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Abstract
Context: Artificial intelligence (AI) has led a new phase of technical rev-
olution and industrial development around the world since the twenty-first
century, revolutionizing the way of production. Artificial intelligence (AI), an
emerging information technology, is thriving, and AI application technologies
are gaining traction, particularly in professional services such as healthcare,
education, finance, security, etc. More machine learning technologies have
begun to be thoroughly applied to the production stage as big data and cloud
computing capabilities have improved. With the increased focus on Machine
Learning applications and the rapid growth of distributed edge devices in the
industry, we believe that utilizing a large number of edge devices will become
increasingly important.
The introduction of Federated Learning changes the situation in which data
must be centrally uploaded to the cloud for processing and maximizes the
use of edge devices’ computing and storage capabilities. With local data
processing, the learning approach eliminates the need to upload large amounts
of local data and reduces data transfer latency. Because Federated Learning
does not require centralized data for model training, it is better suited to edge
learning scenarios with limited data and privacy concerns.
Objective: The purpose of this research is to identify the characteristics
and problems of the Federated Learning methods, o�er new algorithms and
frameworks that can assist companies in making the transition to Federated
Learning, and empirically validate the proposed approaches.
Method: To achieve these objectives, we adopted an empirical research ap-
proach with design science being our primary research method. We conducted
a literature review, case studies, including semi-structured interviews and sim-
ulation experiments in close collaboration with software-intensive companies
in the embedded systems domain.
Results: We present four major findings in this paper. First, we present a
state-of-the-art review of the empirical results reported in the existing Feder-
ated Learning literature. We then categorize those Federated Learning imple-
mentations into di�erent application domains, identify their challenges, and
propose six open research questions based on the problems identified in the
literature. Second, we conduct a case study to explain why companies an-
ticipate Federated Learning as a potential solution to the challenges they en-
countered when implementing machine learning components. We summarize
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the services that a comprehensive Federated Learning system must enable in
industrial settings. Furthermore, we identify the primary barriers that compa-
nies must overcome in order to embrace and transition to Federated Learning.
Based on our empirical findings, we propose five requirements for compa-
nies implementing reliable Federated Learning systems. Third, we develop
and evaluate four architecture alternatives for a Federated Learning system,
including centralized, hierarchical, regional, and decentralized architectures.
We investigate the trade-o� between communication latency, model evolution
time, and model classification performance, which is critical for applying our
findings to real-world industrial systems. Fourth, we introduce techniques
and asynchronous frameworks for end-to-end on-device Federated Learning.
The method is validated using a steering wheel angle prediction case. The
local models of each edge vehicle can be continuously trained and shared with
other vehicles to improve their local model prediction accuracy. Furthermore,
we combine the asynchronous Federated Learning approach with Deep Neural
Decision Forests and validate our method using important industry use cases
in the automotive domain. Our findings show that Federated Learning can
improve model training speed while lowering communication overhead without
sacrificing accuracy, demonstrating that this technique has significant benefits
to a wide range of real-world embedded systems.
Future Work: In the future, we plan to test our approach in other use
cases and look into more sophisticated neural networks integrated with our
approach. In order to improve model training performance on resource-
constrained edge devices in real-world embedded systems, we intend to de-
sign more appropriate aggregation methods and protocols. Furthermore, we
intend to use the Federated Learning and Reinforcement Learning methods
to assist the edge in evolving themselves autonomously and fully utilizing the
computation capabilities of the edge devices.

Keywords: Federated Learning, Machine Learning, Software Engineering
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CHAPTER 1

Introduction

The sheer volume of data generated by humans and computers nowadays
significantly exceeds humans’ ability to absorb, comprehend, and make so-
phisticated judgments based on it. Artificial intelligence (AI) underpins all
computer learning and is the future of data-driven and complex decision-
making [1]. There are 255,168 distinct moves in tic-tac-toe (the circle and
cross-game), for example, 46,080 of which result in a draw. Nonetheless, the
majority of people can figure out how to avoid losing the game. Checkers,
on the other hand, has nearly 5,000 moves to the power of 18, and therefore
only a small number of people with long-term practices can be considered spe-
cialists. However, with a su�cient amount of data, computers are extremely
e�cient at calculating combinations of these moves and generating the best
possible response. Artificial Intelligence’s capabilities can benefit many as-
pects of human life and serve as the foundation for future business decisions.
[2].

In most industrial applications, AI can enhance the intelligence of the prod-
ucts and improve user experience. AI will not be sold as a standalone appli-
cation in most circumstances. Instead, AI skills will be employed to augment
existing products, similar to how Siri is included in Apple products. Massive
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amounts of data can be used to improve a variety of home and workplace
technologies, ranging from security intelligence to investment analytics. [3].
Furthermore, AI can be adapted by learning algorithms, allowing users’ data
to continuously improve AI prediction performance. As the result, just as an
algorithm can teach itself how to play chess, it can also teach itself which
things to recommend to the target users. When presented with new data,
back-propagation will allow the model to be updated by training and adding
data [4].

1.1 Artificial Intelligence and Machine Learning
Machine learning, as one of the most important general-purpose AI technolo-
gies, is frequently regarded by outsiders as a formula or theorem-like abstract
basis employed in AI applications. Machine learning is functional in nature,
but with its purely algorithmic capabilities, it can still be directly implemented
in areas with a good digital foundation, such as finance, industry, medicine,
and the internet, providing companies with a variety of services such as intel-
ligent risk control, predictive maintenance and personalized recommendations
[5][6][7].

The main value of machine learning is to analyze known data using special-
ized algorithms, find the possibilities buried in the data, and make predictions
and judgments based on this, either independently or with the assistance of
users. The existence of a large amount of data available for analysis is a
prerequisite for the value of machine learning, particularly in the practical
application of enterprises, which requires enterprises to be able to provide
continuous and accurate data on various aspects of business such as research
and design, production and operation, marketing and customer acquisition,
and so on. In order to train, modify, and improve the algorithm model, and
then use the model to explore the real value of the data collected by the com-
panies, the data collected will be the fuel of the AI techniques [8]. The degree
to which industry or region gets digitized impacts how much machine learning
can play a part in it.

Machine learning algorithms are a class of algorithms that analyze data au-
tomatically to extract patterns and then use those patterns to create predic-
tions from unknown data [9]. With the help of learning iterations, the method
can help industries learn from previously generated dependable calculations,
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1.1 Artificial Intelligence and Machine Learning

decisions, and outcomes. Although many machine learning techniques have
been known for quite some time, the capacity to automatically apply di�cult
mathematical computations to large amounts of data is the most recent ad-
vancement. Computing and storage capability is more economical and power-
ful compared to the data availability and volume growth. All of the preceding
criteria imply that software engineers can develop machine learning models to
quickly and automatically analyze much more complicated data, producing
faster and accurate results even at an extremely large scale. When there is
no human intervention in reality, high-value predictions can lead to better
judgments and more informed behavior.

Artificial intelligence is now seen as a must-have technology for modern
enterprises. The future of business will be based on AI-driven systems that
continually employ modeling and simulation to identify the best next step
[10][11]. Simultaneously, as the amount of data generated in workflows grows,
machine learning models will also evolve and play a much more essential role.
Businesses will use AI technologies to cut costs, speed up decision-making
cycles, encourage creativity, and enable greater disruption. Nowadays, AI is
playing a critical role in assisting businesses in processing data at a "superhu-
man" scale and precision. Intelligent systems are progressively taking on the
task of processing and preparing data for analysis.

IoT data, user data, and internal corporate data are now the most common
types of data linked to industrial AI applications. In many cases, this is
simply due to the fact that organizations have access to a vast amount of
data when interacting with users and employing IoT devices. Other types
of data, on the other hand, can frequently lead to even superior insights,
especially when many types of data are fused. However, the important concern
is whether organizations and current technology infrastructures can handle
large amounts of data. It is critical to recognize that as the second wave of
IoT solutions becomes available, solutions will continue to evolve as 5G o�ers
greater bandwidth and reduced latency, and the volume of data continues to
grow. For example, IoT sensors incorporated in products will improve the
user experience or enable process owners to o�er virtual asset monitoring,
continuously adjusting for optimal performance and applying data insights
from third parties [12]. Clearly, the usage of machines will increase in the
future. Many companies are already aware that humans cannot handle the
current level of data. They require machine assistance to more e�ciently
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Chapter 1 Introduction

Figure 1.1: Typical machine learning workflow in the domain of embedded systems

organize data and employ machine learning software for databases to make
them economically valuable.

Machine learning workflows specify which steps of a machine learning project
are carried out. typical processes including data gathering, data pre-processing,
model training and refinement, assessment, and deployment to production [9].
Despite the fact that there are several ways to automate the machine learning
process in the area of embedded systems, the essence of the processes remains
the same [13]. According to [14][15], a typical machine learning workflow in
the domain of embedded systems is shown in Figure 1.1. The typical workflow
begins with logs collected from the app, server or user devices. The full data
set is transferred to cloud storage via the data pipeline, and once the storage
has accumulated a particular quantity of data, the data will be cleaned and
features will be generated for further model training. After that, the created
features and models are saved in the model storage. To answer user requests,
the inference module will use the trained models and features for online ser-
vices. However, the timeliness of the data models produced using the typical
training workflow is quite low, and achieving particularly high timeliness of
updates is di�cult. In addition, the entire training process will require a large
amount of bandwidth to gather and send data. Furthermore, the entire train-
ing or feature creation procedure is time-consuming, and the processing power
of the central cluster is highly demanding. Based on our observations, many
companies continue to confront numerous bottlenecks and problems when im-
plementing AI components into their embedded systems [13].
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1.2 Challenges of the Typical Machine Learning Workflow

1.2 Challenges of the Typical Machine Learning
Workflow

With substantial advancements in speech, picture, and text recognition, as
well as language translation, machine learning has slowly revolutionized the
way we live, learn, and work. Massive volumes of training data are collected
from users by huge firms such as Google, Facebook, and Apple in order to
develop large-scale deep learning networks. While the benefit of deep learning
is obvious, the training data it employs can have significant privacy impli-
cations: photographs and videos of millions of people are collected centrally
and stored indefinitely by huge corporations, and individuals have little con-
trol over how the data is utilized. Second, photos and videos are likely to
contain sensitive information such as people’s faces, registration plates, com-
puter screens, and conversations. Large companies have a monopoly on "big
data" and they could reap enormous economic gains as a result. [16][17][18].
Despite the fact that there are several obstacles connected with the machine
learning field, based on our observations and literature [19][3][20][21], when
companies attempt to implement machine learning components into practice,
the majority of concerns focus on three areas: data privacy, e�ciency, and
data ownership and storage.

Data Privacy
With the development of machine learning, AI techniques have been widely
used in a variety of fields in order to benefit people’s daily life. Currently,
applications such as recommendation systems for advertisement (Amazon,
Google), computer vision for image recognition and objective detection (Au-
tonomous Driving), natural language processing (Apple Siri, Amazon Alexa)
etc, largely rely on machine learning models. However, in order to obtain a
high-quality model, numerous user data needs to be analyzed and consumed,
which leads to several ethical problems, such as how to utilize users’ data,
how to protect those data away from non-permitted actions?

In current society, personal information leakage is very common. A lot
of companies or application owners may extract a user’s personal identity
information, religion, hobbies, interests, family, work information in order to
benefit their business [22]. Search engines collect search records to provide per-
sonalized search services. However, those data may also be used to track and
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monitor users’ behaviour. Various apps get your address book and location in-
formation. Online shopping information helps business decision-making, but
it can be used for fraud if it is obtained by criminals.

Overall, we all agree that data can be utilized to enhance our quality of
life. However, the way to handle and protect users’ privacy has become a
large ethical problem for researchers and industries. In the early stage of the
development of ML, society depended on virtue and deontological ethics to
regulate people for the usage of private data [23][24]. They believed that pro-
grammers and software service providers have the obligation to protect user
information and prevent data abuse. In fact, reality proves that we cannot
only rely on virtues or moral character. With the increasing attention on user
privacy, concrete laws and policies should be introduced to restrict the usage of
the user data, such as the General Data Protection Regulation (GDPR) [25].
It is well understood that as the amount of training data increases, so will
the diversity and performance of machine learning models. However, regula-
tions such as the general data protection regulation (GDPR) [25] prohibit the
sharing of personal data in many industries. This legislation has established
specific standards for privacy measures, which has improved the protection
of personal information even more. As a result, researchers in similar busi-
nesses can only evaluate and mine data sets owned by their own companies.
If a single organization (for example, a specific medical clinic) does not have
a significant amount of data and has insu�cient diversity, researchers may
end up with a less generic model by executing machine learning on such a
dataset [26]. The limits of data privacy and confidentiality definitely a�ect
the performance of machine learning in this scenario [27]. Moreover, with the
introduction of policies, more and more techniques of privacy protection will
also be developed such as anonymous processing, encryption algorithm, etc.
The concrete policy will introduce a better privacy-preserving strategy. Better
privacy-preserving techniques may lead to more consideration about forming
more e�cient policies and eventually form a sustainable socio-technical sys-
tem.

Communication E�ciency
On the other hand, with billions of edge devices globally networked, these
endpoints can generate massive amounts of data. These data must be cen-
trally transmitted to a cloud infrastructure for processing in traditional cloud
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computing designs. Machine learning’s utility is largely drawn from the mas-
sive amounts of data acquired, and its e�ectiveness is further increased by
the rising diversity of data. However, the growing number of connected de-
vices constantly generating data from the network makes the companies more
di�cult to keep track of all the data coming in from various sources [28].
This old data collection and model distribution method may increase network
tra�c, resulting in transmission congestion and data processing delays. As
the amount of data grew rapidly, a corporation using the centralized learning
model needed to spend more and more money to create a new data center to
store the explosive data.

Data Ownership and Storage

Furthermore, the utilization of machine learning with big data is quickly ex-
panding. However, e�ective data control is still a significant problem and the
way to design procedures to verify data quality, and lead the appropriate data
application to produce value for the institution and society is still need to be
investigated. Property rights (ownership) and data access have also long been
a practical concern in big data applications [29][30]. Only by clearly defining
property and access rights can data owners preserve data quality and minimize
organizational and institutional barriers to data sharing. Many businesses to-
day regard big data as their most valuable asset. However, data is frequently
stored and processed in a distributed fashion, which increases the number of
nodes and the amount of potential hostile assaults on the data. At this point,
there is a lack of developed infrastructure and control mechanisms for data
security protection. Data sharing and exchange are critical components of the
Big Data sector. Because of a lack of data standards, it is di�cult to share
and use the many data sources that are locked up in information silos. Data
security and privacy concerns are impediments to data sharing and exchange.
Traditional data sharing solutions are being put to the test by the sharing of
enormous data sources.

Overall, the operation of applications in the enterprise’s digitisation gener-
ates massive amounts of data. As a result, enterprises are expanding beyond
their traditional business intelligence and decision support system foundations
to reapply big data generated in the user network to system development,
thereby helping to improve the performance of their applications.

7



Chapter 1 Introduction

1.3 Transition towards Federated Learning
The current trend in artificial intelligence has shifted the emphasis away from
AI-based algorithms but toward big data infrastructures that provide security
and privacy. This transition in focus has resulted in the development of Fed-
erated Learning, which provides users with benefits that traditional machine
learning does not [31].

Because of the issues described above, traditional data exchange solutions
are unable to satisfy demand. Federated Learning is a novel technology that
is becoming more advanced, based on a combination of secure multi-party
computing and other cryptographic techniques. It is, in reality, a distributed
machine learning technique in which participants can collaborate to create
models without revealing the underlying data [32][33]. The emergence of this
learning method alters the situation in which data must be centrally uploaded
to the cloud for processing and maximizes the utilization of edge devices’
computing and storage capabilities. The learning approach eliminates the
need to upload large amounts of local data and reduces data transfer latency
with local data processing. The advantages of Federated Learning can be
summarized as follows:
1) Data is not leaked to the outside world in Federated Learning, addressing
users’ privacy and data security demands.
2) Federated learning enables the encrypted transmission of information and
model parameters while maintaining the independence of all parties involved.
3) It ensures that the system’s quality is preserved, negative migration is
avoided and federated models outperform fragmented standalone models.
4) It ensures that the status of the parties involved is equal, supporting fair
cooperation.
5) Federated learning can eliminate engineering obstacles, avoiding engineer-
ing issues such as enormous numbers of user data, costly network connections,
sluggish transmission rates, and low transmission security.
5) The capacity to ensure that participating parties transmit encrypted infor-
mation and model parameters while retaining independence and concurrent
growth.

Data isolation and data privacy protection are becoming the next chal-
lenges in AI, but federated learning gives new hope. As technology spreads
and standards improve, it will tear down boundaries between industries and
establish a community where data characteristics and expertise can be securely
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exchanged, allowing everyone engaged to equitably share the benefits.
As a result, Federated Learning is appropriate primarily for jobs where the

training data is sensitive to privacy or is too large to be collected centrally,
which has raised the interest of industry participants who wish to benefit
from this technique. However, despite its benefits, Federated Learning is
still in its early stage in the domain of embedded systems [34]. This type
of learning technique may also pose problems such as component failures,
ine�cient communication, unstable model performance, etc that needs further
research when applied in a real-world context.

1.4 Summary of the Included Papers
In Chapter 4 (Paper A: "Engineering Federated Learning Systems: A Litera-
ture Review"), we provide a state-of-the-art overview of the empirical results
reported in the existing literature regarding Federated Learning. According
to the problems they expressed and solved, we then categorize those deploy-
ments into di�erent application domains, identify their challenges and then
propose six open research questions.

In Chapter 5 (Paper B: "Towards Federated Learning: A Case Study in the
Telecommunication Domain"), we perform an interview-based case study to
discover the obstacles that industries face while dealing with machine learning
problems and why they believe Federated Learning is a viable solution. We
collect the insights gathered from our experienced participants and established
a strategy for assisting companies in the embedded system areas in their tran-
sition to Federated Learning. In addition, we summarize the services that a
complete Federated Learning system needs to support in industrial scenarios
and then identify the key challenges for industries to adopt and transition to
Federated Learning. Finally, based on our empirical findings, we suggest five
criteria for companies implementing reliable Federated Learning systems.

In Chapter 6 (Paper C: "Federated learning systems: Architecture alterna-
tives"), we investigate and compare four architecture alternatives for a Feder-
ated Learning system, i.e. centralized, hierarchical, regional and decentralized
architectures. We investigate the trade-o� between communication latency,
model evolution time and model classification performance, which is crucial
to applying the results to real-world industrial systems.

In Chapter 7 (Paper D: "Real-time end-to-end federated learning: An auto-
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motive case study"), we introduce approaches and asynchronous frameworks
to end-to-end on-device Machine Learning by utilizing Federated Learning.
We validate our approach with important industrial use cases in the field of
autonomous driving vehicles, the wheel steering angle prediction.

In Chapter 8 (Paper E: "AF-DNDF: Asynchronous Federated Learning of
Deep Neural Decision Forests"), we combine asynchronous Federated Learning
aggregation protocol with an advanced machine learning method, the Deep
Neural Decision Forest, and evaluate our approach using the road objective
recognition problems. The results show Federated Learning can accelerate
model training speed and reduce the communication overhead, which proves
that this approach has great strength when deploying ML/DL components to
various real-world embedded systems.

