal notion of cwf and
the external notions (introduced in Section 2), our notation for sort symbols in the generalized
algebraic theory of internal cwfs use lower case letters for the sort symbols. For example, we write
ty and tm in contrast to the upper case letters for the external notions Ty and Tm. We will however
overload notation for operator symbols, and for example use o both for composition in a cwf and
for the operator symbol in the generalized algebraic theory of cwfs.

5.3.1 The extension with a family valued functor.

Sort symbols:
Ictx = ty(I)

[ctx, A ty(I) Ftm(T, A)

Operator symbols:
LA etx, A ty(D), y thom(A, T') F Aly] : ty(A)
[Azetx, Aity(D), y thom(A, I'),a :tm(I, A) F aly] : tm(A, Aly])
Equations:
Ictx, Arty(I') H Alidp] = A ty(")
Ictx, A:ty(I),a:tm(I", A) F alidr] =a:tm(T, A)
8, A, T :ctx, 6 :hom(E, A), y :hom(A,T'), A:ty(T") = A[y o8] = A[y][8] : ty(E)
8, A, T :ctx,8 :hom(E, A), y thom(A,T'), A:ty(T'), a: tm(T", A) F a[y o8] = a[y][8] : tm(E, A[y o 8])

5.3.2 The extension with a terminal object.
No new sorts are required.
Operator symbols:

F1:ctx
I:ctx - Or:hom(T, 1)
Equations:
Fid; = ()1 : hom(1, 1)
A cetx,y thom(A, T') - ()roy = ()a :hom(A, 1)

(The latter two equations are better for term rewriting than the obvious single one expressing the
uniqueness of ()r.)

5.3.3 The extension with context comprehension.
No new sorts are required.
Operator symbols:
Mietx, Atty(l) F A etx
[, Acetx, A:ty(D), y thom(A,T'),a:tm(A, Aly]) - (y,a) : hom(A, T".A)
[ictx, A:ty(I') F p:hom(T".A, ')
[ictx, A:ty(l') F q:tm(T".A, A[p])

Downloaded from https://www.cambridge.org/core. Chalmers Tekniska Hogskola, on 28 Mar 2022 at 08:13:20, subject to the Cambridge Core terms of use, available at
ttps://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000268
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Equations:

IA:ctx, A:ty(I'), y thom(A, '), a:tm(A,Aly]) - po(y,a) =y :hom(A,T)
IAzcetx, A ty(I'), y thom(A, '), a:tm(A, Aly]) - ql{y,a)]l =a:tm(A, Aly])
LA, Bietx, A ty(T), y thom(A, T), a:tm(A, A[y]), 6 :hom(E, A) F (y,a) o8 = (y 04,a[d]) :hom(E, T".A)
[ictx, A:ty(T") F idra = (p,q) : hom(I".A, I".A)

(If pod =1y and q[8] =a, we get (y,a) = (pod,q[d]) = (p,q) o § =6, the uniqueness require-
ment of the universal property. However, the equation for surjective pairing is not left-linear and
with a variable on one side, which is not good for rewriting.)

If ¥ is the presentation of the generalized algebraic theory of cwfs, then CwFy, is the category
of V-small cwfs with an internal cwf. Again we assume two more Grothendieck universes V' and
V", where V” € V' € V. Then the V-small cwf Sety has an internal cwf of V”-small sets obtained
by interpreting the sort of objects ctx as the V'-small set V" and the sorts of types ty(I") also as V"

5.4 Internal cwfs with TI-types

We add three operator symbols in addition to the operator symbols for cwfs in Sections 5.2 and
5.3:

[ctx, A:ty(I), B:ty(I".A) F TI(A, B) : ty(I")
[ctx, A:ty(I), B:ty(I".A), b: tm(T".A, B) = A(b) : tm(T", T1(A, B))
[ictx, A:ty(T), B:ty(I".A), c: tm(T, TT(A, B)), a : tm(I", A) - app(c, a) : tm(I", B[(id, a)])

(again omitting some of the official arguments) and equations for 8,  (also omitting the context
and type of the equality judgment)

app(A(b), a) = b[(id, a)]
A(app(clpl,q)) = ¢

and commutation with respect to substitution:

(A, B)[y] = TI(Aly], Bly )
AB) [yl = Ably ™))
app(c, a)ly] = app(cly], aly])

where y T = (y op, q).

Remark 5. Cartmell (1986) defines a generalized algebraic theory for X-types as follows. If we
start with any generalized algebraic theory with a sort symbol A in the empty context and a sort
symbol B in context x : A, then we can extend it with a new sort symbol X B in the empty context
and operator symbols and equations for the two projections and the pairing. In a similar way,
we could extend any such generalized algebraic theory with a new sort symbol I1B in the empty
context and operator symbols for A and app and the equations for 8 and 5. The reader should be
aware of the difference between the resulting generalized algebraic theories and our generalized
algebraic theory for cwfs with TT-types.

Remark 6. Furthermore, just as we can extend the internal notion of cwf with - and I-types
we can extend the external notion of cwf defined in Section 2 with structures for ¥- and IT-types
(Castellan et al., 2015, 2017).
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5.5 Internal cwfs with TI and N
Furthermore, we add the operator symbol

[:ctx = Np:ty(ID)

We also add operator symbols for 0,s, R and the equations for R and for commutativity with
substitution, but omit the details. Note that the type of the primitive recursion operator R relies
on the presentation of IT-types.

