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Abstract
We show that under the assumption of weak frequency-dependent selection a wide
class of population dynamical models can be analysed using perturbation theory. The
inner solution corresponds to the ecological dynamics, where to zeroth order, the
genotype frequencies remain constant. The outer solution provides the evolutionary
dynamics and corresponds, to zeroth order, to a generalisation of the replicator equa-
tion. We apply this method to a model of public goods dynamics and construct, using
matched asymptotic expansions, a composite solution valid for all times.We also anal-
yse a Lotka–Volterra model of predator competition and show that to zeroth order the
fraction of wild-type predators follows a replicator equation with a constant selection
coefficient given by the predator death rate. For both models, we investigate how the
error between approximate solutions and the solution to the full model depend on the
order of the approximation and show using numerical comparison, for k = 1 and 2,
that the error scales according to εk+1, where ε is the strength of selection and k is the
order of the approximation.

Keywords Eco-evo dynamics · Perturbation analysis · Time scales

1 Introduction

The processes that affect the size and composition of natural populations occur on a
wide range of spatial and temporal scales. For example, speciation can occur due to
spatial segregation of subpopulations,which genetically diverge due to adaptions to the
local environment (Smith 1966). Spatial variation of the environment on smaller scales
typically leads to trade-offs such as the growth-mortality trade-off among tropical trees
which is caused by variation in light availability (Wright et al. 2010).

B Philip Gerlee
gerlee@chalmers.se

1 Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden

2 Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-022-01009-3&domain=pdf
http://orcid.org/0000-0001-8503-0177


   52 Page 2 of 19 P. Gerlee

In terms of temporal effects, it was previously held that measurable evolutionary
change required vast amounts of time, on the order of thousands or millions of gener-
ations, to occur, and that therefore there was a clear separation between evolutionary
and ecological dynamics. The latter occurs on the order of ten generations or less, but
recent field studies and theoretical work has contradicted this clear cut separation and
instead shown that evolution can occur over tens of generations, blurring the difference
between evolutionary and ecological dynamics (Carroll et al. 2007). This rapid change
can be driven by a changing environment, e.g. as in the industrial melanism in the pep-
pered moth (Kettlewell 1956), or as in the case of Darwin’s finches by migration into
a novel environment with many adaptive peaks (Grant and Grant 2006).

The entanglement of eco-evo time scales raises the question of when it is valid to
speak of evolutionary and ecological dynamics as two separate processes. One way
to answer this question is to make use of perturbation analysis, which formalises the
idea of processes acting on different time scales (Wasow 2018; Vasileva 1963), and
makes it possible to quantify the error which the assumption of an absolute separation
of time scales introduces. Perturbation analysis is applicable when a model contains
a very small (or very large) parameter and aims at expressing the solution as a power
series in this small parameter. The first term in this infinite series corresponds to an
absolute separation of time scales, and higher order terms provide a correction to
the zeroth-order approximation. In ecology, this method has been used in order to
show that the logistic equation can be derived by assuming a separation of time scales
between trophic levels,where the resource dynamics occurs on amuch faster time scale
compared to the population dynamics (Lakin and Van Den Driessche 1977; Naidu and
Rajagopalan 1979). The technique has also been used in evolutionary game theory
(Wu et al. 2010), and more generally in stochastic models of evolution (McAvoy and
Allen 2021), in order to obtain analytical results for, e.g. fixation probabilities.

Here, we apply perturbation analysis to a general population dynamical model
where the small parameter corresponds to the difference in frequency-dependent selec-
tion between different genotypes. We show that if selection is weak the model can be
split up into distinct parts describing the evolutionary and ecological dynamics.Wealso
apply the method to one model of public goods dynamics and one model of predator
competition, and investigate how the error scales with the order of the approximation.
Lastly, we discuss the relation between our framework and other methods for deriving
approximate models in population dynamics.

2 General model

We consider N interacting subpopulations that represent distinct genotypes (or phe-
notypes). The population dynamics are assumed to be deterministic and driven
exclusively by birth and death, and we currently disregard the effects of migration
and mutation, although these processes could be added to the model. The dynamics
are then governed by the following system of coupled ordinary differential equations:

dxi
dt

= Fi (x)xi − Di (x)xi , i = 1, . . . , N (1)
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where Fi (x) is the per capita birth rate and Di (x) is the per capita death rate of geno-
type i , which in this general setting depend on size of all subpopulations population
x = (x1, x2, . . . , xN ) We now assume that both the birth rate and death rate can
be decomposed into the product of a frequency-dependent and a density-dependent
factor, i.e.