1.5 Contribution of the Research

The contribution of this thesis is manifold. Firstly, it identifies the limita-
tions of classic machine learning workflow, including the di�culties involved
with current learning steps and the challenges that companies experienced
(data collection, model training, model distribution, etc.) while attempting
to use machine learning to improve service quality. Secondly, it answers the
question of how Federated Learning can influence the business and improve
the service quality in embedded systems. It provides the reason that indus-
tries consider Federated Learning as a possible solution and future learning
method. Third, it identifies the main challenges of Federated Learning sys-
tems when companies implement them in a real-world context. It listed the
challenges that industries are attempting to solve when adopting and transi-
tioning to Federated Learning, summarizes the services and criteria required
for a reliable Federated Learning system and the open research questions for
Federated Learning. Fourth, it proposes a solution that can help companies
to implement Federated Learning components. It introduces four architecture
alternatives that have been or can be applied to a Federated Learning system
and introduces a real-time end-to-end Federated Learning method for training
Machine Learning models in a distributed context. The method also incor-
porates the asynchronous Federated aggregation protocol and the concept of
Deep Neural Decision Forests.
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1.6 Structure of the thesis
The following is the structure of this thesis. Chapter 1 explains machine learn-
ing, Federated Learning, and its important contributions. The background of
this thesis is presented in Chapter 2. Chapter 3 explains the research meth-
ods, as well as the research goals and motivations for each of the methods
used in the research. The papers A through E contained in this thesis consti-
tute the basis for Chapters 4, 5, 6, 7, and 8. Chapter 4 provides an overview
of the existing engineering Federated Learning systems. Chapter 5 discusses
the obstacles and restrictions that prohibit industries from using Federated
Learning in real-world systems. Chapter 6 addressed various architecture al-
ternatives for the Federated Learning system. Chapter 7 proposes a real-time
method for processing data and performing asynchronous Federated Learning
model training. Chapter 8 introduces the combination of the deep neural de-
cision forest and the asynchronous Federated Learning technique. Chapter 9
concludes the thesis with a discussion of the main results, contributions and
future work.
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CHAPTER 2

Background

This thesis studies Federated Learning and the transition from the typical
machine learning workflows to Federated Learning in the real-world context,
especially in the domain of embedded systems. Therefore, in order to provide
the reader with the necessary information that is required to better understand
this thesis, this section provides the background information and describe the
related work of this thesis. Section 2.1 discusses the concept of machine learn-
ing, as well as the three major learning methods, supervised, unsupervised,
and reinforcement learning. Section 2.2 introduces the concept of deep learn-
ing and how it a�ects today’s intelligent systems. Section 2.3 introduces the
concept of embedded systems as well as the current stage of AI component
implementation in the domain of embedded systems. Section 2.4 discussed
the impact of AI-powered applications and why they are important in today’s
businesses. Section 2.5 describes the concept of Federated Learning, as well as
related works, opportunities, and challenges. At last, section 2.6 summarizes
the chapter.
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Chapter 2 Background

2.1 Machine Learning
Machine learning is a sub-field of artificial intelligence that focuses on allow-
ing machines to learn from past experiences, model uncertainty in data, and
make future predictions [8][35][36]. Assume you want to use a computer to
automatically split animal photographs into two categories: cats or dogs. To
begin, a training sample, in this case, a collection of photos of cats or dogs,
must be acquired. Following that, the samples must be studied, and the char-
acteristics must be identified by some abstraction of the descriptions. The
data is then modelled in the third stage. Mathematical models are typically
necessary to examine the distribution of attributes and labels. The goal is to
use an optimization strategy to learn a mapping function, whose input is a
vector of sample features and output is the labels (cats or dogs). When the
user enters a new sample of animals in the prediction stage, we do the same
feature extraction using the mapping function learned to anticipate. The map-
ping function that was built after the learning process is used to automatically
predict the label category of the sample [37][38]. The above example is only
one of the common supervised binary classification problems. In the field of
machine learning, as Figure 2.1 shows, it is customary to classify algorithms
into 3 categories [39]: unsupervised learning, supervised learning, and rein-
forcement learning. The di�erence between each method is that they learn
from di�erent types of data.

Supervised Learning
Supervised Learning is a function learned from a particular training dataset
[40][41]. And the results can be predicted based on this function when new
data arrives. Inputs and outputs, often known as features and targets, are
part of the training set requirements for supervised learning. The target in
the training set is labelled by a human.

Supervised learning is often used to solve the classification/regression prob-
lem, in which existing training samples (i.e. known data and their correspond-
ing outputs) are trained to obtain an optimal model[42]. This model belongs
to a certain set of functions and optimal means that it is the best under a
certain evaluation criterion. Then this model is used to map all the inputs
to the corresponding outputs, and to make the judgements on the outputs in
order to achieve the classification/regression. This enables the classification
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2.1 Machine Learning

Figure 2.1: Categories of machine learning

of unknown data.
Supervised learning is a typical training method for neural networks and

decision trees [43]. Both strategies rely primarily on data provided by a pre-
defined system. The method for neural networks analyzes the information to
evaluate network defects and then continuously modifies the network param-
eters. The system employs decision trees to identify which attributes provide
the most information.

Unsupervised Learning
For unsupervised learning, the input data is unlabeled, and there is no clear
outcome. The sample data is of an unknown category, hence it is important to
classify the sample set based on sample similarity (clustering) in order to mini-
mize the intra-class gap and maximize the inter-class gap [44][45]. This means
that in many circumstances, the labels of the samples are unknown in advance,
i.e. there is no category for the training examples, and the classifier design
must be learned from the original set of unlabeled samples. For example, in a
player experience classification problem, game players can be classified based
on their level of involvement, and we can allow high engagement players to test
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the new gameplay while sending help tutorials to low engagement users. We
begin by configuring the fundamental attributes: player time, player expen-
diture, and player level. These three attributes are fed into the Unsupervised
Learning model method, which is pre-set and divided into two groups, and
the system classifies all players into two groups: highly engaged players and
lightly engaged players.

We do not specify specific situations or labels in the unsupervised learning
model, such as which players should be highly engaged and which should not.
Instead, we define the necessary attributes and o�er the attributes to the al-
gorithm, allowing the program to identify the groups naturally. Unsupervised
learning is appropriate for situations in which labels are di�cult to determine
[46].

Reinforcement Learning
The purpose of reinforcement learning is not to direct the computer on what
to do, but to allow it to learn on its own. The method is to teach the Agent
without explicitly assigning it a classification but to employ some sort of
incentive system when it succeeds [47][48]. It is important to highlight that
this form of training is typically implemented within the context of a decision-
making problem, as the goal is not to create a classification system but to
make the most rewarding decision possible. Figure 2.2 gives a basic diagram
of reinforcement learning.

This type of reasoning generalizes well to the actual world, where the agent
can be rewarded for good behaviour and penalized for bad. Reinforcement
learning poses a unique challenge: the trade-o� between "trial" and "exploita-
tion", where the intelligence must exploit existing experience to reap the ben-
efits, while at the same time conducting trials that allow for better action
choices in the future (i.e. learning from mistakes).

Model Training and Inference
Each of the three learning methods necessitates two phases: training and
real-world application (inference phase, validation phase) [49][37]. The two
phases of the three learning models di�er in many ways: the training phase
entails training a policy model from the available data, whereas the real-world
phase entails adapting the developed policy model to a new environment.
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Figure 2.2: Diagram of the reinforcement learning

Specifically:

• Unsupervised Learning: the training phase must divide all samples into
target groups, and the real-world phase can reuse the knowledge to
divide new samples into corresponding groups [45].

• Supervised Learning: the training phase associates sample attributes
with a given label, and the practice phase uses this association to predict
whether a sample would fit the given label [40].

• Reinforcement Learning: the training phase achieves an optimized learn-
ing strategy through guided experiments, and the practice phase, in
which agents employ the acquired approach to observe and complete
the task in the new world [47].

2.2 Deep Learning
Humans learn through experience. The more experience you have, the more
you will be able to learn. This approach is analogous to the subject of deep
learning in the study of artificial intelligence (AI), in that computers powered
by AI hardware and software learn from experience. The data from which
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the machine learns defines the amount of knowledge it can learn, and the
quantity and quality of the data determine the amount of information it can
learn [50][51]. Deep learning is a subset of machine learning. Unlike many
typical machine learning algorithms, which have limited learning capacity and
can not consistently increase the overall quantity of knowledge learnt, deep
learning systems can enhance performance by accessing more data, which is
a machine proxy for "more experienced". Deep learning allows a computer to
accumulate enough expertise to be employed for specialized activities such as
driving a car, diagnosing a disease, detecting faults, and so on [52].

Deep learning networks learn by detecting complex structures in empirical
data. Deep learning networks can represent data at numerous levels of ab-
straction by constructing computational models with several processing layers
[50][51]. For example, a convolutional neural network needs to be trained us-
ing a huge amount of image samples. Typically, this type of neural network
learns from the pixels in the captured image. It can classify the pixels that
represent the physical features of the target in the image and group the pixels
that represent these physical traits [53].

Deep learning is substantially di�erent from conventional machine learning.
In this case, it would take a significant amount of time for a domain expert to
develop a standard machine learning system to detect the physical features.
Deep learning, on the other hand, requires only a huge number of samples to be
provided to the system before it can learn to create the features. Deep learning
systems can beat typical machine learning systems by a considerable margin in
various tasks [51]. This is not to claim that developing a deep learning system
is simpler than developing a typical machine learning system. Although deep
learning performs feature identification independently, we still need to tune
hundreds of hyper-parameters to assure the success of deep learning models.

2.3 Embedded Systems
Embedded systems are currently widely used in a variety of applications, in-
cluding consumer electronics, smart hardware, communication devices, cars,
medical devices, personal computers, and mobile phones. An embedded sys-
tem is a real-time microcomputer system that is part of a machine or equip-
ment [54]. Embedded systems are often compact, low-cost, and energy-e�cient.
The operation of an embedded system necessitates the execution of processes,
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tasks, or threads in order to respond to external or internal inputs or to com-
plete normal transactions[55]. These methods must produce accurate findings
within specific time constraints. The field of embedded systems is the result
of numerous disciplines coming together, including software engineering, op-
erating systems, and electrical engineering. Embedded systems incorporate
many concepts from various disciplines which can be improved by adapting,
upgrading, and enhancing these concepts and technologies [54][56].

In the context of embedded systems, machine learning enables the use of
such data in automated processes to generate more experienced predictions.
Machine learning makes use of a huge quantity of historical data to allow the
systems to learn independently and apply that information for prediction and
decision making [57]. These kinds of devices can help with a variety of jobs
in the industries and enable machine learning algorithms to run on low-cost,
low-power devices [58].

There are several advantages of using machine learning in embedded devices.
It removes the need for data transfer and storage on cloud servers, which
decreases data breaches and privacy leaks associated with data transfer. It
also decreases intellectual property, personal data, and corporate secrets theft.
The use of ML models reduces the need to upload data to a cloud server, saving
bandwidth and network resources, which outperform cloud-based systems in
terms of e�ciency. This is due to the fact that there is no need to transfer
a large amount of data to the cloud which contributes to significant network
latency [59][60].

2.4 AI-Powered Applications
There’s no denying that AI and machine learning are having a significant im-
pact on the tech industry. From corporations to small workshops, AI and ML
are everywhere, and possibly more than in our daily lives. AI is having a
greater impact on the commercial sector. Machine learning/ Artificial Intel-
ligence has been heavily invested in by tech giants like Facebook and Google,
and the technology is already being used in their products. More businesses
are looking to incorporate AI components into their products to improve them
[61].

As artificial intelligence and machine learning promise to progress in their
respective industries in the embedded systems domain, more organizations
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are switching to systems that support them [62]. Because machine learning
and artificial intelligence have the power to transform present work inertia,
these changes are bound to occur in a variety of domains [63]. AI has short-
ened shipping times and reduced shop backlogs in the retail sector. According
to current trends, machine learning will be employed in the future to boost
productivity and improve sta� deficiencies without the need for mass layo�s
[64]. Advertising is likewise undergoing a change as a result of artificial in-
telligence. Marketers will be able to obtain a better understanding of their
clients’ thoughts and hearts with the help of machine learning, and they will
be able to target them with customised communications.

AI-enabled hardware and ML-enabled CPUs are anticipated to be found in
mobile phone microchips [65]. These high-performance procedures will give
users capabilities such as quick translation and more e�cient speech recogni-
tion. Computers will also reduce in size as computing and storage capacity
improve, but they will become exponentially more powerful [18]. These AI and
machine learning-enabled devices will also assist organizations in being more
accessible and globally competitive, as well as increasing revenue streams for
various types of companies.

However, even though the concept of the implementation of machine learn-
ing components has significant benefits, it is sometimes hard for industries
and companies to build a reliable and applicable system. We found that the
transition from prototype to the production-quality deployment of ML models
proves to be challenging for many companies [66].

However, while the concept of combining machine learning approaches is
e�cient, there are numerous challenges that businesses face as they strive to
develop their digital intelligence [67][16][68]. The necessity of data for algo-
rithms is well understood. Without data, even the most advanced algorithm
is useless, and while there are a variety of open-source datasets accessible,
they simply do not match the needs of an increasingly complex and diverse
spectrum of machine learning applications [10]. Access to data and privacy
controls also issues for enterprise-level machine learning applications, which
can take weeks or months to get the right dataset. The majority of business
data is extremely sensitive, particularly when dealing with the government,
healthcare, and financial industries [69][60]. When it comes to exchanging data
assets, non-disclosure agreements (NDAs) are highly rigorous. Furthermore,
it is not uncommon for data to be dispersed throughout an organization, mak-
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ing it extremely di�cult to obtain. When the amount of data produced grows
at an exponential rate, the question of how to use it wisely and e�ectively, as
well as how to store it, becomes a major concern [70].

2.5 Federated Learning
Machine Learning has piqued the interest of both researchers and the general
public. The main challenge is that, while computation capability grows over
time, the computational needs of many Machine Learning systems grow even
faster [71]. For example, in order to attain acceptable model performance
when using deep neural networks, the network must have millions or even
billions of neurons, which may result in a longer training time and less model
flexibility [42].

A basic diagram of a Federated Learning system is shown in 2.3. Local
model training is used in this approach, and data generated by edge devices do
not need to be exchanged. Weight updates are instead forwarded to a central
aggregation server, which generates a global model. The solution addresses the
issue that standard Machine Learning approaches can only train and deploy
models on a single central server.

Figure 2.3: A basic diagram of a Federated Learning system
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Since Google introduced the concept in 2017 [72], various Federated Learn-
ing architectures, frameworks, and solutions have been presented to address
real-world concerns [31]. Because models are trained locally, no edge data is
transferred in a Federated Learning system, and only weight updates are sent
to a central aggregation server to construct a global model. Furthermore, with
local training and validation, a Machine Learning model can be quickly veri-
fied and deployed, making it more appropriate for a rapidly growing system.

AI engineering has the opportunity to grow to a distributed setting with
the concept of cloud computing and decentralized data storage. Federated
Learning is proposed to improve existing Machine Learning methodologies by
allowing edge devices to train a shared Machine Learning model collectively.
Federated Learning theory has been investigated in [33][73]. Its primary goal
is to learn a global statistical model from a large number of edge devices. The
goal is specifically to minimize the following finite-sum objective function 2.1:

min
w

f(w), where f(w) :=
nÿ

i=1
⁄ifi(w) (2.1)

Here, w represents model parameters, n is the total number of edge devices,
and fi(w) is the local objective function which is defined by high dimensional
tensor w of the ith device. ⁄i (⁄i Ø 0 and

q
i ⁄i = 1) gives the impact of ith

remote device and is defined by users.
In conclusion, the benefit of using Federated Learning is obvious. A Fed-

erated Learning system is a privacy-preserving Machine Learning approach
due to the process of model training and data dissemination. It can use local
computation resources to relieve the central server’s computation load. Fur-
thermore, because of the local training manner, the system can give rapid
model deployment and development.

Despite its benefits, Federated Learning is still in its early stage in the do-
main of embedded systems [34]. This type of learning technique may also pose
problems when applied in a real-world context. Because of the frequent model
interchange, model aggregators and edge devices both require a dependable
network connection. A centralized aggregation server may also result in a
single point of failure or bottleneck. Di�erent types of learning architectures
must be thoroughly evaluated and designed for various industrial contexts.
More demand for local computing capacity may need increased investment
in hardware development and maintenance by companies. Furthermore, with
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unevenly distributed data, the global model may fail to converge, resulting in
poor model performance. As a result, the method merits further investigation
and development by researchers.

2.6 Summary
This chapter presents the background information required for a better under-
standing of this thesis. The chapter introduces the notion of machine learning
as well as the three major learning methods: supervised, unsupervised, and re-
inforcement learning. Furthermore, it introduces the concept of deep learning
and its impact on today’s intelligent systems. The discussion of the impact of
AI-powered applications, the concept of embedded systems, and the current
stage of AI component implementation in the domain of embedded systems
demonstrates the significance and provides context for the implementation
environment that will be applied in Chapters 4-8. Finally, the overview of
the concept, opportunities, and challenges of Federated Learning provides the
fundamental knowledge of the topic discussed in this thesis, which is relevant
in the subsequent chapters.
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CHAPTER 3

Research Methodology and Design

The tactics, processes, or techniques used in the collection of data or evidence
for analysis in order to reveal new knowledge or generate a better under-
standing of a topic are referred to as research methodologies. In this thesis,
we explore and discuss the importance of the transitions from commonly used
machine learning methods to Federated Learning methods and the way to help
the Federated Learning components to be implemented in industrial cases. In
this chapter, we present the methodology applied during this research.

3.1 Research Questions
The goal of this research is to identify the barriers and limits that exist in
the engineering Federated Learning systems. And we hope to assist indus-
tries in overcoming the barriers that impede many industrial organizations
from adopting Federated Learning. Despite the fact that we regard Federated
Learning as having the ability to deliver solutions to a variety of use cases,
and that research and implementation have demonstrated its usefulness, this
technique is still in its infancy. To fulfill the research objectives, we adopted
an empirical research approach with design science being our primary research
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method. The study is primarily concerned with the following research ques-
tions:

• RQ1. What are the main challenges with existing Machine Learning
workflows and how can Federated Learning help in addressing and solv-
ing these challenges?

• RQ2. What are the primary constraints and limitations of current Fed-
erated Learning systems?

• RQ3. What are the solutions that can help companies in the embedded
systems domain build Federated Learning in practice?