5.6 Internal cwfs with U, closed under I1 and N
We add four more operator symbols

I':etx = (Ug)r = ty(I)

I:ctx, a:tm(, (Ug)r) F To(a) : ty(I')
I':ctx - N?- tm(I, (Ug)r)
T :ctx, a:tm(T, (Ug)r), b: tm(I".To(a), (Uo)r))  M(a, b) : tm(T, (Up)r)
(Uo)r is the universe (a type) relative to the context I'; Ty is the decoding operation mapping a
term in the universe to the corresponding type; NO is the code for N in the universe, and I1° forms
codes for TI-types in the universe. (Note that we have dropped the context argument of Ty and
o)
We add the decoding equations:
To(N%) = Nr
To(T1°(a, b)) = T(To(a), To(b))

and the equations for preservation of substitution:

(Uo)rly] = (Uo)a

To(a)[y] = Tolaly])

NE[y] = NQ

M°%a, b)ly] = M%aly], bly ™))

Remark 7. Note that all equations are between terms in the generalized algebraic theory of cwfs
with extra structure for N, I, and Up; we do not need the extra generality of stipulating type equa-
tions as discussed in the introduction. For example, To(N%) = Nr is an equation between internal
types, that is, terms of type ty(I").

Remark 8. Also note that the generalized algebraic theory for the universe is inevitably a la Tarski
in the sense that we distinguish between types and terms in a cwf and we must have an opera-
tion decoding a term into a type. However, Martin-Lof’s distinction between a la Russell and a
la Tarski (Martin-Lof, 1984) is a distinction between two different formulations of the raw syntax
and inference rules of type theory.

5.7 A possible refinement to internal contextual cwfs

Our treatment can be adapted to some non finitely presented generalized algebraic theories. If we
have an increasing sequence of presentations X,, we can consider their union. For instance, we
can describe a generalized algebraic theory of contextual cwfs (Castellan et al., 2021) (similar to
Cartmell’s contextual categories and Voevodsky’s C-systems) by the following stratification of the
theory of cwfs. We replace the sort ctx by a sequence of sorts ctxg, ctxy, ..., where ctx, represents
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the sort of contexts of length #n and a corresponding sequence of sorts ty, (I") for I" in ctx, and
tm,(T", A) for A in ty, (I'). Context extension I'.A is now in ctx, 4 if A is in ty,(I") and so on. We
also add destructors: we have ft(I") in ctx,, and st(I') in ty, (ft(I")) with I = ft(I").st(I"). Similarly,
we have a stratification of the sort of substitutions hom,, ,;, (A, I') for A in ctx, and I in ctx,,. The
resulting models are internal contextual cwfs in a cwf.

Remark 9. Generalized algebraic presentations of contextual categories (C-systems) have been
suggested by Voevodsky (2014) and Cartmell (2018).

6. Related Work

Streicher (1991) defined doctrines of constructions (contextual categories with suitable extra struc-
ture) as a notion of model of the Calculus of Constructions. He also constructed a term model and
remarked that it is an initial object in a category of doctrines of constructions. Recently, Brunerie
et al (2019) presented a formalized proof in the Agda system that a formal system for Martin-Lof
type theory forms an initial object in a category of contextual categories with extra structure for
the type formers.

More generally, Voevodsky (2017) outlined a new vision of the theory of syntax and semantics
of dependent type theories. In this vision formal systems for dependent type theory are proved
to be initial in suitable categories of models (the initiality conjecture). The above-mentioned con-
tributions by Streicher and Brunerie et al are two examples of such characterizations. However,
Voevodsky’s aim was to go further and characterize a whole class of type theories and prove a
general initiality result for this class with the aim to form the basis for a general metatheory of
dependent type theory. Our work can be viewed as a contribution to Voevodsky’s programme,
since we prove an initiality theorem for the whole class of finitely presented generalized alge-
braic theories. Another characterization of a general class of dependent type theories and their
initial models has been proposed by Uemura (2019). Another related contribution is Palmgren
and Vickers’ 2007 construction of initial models of essentially algebraic theories.

Altenkirch and Kaposi (2016) gave several examples of quotient inductive-inductive types (qiits).
Their main example is a definition of dependent type theory with I1-types and a universe, as a
simultaneous definition in the Agda system (agda) of the data types Ctx of contexts, Sub(A, I') of
substitutions, Ty(I"), and Tm(I", A) of terms. Their definition is inductive-inductive (Forsberg and
Setzer, 2010), since the index sets of Sub, Ty, and Tm are generated simultaneously, and as a con-
sequence are not indexed inductive definitions in the usual sense where the index sets are fixed in
advance. Furthermore, it is a quotient inductive-inductive type since they also have constructors
for identity types, as in a higher inductive type. There is a close relationship between this qiit and
our initial internal cwf with IT-types and a universe. Like our definition, their giit-definition uses
cwf-combinators. Moreover, our sort symbols correspond to their formation rules (data type con-
structors), our operator symbols correspond to their introduction rules (constructors), and our
equations correspond to their propositional identities. However, a differerence is that our equa-
tions are judgmental equalities while theirs are propositional. As a consequence, they use transport
maps when moving between identical types.

The notion of qiit is the latest in a series of generalizations of inductive type (inductive family,
inductive-recursive type and family, inductive-inductive type, higher inductive type) extending
Martin-Lof type theory. Kaposi et al. (2019) developed a general theory of giits. This includes a
notion of signature for a qiit, the notion of an algebra of such a signature, and a construction
of initial algebras. In particular, they introduce a domain-specific type theory of signatures (and
implement it in Agda), and define a signature for a giit to be a context in this theory. It would be
interesting to try to relate such signatures for qiits to the presentations of generalized algebraic
theories in our paper, but this is beyond the scope of the present paper.
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