Fi (x) = fi (u)g(s)

Di (x) = di (u)h(s) (2)

where the frequency-dependent factors fi and di depend on the frequency of all types
u = (u1, . . . , uN ), where ui = xi/

∑N
j=1 x j and the density-dependent factor depends

on the total population size s = ∑N
i=1 xi , and are equal for all genotypes. We thus

obtain the following system

dxi
dt

= fi (u)g(s)xi − di (u)h(s)xi , i = 1, . . . , N . (3)

2.1 Change of variables

In order to get a better understanding of the dynamics of this system,wemake a change
of variables to obtain a system of ODEs for the variables (u, s). This is related to the
standard translation between the Lotka–Volterra equations and replicator dynamics
(see Theorem 7.5.1 in Hofbauer and Sigmund 1998). Denoting time derivative with a
dot, the rate of change of ui can be written

dui
dt

= d

dt

(
xi

∑N
j=1 x j

)

=
ẋi

∑N
j=1 x j − xi

(∑N
j=1 ẋ j

)

(∑N
j=1 x j

)2 =

=
( fi (u)g(s)xi − di (u)h(s)xi )s − xi

(∑N
j=1 f j (u)g(s)x j − d j (u)h(s)x j

)

s2
=

= ui ( fi (u)g(s) − di (u)h(s)) − ui

⎛

⎝
N∑

j=1

f j (u)g(s)u j − d j (u)h(s)u j

⎞

⎠ =

= ui

⎡

⎣

⎛

⎝ fi (u) −
N∑

j=1

u j f j (u)

⎞

⎠ g(s) −
⎛

⎝di (u) −
N∑

j=1

u jd j (u)

⎞

⎠ h(s)

⎤

⎦ .

In order to simplify this expression, we note that the sums in the last expression are
equal to the average frequency-dependent birth and death rates, which we denote:

f̄ (u) =
N∑

j=1

u j f j (u) (4)
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d̄(u) =
N∑

j=1

u jd j (u). (5)

With these definitions, we obtain:

dui
dt

= ui
[(

fi (u) − f̄ (u)
)
g(s) − (

di (u) − d̄(u)
)
h(s)

]
.

We now assume that the frequency-dependent birth and death rate for genotype i can
be expressed as a baseline birth/death rate (common to all genotypes) plus a genotype-
specific term of order ε:

fi (u) = f0(u) + εφi (u)

di (u) = d0(u) + εηi (u), (6)

where ε � 1 and φi (u), ηi (u) are some functions that depend on the frequency of all
genotypes. The difference between the birth rate of genotype i and the mean birth rate
can now be written: fi (u) − f̄ (u) = ε(φi − φ̄), where φ̄ = ∑

i φi ui . The assumption
that ε � 1 now implies that the difference in frequency-dependent birth rates between
different genotypes is small, and since the same holds for the death rates selection is
weak.

This results in the following equation for each ui :

dui
dt

= εui
[(

φi (u) − φ̄(u)
)
g(s) − (ηi (u) − η̄(u)) h(s)

]
.

We now proceed to derive an equation for the total population size.

ds

dt
= d

dt

(
N∑

i=1

xi

)

=
N∑

i=1

ẋi =
N∑

i=1

fi (u)g(s)xi − di (u)h(s)xi

= g(s)
N∑

i=1

fi (u)xi − h(s)
N∑

i=0

di (u)xi = g(s)s f̄ (u) − h(s)sd̄(u)

= g(s)s( f0(u) + εφ̄(u)) − h(s)s(d0(u) + εη̄(u)) (7)

where in the second to last step we used the fact that xi = sui . In summary, we get
the following coupled system of N + 1 equations:

dui
dt

= εui
[(

φi (u) − φ̄(u)
)
g(s) − (ηi (u) − η̄(u)) h(s)

]
(8)

ds

dt
= εs

[
g(s)φ̄(u) − h(s)η̄(u)

] + s (g(s) f0(u) − h(s)d0(u)) . (9)

We thus have N+1 equations that describe the dynamics in the (u, s)-space. However,
note that one equation can be omitted since uN = 1 − ∑N−1

i=1 ui .
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2.2 Perturbation solution

We would now like to express the solutions ui (t) and s(t) as a power series in our
small parameter ε (i.e. a perturbation solution):

ui (t) = ui0(t) + εui1(t) + O(ε2)

s(t) = s0(t) + εs1(t) + O(ε2).