The first research question (RQ1) is to explore and gain an initial under-
standing of Federated Learning. Because the approach is still in its early
stages and requires further development, it is critical to understand from an
industrial standpoint what sorts of qualities are beneficial for businesses, what
kind of challenges they faced and how Federated Learning can assist them in
resolving their problems. To address RQ1, we conducted a case study that
interviewed experienced machine learning experts, data experts, project man-
agers to gain knowledge of the potential applications of Federated Learning.
We also performed a literature review to examine previous research and the
findings that these present. Each study paper’s topic, methodology, and de-
ployments were taken into account. We identified the specific technical prob-
lem addressed in the study based on empirical data and solutions. The second
research question (RQ2) is intended to explore the constraints and limitations
of existing Federated Learning systems, as well as the obstacles that prohibit
organizations from incorporating Federated Learning components into embed-
ded systems. Regarding RQ2, throughout the literature review, we analyzed
the improvements and contributions of each work and organized the inter-
view to conclude the problems and limitations of existing Federated Learning
systems. The findings indicate numerous research avenues for implementing
trustworthy Federated Learning systems in the real world. The third research
question (RQ3) is intended to develop solutions including algorithms, frame-
works and concepts, as well as to apply and validate our proposed solutions
in a real-world scenario. We collaborate with companies in the domain of
embedded systems to investigate how to put the Federated Learning theory
into practice and realize it in real-world circumstances.
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3.2 Empirical Research
Empirical research [74][75] is research that is based on empirical evidence. It
is also an approach to acquiring knowledge through direct and indirect obser-
vation or experience. The record of one’s actual observations or experiences,
known as empirical evidence, can be examined numerically or qualitatively
[76]. A researcher can answer empirical questions that are clearly defined and
answerable with the evidence obtained by quantifying the evidence or making
meaning of it in qualitative or quantitative data. [74].

The approach helps in the improvement, analysis, and evaluation of soft-
ware development methods and processes. It also serves as a guide for making
decisions [75]. In several instances, empirical research is beneficial to the soft-
ware industry and software engineering researchers. The empirical study may
be used to answer inquiries about industry practices and to enhance software
development strategies and processes [77]. Empirical research enables software
engineers to utilize experiment results and ensure that a set of appropriate
procedures and processes are followed at some stage during software develop-
ment [78]. As a consequence, empirical approaches assist in identifying the
best of the resulting software processes and products.

In summary, the purpose of this study was to investigate empirical cases
at companies in the domain of embedded systems, investigate the obstacles
and constraints they encountered when implementing Federated Learning, and
propose corresponding solutions. As a result, empirical research is a useful
approach for the phenomenon of this study.

3.3 Design Science
The scientific approach should be used to study design as a science. The
scientific method consists of theory and doctrine, the development of exper-
imentally testable conjectures based on theory and doctrine, the systematic
analysis of experimentally observed phenomena, and the evaluation of the va-
lidity of theories based on observational results [79] [80]. It aims to develop
innovations that describe the concepts, methods, technological capabilities,
and products that can be used to e�ectively and e�ciently analyze, design,
implement and manage the information systems [81][80]. Science is one that
has tested theories, research that focuses on narrow and constrained models,
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3.1:

O
verview

ofthe
research

activities

28



3.3 Design Science

and models that can give scientifically tested predictions [82]. In short, de-
sign science should consist of operational theories and models that explain
observed events and can anticipate what will occur. Rigour in design science
research results from the use of a knowledge base - a theoretical foundation
and a research methodology [80]. Success is founded on the researcher’s abil-
ity to select not just the appropriate approaches for building or developing a
theory, but also the appropriate ways for proving that theory or evaluating
that output [83]. Design is fundamentally the process of searching for an e�ec-
tive solution to a problem. A solution can be defined as the realization of the
desired end by possible means while adhering to the laws of the environment
[80]. Design science is inherently a problem-solving process. The fundamental
principle of design-science research is that knowledge and understanding of a
design problem and its solution are acquired in the building and application
of an artefact. That is, design-science research requires the creation of an
innovative, purposeful artefact for a specified problem domain. Because the
artefact is purposeful, it must yield utility for the specified problem. Hence,
a thorough evaluation of the artefact is crucial. [80]. The design research
involves six concepts [83], namely problem identification and motivation, the
definition of the objectives for a solution, solution design, demonstration, eval-
uation, and communication. According to Wohlin et al.[84], the essence of
Design Science is about problem-solving using an artefact as the means to im-
prove a situation. All of these instances encapsulate three generic activities:
1) Problem identification or conceptualization 2) Solution or artefact design
and implementation 3) Evaluation or validation

The main data collection and evaluation methods employed in this study
are literature review, and case studies combined with semi-structured inter-
views and simulation experiments. The literature review and interviews were
conducted to help the author understand the problem while simulation experi-
ments are applied as a way to evaluate the artefact such as the algorithms and
frameworks. Those methods can produce fruitful information which increases
the depth of the understanding of the cases. Figure 3.1 shows the overview of
the research activities based on design science methodology. In order to iden-
tify the problem, we firstly identified the research questions through literature
review and semi-structured interview which guided us to further understand
Federated Learning and the challenges of typical machine learning workflows
in the embedded system domain, summarize the obstacle that prevents the
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transition of companies to Federated Learning and propose the solutions. Sec-
ondly, the processes for validating the topic were designed. In this step, di�er-
ent research techniques and data were considered to help the author answer
the research questions and verify the research hypothesis. The third step is to
analyze data based on the result collected from di�erent research techniques
applied. In this step, based on the simulations we conducted, we summa-
rized the observation, validated the hypothesis, reflect the impact of proposed
solutions and raise open questions for future research.

As the fundamental methodology of this research, design science research
was used to help us better understand our problem and propose corresponding
solutions. The method assists the author in seeing and comprehending the
raised research questions, the challenges that the industry encountered, and
then proposing the corresponding solutions and performing validation.

The contributions of each individual paper can address one or more of these
activities we mentioned above. Through a literature review and case study
combined with a semi-structured interview, Paper A, B identified the prob-
lems of Federated learning, form the motivation and define the objectives of
this research. Paper C, D, E propose the algorithms, frameworks as the so-
lutions to the questions which has been raised by the previous activities and
validated them on the empirical datasets through case studies combined with
simulation experiments. In addition, in close coordination with the companies
from Software Center, several seminars and meetings were set up to help us
better understand the di�culties that companies face, exchange progress, and
gather input from practitioners with extensive working experience. Following
the presentation of the results, discussions on the e�ect of the new algorithms
and frameworks were held to further guide and improve our study.

In summary, the goal of this study was to explore cases at companies in
the domain of embedded systems, investigate the challenges and constraints
they encountered when adopting Federated Learning methods, and o�er an
improved practice. Since the purpose of our research is to identify problems
and solve them using an artefact as a means to enhance a situation, the design
science methodology is appropriate for this study.
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3.4 Data Collection and Evaluation Methods
The data collection and evaluation methods are used to help gather empiri-
cal data necessary to analyze the actions in the real-world context [85]. The
methods applied in this thesis such as literature review, case studies are ap-
propriate for practical problems which can provide an extensive understanding
of the behaviour and the influence of the choices for the researchers.

Literature Review
A literature review, according to [86][87], provides knowledge that includes
substantive findings as well as theoretical and methodological contributions
to a specific subject. These works are described in relation to the subject
matter under consideration by discovering and utilizing books, scholarly arti-
cles, and any other materials pertinent to the specific issue, field of research,
or theory. The purpose of the literature review is to lay the groundwork for
the investigation, highlight the research value of the chosen topic, and provide
the research basis for writing the dissertation. [88]. The literature review
must provide a thorough examination of the breadth and depth of existing
research on the dissertation topic, as well as the findings and results obtained
in order to identify gaps in previous research or areas of insu�cient and high-
light points of focus and innovation in the researcher’s own research on the
topic. [89]. In our study, we use a literature review to better understand the
concept of Federated Learning and the limitations and constraints that exists
in the current Federated Learning systems reported in the literature. The
data retrieved from each study was primarily focused on the area of study
and the technical problem solved by using Federated Learning. We searched
papers from various high-ranked journals/conferences to give a current lit-
erature overview of Federated Learning in the software engineering research
domain. As a result, it can provide a comprehensive picture of the most re-
cent methodologies used, as well as the limitations and obstacles in today’s
Federated Learning systems, which can lead our future research path.

Case Study
Case study research is a type of field study. The researcher selects one or more
circumstances, collects data and information systematically, and conducts an
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in-depth study to explore a phenomenon’s situation in a real-life context.
[90][91]. The benefits of case studies in the software engineering field include
complete data collection and analysis of quantitative and qualitative data in
the context of the phenomenon and the capacity to catch the complexity of
real-life scenarios in order to study the phenomena at a comprehensive level.
It is appropriate when the boundaries between the phenomena and the actual
environment are ambiguous and di�cult to identify, or when the researcher
is unable to design precise, direct, and systematically controlled variables to
answer research questions, such as "How did it change?", "Why did it become
so?", "what was the outcome?", "What is the result?", etc. It also includes
a distinct design rationale, distinct data collection methodologies and data
analysis methods [91]. To gather information, field observations of behaviour
or research documents can be employed. The research is more qualitative in
nature and includes distinguishing data gathering and analytic characteristics,
such as dependence on numerous sources of evidence, where di�erent sources
of evidence must converge in a triangulated fashion to achieve the same con-
clusion. To guide the path of data collection and the focus of data analysis,
there are frequently pre-developed theoretical propositions or problem descrip-
tions. [92]. In contrast to other research approaches, the method provides a
clear description and systematic understanding of the dynamic processes of
interaction and the context in which they occur, in contrast to other research
methodologies, allowing for a more complete and holistic view of a case [90].
We adopted this method combined with semi-structured individual interviews
and simulation experiments since we wanted to identify the challenges of the
current machine learning workflow in the embedded system domain, determine
the benefits of Federated Learning, identify the primary constraints and lim-
itations and propose the solutions for the Federated Learning systems in the
real-world context. The exploratory case study allows us to gain a thorough
knowledge of the complexities involved in implementing Federated Learning
in the embedded systems area. The research techniques, namely interviews
and simulation experiments, were described in the following sections.

1) Interviews: Interview-based data collection is a strategy in
which the investigator utilizes specific instruments (e.g., interview
forms) or assistance (e.g., tape recorders, emails) to ask respon-
dents direct questions verbally, record the responses on the spot,
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and therefore learn about the real situation [93]. Interview research
allows for more in-depth exploration. Questions may be more
open-ended, and survey data can be more personalized. Further-
more, the interview approach is adaptable in that the researcher
controls the study topic and procedure in real-time, and the in-
formation received from the interview is taken from the intervie-
wees’ words, allowing for more accurate findings in a specific in-
terview context [94]. During the interview, the investigator can
ask follow-up questions on a specific subject and notice the inter-
viewee’s words, actions, expressions, and other external appear-
ances, which can be very useful in future study [95]. Interviews
can be divided into unstructured, semi-structured and fully struc-
tured interviews [94]. Structured interviews have pre-planned and
pre-created questions. The same questions are asked to all appli-
cants in the same sequence. A semi-structured interview is one
in which the interviewer asks only a few predefined questions and
the rest of the questions are unplanned. An unstructured inter-
view is one in which the interviewer asks questions that have not
been pre-planned. Instead, in a free-flowing dialogue, questions
develop spontaneously, which implies that various candidates are
asked di�erent questions. We used semi-structured interviews for
our research because they are ideally suited for exploring partici-
pants’ perspectives and opinions on the problems they experienced
during their everyday machine learning work and their concerns
about the transition to Federated Learning. Furthermore, the op-
portunity for face-to-face interaction with the interviewers stim-
ulates the researchers’ and interviewees’ interests and discussions
of the topics outlined in the project and helps to develop rapport
between the researchers and interviewees [96].
2) Simulation Experiments: To study the causal relationship
between variables using quantitative data, an experiment is em-
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Figure 3.2: The simulation process (cycle)

ployed. In a controlled context, this necessitates careful separation
from confusing e�ects [97][98][99]. For example, if researchers want
to investigate whether a certain tool may increase the performance
of the software in relation to a specific measure, they might cre-
ate an experiment in which the system operates with or without
the tool. From the formulation of the research idea to the prac-
tical implementation of the experiment is a fundamental part of
the project. In this section, we present the simulation techniques
(Figure 3.2) used in this thesis, which includes questions and hy-
pothesis raising, methods review, model training (hyper-parameter
seeking), model validation, and conclusion drafting [100].

1. Questions and Hypothesis: In this step, we present research
questions and hypotheses to meet our study’s purpose. The
questions can be used to guide the technology selection and
validation case design for the simulations.

2. Methods Review: After research questions are proposed and
the data has been prepared, a method review is conducted in
order to evaluate several commonly used machine learning al-
gorithms/methods/frameworks based on those questions. A
variety of existing models can be used for di�erent purposes.
These models are designed with di�erent objectives in mind.

34



3.4 Data Collection and Evaluation Methods

For example, some models are better suited to working with
text, while another model may be better suited to working
with images. Di�erent architectures and aggregation proto-
cols are also reviewed based on the case scenario.

3. Data Cleaning: In this part, some data cleaning strategies are
used to remove low variance features, strings, constants and
outliers. Another major component of data preparation is
the division of the dataset. In most cases, the dataset will be
firstly equally divided and distributed to the edge devices. In
each local edge device, the larger part (approximately 70%)
will be used for training the model, while the smaller part
(approximately 30%) will be used for evaluation. This is
important because using the same dataset for training and
evaluation will not allow for a fair assessment of the model’s
performance in real-world scenarios.

4. Model Training: In this part, models are trained. In order to
achieve applicable model quality for the edge clients, multiple
hyper-parameters are searched and tried. The strategy used
here is the random search. during the model training process,
the quality of local edge models will be continuously improved
by aggregating models with others.

5. Model Validation: After the model has been trained, it needs
to be tested to see if it will work properly in a realistic envi-
ronment. This is why a portion of the dataset created for eval-
uation is used to check the proficiency of the model. This will
place the model in a scenario where the situations encountered
are not part of its training. If the model and system perfor-
mance fail to reach our expectations, new hyper-parameters
are tried. In business applications, evaluation becomes very
important. Evaluation allows data scientists to check that
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they have set the goals to be achieved. If the results are un-
satisfactory, previous steps need to be re-examined in order
to identify and pinpoint the root cause of the model’s poor
performance. If the evaluation is not completed correctly,
the model may not perform as well as it needs to for business
purposes.

6. Draw Conclusion: The final process is to analyze the metrics
and draw conclusions to answer the initially proposed research
questions. The conclusion can help us to verify if the initial
research goals have been achieved and generate the next steps
for the future research direction.

We adopted this method since we wanted to propose new al-
gorithms and frameworks in order to solve the challenges associ-
ated with Federated Learning encountered by the companies in
the domain embedded system, as well as validated the proposed
approaches on empirical scenarios and datasets. The method also
allows us to gain a thorough practical knowledge of deploying Fed-
erated Learning in a real-world context.

3.5 Research Design

This section describes how we planned our research. The goal of
this research is to identify the issues of Federated Learning sys-
tems as well as the obstacles that prohibit organizations from
incorporating Federated Learning components into their embed-
ded systems. As defined in the design science research methodol-
ogy, we firstly identified the problems that companies encountered,
suggested solutions based on the issues and then validated the
algorithms/frameworks on empirical examples. As a result, the
research is divided into two phases: Problem Identification and
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Solution proposal and validation. Table 3.1 shows the overview of
the research activities in these two phases.

Problem Identification

The first phase is to discover the ideas and identify the problems
of the current Federated Learning systems. A literature study
was first conducted to help the researcher get a su�cient under-
standing of what has been done in the past in order to learn more
about the topic under examination. Throughout the literature re-
view, we determined the first and second research questions, which
provide us with a clear picture of what Federated Learning sys-
tems/applications are already available. We raise the questions,
such as "What are the primary advantages of putting in place a
Federated Learning system?", "What are the primary obstacles
and limitations of present systems?", etc. To further investigate
the barriers that prevent industrial implementation of Federated
Learning components in real-world contexts, we chose Ericsson as
our exploratory case company and an interview-based case study
was conducted in which ten experienced engineers participated.
Ericsson is now seeking a way to provide consistent service qual-
ity to its users due to its large-scale and distributed customers.
We chose the company as our case company because it has broad
experience and is investigating the prospect of applying Feder-
ated Learning. During the study, we identified the challenges that
companies faced when deploying Federated Learning in an indus-
trial context. We collected data primarily through semi-structured
interviews with practitioners from Ericsson who design or use ma-
chine learning applications, who involve heavily in data engineer-
ing, or who are otherwise machine learning experts. Based on their
work experience, they o�ered their opinions on the issues they have
when dealing with standard machine learning workflows, as well
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Figure 3.3: Overview of the research design

as how they believe Federated Learning can be the solution to fu-
ture intelligent industrial applications. Furthermore, we explored
the potential and challenges of Federated Learning, as well as how
organizations in the embedded system field may transition from
traditional machine learning to Federated Learning.

Solution Proposal and Validation

Based on the conclusion and ideas gathered from the first phase,
several solutions, analyses, and validations were carried out in the
second phase to demonstrate how we can assist companies in build-
ing Federated Learning components. We examined the perfor-
mance of several designs that can be utilized in various industrial
applications based on the challenges mentioned in the literature re-
view and case study. In this phase, we undertook research in close
collaboration with Volvo Cars and Scania. During the collabora-
tion, we constantly shared the most recent findings in a weekly
workshop and collect comments from senior data scientists, AI
system developers, and architects. We first analyzed the di�er-
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Figure 3.4: Overview of the research questions, methods and results

ent architectures that can be applied in Federated Learning. We
summarized their performance and conclude the architecture al-
ternatives that are suitable to be deployed in di�erent industrial
scenarios. We presented an asynchronous aggregation protocol to
overcome the challenge of deploying Federated Learning systems
in real-time instances and avoid the di�culties that arise when
the system is comprised of diverse hardware settings. In addition,
we studied the method to combine the asynchronous Federated
Learning algorithm with several machine learning methods. Si-
multaneously, by refining the sharing method, we increased model
learning e�ciency and minimized communication overhead even
further. All approaches were validated on empirical datasets, and
we chose crucial use cases in the autonomous driving sector to
demonstrate the usefulness and e�ciency of our suggested strat-
egy when applied in a real-world situation.

3.6 Industrial Collaboration

This research was conducted in close collaboration between academia
and industries with the help of Software Center [101]. Software
Center is a research collaboration consisting of 17 enterprises and
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5 colleges with the mission to significantly improve the digitaliza-
tion capability of the European software-intensive industry. Those
Embedded system companies are primarily looking for a promis-
ing way to incorporate Artificial Intelligence, particularly machine
learning/deep learning, into their systems in order to expedite dig-
itization and improve service quality. Various seminars and work-
shops were hosted by Software Center during each project sprint
to enable researchers to get closer to the industry and develop a
better knowledge of the challenges encountered by the companies
in the embedded systems domain. In this study, several companies
from Software Center took part in our research. We cooperated
with Ericsson, Scania, Volvo, and other two companies to iden-
tify the di�culties they encountered when using machine learning
methods and how Federated Learning could be a solution.