The next step is to insert this ansatz into (8), but here care has to be taken with
expressions of the form φi (u) and g(s), since we need to evaluate expressions of the
formφi

(
u0(t) + εu1(t) + O(ε2)

)
. Now, if the functions aremultivariate polynomials,

it is readily seen that

φi

(
u0 + εu1 + O(ε2)

)
= φi (u0) + O(ε), (10)

and similarly

g
(
s0 + εs1 + O(ε2)

)
= g(s0) + O(ε). (11)

If our functions are not polynomials, we can invoke the Stone–Weierstrass approxima-
tion theorem, which states that any continuous function defined on a compact subset
X ⊂ R

N can be uniformly approximated by polynomials to any degree of accuracy
(De Branges 1959). If this should be the case, we simply replace our original functions
with the approximating polynomials and then make use of the property (10) and (11).

We now insert the perturbation ansatz into (8) and comparing terms of order ε0 we
get

dui0
dt

= 0

ds0
dt

= s0 (g(s0) f0(u0) − h(s0)d0(u0)) . (12)

This implies that the frequency is unchanged and ui0(t) = ui0(t = 0) for all t ≥ 0,
whereas the population size changes according to the difference between the density-
dependent per capita growth rate g(s0) and death rate h(s0), each with a constant
prefactor which depends on the baseline frequency-dependent birth/death rate of the
initial frequency of genotypes u0.

This dynamics occurs on the O(1) time scale and exclusively captures changes in
population density. Therefore, it is natural to define it as the ecological time scale.
From the perspective of perturbation analysis, this is usually referred to as the inner
solution.

Higher-order corrections are obtained by comparing terms of order ε and higher;
however, this is not possible in this general setting where we have not specified the
functions that describe frequency- and density-dependent birth and death rates. In the
next sections, where we treat two specific models, higher-order terms are obtained.
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In order to describe the dynamics for large times on the order of 1/ε (the outer
solution), we define a new time scale τ = εt and express the solution as:

ui (t) = Ui0(τ ) + εUi1(τ ) + O(ε2)

s(t) = S0(τ ) + εS1(τ ) + O(ε2).

The time derivatives on this time scale are given by

dUi0

dτ
= 1

ε

dUi0

dt
dS

dτ
= 1

ε

dS

dt
.

Using the power series ansatz yields, to order ε0

dUi0

dτ
= Ui0

[(
φi (U0) − φ̄(U0)

)
g(S0) − (ηi (U0) − η̄(U0)) h(S0)

]

0 = S0 (g(S0) f0(U0) − h(S0)d0(U0)) .

In order to eliminate S0 from the first equation, we need to make two assumptions:
firstly, assume that S0 �= 0 (i.e. the total population size is nonzero) and secondly,
assume that there exists an equilibrium density S�

0 �= 0 that solves the second equation
g(S0) f0(U0) = h(S0)d0(U0).We also need tomake sure that the equilibriumdensity is
stable which can be determined by analysing the zeroth-order equation for the density
(12). The equilibrium is stable if the derivative of the right hand size evaluated at S�

0
is negative:

d

dS0
S0 (g(S0) f0(U0) − h(S0)d0(U0)) S0=S�

0
< 0

⇐⇒ g(S�
0) f0(U0) − h(S�

0)d0(U0) + S�
0

(
g′(S�

0) f0(U0) − h′(S�
0)d0(U0)

)
< 0

⇐⇒ g′(S�
0) f0(U0) − h′(S�

0)d0(U0) < 0,

where the last inequality is obtained since we assumed that g(S�
0) f0(U0) =

h(S�
0)d0(U0). In summary, the equilibrium density S�

0 �= 0 has to satisfy:

i) g(S�
0) f0(U0) = h(S�

0)d0(U0) and

i i) g′(S�
0) f0(U0) < h′(S�

0)d0(U0).

If multiple points exist that satisfy these conditions, then the initial condition deter-
mines which equilibrium point is attained by the ecological dynamics.

If at least one such point exists, we can write

dUi0

dτ
= Ui0

[(
φi (U0) − φ̄(U0)

)
g(S�

0) − (ηi (U0) − η̄(U0)) h(S�
0)

]
, (13)
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which describes the dynamics on the 1/ε time scale. On this time scale, the population
size equilibrates instantaneously and we only capture the changes in frequency. It is
therefore natural to think of this as the evolutionary time scale.

In summary, the perturbation analysis shows that the dynamics of the system (8)
has two distinct regimes. For short times t = O(1), the population size s changes and
the frequencies u are unchanged. This is typically referred to as the ecological time
scale. For larger times t = O(1/ε), the density is constant, whereas the frequency is
altered. This is typically referred to as the evolutionary time scale.

3 Application to public goods game under logistic growth

We now apply the above results to a specific model, one that describes the dynamics
of public goods production in a population consisting of producers and free-riders
(Gerlee and Altrock 2017). The model assumes that the public good is shared among
all individuals and that it has a linear effect on the growth rate. This gives rise to the
following frequency-dependent growth rates, where type 1 are the producers and type
2 are the free-riders (see Gerlee and Altrock 2017 for details):

f1(u) = α(1 + βu) − κ

f2(u) = α(1 + βu)

where u is the frequency of producers, α is growth rate in the absence of the public
good, β describes impact of the public good and κ is the cost of production. In terms
of assumption (6), we note that f0(u) = α(1 + βu), whereas φ1 = −1 and φ2 = 0,
and as long as the cost of production is small (κ � 1) selection is weak.

The two types are assumed to be identical except for the public good production, and
therefore, the density-dependence is identical for both types. It is assumed to follow
logistic growth with carrying capacity K , i.e. g(s) = 1 − s/K , and the per capita
death rate is assumed to be constant and equal to μ. This implies that the dynamics of
the population are given by:

dx1
dt

= f1(u)x1

(

1 − x1 + x2
K

)

− μx1

dx1
dt

= f2(u)x2

(

1 − x1 + x2
K

)

− μx2.

As before, we change variables to s = x1+x2 and u = x1
x1+x2

and obtain the following
system

du

dt
= −κu(1 − u)

(
1 − s

K

)

ds

dt
= −κsu

(
1 − s

K

)
+ α(1 + βu)s

(
1 − s

K

)
− μs. (14)
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We now express the solutions u(t) and s(t) as a power series in κ:

u(t) = u0(t) + κu1(t) + O(κ2)

s(t) = s0(t) + κs1(t) + O(κ2).

We insert the power series ansatz into (14) and gather terms with the same power of
κ . To zeroth order in κ , this yields

du0
dt

= 0 (15)

ds0
dt

= α(1 + βu0)s0
(
1 − s0

K

)
− μs0, (16)

i.e. on the ecological time scale we obtain logistic growth with a growth rate that
depends on the initial frequency of producers u0. With some additional algebra, we
obtain the following equations to first order in κ:

du1
dt

= −u0(1 − u0)
(
1 − s0

K

)
(17)

ds1
dt

= −s0u0
(
1 − s0

K

)
+ α(1 + βu0)s1

(

1 − 2s0
K

)

+ αβu1s0
(
1 − s0

K

)
− μs1.

(18)

Here, things get more complicated. Both the population size and frequency of produc-
ers change and the time derivative of u depends s and vice versa. Thus, we no longer
have the separation of ecological and evolutionary time scales observed at zeroth order.

By carrying out the change of variables τ = κt , we obtain the system:

κ
du

dτ
= −κu(1 − u)

(
1 − s

K

)

κ
ds

dτ
= −κsu

(
1 − s

K

)
+ α(1 + βu)s

(
1 − s

K

)
− μs. (19)

We now employ the outer power series ansatz

u(t) = U0(τ ) + κU1(τ ) + O(κ2)

s(t) = S0(τ ) + κS1(τ ) + O(κ2).

and obtain to zeroth order in κ:

dU0

dτ
= −U0(1 −U0)

(

1 − S0
K

)

0 = α(1 + βU0)S0

(

1 − S0
K

)

− μS0.
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The second equation can be solved for S0 and ignoring the trivial solution S0 = 0
yields

S0 = K (1 − μ

α(1 + βU0)
). (20)

Inserting this into the first equation now gives

dU0

dτ
= − μ

α(1 + βU0)
U0(1 −U0), (21)

which provides us with the zeroth-order dynamics on the evolutionary (1/κ) time
scale. Comparing terms of order κ , we obtain after some calculations:

dU1

dτ
= U0(1 −U0)

S1
K

+ 2U0U1

(

1 − S0
K

)

+U1

(

1 − S0
K

)

dS0
dτ

= −S0U0

(

1 − S0
K

)

+ α(1 + βU0)S1

(

1 − 2S0
K

)

+ αβU1S0

(

1 − S0
K

)

− μS1.