With the case study, we discovered how to deploy Federated
Learning components in a real-world context, as well as the issues
that engineers must consider. In the problem identification phase,
with the assistance of Ericsson, we identified the challenges en-
countered by the companies and the limitations and constraints
of Federated Learning. During the study, 10 semi-structured in-
terviews were conducted to gather opinions from four experienced
machine learning engineers, three data experts, two project man-
agers, and one analytic architect. Throughout the interview, we
outline the issues, solutions, and enhancements that must be im-
plemented if Federated learning is to be used in a real-world situa-
tion. In addition, 8 follow-up meetings with Ericsson participants
were scheduled to analyze the data collected and share thoughts
about the Federated Learning solution. Finally, a reporting work-
shop was held in order to make a final presentation of the results.
During the solution development and validation phase, we val-
idated our proposed solution, algorithms, and frameworks with
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real-world automotive cases with the support of Volvo Cars and
Scania. During the solution development process, in each project,
16 follow-up meetings were held with Volvo Cars and Scania par-
ticipants, including six machine learning experts and two project
managers. During the meetings, we analyze the simulation results
and share the algorithm and frameworks for the Federated Learn-
ing solutions. Finally, a reporting workshop was held to make a
final presentation of the data and identify current findings as well
as recommended improvements for future studies. The details of
the activities of case studies combined with interviews and sim-
ulation experiments during the collaboration with companies are
listed in Table 3.2 and Table 3.3.

3.7 Threats to Validity

Construct validity

While the empirical results are subjective because they represent
the experiences of the chosen persons, the probable breadth of the
results and their applicability is expanded due to the professional
participants’ extensive experience. The conclusions reported in
this thesis are mostly applicable to the domain and scenarios ad-
dressed in this study [102]. However, the ideas and outcomes may
be applicable and important beyond the unique issue at hand. The
authors and case companies and participants in this thesis have
substantial experience with machine learning, Federated Learning,
and data engineering. In addition, if structures with specialized
terminology within industries or academia were not understood,
the authors with experience in both could translate and demon-
strate them. As a result, the presence of dangers in idea validity
is not recognized.
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Conclusion validity

Conclusion validity commonly refers to the particular reasons,
methods and procedures we use to draw conclusions about a pos-
sible co-variation between variables [103], [104]. Several methods
were implemented during the study to ensure that the conclu-
sions’ validity was not threatened. The first step was to remove
prejudice created by persons who held similar beliefs and publi-
cations that reached similar findings. The second research phase
involved gathering data in the form of documentation and simula-
tions to supplement the information collected through interviews
and literature research, which also served to reduce bias induced
by merely collecting data in one format. Further, workshops and
seminars were held by Software Center with participants and case
companies where the findings were presented by the author and
discussed with the participants. The workshop’s purpose was to
validate the findings ensuring nothing has been misinterpreted or
missing. During the workshops, participants largely validated the
findings.

External validity

This study was conducted in close collaboration with multiple
companies, interviews were collected from participants of di�er-
ent teams, areas and the simulations were conducted on di�erent
industrial cases. All the terminologies utilized in the companies
were normalized and the implementation was described with nec-
essary details [105]. However, due to the focus on cases in the
domain of embedded systems, we can not claim that our results
generalize to the entire industry. However, the authors believe
that there are many similarities between the case study to other
companies in regulated fields.
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3.8 Summary

This Chapter discusses three research problems addressed in this
thesis. All research methods and techniques are presented. In the
research design section, we present all of the research activities we
carried out to demonstrate how we answered the questions. The
Figure 3.3, 3.4 and Table 3.1 provide a summary of the research
process, empirical e�orts, and findings. In addition, Table 3.2
and Table 3.3 detail the activities of case studies combined with
interviews and simulation experiments during the collaboration
with companies. Finally, we discuss the threats to validity and
how we attempted to minimize them.
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CHAPTER 4

Engineering Federated Learning Systems:

A Literature Review

This chapter has earlier been published as
Engineering Federated Learning Systems: A Literature
Review
Zhang H., Bosch J. and Holmström Olsson H.
In International Conference on Software Business (pp. 210-218).
Springer, Cham.

Nowadays, the development of mobile devices, connected vehi-
cles, and data collection sensors has brought explosive growth of
data, which highly power the traditional Machine Learning meth-
ods [42]. However, those common methods usually require cen-
tralized model training by storing data in a single machine or a
central cloud data center, which leads to many problems such as
data privacy, computation e�ciency [71], etc.
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Due to the development of computing and storage capabilities of
distributed edge devices, using increased computing power on the
edge becomes an applicable solution [106]. In a Federated Learn-
ing system, local model training is applied and data created by
edge devices do not need to be exchanged. Instead, weight up-
dates are sent to a central aggregation server to generate a global
model. The system solves the problem that models in a traditional
Machine Learning approach can only be trained and delivered on
a single central server. The theory of Federated Learning has been
explored in [33][73]. After the concept was first applied by Google
in 2017 [72], there have been several Federated Learning archi-
tectures, frameworks and solutions proposed to solve real-world
issues.

The contribution of this paper is threefold. First, we provide a
state-of-art literature review within the area of Federated Learn-
ing systems. We identify and categorize existing literature into
di�erent application domains according to the problems expressed
and solved. Based on the challenges and limitations identified in
our literature review, we propose six open research questions for
future research. This review can recommend a new option for
industries and AI software engineer to solve the problems of tradi-
tional AI/ML systems, like expensive training equipment, compu-
tation e�ciency, data privacy, etc. Furthermore, the di�culties are
pointed out in this review when deploying the Federated Learning
components into real systems.

This paper is structured as follows. In section 4.1, we describe
the research method we applied. In section 4.2, we summarize
the results from the literature review. In section 4.3, we outline
the challenges of current Federated Learning systems. Finally, we
conclude the paper in section 4.4.
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4.1 Research Method

This research is conducted following the guidelines presented by
Kitchenham [107]. The purpose of our review is to present an
overview of contemporary research on the empirical results and
solutions regarding Federated Learning that has been reported in
the existing literature. In this paper, we address the following
research questions:

• RQ1. What are the application domains where Federated
Learning technique is applied?

• RQ2. What are the existing Federated Learning systems as
reported in the published literature?

• RQ3. What are the main challenges and limitations identi-
fied in those reported systems?

Search Process

To provide a state-of-the-art literature review of Federated Learn-
ing in the software engineering research domain, we searched pa-
pers from several high-ranked journals/conferences. During our
search process, in order to include all the papers which are related
to our research questions, we started by selecting relevant terms,
namely “Federated Learning”, “Distributed Learning”, “Collabo-
rative Learning” to cover all papers which are related to Federated
Learning and continued with “Case Study”, “Application”, “Solu-
tion” and “Framework” to identify papers that report on empirical
study results.

The journals that were included in our search process are top-
ranked software engineering and computer science journals such
as IEEE Transactions on Software Engineering (TSE), Communi-
cations of the ACM (CACM), Machine Learning (JML), etc[108].

49



Chapter 4 Engineering Federated Learning Systems:
A Literature Review

In addition, we used the same queries to search for relevant con-
ference papers and literature in the well-known libraries, such as
IEEE Xplore Digital Library, ACM Digital Library, Science Direct
and Google Scholar.

Inclusion and exclusion criteria

Each paper that matched the search criteria was reviewed by at
least one of the authors of this paper. During the selection, we
firstly checked the keywords and the abstract to only include pa-
pers within Federated Learning field. After that, we searched and
analyzed the application scenario in the body of the paper to iden-
tify the specific engineering problems solved by applying Federated
Learning. We only selected the papers that report on Federated
Learning with empirical results, e.g. Federated Learning on user
action prediction, wireless systems, health records, etc. In sum-
mary, we included the paper where engineering Federated Learning
systems are the main topic of the paper.

Results of the Literature Search Process

This section summarizes the results of our literature search pro-
cess. Although there were about 253 di�erent papers that ini-
tially matched the search criteria entered in the search engines
of the journals and conferences listed in section 4.1, we found
only 28 papers satisfying the inclusion criteria we specified. Those
papers solve at least one engineering problem and present their
empirical findings/results in the abstract or in the body of the
paper. Based on problems addressed and solved in each paper,
we categorize them into six application domains. In our search
results, there are 4 papers ([109][110][111][112]) in telecommuni-
cation field, 6 papers ([72][113][114][115][116][117]) relates to mo-
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bile applications, 4 papers ([118][119][120][121]) relates to auto-
motive, 5 papers ([122][123][124][125][126]) in IoT and 4 papers
([127][128][129][130]) relates to medical solutions. The rest of the
papers ([131][132][133][134][135]) are related to other fields like air
quality monitoring, image-based geolocation recognition, etc.

4.2 Existing Federated Learning Systems

In this section, and in accordance with the RQ2, we present the ex-
isting Federated Learning systems reported in papers we selected.
In the rest of the section, in order to provide clear descriptions,
we present each domain in more details.

Telecommunication

A typical telecommunication system usually contains numerous
components and distributes to di�erent places. In our results,
most of the research focuses on constructing an e�cient learning
framework for federated model training. Wang et al. [109] define
an “In-Edge AI” framework which enables intelligent collaboration
between devices and the aggregation server to exchange learning
parameters for better model training in energy and computation
constraint user equipments. Kang et al. [111] introduce reputa-
tion metrics for reliable worker selection in mobile networks. The
solution enhances system safety while keeping the same prediction
accuracy. Yang et al. [112] propose a novel over-the-air computa-
tion based approach for fast global model aggregation via exploring
the super-position property of the wireless multiple-access channel,
which solves the problem of limited communication bandwidth in
wireless systems for aggregating the locally computed updates.
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Mobile Applications

Because of the explosive growth of smartphones and the evolution
of the wireless network, a statistical Machine Learning model can
significantly improve the mobile applications. However, due to
the private data produced by personal-owned mobile devices, data
privacy and security is also an essential topic in this domain. In
order to apply Machine Learning techniques to human daily life,
Yang et al. [72] and Ramaswamy et al. [113] apply Federated
Learning techniques on the Google Keyboard platform to improve
virtual keyboard search suggestion quality and emoji prediction.
Leroy et al. [115] conduct an empirical study for the "Hey Snips"
wake word spotting by applying Federated Learning techniques.
Ammand et al. [116] implement a federated collaborative filter
for personalized recommendation system. Liu et al. [117] propose
“FedVision”, an online visual object detection platform, which is
the first computer vision application applied Federated Learning
technique.

Automotive

Automotive is a prospective domain for Federated Learning ap-
plications. Samarakoon et al. [118] suggest a distributed ap-
proach of joint transmit power and resource allocation which en-
ables low-latency communication in vehicular networks. The pro-
posed method can reduce waiting queue length without additional
power consumption and similar model prediction performance com-
pared to a centralized solution. Lu et al. [119] and Saputra et
al. [120] evaluate the failure battery and energy demand for the
electronic vehicle (EV) on top of Federated Learning. Their ap-
proaches show the e�ectiveness of privacy serving, latency reduc-
tion and security protection. Zeng et al. [121] propose a frame-
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work for combining Federated Learning algorithm within a UAV
swarm. The framework proves that it can reduce the number of
communication rounds needed for convergence compared to base-
line approaches.

IoT

Internet of Things is a distributed platform which contains numer-
ous remote sensors and devices. Di�erent from the wireless system,
devices within IoT are power-constrained. In our search results,
most research in this domain focuses on data privacy and system
e�ciency problem. Zhou et al. [122] propose a real-time data pro-
cessing architecture of the Federated Learning system on top of dif-
ferential IoT. Zhao et al. [123] design an intelligent system which
utilizes customer data to predict client requirements and consumer
behaviour with Federated Learning techniques. However, the au-
thors use the blockchain to replace the centralized aggregator in
the traditional Federated Learning system in order to enhance se-
curity and system robustness. Mills et al. [125] design an advanced
FedAvg algorithm which greatly reduces the number of rounds to
model convergence in IoT network. Savazzi et al. [126] present a
fully distributed or server-less learning approach in a massive IoT
network. The proposed distributed learning approach is validated
in an IoT scenario where a machine learning model is trained dis-
tributively to solve the problem of body detection. Sada et al.
[124] give a distributed video analytic architecture based on Fed-
erated Learning. It allows real-time distributed object detection
and privacy-preserving scheme for model updating.

53



Chapter 4 Engineering Federated Learning Systems:
A Literature Review

Medical

Federated Learning has propelled to the forefront in investiga-
tions of this application domain. Vepakomma et al. [127] propose
“splitNN” which enables local and central health entities to col-
laborate without sharing patient labels. Huang et al. [128][130]
present an approach of improving the e�ciency of Federated Learn-
ing on health records prediction. Brisimi et al. [129] give an
approach to a binary supervised classification problem to predict
hospitalizations for cardiac events on top of Federated Learning,
which demonstrates faster convergence and less communication
overhead compared to traditional machine learning approaches.

Other

In our research, we also identified some other application scenar-
ios. Sozinov et al. [134] evaluate federated learning for training a
human activity recognition classifier which can be applied to rec-
ognize human behaviour such as sitting, standing, etc. Sprague
et al. [133] gives a groundwork for deploying large-scale federated
learning as a tool to automatically learn, and continually update a
machine learning model that encodes location. Verma et al. [132]
provide strategies and results in building AI models using the con-
cept of federated AI across multiple agencies. Hu et al. [135]
propose an inference framework “Federated Region-Learning” to
PM2.5 monitoring. The results demonstrate the computational
e�ciency compared to the centralized training method. Hao et al.
[131] evaluate an e�cient and privacy-enhanced Federated Learn-
ing scheme for industrial AI solution.
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4.3 Discussion

In the previous section, we can observe that although Federated
Learning is a newly-emerging concept, it has the potential to ac-
celerate the Machine Learning process, utilize the advantage of
distributed computing and preserve user privacy. However, there
are several challenges and limitations associated with the tech-
niques identified and described in the literature review. One of
the biggest problems is the system failure tolerance, the majority
of the Federated Learning systems presented in our reviewed pa-
per apply a centralized architecture where edge devices are directly
connected to a single central server and exchange model informa-
tion. As [109] describe, this may make the system face the risk
of single-point failure and influence the service availability of the
learning system.

Furthermore, system e�ciency is still a crucial problem for Fed-
erated Learning system. There are some proposed approaches to
save computation power and communication resources for Feder-
ated Learning systems [112][125][131]. However, the conclusion
needs to be further verified in real-world industrial deployments
with the largely increased number of edge nodes. Besides, our re-
view also identifies challenges of the methods to separate training
devices, since systems reported in our reviewed papers usually uti-
lize all the devices to participate training, which leads to the waste
of the computation resources.

In addition, model validation has to be further improved. Es-
pecially for those safety-critical systems, such as automotive and
medical applications [130][119][129], the quality of the models in
all edge devices should be guaranteed.

Besides, due to the increasing number of edge devices, the mech-
anism of handling devices joining and leaving is one of the limita-
tions in current Federated Learning systems. As [33] presents, the

55



Chapter 4 Engineering Federated Learning Systems:
A Literature Review

most common way is to simply accept new drop broken connec-
tions. This may lead to further problems of system performance
such as model performance and model convergence.

Finally, although Federated Learning systems have the advan-
tage of privacy-preserving, systems still have to face the risk of
various security issues such as Denial-of-Service, malicious model
updates, etc, which is also a major limitation and future direction
for Federated Learning systems [123].

According to these challenges, we then propose six open ques-
tions for future research:

1. How to guarantee continuous model training and deployment
in an industrial Federated Learning system?

2. How to e�ciently update model weights and deploy global
models?

3. How to split edge device sets for model training and testing?

4. How to guarantee model performance on all edge devices?

5. How to handle devices leaving and joining in di�erent indus-
trial scenarios?

6. How to protect Federated Learning systems from malicious
attacks?

4.4 Conclusion

To stay competitive, more and more companies have introduced
AI components into their products. However, although machine
learning methods can improve software service quality, many com-
panies struggle with how to minimize the system training cost and
a reliable way to preserve user data privacy. Due to the model-only
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exchange and distributed learning features, Federated Learning is
one option to solve those challenges. In order to provide concrete
knowledge of this kind of learning approach to the industry, in
this paper, we provide a literature review of the empirical results
of Federated Learning systems presented in the existing literature.
Our research reveals that there are several Federated Learning sys-
tems used for di�erent application scenarios. Those scenarios are
categorized into six di�erent application domains: telecommunica-
tion, mobile applications, automotive, IoT, medical, other. Also,
we note that the emerging trend of applying Federated Learning
to mobile applications and identify several prospective domains.
We summarize our findings in this article that works as a sup-
port for researchers and companies when selecting the appropriate
technique. Furthermore, based on the challenges and limitations
of current Federated Learning systems, six open research questions
are presented.

In our future work, we plan to expand this review to include
closely related, and highly relevant research papers. Also, we plan
to validate our findings in the industry and explore the open re-
search questions we propose in this paper.
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Towards Federated Learning: A Case Study in the

Telecommunication Domain

This chapter has earlier been published as
Towards Federated Learning: A Case Study in the Telecom-
munication Domain
Zhang H., Dakkak, A., Mattos, D.I., Bosch J. and Holmström
Olsson H.
In International Conference on Software Business (pp. 238-253).
Springer, Cham.

Machine learning has steadily altered the way we live, learn,
and work, with significant advances in speech, image, and text
recognition, as well as language translation [42]. Large corpora-
tions like Google, Facebook, and Apple collect massive amounts of
training data from users in order to build large-scale deep learn-
ing networks. However, while the utility of deep learning is clear,
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the training data it employs can have major privacy implications:
images and videos of millions of people are collected centrally and
stored indefinitely by major organizations, and individuals have
little influence over how the data is used. Secondly, images and
videos are likely to contain sensitive information such as faces, li-
cense plates, computer screens, and other people’s conversations
[136]. Large companies have a monopoly on ��big data" and they
could reap enormous economic gains as a result.

It is known that as the amount of training data increases, the di-
versity and performance of the models trained by machine learning
will become better [137]. However, in many fields, the sharing of
personal data is not allowed by regulations, such as GDPR [138].
Those regulations have put forward clear requirements for privacy
provisions, further improving the protection of personal informa-
tion. Therefore, researchers in related industries can only analyze
and mine data sets belonging to their own organizations. If a single
organization (e.g. a particular medical clinic) does not have a very
large amount of data and includes insu�cient diversity, then by
performing machine learning on such a dataset, researchers may
end up with a less generalized model. In this case, the limitations
of data privacy and confidentiality clearly a�ect the e�ectiveness
of machine learning.

On the other hand, with billions of edge devices connected world-
wide, these devices are able to generate large amounts of data. In
traditional cloud computing architectures, these data need to be
centrally transferred to a cloud infrastructure for processing. The
traditional method may increase the network load and cause trans-
mission congestion and delays in the data processing. In order to
solve those challenges, a new learning concept, Federated Learn-
ing, has emerged. Federated Learning refers to the provision of
computing and storage services close to the source of things or
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data.
Although the concept of Federated Learning has significant ben-

efits, it is sometimes hard for industries and companies to build
reliable Federated Learning systems [31]. The contribution of this
paper is threefold. We provide a case study in the context of
a world-leading company with cutting edge technology and ad-
vanced practices. The study identifies the reasons why our case
company considers Federated Learning as an applicable technique.
Furthermore, based on our results, we summarize the services that
a complete Federated Learning system needs to support in indus-
trial scenarios and identify the challenges that industries are at-
tempting to solve when adopting and transitioning to Federated
Learning. Finally, we suggest 5 criteria for companies who want
to implement reliable Federated Learning systems.

This paper is structured as follows. Section 5.1 presents the
background of this study. In section 5.2, we describe the research
method we applied as our basic principle when searching and col-
lecting data. In section 5.3, we summarize the results from the
interviews. In section 5.4, we outline the challenges and the crite-
ria when realizing Federated Learning components into industrial
systems. Finally, we conclude the paper in section 5.5.

5.1 Background

Due to the rapid development of the computation capability of
edge devices, the integration of edge devices and machine learning
has become more than a hypothesis. Due to its characteristics,
Federated Learning is proposed to improve traditional Machine
Learning approaches, as it enables edge devices to collaboratively
learn a shared Machine Learning model. The theory of Federated
Learning has been explored in [33][73]. Its major objective is to
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learn a global statistical model from numerous edge devices.
With the concept first applied by Google in 2017 [72], there have

been several Federated Learning architectures, frameworks and so-
lutions proposed to solve real-world applications. In a Federated
Learning system, multiple devices work together in a collabora-
tive manner to train predictive models. Federal learning can be
built on edge devices (e.g., smart phones, video surveillance de-
vices, etc.). Each edge node trains the machine learning model
locally and independently, and the global model is optimized and
merged by a central server (e.g., aggregation server). In the whole
federation process, the privacy data does not leave the data owner
and does not need to be shared with other nodes, which solves
the problems of privacy and data security. In summary, the ad-
vantage of applying Federated Learning is conspicuous. Due to
the mechanism of model training and data distribution, a Fed-
erated Learning system is a privacy-preserving Machine Learning
approach. It is capable to utilize local computation resources, ease
the computation pressure of the central server and provide rapid
model evolution due to the local training fashion

Because of the local training fashion, it is capable of utilizing
local compute resources, easing the computation load of central
servers and providing rapid model evolution [139].

5.2 Research Methodology

The goals of this study were to explore the benefits for industries
implementing Federated Learning and identify the issues that in-
dustries are attempting to solve when adopting and transitioning
their machine learning components to Federated Learning. These
goals were translated into the following research questions:
RQ1. What are the reasons that companies considers Federated
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Learning as an applicable technique?
RQ2. What kinds of services a Federated Learning system needs
to support in the production environments?
RQ3. What are the main challenges and limitations when deploy-
ing Federated Learning components into embedded systems?

To answer these research questions, we designed the research in
collaboration with Ericsson AB. This study built on a 6-month
(Jan 2021 – July 2021) case study and applied a case study ap-
proach. [140]. In this paper, we chose a qualitative case study re-
search approach since it allowed us to look at the current situation
with a number of people from a given domain and understand a
phenomenon in the industrial context in which it arises [141], [142].
In particular, case studies are considered appropriate for examin-
ing real-life contexts, such as software development and technique
evolution, where controlling the context is not possible [143] and
where there is a desire to access the interpretations and expec-
tations of people so that a particular context can be richly un-
derstood [140]. Therefore, the high interdependence between the
industrial context, the benefits of implementing Federated Learn-
ing (RQ1), required services (RQ2) and the faced challenges (RQ3)
makes the case study a suitable choice.

Data Collection and Analysis

We collected data primarily through semi-structured interviews
with practitioners who design or use machine learning applica-
tions, who involve heavily in data engineering, or who are other-
wise machine learning experts [91]. The average interview length
was around an hour. All of the interviews were recorded, tran-
scribed, and shared via the case company’s internal network.

Based on our interview protocol, we first asked participants to
provide an overview of their domain and the specifics related to
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the telecom industry. Then, we asked participants to provide their
view regarding the machine learning projects they were currently
involved in, the challenges they faced and the issues that the case
company are attempting to solve when adopting and transitioning
their machine learning components to Federated Learning. Finally,
we asked the participants what they considered the key require-
ments for building a reliable Federated Learning system.

In addition to the interviews, we collected internal materials
to support some of the interviews in addition to conducting in-
terviews. These documents were either shared by participants or
were available on the internal network as training, resources, or
publications. The use of multiple data sources seeks to present
a more comprehensive picture and improve the accuracy of this
research [90].

The obtained data were processed using inductive thematic cod-
ing technique [144][142]. The authors acquainted themselves with
the data by reading and transcribing the interviews in the first
phase. During the interviews, at least two authors were present
and took notes. After conducting all interviews, the contents were
transcribed by the authors. In the second phase, the authors de-
veloped the initial set of codes by emphasizing significant obser-
vations in relation to the study’s specified objectives. The initial
set of codes were individually created by three of the authors and
then combined later. The authors identified the primary themes
in the third phase: machine learning applications, barriers for the
industry to implement Federated Learning components and move
toward Federated Learning. The authors reviewed these themes
in connection to the retrieved codes and the entire data in the
fourth phase. The authors defined and named the themes in the
context of the appropriate material in the fifth phase. The final
part entails the creation of the report, which includes the selection
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of data and quotes, reflection on current issues and the summary
of methods that help companies step towards Federated Learning.

Case Company

In this research, we worked in close collaboration with Ericsson.
Ericsson is one of the most well-known ICT (Information and Com-
munication Technology) suppliers to service providers. They help
clients get the most out of connectivity by creating game-changing
technology and services that are easy to use, adapt, and scale in
a fully connected world. Due to large-scale and distributed cus-
tomers, Ericsson is also seeking a way to deliver reliable service
quality to their customers. Since the company has board experi-
ence and tries to investigate the possibility of implementing Feder-
ated Learning, we chose it as our case company and try to identify
the issues for companies to deploy Federated Learning into an in-
dustrial context.

Use Cases and Participants

During the research, we studied three di�erent use cases within
Ericsson. As we listed in Table 5.1, use case A refers to data col-
lection and analysis. This field is critical for machine learning as
well as Federated Learning since the quality and e�ciency of the
data collection procedure has a huge impact on final model per-
formance [28]. Use case B refers to system architecture design and
operation. Since Federated Learning is a distributed system, in-
frastructure design requires experience and careful consideration.
Use case C refers to machine learning project design, development
and operation, which is highly relevant to our topic and the expe-
rience from those practitioners is valuable for constructing a Fed-
erated Learning system. In total, we interviewed 10 participants
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in 9 interviews. Participants were gathered through industry con-
tacts and were selected based on their relevance to the use cases
involved in this study. All participants were experienced archi-
tects, senior developers, team leaders and development managers
with at least eight years of experience, and most were also very
experienced in data engineering and machine learning application
development. To maintain confidentiality, we referred to the par-
ticipants using labels P1 to P9, reflecting the interview numbers.
As there are several participants in a single interview, we give the
label su�xes, such as P7-1, P7-2. A summary of participants is
listed in Table 5.1.

Table 5.1: Overview of the interviewees

Participant
ID Role Use Case Experience

(Years)
P1 Global Data Domain Expert A 30
P2 Data and Analytic Manager A 25
P3 Analytic System Architect B 13
P4 Analytic System Architect B 14
P5 Data and Analytic Technical Driver A 8
P6 New Products Operations Director B 25

P7-1 Machine Learning Project Manager C 30
P7-2 AI Systems Developer C 18
P8 Customer data collection expert A 28
P9 Head of Automation and AI C 17

Threats to validity

The findings, like any case study, is primarily applicable to the
domain and situations that were studied in this research [102]. The
insights and results however, can be applicable and relevant also
beyond the specific case at hand. Furthermore, while the empirical
results are subjective because they represent the experiences of
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the chosen individuals, the possible scope of the results and their
applicability is enlarged due to the extensive experience of the
professional participants.

As for the construct validity, both the authors and partici-
pants in this case study have extensive machine learning, Fed-
erated Learning, and data engineering experience. Furthermore,
if structures with special nomenclature within the industries or
in academia were not understood, the authors with experience in
both could translate and demonstrate them. As a result, the pres-
ence of dangers in the construct validity is not recognized.

In order to prevent threats to the validity of the conclusions,
we took a number of steps during the study. The first stage was
to eliminate bias created by individuals who had a similar point
of view. To assist eliminate any personal prejudice, participants
from various roles in di�erent project teams were invited. The
second stage was to gather data in the form of documentation to
supplement the information gained through interviews, which also
helped to avoid bias from being created by just collecting data in
one format. Finally, direct participant comment on the developing
data was obtained to assist validate the findings.

5.3 Empirical findings: Towards Federated
Learning

Benefits of Implementing Federated Learning

As we observed in most of the companies, maintaining qualified
service has become more and more expensive with the exponen-
tially increased number of customers. One of the participants
stated that their clients prefer to focus more on their own strengths
while leaving service monitoring and maintenance to their device
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supplier.
“Customers want to focus on their strengths, such as marketing, bundling,

and selling. Ericsson will track SLA (Service Level Agreement) to ensure

that this network meets these KPIs and maintains SLA at these levels.” —
Interview P6, New Products Operations Director

However, with the trend of this situation, the challenge ap-
peared. In order to maintain and monitor a wide variety of equip-
ment and tra�c devices, companies may need to put more re-
sources on products maintenance and troubleshooting, which turns
out to be ine�cient and inapplicable.

“It is not wise or feasible to have more people pumped in to monitor these

types of systems as tra�c density rises. As a result, AI assistance is required.”

— Interview P2, Data and Analytics Manager

Our case company is a pioneer in the use of machine learning
techniques in its products. As additional improvements in per-
formance and network optimization are required for new demands
from industrial applications, machine learning may help reduce
complexity, meet new technologies and case requirements, improve
network performance and allow for network automation.

“We use machine learning in every aspect of a telecommunication network

you can think of, from the di�erent use cases to the functions of creating a

mobile network. ” — P7-1, Machine Learning System Project Manager

When it comes to Machine learning, data has become crucial to
model performance and service quality. In general, the addition
of large amounts of reliable data in industrial applications will
significantly improve the learning quality and prediction accuracy
of machine learning. As described by the participants:

“Customer issue: When it comes to machine learning, the right data is like

food to humans.” — P7-1, Machine Learning System Project Manager

Nevertheless, the development of machine learning techniques
also raises concerns about data privacy leaks when significant amounts
of customer data are transferred. With the improvement of regu-
lations and the importance of privacy protection, more constraints
have been recognized:
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“We also recognize the growing number of constraints on data movement,

such as those imposed not only by data sovereignty concerns, correct? So,

Norway, data stays in Norway, India said, our data stays here, and so on.

Again, more constrained geographies.” — P5, Data and Analytic Technical
Driver

In order to tackle those challenges, industries are trying to seek-
ing a way to both avoid large data transmission but continuously
provide stable service. One of our participants stated that with
commonly applied learning strategies, such as centralized learning,
it is almost impossible to make a quick response to large-scaled
distributed customers when the characteristic of data has been
dramatically changed.

“It’s nearly impossible to respond quickly to large-scale customer changes

without a Federated setting.” — P9, Head of Automation and AI

Transition to Federated Learning

Federated Learning can be a potential solution to those challenges
due to its characteristics. Even though our participants agreed on
the increasing interest in developing Federated Learning compo-
nents into an industrial context, there are also issues that prevent
companies adopt and transiting traditional learning strategies to
Federated Learning.

“We need to think about how we can bring data out in a clever way, and I

believe federated learning can help. Not only from radio base stations but also

from the center.” — P8, Customer Data Collection Expert

One of the problems is a systematic distributed management
system. Especially when industries are trying to collect data and
monitor service performance from millions of network elements,
it will become expensive and painful to discover the error. The
situation may become more crucial if an additional function is
added to edge devices, such as model training and validation.
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“We don’t have anything in place to quickly identify, for this one network

element out of the million missed one file or wasn’t available. It’s extremely

expensive because it requires people to manually check the edge to see what is

going on.” — P3, Analytic System Architect

In addition, the system architecture is another important issue
that has to be considered. Since in most of the scenarios, cen-
tralized data collection architecture is still the major data pipeline
and support for current machine learning model development, as
described by one of the participants, di�erent levels of closeness to
the source can be gradually applied when trying to transit current
learning strategy to fully Federated Learning.

“The challenges I see are that there are di�erent levels of closeness to the

source, the di�erent levels may result in di�erent costs of management and

transmission e�ciency” — P4, Analytic System Architect

The technique to guarantee model performance is another key is-
sue. The models may require more capacity for generalization and
automated learning iteration due to varied data features to accom-
modate rapidly changing customer environments and decrease the
risk of poor service.

“It’s critical for us to not only ensure model performance when it comes to

the inference phase in Federated Learning but also to point out what’s causing

the degradation if any, especially if you’ve made certain data or network

configuration changes in some nodes without informing the supplier.” —
P9, Head of Automation and AI

Even though there are many other steps to be taken in order
before a company transit to fully Federated Learning, our partici-
pants mentioned that it’s a good time to consider now what kind of
case studies it needs to be used and how these types of capabilities
can be moved to a network.

“When introducing federated learning, you need to think large, but you proba-

bly also need to identify these small steps because these are the most valuable

steps.” — P6, New Products Operations Director

There are three problems stated by one of our participants that
we have to consider before moving towards and migrating Feder-
ated Learning components into embedded systems:

70



5.4 Discussion

“What is the migration story there? How do you go about introducing this

new capability? What type of use cases is suitable for Federated Learning?”

— P6, New Products Operations Director

5.4 Discussion

Benefits

From the empirical data, we identify that there are two major rea-
sons which drive our case company to explore Federated Learning.
One reason is the data privacy. As mentioned by our participants,
Federated Learning may be one of the optimal solution to solve
data silos and avoid privacy leakage. Since our case company has
large amount of customers, the way of e�ectively integrating and
analysing data that are scattered in various places is one of their
biggest challenges. In the Federated Learning, as the data doesn’t
leave the edge and the analysts do not have direct access to the
data, so the various data-related problems mentioned above are
resolved. The value contained in the data can be exploited more
e�ectively by the companies while still ensuring the data security
of their customers.

Another reason is that companies may be able to respond to cus-
tomers more quickly. Since Federated Learning can improve data
collection and model training e�ciency, the learning strategy can
assist companies in implementing real-time functions to consume
fresh customer data and adapt to environment changes, resulting
in better service quality and enhanced model performance for their
customers.

Learning Services

When conducting Federated Learning in actual production envi-
ronment, we must consider not only the coupling and stability of
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Figure 5.1: Services that a complete Federated Learning system needs to support

the system, but also the business requirements with multiple data
sources. Therefore, in order to cope with complex business re-
quirements for each component of the system, we need to find a
balance between flexibility and convenience. As mentioned by one
of our participants:

“For Federated Learning, a complete training service should support func-

tional features such as pre-checking, mid-term fault tolerance, full-cycle mon-

itoring, and traceability of the results.” — P9, Head of Automation and
AI

According to our empirical results, in Figure 5.1 we have sum-
marized the services that a complete Federated Learning system
needs to support in industrial scenarios.

Communication services: Since communication is required be-
tween the end customers, we must provide a gateway service to
handle service routing and expose the API interfaces to the out-
side world in order to reveal as little information about our services
to the other side as possible and to conveniently invoke training
services. All queries from external systems will be routed through
the gateway service for processing.

Task registration and management service: Task registration
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and management should be implemented to assure the service’s
high availability. The service information will be registered to the
server when the service is started. When a training request is sent
to the gateway, the gateway will retrieve the server’s available
computing resources and finish the service invocation using the
defined load balancing policy.

Training Service: This service includes a metadata management
component, Federated Learning component, and a validation com-
ponent. The metadata management component will be in charge of
keeping track of the progress of each training task, as well as the
operating status and configuration parameters. In contrast, the
Federated Learning component is used to conduct the numerous
functions required during the distributed model training process.
The validation component will be in charge of validating the con-
figuration settings we submit as well as controlling model quality
and performance.

Model management service: When the training task is finished,
the training service provides the trained model information to the
model management service, which then completes the distributed
persistent storing, grouping, and other processes.

Challenges

Based on our empirical results, we derive the challenges for in-
dustries stepping towards Federated Learning. Figure 5.2 illus-
trates five challenges and problems which a typical system may
encounter, including components failures, ine�cient communica-
tion, unstable model performance, large-scaled end customers and
incomplete system security.
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Challenge 1 - Components failures

There are three main components in a typical Federated Learning
system, including an aggregation server, communication links and
remote edge devices. The architecture applied in current systems
may often lead to significant bottlenecks and inevitable single-
point failure. The problem can destroy system service stability
and largely influence user experience. Furthermore, due to a large
amount of communication, the link between servers and edge de-
vices may be fully occupied or disconnected which results in un-
expected information drop. Nevertheless, local edge devices may
su�er problems of non-reachable server, program-stuck, high la-
tency responses, etc.

“From the customer’s perspective, nobody wants to hear what’s going on in

their network in terms of failures and crashes.” — P3, Analytic System
Architect

Based on the characteristic of the Federated Learning technique,
the problem of how to guarantee continuous federated model train-
ing and global model deployment to the edge is highly important
to a service-sensitive industrial Federated Learning system. Sys-
tem robustness and fault tolerance issues are significantly more
prevalent than in traditional distributed system environments.

Challenge 2 - Ine�cient Communication

Federated Learning highly relies on a fast network and frequent
communication of weight updates, either between peers or servers.
However, the network situation for di�erent devices may di�er a
lot. Since distributed edge devices need to frequently communi-
cate to a central server in order to update model gradients and
deploy fresh global models, the bottleneck and high bandwidth
occupation at aggregation servers are inevitable issues. Imagin-
ing hundreds and thousands of edge devices needs to constantly
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Figure 5.2: Problems and challenges for Federated Learning to be implemented
into service-sensitive systems.
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keep the connection to the servers, communication resources must
be constrained due to frequent model updating and global model
deployment. As mentioned by one of our participants:

“E�ciency is one of the key features. We want to reduce the cost such as

bandwidth utilization but still be able to improve service quality” — P2, Data
and Analytic Manager

Although there are some of the research [33][145] related to
communication-e�cient Federated Learning systems, the problems
of how to reduce the communication round in real industrial sce-
narios, how to e�ciently utilize network resources while maintain-
ing or even improving model prediction performance still need to
be searched and verified.

Challenge 3 - Unstable Model Performance

For a traditional Machine Learning approach, the main goal of the
system is to provide an accurate prediction or classification based
on existing user data sets.

“Model performance is crucial for Federated Learning. If we cannot guarantee

a sustainable model performance, we then have no reason to adopt it.” —
P5, Data and Analytic Technical Driver

Similar to Federated Learning techniques, this challenge is the
most critical one and also an important metric to evaluate a Fed-
erated Learning system. However, in the real world system, data
collected from edge devices are non-IID and sometimes are unbal-
anced [31]. This is due to the di�erent scenarios and environment
edge devices exposed. The problem of how to keep or even im-
prove model prediction performance compared to the traditional
centralized model training approach, how to ensure the model can
perform well on all the edge devices, what is the benchmark tool of
evaluating Federated Learning systems are still tricky and need to
be verified in di�erent real-world application scenarios as we have
described before.
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Challenge 4 - Large Number of End Customers

As we described before, the Federated Learning system can be
considered as Machine Learning clusters with a distributed config-
uration.