(22)

Since we know S0 from (20), we can solve the second equation for S1 and obtain

S1(τ ) =
S0
dτ

+ S0
(
1 − S0

K

)
(U0 − αβU1)

α(1 + βU0)
(
1 − 2S0

K

)
− μ

,

where

dS0
dτ

= − Kβμ2

α2(1 + βU0)3
U0(1 −U0).

This expression for S1 can then be substituted into (22) to yield a closed ODE forU1.

3.1 Numerical comparison

In order to compare the accuracy of the zero-order approximation of the original system
(14), we calculate a composite solution using the method of matched asymptotic
expansions (Lagerstrom 2013). The composite solution is obtained by adding the
inner and outer solutions and subtracting the overlap, which is given by the the outer
limit of the inner solution, and the inner limit of the outer solution. If we assume that
the initial conditions are given by (u(t = 0), s(t = 0)) = (a, b), and since u remains
unchanged for the inner solution, this implies that

lim
t→∞ u(t) = lim

τ→0
U (τ ) = a

lim
t→∞ s(t) = lim

τ→0
S(τ ) = K (1 − μ

α(1 + βa)
)
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A B

Fig. 1 A Solution of (14) for different values of κ with the initial condition (u, s) = (0.5, 0.01). The other
parameters are set to α = β = 1 and K = 1. The magenta curve shows the zeroth-order composite solution
(23). The underlying vector field corresponds to κ = 0.1. B The total error between the numerical solution
of the original system (14) and the composite solution (23) as defined by (24) with Tmax = 2000. The
initial condition was set to (u, s) = (0.5, 0.01) and the parameters are set to α = β = 1 and K = 1. The
dashed line corresponds to E(κ) ∼ κ (Color figure online)

where the equality for s comes from the fact that s is completely determined in terms
of u in the inner solution. The composite solution can now be written

uc(t) = u0(t) +U0(κt) − a

sc(t) = s0(t) + S0(κt) − K (1 − μ

α(1 + βa)
). (23)

A numerical solution to (14) is shown in Figure 1A for different values of the small
parameter κ together with the zero-order composite solution (23). As expected, a
small value of κ leads to solution which shows clearer separation in ecological and
evolutionary dynamics where the population first grows to carrying capacity without
changes in frequency and then a subsequent change in frequency.

In order to quantify the error introduced by the zero-order approximation, we cal-
culate the total error

E(κ) =
(∫ Tmax

0
(u(t) − uc(t))

2 + (s(t) − sc(t))
2 dt

)1/2

(24)

where all solutions are calculated numerically using thelsoda-solver as implemented
in SciPy’s odeint. Figure 1B shows that as expected the error E(κ) of the zero-order
composite solution scales as κ as long as κ � 1.

We also compare the accuracy of the zeroth- and first-order approximation of the
population size on the ecological time scale by solving (16) and (18) numerically and
calculating the error compared to the numerical solution of the full system. The initial
conditions for the first-order ODEs are chosen such that the approximation is valid
for all values of κ , which corresponds to setting u1(t = 0) = s1(t = 0) = 0. The
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A B

Fig. 2 A Solutions of the ecological dynamics (16) and (18) for κ = 0.2 with initial condition (u, s) =
(u0, s0) = (0.5, 0.01) and (u1, s1) = (0, 0). The other parameters are set to α = β = 1 and K = 1. B The
total error for the zeroth- and first-order approximation. The dashed lines have slope 1 and 2, respectively
(Color figure online)

solutions are shown in Figure 2A and the total error in Figure 2B. This shows that
the error scales according to κ for the zeroth-order solution and κ2 for the first-order
solution.

4 Application to predator competition in a Lotka–Volterra system

We now turn to a more complicated system of a prey and two competing predators:

dx

dt
= αx − βx (y1 + (1 + ε)y2) (25)

dy1
dt

= δxy1 − γ y1 (26)

dy2
dt

= δ(1 + ε)xy2 − γ y2, (27)

where x denotes the population size of the prey, y1 the population size of the wild-type
predator and y2 the invading predator, which is a factor (1 + ε) better at feeding on
the prey. The global stability of the steady states of this system has previously been
investigated (Llibre and Xiao 2014), and here, we are concerned with the dynamics
of the special case when ε � 1.

Although the entire system does not conform to the general form of (3), it will be
useful to carry out the outlined perturbation solution since it allows us to analyse a
case where the ecological dynamics does not converge to a stable equilibrium point,
but rather to a limit cycle.