“We do have a huge number of customers. With Federated Learning, the way

how to properly manage them and handle connections is a question.” — P4,
Analytic System Architect

Normally, the system contains numerous edge nodes which may
frequently leave and join. In order to achieve system scalability,
the mechanism of how to handle device joining in, how to schedule
device utilization and how to deal with device leaving without in-
fluencing system service still need to be researched and algorithms
can be designed.

Challenge 5 - Incomplete system security

One of the main advantages of Federated Learning techniques is
to prevent the transmission of sensitive user data. This is also the
main reason why this technique has broad potential in various ap-
plication domains. A privacy-preserving system is a big approach
to Machine Learning system research.

“In the future, even with Federated Learning, We still have to explore a com-

prehensive approach in complying with applicable privacy regulations and leg-

islation to handle the security and privacy aspects of our products.” — P6,
New Product Operations Director

The question of how to avoid data leakage from global shared
weights becomes essential. Therefore, a secured Federated System
needs to protect not only local user data but also the transmission
data from being damaged or leaked and forbidding illegal modi-
fication, access or usage of system programs, weight updates and
global models. With the increasing attention and focus on AI-
powered industrial solutions, security issues are more essential to
the service provider.
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Criteria for a Reliable Federated Learning System

Based on the issues mentioned by our participants that compa-
nies need to consider when implementing Federated Learning, we
interpret those challenges to five criteria for a reliable Federated
Learning system, including service availability for model training
and improvements, e�cient model training and sharing, accuracy
assurance on the edge, scalable Federated Learning architecture
and secured connection between edge and cloud. Those criteria
are critical for e�ective and successful implementation of Feder-
ated Learning in embedded systems.

Service availability for model training and improvements

Availability means the durability of the system and likely to keep
operating for a long period of time. As we described before, cus-
tomers always need a reliable system service that guarantees con-
tinuous model training and deployment (Challenge 1), which is the
foundation of model performance improvements. The problem is
crucial in a Federated Learning system since most of the learning
is real-time and fast-evolving. A reliable Federated Learning sys-
tem needs to have a fault-dealing mechanism in order to guarantee
service availability once a fault occurs. For example, the interac-
tion between local edge devices and model aggregation server may
su�er high latency, accidentally connection drop, server stuck due
to high concurrence computation, etc.

E�cient model training and sharing

E�ciency signifies low resource utilization (CPU, Memory, Disk
usage), low communication round and bandwidth occupation. This
criterion relates to low-cost model training on the edge and e�cient
communication between edge and server during weight updating
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and model deploying procedure (Challenge 2). Furthermore, the
way to split training devices is also an important approach to save
computing resources. A reliable Federated Learning system should
consume fewer resources, less bandwidth and communication uti-
lization while still keeping an acceptable model performance.

Accuracy assurance on the edge

Accuracy is another important criterion. The system has to guar-
antee model performance and has the mechanisms to evaluate
models on all edge devices (Challenge 3). Because the main pur-
pose of the machine learning approach is to provide an accurate
model for the corresponding application scenario, a reliable Feder-
ated Learning system should achieve, guarantee a satisfying model
performance on all edge devices and be applied in the real-world
industrial environment.

Scalable Federated Learning architecture

Scalability refers to the ability to handle an increasing number
of tasks by joining more edge devices to the Federated Learning
systems (Challenge 4). Due to the highly distributed devices, a
reliable Federated Learning system should be able to locate, find
and accept asynchronous join of di�erent types of edge devices and
can be extended and cooperate with other learning clusters.

Secured connection between edge and cloud

Secured connection implies system data and model safety during
local data collection, weights updating and global model aggre-
gation. As described in Challenge 5, industrial systems may still
need to face numerous kinds of malicious attacks. A reliable Fed-
erated Learning system should protect data collected at the edge
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devices, secure interaction between local edge devices and aggre-
gation servers and guarantee the integrity of Machine Learning
model transactions.

5.5 Conclusions

In this paper, we present a cutting-edge case study that identifies
issues that industries are attempting to solve when dealing with
Machine Learning cases, as well as the reasons why they anticipate
Federated Learning as an applicable technique. Based on our find-
ings, we summarize the services that a complete Federated Learn-
ing system needs to support in industrial scenarios. Furthermore,
we highlight the issues that industries are attempting to address
when adopting and transitioning their machine learning compo-
nents to Federated Learning, including components failures, inef-
ficient communication, unstable model performance, large-scaled
end customers and incomplete system security. In addition, we
suggest five critical criteria for designing and operating a depend-
able industrial Federated Learning system. In the future, we in-
tend to validate our findings in industry cases and investigate so-
lutions to the problems identified in this paper.

In summary, as we observed from the interviews from our case
company, although the federated learning idea has considerable
benefits, the creation of a trustworthy and relevant federated learn-
ing system is often problematic for them and may encounter di�er-
ent kinds of challenges. In this context, in the following section, we
concluded the challenges and concerns that the industry is trying
to resolve when adopting and migrating to federated learning.
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CHAPTER 6

Federated Learning Systems: Architecture Alternatives

This chapter has earlier been published as
Federated learning systems: Architecture alternatives
Zhang H., Bosch J. and Holmström Olsson H.
In 2020 27th Asia-Pacific Software Engineering Conference (APSEC)

(pp. 385-394). IEEE.

Federated learning is a new basic technology of artificial intel-
ligence. It was originally proposed by Google in 2017, with the
aim to solve the problems of local model training and updating in
mobile edge devices [146][147][148]. The design goal of Federated
Learning is to carry out e�cient machine learning among multi-
ple participants or computing nodes on the premise of ensuring
the information security during massive data exchange, protecting
the privacy of terminal data and personal data and ensuring legal
compliance. Federated learning has the potential to be the foun-
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dation of the next generation of AI collaborative algorithms and
networks [31].

Federated learning defines a machine learning framework, in
which a global model is designed to solve the problem of collab-
oration between multiple data owners without exchanging data
[146]. The global model is the optimal model which is the aggre-
gated knowledge from all parties. Federated learning requires that
the modelling result should be infinitely close to the traditional
pattern, that is, the data belonging to multiple owners should be
gathered in one place for modelling results [32]. Since the data is
not exchanged, it will not take the risk of leaking the user’s privacy
or a�ecting the data specification which meets the requirements of
legal compliance (such as GDPR [25]). Figure 1 shows the system
architecture of Federated learning with two data owners (edge A
and edge B) as an example. The system can be extended to sce-
narios with multiple edge data owners. Suppose that edge A and
B want to train a machine learning model jointly, and their busi-
ness systems have the relevant data of their respective users. If
A and B are both allowed to exchange data directly, for example,
because of the data privacy and security issues, we may apply the
Federated Learning system to build the model.

However, our research shows the challenges of deploying Feder-
ated Learning into a real-world industrial context. As defined in
"Engineering AI Systems: A Research Agenda" [149], AI engineer-
ing refers to AI/ML-driven software development and deployment
in production contexts. Also, our previous research shows that
the transition from prototype to the production-quality
deployment of ML models proves to be challenging for
many companies [71][66]. The situation also applies to Feder-
ated Learning systems [150]. Currently, the majority of deploy-
ments utilize a single-server centralized architecture which may
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Figure 6.1: System architecture of Federated learning
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inevitably face the risk of component failure, system scalability,
communication e�ciency, etc [31]. Those problems will prevent
the AI/ML components from being continuously serviceable in
real-world industrial deployments, which can compromise the sys-
tem and lead to terrible accidents in the end.

To the best of our knowledge, there is limited research that pro-
vides an overview of the di�erent architecture alternatives for the
Federated Learning systems. In this paper, based on our simula-
tion, we describe and suggest several applicable scenarios and use
cases for four di�erent architecture reported in this paper which
can be applied to an industrial Federated Learning system. We
conduct the study using two well-known image classification data
sets, MNIST and CIFAR-10. All the training data are distributed
to edge devices that follow a statistical distribution to simulate
real-world scenarios. In order to provide comprehensive sugges-
tions, for each alternative, communication latency, model evolu-
tion time and model classification performance are measured and
compared.

The contribution of this paper is threefold. First, we introduce
four architecture alternatives which have been or can be applied
to a Federated Learning system and we identify the advantages
and disadvantages of each alternative. Second, we evaluate the
system performance, including weights update latency, model evo-
lution speed and model classification performance with each of
the architecture alternatives. Third, by studying the trade-o� be-
tween model performance and the overhead of latency and evolu-
tion speed, we describe for which industrial scenario each archi-
tectural alternative reported in this paper is the optimal choice.

The remainder of this paper is structured as follows. Section II
introduces four architecture alternatives. Section III details our
research method, including the simulation testbed, the method of
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distributing the training data set, the utilized machine learning
method and the evaluation metrics. Section IV presents the al-
gorithms utilized in each alternative. Sections V evaluates four
architecture alternatives applied to the data traces. Section VI
outlines the discussion on suitable scenarios and use cases for each
alternative. Finally, Section VII presents conclusions and future
work.

6.1 Architecture Alternatives

As described in Section I, current Federated Learning systems may
face the problem of components failure, system scalability, com-
munication e�ciency, etc. Inspired from the empirical results of
existing literature [31][146][135][123], we have defined four alterna-
tives which can be utilized in a Federated Learning system from a
centralized to a fully decentralized approach, that is, centralized,
hierarchical, regional and decentralized architectures. The terms
of each architecture are derived based on their characteristic. Fig-
ure 6.2 illustrates the concepts.

Centralized Architecture

The centralized architecture is a widely used setting in the major-
ity of current Federated Learning systems[147][129][119]. In this
alternative, there is only a single central node which is responsi-
ble for communicating all edge devices, aggregating local models,
and deploying the global model. The model transmission within
this architecture is smooth and elegant and the single central node
has a dedicated system which can be modified to suit customized
needs. Quick updates become possible and it is e�cient for small
systems, as the central systems take limited resources to set up.
In addition, any edge node can be easily detached from the system
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Figure 6.2: Architecture alternatives for Federated Learning systems: centralized,
hierarchical, regional and decentralized architecture. For a centralized
Federated Learning system ((a)), all the edge nodes are connected to
the central aggregation node in order to update local weights and dis-
tribute models. An improved way ((b)) is to add several coordinators,
the regional aggregation nodes, which aims to reduce data exchange
and be in charge of managing local devices. The regional architecture
((c)) will totally remove the central management point in order to re-
move the risk of the single-point of the failure. A more elegant way
((d)) is to completely move the aggregation function to the edge. Each
edge node can perform local training and model aggregation. This is a
potential alternative when a global or regional sever faces the problem
of heavy tra�c and then becoming a bottleneck.
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by removing the connection between the client node and the server
without influencing other active nodes.

However, because of the single management node, the central-
ized Federated Learning system will encounter a scalability prob-
lem. When thousands of client nodes join, the server node will
not have improved performance even if the hardware and software
capabilities have been optimized. In addition, communication bot-
tlenecks may appear when the amount of tra�c increases exponen-
tially and the system can easily break down when the server su�ers
a Denial-of-Service attack.

Hierarchical Architecture

As shown in Figure 6.2 (b), di�erent from the centralized architec-
ture, a hierarchical architecture introduces several regional coor-
dination nodes to manage di�erent edge clusters, which can ease
the work of the central node, such as model updating and aggre-
gation. This alternative has been introduced in [147], which solves
part of the communication bottleneck problem and is scalable for
a medium system. However, this approach still has the potential
problem of the single-point of failure and being vulnerable to DoS
attack since the central node still exists. In addition, the manage-
ment cost will increase and the industrial deployments may need
more budgets for more aggregation servers compared to a central-
ized architecture alternative.

Regional Architecture

The regional architecture has a similar setting compared to the hi-
erarchical architecture but removes the central aggregation nodes.
Each edge cluster will be assigned to a regional aggregation node
where models are aggregated and exchanged. One application
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which utilizes this alternative is reported in [135]. The results
demonstrate the computational e�ciency compared to a more cen-
tralized architecture. The purpose of this design is to avoid the
influence of the central node failure and to increase system ro-
bustness. In addition, after defining the frequency of local model
exchange among regional aggregation nodes, a system may have a
chance to focus more on their local sample clusters instead of the
whole data set at the edge. However, with the increasing num-
ber of servers, real-world deployments may cost more in terms of
hardware purchases and server configuration management.

Decentralized Architecture

As shown in Figure 6.2 (d), a decentralized Federated Learning
system only contains edges nodes. Compared to the three alter-
natives above, a decentralized architecture moves the aggregation
function to the edge. The idea is firstly tried and reported in
[151]. The system is able to minimize the problem of performance
bottlenecks since the entire load gets balanced on all the nodes.
Furthermore, due to the flexibility of node connections, the sys-
tem has better autonomy and is able to quickly adapt its local
environment changes.

Nevertheless, decentralized architecture can lead to the prob-
lem of coordination. Since every node is the owner of its own be-
haviour, it is di�cult to achieve collective tasks and global knowl-
edge. Normally, the models vary a lot which is not optimal for
some scenarios. Additionally, it is not suitable for small systems
since industries cannot benefit from building and operating small
decentralized systems due to ine�cient system management and
performance.
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6.2 Research Method

In this research, the empirical method and learning procedure de-
scribed in Zhang [100] was applied to make a quantitative measure-
ment and comparison with four architecture alternatives. In the
following sections, we present our simulation testbed, the method
used for splitting and distributing data sets, evaluation metrics
and the machine learning methods used in the experiments.

Simulation Testbed

Figure 6.3 outlines our testbed topology. In order to simulate
aggregation and edge functions, we adopted two of the total six
machines as our server cluster and the rest work as the edge. (Ta-
ble 6.1 shows the hardware setup for all the servers) Each edge
nodes were implemented as a small process running in one of the
edge nodes server cluster (server 3-6).

Figure 6.3: Topology of the simulation testbed
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Table 6.1: Hardware setup for testbed server
CPU Intel Xeon Processor (Skylake, IBRS)
Cores 8

Frequency 2.59 GHz
Memory 32 GB

OS Linux 4.15.0-106-generic

More specifically, in the centralized architecture simulation, ag-
gregation functions were deployed on server 1 while the edge nodes
in server 3-6 can push and request the latest model to or from
server 1 to continuously learn latent patterns.

In the hierarchical architecture, the central aggregation function
was deployed in server 1 while we assigned four regional aggrega-
tion processes in server 1 and 2. Edge nodes in each edge server
were assigned to one of the regional aggregation processes, which
means that those nodes will only contact their corresponding re-
gional aggregation process.

For the regional architecture simulations, the aggregation func-
tions were deployed both on server 1 and 2. Similar to the hi-
erarchical architectures simulation, edge nodes were assigned to
one of the aggregation processes once they joined in the system
and only communicated with that unique aggregation node. In
the decentralized simulation, we removed the aggregation server
cluster and moved the aggregation functions to all the edge nodes
in order to simulate decentralized features. In each edge nodes,
their neighbour nodes were predefined based on their edge ID.

Training Data Distribution

For the purpose of this study, we used two kinds of the edge data
distribution to analyze system performance under di�erent archi-
tecture alternatives.
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Uniform Distribution

Under this setting, we distributed training data samples to the
edge follows the uniform distribution, which means the number of
data samples of each target classes is equally likely. Figure 6.4
outlines the data distribution in two example edge nodes.

(a) Edge 0 (b) Edge 49

Figure 6.4: Uniform training data distribution

Normal Distribution

With this setting, in each edge nodes, the number of samples in
each class follows the normal density function as shown below.

X ≥ N (µ, ‡
2)

Here, µ and ‡ are defined as follows:

µ = k◊N

K
, ‡ = 0.2 ◊ N

where k is the ID of each edge node, K is the total number of
edge nodes and N equals to the total number of target classes
in training data. The purpose of this configuration is to provide
various distribution in di�erent edge nodes, where each class can
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have the probability to have the majority number of samples in
one node. Figure 6.5 outlines the data distribution in two example
edge nodes.

(a) Edge 0 (b) Edge 49

Figure 6.5: Normal training data distribution

Machine Learning Method

The models used in this paper were implemented in Python, us-
ing torch 1.4.0 [152], torchvision 0.5.0 [153] and scikit-learn [154]
libraries for model building.

In order to achieve a satisfying classification result, two di�er-
ent convolutional neural networks (CNN) [155] were trained for
the MNIST and CIFAR-10 data sets. In the MNIST data set ex-
periment, the CNN network contains two 5x5 convolution layers,
(The first layer has 10 output channels, while the second has 20,
each followed with 2x2 max pooling.) a fully connected layer with
50 units and the ReLu activation, and a linear output layer.

For the CIFAR-10 data set, the CNN network contains four
5x5 convolution layers, (The first layer has 66 output channels;
the second has 128 output channels and the stride of convolution
equals 2; the third has 192 channels; the fourth has 256 channels
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and the stride of convolution equals 2.), two fully connected layers
(ReLu activation) with 3000 and 1500 units, and a linear output
layer.

Evaluation Metrics

In order to demonstrate fruitful results of systems under di�er-
ent architecture alternatives, we selected three metrics including
weights update latency, model evolution time and model classifi-
cation performance (local and global).

Weights update latency

The weights updated latency is defined as the time di�erence of
the model transmission from edge nodes to the aggregation nodes
(In the centralized, hierarchical, regional architecture, aggregation
nodes are central or regional servers which are responsible for col-
lecting models. In the decentralized architecture, since aggregation
function is moved to the edge, the aggregation node can be re-
garded as the peer node which is ready for receiving the updated
model). The result is the average of all edge nodes during one
training round. This metric indicates the network situation and
communication overhead of each architecture alternatives. The
metrics were measured in all the model receivers by checking the
sending and receiving timestamp.

Model Evolution time

Evolution time is defined as the time di�erence between two di�er-
ent versions of the deployed global model at the edge nodes. The
result is the average of all edge nodes during one training round.
This metric demonstrates the speed of local edge devices updating
their knowledge which is crucial and important for those systems
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which need to quickly evolve to adapt to the rapidly-changed en-
vironment. The metrics were measured in all the edge nodes by
checking model deployment timestamp.

Model Classification Performance

Classification performance is the most important metric which in-
dicates the quality of the training model. It is defined as the
percentage of correctly recognized images among the total number
of testing images. Furthermore, in order to have a better under-
standing of the influence of di�erent architectures on local edge
devices. Here, the local classification performance was tested on
each edge devices by using their updated global model. The test
sample distribution should be the same as the training samples (lo-
cal test set). The result of local classification performance is the
average value from all edge nodes. The global classification perfor-

mance is tested by using the global test set, where the number of
samples in di�erent classes should be equally likely.

6.3 Algorithms used in each architecture
alternative

In order to simulate and compare characteristics of the system
with the architecture alternatives reported in this paper, we select
Federated Averaging (FedAvg) [146] as the base Federated Learn-
ing algorithm during our experiments. This algorithm has been
widely used in research and industrial communities for model ag-
gregation. Thus, it is also compelling to see how FedAvg behaves
with the architecture alternatives introduced in section 6.1. In a
centralized architecture, the original Federated Average algorithm
is applied while for the other three alternatives, the base algorithm
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is modified to fit di�erent architectures.