We focus on the predator populations and therefore consider the dynamics of the
total population of predators s = y1 + y2 and the fraction of the wild-type predator
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u = y1/(y1 + y2). In order to carry out the perturbation solution, we make a change
of variables and consider the system in terms of x , s and u. After some algebra, we
obtain:

dx

dt
= αx − βx (s + (1 + ε)s(1 − u))

du

dt
= −εδxu(1 − u)

ds

dt
= εδsx(1 − u) + δsx − γ s. (28)

We begin with the perturbation solutions on the ecological time scale and make the
ansatz:

x(t) = x0(t) + εx1(t) + O(ε2)

u(t) = u0(t) + εu1(t) + O(ε2)

s(t) = s0(t) + εs1(t) + O(ε2).

By inserting this into (28) and equating powers of ε, we obtain to zeroth order

dx0
dt

= αx0 − βx0s0

du0
dt

= 0

ds0
dt

= δs0x0 − γ s0, (29)

which we recognise as a standard Lotka–Volterra system in the variables (x0, s0), and
where the fraction of wild-type predator u0 remains constant.

To first order in ε, we obtain

dx1
dt

= αx1 − β (x0 (s1 + s0(1 − u0)) + x1s0)

du1
dt

= −δx0u0(1 − u0)

ds1
dt

= δs0x0(1 − u0) + δ(x0s1 + x1s0) − γ s0, (30)

where we see a decrease in the fraction of the wild-type (since x0u0(1 − u0) > 0).
In order to analyse the evolutionary dynamics, we carry out the change of variables

τ = εt and obtain

ε
dx

dτ
= αx − βx (s + (1 + ε)s(1 − u))

ε
du

dτ
= −εδxu(1 − u)
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ε
ds

dτ
= εδsx(1 − u) + δsx − γ s. (31)

We then make the ansatz:

x(t) = X0(τ ) + εX1(τ ) + O(ε2)

u(t) = U0(τ ) + εU1(τ ) + O(ε2)

s(t) = S0(τ ) + εS1(τ ) + O(ε2),

and obtain to zeroth order in ε

0 = αX0 − βX0S0
dU0

dt
= −δX0U0(1 −U0)

0 = δS0X0 − γ S0. (32)

The first and third equation together yield X0 = γ /δ and S0 = α/β, which we
recognise as the steady state of the zeroth-order ecological dynamics (29). Thus, on
an evolutionary time scale (to zeroth order) the prey population and the total predator
population take on their ecological steady state values. The fraction ofwild-type preda-
tors, on the other hand, follows a replicator-like equation, with a constant selection
coefficient given by −δX0 = −γ , which is the death rate of the predators.

Comparing terms of order ε, we obtain

dX0

dt
= αX1 − β (X0 (S1 + S0(1 −U0)) + X1S0)

dU1

dt
= −δX0U1(1 − 2U0) − δX1U0(1 −U0)

dS0
dt

= δ (S0X0(1 −U0) + X0S1 + X1S0) − γ S1. (33)

Since both X0 and S0 are constant, the first and third equation have a left hand side equal
to zero and can both be solved for X1 and S1, respectively. After some calculations, we
obtain X1 = − γ

δ
(1−U0) and S1 = −α

β
(1−U0). To first order on the evolutionary time

scale, we thus see a change in the prey and total predator population size according to

x(t) = γ

δ
− ε

γ

δ
(1 −U0(τ )) + O(ε2) (34)

s(t) = α

β
− ε

α

β
(1 −U0(τ )) + O(ε2), (35)

where the fraction of wild-type predators U0(t) changes according to (32) and the
first-order correction according to (33).
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A B

Fig. 3 A The fraction of wild-type predators as a function of time for the full Lotka–Volterra system (red),
on the ecological time scale (blue) and evolutionary time scale (green). Zeroth-order approximations are
dashed, whereas first-order approximations are shown as solid lines. The parameters are ε = 0.05, α = 0.2,
β = 1, δ = 0.5 and γ = 1. The initial conditions are (x, y1, y2) = (1, 1, 0.01). B The total error between
the numerical solution of the original system (28) and the zeroth- and first-order approximations on the
ecological time scale (see inset in panel A). The total time was set to Tmax = 20, and the parameters and
initial conditions were set as in panel A. The dashed lines correspond to E(κ) ∼ ε and ε2 (Color figure
online)