Algorithm 1: FedAvg - Centralized: In the system, total K edge de-
vices are indexed by k; B is the local mini-batch size; E represents the
number of local epochs, and “ is the learning rate.
Function Server_Function():

initialize w0
for each round t = 1, 2, ... do

m Ω≠ max(C ◊ K, 1);
St Ω≠(random set of m clients);
for each client k œ St in parallel do

wk
t+1 Ω≠ Client_Update(wt);

end
wt+1 Ω≠

qK
k=1

1
K wk

t+1;
end

End Function
Function Client_Update(w):

— Ω≠(split Pk into batches of size B);
for each local epoch i from 1 to E do

for batch b œ — do
w Ω≠ w ≠ “Òl(w; b);

end
end
return w to server

End Function

Centralized Architecture

The algorithm used in the centralized architecture is outlined in
Algorithm 1. Since this architecture has been widely used in vari-
ous fields, we didn’t change any components and make the setting
remain the same as all existing research. The steps of FedAvg
algorithm in the centralized architecture is straight-forward:

Step 1: Edge devices locally compute the model; After reaching
the number of local epochs, they send updated model re-
sults w to the central aggregation node.
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Step 2: The central node performs aggregation by averaging all
updated models to form a global knowledge of wt+1.

Step 3: The node sends back the aggregated result to each edge
device k.

Step 4: Edge device replaces the local model and performs further
local training by using the global deployed model.

Hierarchical Architecture

The algorithm (Algorithm 2) used in this alternative is modified
based on the Federated Averaging algorithm. Since the system
has several regional coordination nodes, all the edge nodes send
their weights updates only to their corresponding regional nodes.
After receiving local models, a regional coordination node sums all
models and counts the number of received models. Then, these in-
formation will then be updated to the central node. Therefore, the
central node only needs to process the information sent from co-
ordinator nodes without contacting numerous edge devices, which
largely releases and balances the computation work at the central
point. The steps can be summarized as follows:

Step 1: Edge devices locally compute the models; After reaching
the number of local epochs, they send updated model re-
sults w to the regional aggregation nodes.

Step 2: The regional nodes perform aggregation by adding all up-
dated models and calculate the number of updated models.
Then, these information will be sent to the central node
to form a global knowledge of wt+1.

Step 3: The central node sends back the aggregated result to each
regional nodes. Regional nodes will then forward the global
model to all registered edge devices k.
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Algorithm 2: FedAvg - Hierarchical
Function Server_Function():

initialize w0
for each round t = 1, 2, ... do

Sl Ω≠ (localserverset)
for each local server s œ Sl in parallel do

ws
t+1, ks Ω≠ LocalServer_Update(wt);

end
Kt+1 Ω≠

qS
s=1 ks

wt+1 Ω≠
qS

s=1
1

Kt+1
wk

t+1;
end

End Function
Function Local_Server_Update(wt):

for each round t = 1, 2, ... do
m Ω≠ max(C ◊ K, 1);
St Ω≠(random set of m clients);
for each client k œ St in parallel do

wk
t+1 Ω≠ Client_Update(k, wt);

end
wt+1 Ω≠

qK
k=1 wk

t+1;
end
return wt+1, len(St) to central server

End Function
Function Client_Update(k, w):

— Ω≠(split Pk into batches of size B);
for each local epoch i from 1 to E do

for batch b œ — do
w Ω≠ w ≠ “Òl(w; b);

end
end
return w to local server

End Function
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Step 4: Edge device replaces the local model and performs further
local training by using the global deployed model.

Regional Architecture

In order to remove the central node and move the aggregation
functions to the regional nodes, we further modified the algorithm
used in hierarchical architecture. In each training epochs, regional
nodes are only responsible for aggregating models for their reg-
istered edge devices. After a certain number of training itera-
tions, all regional nodes exchange their model information with
each other to form a global knowledge. The algorithm is outlined
in Algorithm 3 and the steps can be summarized as follows:

Step 1: Edge devices locally compute the models; After reaching
the number of local epochs, they send updated model re-
sults w to corresponding regional aggregation nodes.

Step 2: The regional nodes perform aggregation by averaging all
updated models to form regional knowledge. In addi-
tion, every f iterations, there is an exchanging iteration
in which the node applies another aggregation function by
adding all updated models and calculate the number of
updated models. Then, this information will be spread to
all the regional nodes to form a global knowledge of wt+1.
(If the exchanging iteration is not reached, regional nodes
will only aggregate a regional model and send it to all the
edge nodes)

Step 3: After calculating the aggregated result in each regional
nodes. Regional nodes will then forward the global model
to all registered edge devices k.
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Step 4: Edge device replaces the local model and performs further
local training by using the global deployed model.

Decentralized Architecture

In order to realize decentralized characteristics, we remove the ag-
gregation functions from central points but attach them to the
edge. Algorithm 4 illustrates the idea. Each edge nodes has
an independent process to train, send and receive model weights.
There is also a frequency parameter which can control edge nodes
exchange their model to their neighbours after several training
epochs. The steps can be concluded as follows:

Step 1: Edge devices locally compute training gradients; After
reaching the exchanging iteration, they send updated model
results w to their registered neighbours.

Step 2: After receiving all the models from the neighbours, each
node performs aggregation by averaging all updated mod-
els.

Step 3: Edge device replaces the old model and performs further
local training by using the updated model.

6.4 Evaluation

In this section, we present the experiment results for four di�erent
architecture alternatives and compare them with the system per-
formance in three aspects (The metrics are defined in section 6.2)
- (1) Weights update latency: time used to transmit model from
edge to the aggregation nodes, (2) Model evolution time: time
used to train and deploy a new global model, (3) Local and Global
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Algorithm 3: FedAvg - Regional: The new parameter f defined the
frequency of exchanging the models.
Function Server_Update(wt):

initialize w0 S Ω≠ (all neighbour servers)
for each round t = 1, 2, ... do

K Ω≠ 0;
m Ω≠ max(C ◊ K, 1);
St Ω≠(random set of m clients);
for each client k œ St in parallel do

wk
t+1 Ω≠ Client_Update(k, wt);

K ++;
end
wt+1 Ω≠

qK
k=1 wk

t+1;
if t mod f == 0 then

for each server s œ S in parallel do
send(Wt+1, K);
ws

t+1, ks Ω≠ Servers_send(wt);
Kt+1 Ω≠

qS
s=1 ks

end
wt+1 Ω≠

qS
s=1

1
Kt+1

ws
t+1;

else
wt+1 Ω≠ 1

K wt+1;
end

end
End Function
Function Client_Update(k, w):

— Ω≠(split Pk into batches of size B);
for each local epoch i from 1 to E do

for batch b œ — do
w Ω≠ w ≠ “Òl(w; b);

end
end
return w to regional server

End Function
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Algorithm 4: FedAvg - Decentralized
Function Client_Update(k, w):

— Ω≠(split Pk into batches of size B);
C Ω≠ (all neighbour clients)
for each round t = 1, 2, ... do

for batch b œ — do
wt+1 Ω≠ wt ≠ “Òl(wt; b);

end
if t mod f == 0 then

for each client c œ C in parallel do
send(Wt+1);
wc

t+1 Ω≠ clientc_send(wt);
end
wt+1 Ω≠

qC
c=1

1
len(C) wc

t+1;
end

end
End Function

model classification accuracy: classification accuracy tested on the
local and global test set.

To have a clear comparison, the MNIST data set was used to
measure all three metrics while CIFAR-10 data set was used to
further validate the result of local and global classification accu-
racy. During the experiments, we conduct the simulation with the
di�erent number of edge nodes which varies from 10 to 1,000 and
all the nodes participate training procedure.

Weights update latency

Figure 6.6 present the result of weights updating latency, which
illustrates a linear increasing trend of weights latency based on the
number of connected nodes and more detailed values are listed in
Table 6.2.

The above figure shows that centralized architecture has the
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Figure 6.6: Weights latency with di�erent number of nodes in four architecture
alternatives

largest weights update latency when the number of nodes is big-
ger than 500. In a centralized architecture, a single central node
needs to handle all receiving, training and sending tasks which
may highly influence system performance. It can easily lead to
communication bottleneck and single-point failure.

Relatively, in the hierarchical and regional alternatives, after in-
troducing regional nodes, the load on the central node is balanced
by multiple regional nodes. The red and orange lines show a lin-
early increasing trend but slower than the centralized architecture.

Furthermore, in the decentralized architecture, since each node
can establish equal connections, the server work is further dis-
tributed to the edge. Since nodes can only communicate with their
neighbours, every node can balance the weights updating tra�c,
which leads to the smallest growth rate among four architecture
alternatives.

In addition to weights updating latency, the number of retrans-
mission is also measured. From Table 6.3, it can be observed that,
when dealing with a large number of edge devices, centralized ar-
chitecture causes more transmission mistake and less communica-

102



6.4 Evaluation

Table 6.2: Weights updating latency

Latency (sec)
Number of Nodes Central Hierarchical Regional Decentral

10 0.353 0.324 0.395 0.334
50 0.404 0.389 0.373 0.312
100 0.431 0.406 0.411 0.366
500 0.983 0.621 0.693 0.401
1000 1.482 0.722 0.826 0.452

tion e�ciency than other alternatives. It also proves our findings
in weights updating latency.

Table 6.3: Average number of model retransmission during one training iteration

Number of Nodes Central Hierarchical Regional Decentral
10 - - - -
50 - - - -
100 - - - -
500 6 - - -
1000 147 17 21 -

Model Evolution Time

We then calculated the average model evolution time in all edge
nodes, which is outlined in Table 6.4. In our experiments, the
model evolution time is influenced by model training time and the
weights update latency. With the increasing number of nodes,
the training time in each training epoch largely decreases, due to
the distribution of training data in each edge nodes and the model
training task is separated in numerous workers. However, with the
increasing number of nodes, latency may increase as well. In our
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results, the best number of nodes in the previous three alternatives
is 500 while evolution time further increases with the growth of the
number of edge nodes.

Table 6.4: Average model evolution time

Model evolve (sec)
Number of Nodes Central Hierarchical Regional Decentral

10 44.218 45.036 46.020 45.017
50 10.052 10.910 12.741 10.311
100 4.839 4.657 4.166 4.327
500 2.584 2.183 2.031 2.049
1000 3.602 2.990 3.016 1.553

Classification Accuracy

In this section, we present model classification accuracy under two
di�erent training sample distributions. Here we only present the
result measured with 100 edge nodes as the number of edge nodes
doesn’t have too much obvious influence on classification accuracy.

Table 6.5: Global Prediction performance with MNIST data set follows a uniform
data distribution on the edge

MNIST Global
Number of Epochs Central Hierarchical Regional Decentral

10 96.63 96.42 96.01 94.91
30 98.10 97.80 97.66 96.87
50 98.55 98.47 98.39 97.08
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Uniform Distribution

As described in section 6.2, the number of classes in each edge
device with this distribution are equally likely. Under this setting,
the global model classification accuracy (with global test set) can
reach 98% in MNIST data set and 88% in the CIFAR-10 data set.
The results are outlined in Table 6.5 for MNIST and Table 6.6 for
CIFAR-10.

Table 6.6: Global Prediction performance with CIFAR-10 data set follows a uni-
form data distribution on the edge

CIFAR-10 Global
Number of Epochs Central Hierarchical Regional Decentral

10 78.75 78.42 77.33 75.89
30 83.21 81.94 81.24 80.30
50 87.92 88.01 87.37 86.45

However, we see a slight di�erence in four alternatives where
the regional and decentralized architecture has 1% worse accuracy,
which we explain that in a more decentral architecture, a model
may cost more time to form the global knowledge due to their
algorithm. (Especially in the decentralized architecture, the model
needs more training rounds to spread and aggregate.) This feature
becomes more obvious while the model is trained on the data which
is distributed and follows a normal density function.

Normal Distribution

Normal sample distribution is closer to a real-world data set, how-
ever, the accuracy of image classification results is worse than the
model which is trained on the data set with a uniform distribu-
tion. We observe 1% lower accuracy with MNIST global test set
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Table 6.7: Global Prediction performance with MNIST data set follows a normal
data distribution on the edge

MNIST Global
Number of Epochs Central Hierarchical Regional Decentral

10 89.05 88.95 68.72 33.69
30 95.96 94.16 86.22 45.93
50 97.12 96.31 93.70 81.39

Table 6.8: Local Prediction performance with MNIST data set follows a normal
data distribution on the edge

MNIST Local
Number of Epochs Central Hierarchical Regional Decentral

10 89.51 89.42 92.70 95.84
30 95.48 95.05 93.51 96.91
50 97.07 96.00 95.29 98.02
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under the centralized architecture alternative. Furthermore, in the
decentralized architecture, a model needs more time to converge
and form a global knowledge on the whole training data set. The
results are presented in Table 6.7.

Table 6.9: Global Prediction performance with CIFAR-10 data set follows a normal
data distribution on the edge

CIFAR-10 Global
Number of Epochs Central Hierarchical Regional Decentral

10 72.14 71.02 63.44 25.51
30 78.74 76.93 71.24 44.34
50 86.82 86.03 80.68 70.65

However, when it comes to model performance on the local test
set, we find that the decentralized architecture outperforms the
rest of the architectures. Compared to architectures with the cen-
tral aggregation server, the decentralized architecture focuses more
on a local data set which results in a slower process of forming the
global model but achieves higher accuracy on local set classifica-
tion. The results are outlined in Table 6.8.

In order to further validate our findings, CIFAR-10 data set was
also used to conduct image classification under predefined archi-
tecture alternatives. The results (Table 6.9 and Table 6.10) also
shows that a centralized architecture have quicker global model
convergence while a decentralized architecture is better to perform
classification on local edge data sets.

6.5 Discussion

According to experiment results, each architectural alternative
demonstrates its advantages and disadvantages. In order to help
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Table 6.10: Local Prediction performance with CIFAR-10 data set follows a normal
data distribution on the edge

CIFAR-10 Local
Number of Epochs Central Hierarchical Regional Decentral

10 73.01 71.83 75.22 79.31
30 77.68 75.35 79.56 83.67
50 86.07 86.23 87.95 88.24

industries easily understand the requirements and suitable scenar-
ios for setting up a Federated Learning system, we summarize our
findings and suggestions in the following sections.

Centralized

A centralized architecture is suitable for a small scale Federated
Learning system. Since there is only a single central point which
manages all the participating nodes and provides model aggrega-
tion service. Thus, there is a high probability to cause the commu-
nication bottleneck if further increase the number of edge nodes.

In other words, companies that would like to speed up train-
ing speed and benefit from parallel training but only have small
budgets should consider applying this alternative. They can also
benefit from the advantages of easy configurations and nodes man-
agement with a centralized architecture compared to other options.

As for the model performance, use cases which require central-
ized knowledge of all distributed data samples should choose a
more centralized architecture. For example, in a medical system,
human activity recognition, etc [127][134], the number of partici-
pated edge nodes is usually small and those cases all need a com-
mon knowledge for the target prediction whose input training sam-
ple has similar distribution in di�erent edge devices.
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Hierarchical

A hierarchical architecture is an improved option compared with
the centralized alternative. It is more suitable for a medium or
relatively large scale system. The tra�c of model updating is
balanced because of the introduction of the regional nodes. This
architecture is more suitable for companies which need their sys-
tem to be scalable and able to tolerant node failure. For example,
in mobile applications and wireless systems [148], due to numerous
connected devices, management and tra�c balance point have to
be introduced. Hierarchical architecture is the optimal choice to
realize serviceable Federated Learning system. However, due to
those extra servers, the system requires more budget and needs
more resource for system setting and management.

Regional

Di�erent from the previous two options, regional architecture re-
moves the central aggregation node and replace it with several re-
gional nodes. Similar to the hierarchical architecture, it supports
a medium or relatively large scale system and needs a medium
budget due to more server deployed.

Nevertheless, since the system removes the central point, the
aggregated model could gain more knowledge from the local side,
especially for those nodes whose data samples may have a similar
distribution with their neighbours. This feature is most suitable
for use cases such as weather prediction, geographic location detec-
tion, vehicle and tra�c applications, etc [156][135]. Furthermore,
the system can perform a faster model evolution based on local
data but still can partially benefit from global knowledge.
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Decentralized

For a decentralized architecture, the aggregation functions are
moved to the edge devices. This option is suitable for a large
and scalable system. Systems such as IoT and network constraint
system [123][110] which don’t want to waste resources on trans-
mitting large amounts of data ought to consider this alternative.
Furthermore, if a system which needs quickly model evolution and
more knowledge from local samples (Sensors, etc. ), it should
choose the decentralized architecture.

However, a decentralized architecture requires a large budget to
realize, as all edge devices need to support the local training and
model transmission functions.

6.6 Conclusion and Future Work

In this paper, we introduce and compare four architecture alter-
natives for a Federated Learning system. We analyze the system
performance with three important metrics, i.e. weights update
latency, model evolution time, classification accuracy. For the
model classification accuracy, a centralized system can formalize
the global knowledge which covers all participated data samples
while a decentralized alternative focuses more on local data sets in
edge devices. Additionally, the weights update latency and model
evolution time are much shorter in decentralized architectures than
in centralized alternatives. Table 6.11 illustrates some of the in-
sights we gained from the study we conducted in this paper.

Future work will include algorithm improvement on the architec-
tures, such as tra�c control, peer finding mechanism and neigh-
bour selection methods, etc. Furthermore, additional e�orts in
studying hardware cost in those four architecture alternatives will
take into consideration. Finally, we aim to realize real-world sys-
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tems based on architecture alternatives reported in this paper.
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CHAPTER 7

Real-time End-to-End Federated Learning: An

Automotive Case Study

This chapter has earlier been published as
Real-time end-to-end federated learning: An automotive
case study
Zhang H., Bosch J. and Holmström Olsson H.
In 2021 IEEE 45th Annual Computers, Software, and Applications

Conference (COMPSAC) (pp. 459-468). IEEE.

With the development of distributed edge computer comput-
ing and storage capabilities, using computation resources on the
edge becomes a viable option [106]. Federated Learning has been
adopted as a cost-e�ective solution due to its model-only sharing
and parallel training characteristics. A simple diagram of a Feder-
ated Learning system is shown in Figure 7.1. Local model training
is carried out in this framework, and data generated by edge de-
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vices do not need to be shared. Weight updates are instead sent
to a central aggregation server, which generates the global model.
The method overcomes the shortcomings of the conventional cen-
tralized Machine Learning approach, which only conducts model
training on a single central server, such as data privacy, massive
bandwidth costs, and long model training time.

Figure 7.1: A typical Federated Learning System is depicted in the diagram. The
light blue components are related to the model, while the red compo-
nents are related to the data.