4.1 Numerical comparison

In this example, where the ecological dynamics do not converge to a stable state (as
it did for the public goods game), but instead enter into a limit cycle, we are not able
to form a composite solution valid for all times. Instead, we consider the dynamics
on the ecological and evolutionary time scales separately. We focus on the fraction of
wild-type predators and investigate how the zeroth- and first-order approximations on
the ecological ((29) and (30)) and evolutionary ((32) and (33)) time scales compare
to the solution of the full Lotka–Volterra system (28). All solutions were calculated
numerically using the lsoda-solver as implemented in SciPy’s odeint. The result
is shown in figure 3A where the inset shows the ecological dynamics (up to t ≈ 20)
and the evolutionary dynamics is shown on the large axes. The full solution exhibits
oscillatory dynamics and at the same decreases in a sigmoid fashion. The amplitude
of these oscillations is diminished as ε decreases (data not shown). To zeroth order
on the ecological time scale, we obtain a constant fraction of wild-type predators,
whereas the first-order approximation tracks the oscillation fairly well approximately
halfway through one cycle. On the evolutionary time scale the zeroth- and first-order
approximations both capture the sigmoid decrease in the wild-type predator.

When comparing the error between the full Lotka–Volterra system and the approx-
imations on the ecological time scale, we see as expected that the error of the
zeroth-order solution scales as ε, whereas the error of the first-order solution scales as
ε2.
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5 Discussion

We have shown how perturbation analysis together with the assumption of weak selec-
tion provides a formal way of expressing the dynamics of a population on ecological
and evolutionary time scales. The approximate solution is expressed as a power series
in a parameter that quantifies the deviation between the frequency-dependent birth
and death rates of each genotype and the average. We have applied the method to a
specific model of a two strategy public goods game and the competition between two
predators in a Lotka–Volterra model and showed numerically that the error introduced
scales with the selection coefficient to the power k + 1, where k is the order of the
approximation.

An important result is the derivation of the zeroth-order equation for the
outer/evolutionary dynamics (13), which can be viewed as a generalisation of the
replicator equation

dui
dt

= ui
(
fi (u) − f̄ (u)

)
,

with the addition of density-dependent rates that modulate the intensity of selection.
Our equation also captures the effects of frequency-dependence on both birth and death
rates. The replicator equation has been derived for constant (Traulsen et al. 2006) and
exponentially growing (Taylor and Jonker 1978) populations, whereas (13) holds (to
zeroth order in ε) for any type of density- and frequency-dependent growth.

Themodel of the public goods game has been analysed previously in order to obtain
an approximate equation of the change in producer frequency (Gerlee and Altrock
2017). In that case, an equation for the invariant manifold was derived and solved in
terms of a power series in the death rate μ. The resulting differential equation for the
change in producer frequency was given by

du

dt
= − μκ

α(1 + βu) − uκ
u(1 − u),

which at a first glance differs from (21). However, a Taylor expansion of the prefactor
to first order in κ is given by −μκ

α(1+βu)
and if time is rescaled according to τ = κt (as

was done to obtain (21)) we see that an equation identical to (21) is obtained. The two
approaches thus yield identical equations for the evolution of the producer frequency.

We have also shown that our framework can be applied to models where the ecolog-
ical dynamics follow oscillatory dynamics such as in the Lotka–Volterra system (28).
Also, here we obtain to zeroth order a replicator equation for the fraction of the wild-
type prey (32), where the selection coefficient is constant and given by the death rate
of the predators. We showed that higher order corrections to this simple relationship
can be obtained, but also that they add little to the zeroth-order solution, at least for
small selection strengths. The Lotka–Volterra system is overly simplistic and does not
account for mechanisms such as bounded growth of prey and predator handling-time.
However, our framework is general and can also be applied to predator-prey models
that are more realistic and thus more complex.
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The concept of weak selection and the separation of ecological and evolutionary
time scaleswhich follows from it has been used extensively inmathematicalmodelling
of population biology (Lion 2018). It is a central concept in adaptive dynamics, which
is a framework that describes the long-term evolutionary dynamics of an evolving
population (Geritz 2005). There it is assumed that evolution follows a ’trait substitu-
tion sequence’ in which monomorphic populations are invaded by fitter mutants that
displace the wild-type. This process is captured by the so-called canonical equation
(Dieckmann and Law 1996), which describes how the value of the traits under selec-
tion evolves over time and is obtained as deterministic approximation of a directed
randomwalk in the trait space. Notably this framework has been extended to situations
where the ecological dynamics are oscillatory and chaotic (Ferriere and Gatto 1995).

Weak selection also features heavily in evolutionary game theory (EGT) since it
simplifies the analysis and allows for explicit calculations of, e.g. fixation probabilities
(Nowak et al. 2004). The impact of higher order terms in EGT has been investigated
by Wu et al. (2010) , who showed that the universality of weak selection breaks
down when higher order terms are considered and that the microscopic model of
evolution influences the dynamics. In addition, it has also been shown that the ranking
of strategies depends on the strength of selection and therefore, that zeroth-order
approximations are a poor proxy under strong selection, in particular in multi-player
games (Wu et al. 2013).

Related to thework onEGT isAllen andMcAvoy’s analysis of fixation probabilities
in populations of arbitrary size and spatial structure (McAvoy and Allen 2021), where
weak selection allows for computation of fixation probabilities in polynomial rather
than exponential time. They have also considered a wide array of genetic structures
(e.g. haploid, diploid, etc.), and also there perturbation analysis as applied to selection
strength plays a central role in obtaining analytical results (Allen and McAvoy 2019).

The above-mentioned EGT-models as well as those of Allen and McAvoy describe
populations of a fixed size. This condition is relaxed in (Argasinski and Broom 2013)
who consider populations of varying size where birth and death rates are affected by
both density- and frequency-dependence. They consider a system of coupled ODEs,
which is a similar setting to ours, but are restricted to logistic density-dependence.Their
treatment of time-scale separation is also far from rigorous, and they only consider
the zeroth-order equilibrium solution to the ecological dynamics when expressing the
evolutionary dynamics. Variable population sizes are also considered in Cressman and
Garay (2003), which investigate stability in N−species coevolutionary systems. They
claim that time scale separation is not required in their analysis, and instead their focus
is on ’stationary density surfaces’ which correspond to equilibria of the ecological
dynamics. However, such equilibria are not reached (for general initial conditions)
unless the ecological time scale is completely separate from the evolutionary. Another
model that considers a variable population size is analysed by Parsons and Quince
(2007), which is formulated in terms of a two-dimensional Markov chain, where
the transition rates contain a logistic density-dependence. They also make use of
perturbation analysis in order to calculate fixations probabilities, but in their analysis
it is the reciprocal of the carrying capacity which plays the role of the small parameter.
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Lastly, it should be mentioned that weak selection has also been used in inclusive
fitness theory, where it simplifies the calculations of fixation probabilities and selection
gradients (Van Cleve 2015), and in the theory of branching processes (Lambert 2006).

In contrast to the above-mentioned contributions to our understanding of weak
selection and its implications for eco-evo dynamics, wewould like to highlight that the
workpresented here is thefirst to jointly consider: (i) general density-dependent growth
(as opposed to, e.g. Argasinski andBroom2013), (ii) a rigorous treatment of ecological
and evolutionary time scales in terms of inner and outer solutions including composite
solutions obtained using matched asymptotic expansions, and (iii) a quantification
and numerical verification of the error introduced by using zeroth- and first-order
approximations.

One limitation of our framework is that it only applies to deterministic models.
For small populations, stochastic models are more relevant since they account for
demographic noise, and extending our methodology to such models would therefore
be desirable. One way of achieving this could be to formulate the dynamics as an
N−dimensional Markov chain that describes the population size of the considered
genotypes and writing down the corresponding Fokker–Planck equation as in Parsons
andQuince (2007). By assumingweak frequency-dependence and expanding the solu-
tion of the Fokker–Planck equation in a power-series of the selection strength, it might
be possible to obtain approximate solutions.Another, possibly simpler approachwould
be to take the continuum limit of the Markov chain to obtain a system of N coupled
stochastic differential equations (Czuppon and Traulsen 2021). In this setting, ques-
tions about fixation probabilities and fixation times can be pursued using perturbation
analysis coupled with the toolbox of stochastic analysis.

The framework we have introduced is applicable to a large class of population
dynamical models with density- and frequency-dependence and makes it possible
to derive approximate solutions in the case of weak selection. The use of composite
solutions in additionmakes it possible to obtain solutions valid for all times. If selection
is not weak, it is possible to include higher-order terms in the power series expansion
and still obtain distinct models for the ecological and evolutionary time scales. As was
seen for the public goods and Lotka–Volterra model, these higher order corrections
typically involve changes in both density and frequency.

The method presented here also makes it possible to test if, for a given model,
separation of time scales is a sensible approximation. This could for example be used
to investigate if evolutionary game theory, which only describes changes in frequency,
is a reasonable description of a certain system, or if changes in density have to be
accounted for.
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