This paper builds on our previous research, “End-to-End Fed-
erated Learning for Autonomous Driving Vehicles” [157], in which
we discovered that Federated Learning can significantly reduce
model training time and bandwidth consumption. However, with
the synchronous aggregation protocols used in our previous re-
search and current Federated Learning applications and analysis,
such as FedAvg [158], we realized that it is di�cult for businesses
to incorporate Federated Learning components into their software
products [150]. Until model aggregation, a synchronous aggrega-
tion protocol requires the server to wait for all of the edge de-
vices to complete their training rounds. Since real-world systems
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may include heterogeneous hardware configurations and network
environments [159], the aggregation server cannot expect all par-
ticipating edge devices to upload their local models at the same
time. The situation will become worse and unmanageable with
the increasing number of edge devices. Furthermore, our previous
research also identified the challenges of deploying AI/ML com-
ponents into a real-world industrial context. As J. Bosch et al.
defined in "Engineering AI Systems: A Research Agenda" [149],
AI engineering refers to AI/ML-driven software development and
deployment in production contexts. We found that the transition
from prototype to the production-quality deployment of ML mod-
els proves to be challenging for many companies [71] [66].

Therefore, in order to put Federated Learning into e�ect, in
this paper, we present a novel method for consuming real-time
streaming data for Federated Learning and combining it with the
asynchronous aggregation protocol. This paper makes three con-
tributions. First, we employ Federated Learning, a distributed
machine learning technique, and validate it with a key automotive
use case, steering wheel angle prediction in the field of autonomous
driving, which is also a classic end-to-end learning problem. Sec-
ond, we present a real-time end-to-end Federated Learning method
for training Machine Learning models in a distributed context.
Third, we empirically evaluate our approach on the real-world au-
tonomous driving data sets. Based on our findings, we show the
e�ectiveness of our method over other methods of learning, includ-
ing the common synchronous Federated Learning approach.

The remainder of this paper is structured as follows. In Sec-
tion 7.1, we introduce the background of this study. Section 7.3
details our research method, including the simulation testbed, the
utilized machine learning method and the evaluation metrics. Sec-
tion 7.4 presents the real-time end-to-end Federated Learning ap-
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proach utilized in this paper. Sections 7.5 evaluates our proposed
learning method to empirical data sets. Section 7.6 outlines the
discussion on our observed results. Finally, Section 7.7 presents
conclusions and future work.

7.1 Background

The first Federated Learning framework was proposed by Google
in 2016 [33]. The main goal of it is to learn a global statistical
model from a large number of edge devices. The problem is to
minimize the following finite-sum objective function in particular
8.6:

min
w

f(w), where f(w) :=
nÿ

i=1
⁄ifi(w) (7.1)

Here, w represents model parameters, n is the total number of
edge devices, and fi(w) is the local objective function which is
defined by high dimensional tensor w of the ith device. ⁄i (⁄i Ø 0
and q

i ⁄i = 1) gives the impact of ith remote device and is defined
by users. This formula is also applied throughout this research.

With the advancement of the concept of cloud computing and
decentralized data storage, there has been a surge of interest in
how to use this approach to improve Machine Learning. [147]
and [148] present two classic applications. The researchers imple-
mented Federated Learning on the Google Keyboard platform to
improve the accuracy of virtual keyboard search suggestions and
emoji prediction. Their findings demonstrate the feasibility of us-
ing Federated Learning to train models while avoiding the transfer
of user data. However, since the learning process is synchronous
across all edge devices, the aggregation server must wait for all
participating edge devices to complete their local training round
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before conducting model aggregation, which is inflexible and time-
consuming while deploying into heterogeneous real-world systems
[150]. Furthermore, because of the system environment and di�-
culties experienced when applying Federated Learning in various
cases, we suggest the real-time end-to-end method and validate
it in a radically di�erent industrial scenario, steering wheel angle
prediction.

7.2 Related Work

Steering Wheel Angle Prediction

One of the first pioneer research of utilizing the neural network
for steering wheel angle prediction is described in [160]. The au-
thor used pixel information from simulated road images as inputs
to predict steering command, which proves that a neural network
is able to perform steering angle prediction from image pixel val-
ues. Recently, more advanced networks are utilized to predict the
steering angles. H. M. Eraqi et al. propose a convolutional long
short-term memory (c-LSTM) to learn both visual and dynamic
temporal dependencies of driving, which demonstrate more stable
steering by 87% [161]. Shuyang et al. [162] designed a 3D-CNN
model with LSTM layers to predict steering wheel angles.

The concept of end-to-end learning was first proposed in [163],
where authors built and constructed a deep convolutional neu-
ral network to directly predict steering wheel angles and monitor
the steering wheel. In this research, ground truth was directly
captured from real-time human behaviour. Their methods demon-
strate that a convolutional neural network can learn steering wheel
angle directly from input video images without the need for addi-
tional road information such as road marking detection, semantic
analysis, and so on. In order to enhance model prediction accuracy,
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we use a two-stream model in our approach. Due to its robust-
ness and lower training cost as compared to other networks such as
DNN [164], 3D-CNN [162], RNN [161], and LSTM [165], the model
was first proposed in [166] and applied in [167]. However, previ-
ous research for this use case has concentrated primarily on the
training model in a single-vehicle. We will use Federated Learning
in this paper to accelerate model training speed and boost model
quality by forming a global awareness of all edge vehicles.

Federated Learning in Automotive

The automotive industry is a promising platform for implement-
ing Machine Learning in a federated manner. Machine learning
models can be used to forecast tra�c conditions, identify pedes-
trian behaviour, and assist drivers in making decisions [168][156].
However, since vehicles must have an up-to-date model for safety
purposes, Federated Learning has the potential to accelerate Ma-
chine Learning model development and deployment while protect-
ing user privacy [169].

On top of Federated Learning, Lu et al. [119] test the failure
battery for an electric vehicle. Their methods demonstrate the
e�cacy of privacy serving, latency reduction, and security protec-
tion. Saputra et al. [120] forecast the energy demand for electric
vehicle networks. They dramatically minimize the bandwidth con-
sumption and e�ciently protect sensitive user information for elec-
tric vehicle users by using Federated Learning. Samarakoon et al.
[118] propose a distributed approach to joint transmit power and
resource allocation in vehicular networks that enable low-latency
communication. When compared to a centralized approach, the
proposed method can reduce waiting queue length without increas-
ing power consumption and achieve comparable model prediction
e�ciency. Doomra et al. [170] present a Federated Learning-
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trained long short-term memory (LSTM)-based turn signal pre-
diction (on or o�) model. All of these approaches, however, are
faced with synchronous aggregation protocols that are unsuitable
for real-world heterogeneous hardware. As a result, in this paper,
we present an asynchronous aggregation protocol combined with
Federated Learning and validate it with one of the most essential
use cases in the automotive industry.

7.3 Method

The analytical technique and research method mentioned in [100]
were used in this study to conduct a quantitative measurement
and comparison of real-time Federated Learning and conventional
centralized learning methods. The article presents some recom-
mendations for applying machine learning methods to software
engineering activities, as well as methods for demonstrating how
they can be conceived as learning problems and addressed in terms
of learning algorithms. The mathematical notations, testbed and
hardware configuration, convolutional neural network, and eval-
uation metrics used to solve the problem of steering wheel angle
prediction are presented in the following sections.

Mathematical Notations

The mathematical notations that will be used in the paper are
introduced here first:
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At An image frame matrix at
time t

Ot =
f(At, At≠1)

An optical-flow matrix at
time t

◊t Steering wheel angle at
time t

◊̂t Predicted steering wheel
angle at time t

Data Traces and Testbed

The datasets used in this paper are from the SullyChen collection
of labelled car driving data sets, which can be found on Github
under the tag [171]. To conduct our experiments, we chose Dataset
2018 from this collection. The dataset contains various driving
data such as road video clips, steering angle on roads, and so on.
Dataset 2018 is 3.1 GB in size and contains approximately 63,000
files. This dataset tracks a 6-kilometer path along the Palos Verdes
Peninsula in Los Angeles. Our experiment datasets were chosen
from the first 40,000 image frames.

The data streams were simulated on four edge vehicles to pro-
vide a comprehensive evaluation. The data was divided into four
sections and distributed to edge vehicles prior to our simulation.
In each edge vehicle, the first 70% of data are considered input
streaming driving information that was used for model training,
while the remaining 30% are potential stream information. As
shown in Figure 7.2, training datasets for each edge vehicle in our
experiment include a variety of driving scenarios.

The data distribution in each edge vehicle is depicted in Fig-
ure 7.3. When driving on a hill, the steering wheel angles have a
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(a) Vehicle 1: Highway & City (b) Vehicle 2: Highway & City

(c) Vehicle 3: Hill (d) Vehicle 4: Hill & City

Figure 7.2: Driving scenarios in each edge vehicle.

Table 7.1: Hardware setup for testbed servers
CPU Intel(R) Xeon(R) Gold 6226R
Cores 8

Frequency 2.90 GHz
Memory 32 GB

OS Linux 4.15.0-106-generic

GPU Nvidia Tesla V100 GPU (Edge vehicle 1)
Nvidia Tesla T4 GPU (Edge vehicle 3, 4)
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greater range than when driving on a highway or in a neighbour-
hood. The majority of driving angles in edge vehicles 1 and 2 falls
within the range [≠50¶

, 50¶], while in edge vehicles 3 and 4, the
range is [≠100¶

, 100¶]. The graph shows that when driving on a
hill, vehicles may encounter more turns than when driving on a
highway or in a city.

(a) Vehicle 1 (b) Vehicle 2

(c) Vehicle 3 (d) Vehicle 4

Figure 7.3: Data distribution in each edge vehicle.

The models were continuously trained based on the recorded
data and used future streaming driving data to perform prediction
and validation on the steering wheel angle information.

The hardware information for all of the servers is given in table
7.1. To simulate aggregation and edge functions, one of the five
servers was designated as the aggregation server, while the others
operated as edge vehicles. In order to simulate a heterogeneous
edge area, GPU settings were only available in Vehicles 1, 3, and
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Figure 7.4: The two input branches each have two 3x3 convolution layers in a
convolutional neural network. The first layer has 12 output channels
that are enabled with the ELU function, while the second layer has 24,
which is then followed by 4x4 max pooling. All with stride values of 2
or higher. With the ReLu activation, there are two completely linked
layers with 250 and 10 units after concatenating two branches.

4 (Vehicle 1: Tesla V100, Vehicle 3, 4: Tesla T4).

Machine Learning Method

In this paper, steering wheel angle prediction is performed using a
two-stream deep Convolutional Neural Network (CNN) [166] [167].
The architecture is described in detail in Figure 7.4. Each stream
in our implementation has two convolutional layers and a max-
pooling layer. After concatenating, there are two fully-connected
layers activated by the ReLU function.

The model has two distinct neural branches that take spatial and
temporal information as inputs to two streams and then output
the expected steering angle. The model consumes three frames
of RGB images for the first stream, which can be denoted as
{At≠2, At≠1, At}. The second stream is a two-frame optical flow
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measured from two consecutive frames Ot≠1 = f({At≠2, At≠1})
and Ot = f({At≠1, At}).

Optical flow is a typical temporal representation in video streams
that captures the motion di�erences between two frames [172].
The optical flow calculation method used in this paper is based on
Gunnar Farneback’s algorithm, which is implemented in OpenCV
[173]. Figure 7.5 shows an example optical flow matrix created by
two consecutive image frames.

The aim of training a local convolutional neural network is to
find the model parameters that result in the smallest di�erence
between the prediction and ground truth steering angles. As a
result, we choose mean square error as the local model training
loss function in this case:

Loss = 1
N

Nÿ

t=1
(◊t ≠ ◊̂t)2 (7.2)

Here, N represents the batch size while ◊t and ◊̂t represent the
ground truth and the predicted steering wheel angle value at time
t. During the process of model training in each edge vehicle, all
the image frames will be firstly normalized to [≠1, 1]. The batch
size is 16 while the learning rate is set to 10≠5. The optimizer
utilized is Adam [174], with parameters —1 = 0.6, —2 = 0.99 and
‘ = 10≠8.

Evaluation Metrics and Baseline Model

We chose three metrics and three baseline models in order to pro-
vide fruitful outcomes and assessment. The three metrics include
angle prediction performance, model training time and bandwidth
cost:

• Angle prediction performance: Root mean square error
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(a) At≠1 (b) At

(c) Ot = f({At≠1, At})

Figure 7.5: Example of the optical flow (a) Previous Frame (b) Current Frame (c)
Optical flow of current vision frame.

(RMSE), a common metric for measuring the di�erence be-
tween prediction results and ground truth. The metrics will
provide a reasonable estimate of the trained model’s quality
in each edge vehicle.

• Model training time: The total time cost for training a
model at the edge vehicles is known as this metric. As a
consequence, the average of four edge vehicles is obtained.
This metric shows the pace at which local edge devices update
their model, which is critical for systems that need to evolve
quickly in order to adapt to a rapidly changing environment.
By testing the model deployment timestamp, the metrics were
calculated in all of the vehicles.

• Bandwidth cost: The total number of bytes transmitted
during the entire training procedure is known as this metric.
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This metric shows the overall cost of communication resources
needed to achieve an applicable convolutional neural model.

The three baseline models include models trained by applying
the traditional centralized learning approach, the locally trained
model without model sharing and the Federated Learning with the
synchronous aggregation protocol:

• Traditional Centralized Learning model (ML): This
baseline model was trained using a centralized learning method,
which is still widely used in current machine learning research
and software applications. All data from edge vehicles is col-
lected to a single server prior to model training. The hyper-
parameters of this model training are identical to those of Fed-
erated Learning, as described in section 7.3. The results can
then be compared to models trained using Federated Learning
techniques.

• Locally trained model without model sharing (Local
ML):

Each edge vehicle is used to train this baseline model. In
contrast to Federated Learning, no models will be exchanged
during the training process. The prediction accuracy can be
applied to the Federated Learning model to see if Federated
Learning outperforms those independently trained local mod-
els.

• Synchronous Federated Learning (FL): FedAvg is the
algorithm applied here. It is a synchronous method that is
widely used in Federated Learning research. Before aggregat-
ing global models, the server has to wait for all participants
to finish updating their local models.
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7.4 Real-time End-to-End Federated Learning

This section describes the algorithm and method used in this ar-
ticle. The diagram of the learning process in a single edge vehicle
is shown in Figure 7.6. Images are firstly stored in a fixed-sized
storage window in order to conduct real-time end-to-end learning
based on the continuous image stream. When the storage window
reaches its size limit, the most recent picture frames are moved into
the training window, while an equivalent number of old frames are
dropped. (In our case, the storage window is 100 images wide and
the training window is 2,000 wide. These values provide us with
the highest model prediction accuracy.) The optical flow informa-
tion is measured at the same time. Inside the training window,
image frames and optical flow frames are fed into a convolutional
neural network. The network’s performance is compared to the
ground truth for that picture frame, which is the human driver’s
recorded steering wheel angle. Back-propagation is used to adjust
the weights of the convolutional neural network in order to enforce
the model output as close to the target output as possible.

Following the completion of each training epoch, local models in
edge vehicles will be updated to the aggregation server, forming a
continuous global awareness among all participating edge vehicles.
The following are the steps of the algorithm used in this paper
(Algorithm 5):

Step 1: Edge vehicles compute the model locally; after completing
each local training epoch, they retrieve the global model
version and compare it to their local version. The decision
is based on the frequency bound limits (al and au) and the
model version di�erence ver (global model version) and
verk (local model version of edge vehicle k). The upper
limit of the model version di�erence is represented by au,
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Algorithm 5: Asynchronous Federated Learning: In the system, total
K edge vehicles are indexed by k; B is the local mini-batch size; E
represents the number of local epochs, and “ is the learning rate.
Function Server_Function():

initialize w0
initialize ver Ω≠ al

while True do
wk

t+1, verk Ω≠ Client_Update(wt, ver);
wt+1 Ω≠ (1 ≠ –) ◊ wt + – ◊ wk

t+1
where – = 1

ver≠verk+1 ;
ver Ω≠ ver + 1;

end
End Function
Function Client_Update(w, ver):

— Ω≠(split Pk into batches of size B);
while True do

for each local epoch i from 1 to E do
for batch b œ — do

w Ω≠ w ≠ “Òl(w; b);
end

end
When ready for an update, pull global model version ver from
the server

if ver ≠ verk > au then
// Client version is too old
Fetch w, ver from the server
continue

else if ver ≠ verk < al then
// Client version is too close to the global
continue

else
return w, ver to server

end
End Function
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while the lower limit is represented by al. There are three
conditions:

• If the local version is out of date (the client version is too
old), the edge vehicle can retrieve the most recent model and
conduct local training again.

• If the local version is too similar to the latest version (Client
is too active), it should stop upgrading and re-train locally.

• Clients should then submit modified model results to the ag-
gregation server if the local version is between the upper and
lower limits.

Step 2: In order to form a global awareness of all local models,
the central server performs aggregation based on the ratio
determined by the global and local model versions.

Step 3: The aggregation server returns the aggregated result to
the edge vehicles that request the most recent model.

Since the algorithm is push-based, the aggregation server only
deploys the global model if the edge vehicles request it. When the
edge vehicles update their local models, the server aggregates them
based on the local model version. The older the model version,
the lower the ratio when shaping the global model. Furthermore,
although the model update frequency is entirely dependent on local
hardware settings, there are two bound limits in place to ensure
that the update frequency of local clients is within a reasonable
range [al, au]. (In our case, based on the number of the participated
vehicles, the lower frequency bound al we set equals to 2 while the
upper bound au is 6.)
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(a) Vehicle 1 (b) Vehicle 2

(c) Vehicle 3 (d) Vehicle 4

Figure 7.7: The comparison of angle prediction performance on four local vehicle
test set with Federated Learning and three baseline models.
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7.5 Results

We present the experiment results of the real-time end-to-end Fed-
erated Learning approach to steering wheel angle prediction in this
section. The device output is evaluated based on three factors, as
defined in Section 7.3. (The metrics are described in 8.2.) - (1)
Angle prediction performance (2) Model Training Time (3) Band-
width cost. The results are compared with other three baseline
models which are trained by - 1) Traditional Centralized Learn-
ing (ML) 2) Local training without model sharing (Local ML) 3)
Synchronous Federated Learning (FL)

Figure 7.7 compares the angle prediction output of the model
trained by asynchronous Federated Learning (Async FL) to the
other baseline models. The results show that the Federated Learn-
ing models (synchronous and asynchronous) may achieve the same
or even better prediction accuracy than the traditional centralized
trained model. The Federated Learning model reacts faster than
other learning approaches, particularly at the timestamps that re-
quire rapid changes in steering wheel angle. Furthermore, when
compared to independently trained models, Federated Learning
approaches can provide a much better prediction that is much
closer to the ground truth.

To provide a clear view of model output with di�erent ap-
proaches, we accumulated the square error between expected angle
and ground truth (calculated by (◊t ≠ ◊̂t)2) and demonstrate it in
Figure 7.8. The results provide the same information as Figure 7.7.
We find that asynchronous Federated Learning outperforms cen-
tralized learning and local machine learning. In addition, as com-
pared to synchronous Federated Learning, our method achieves
higher prediction accuracy in edge vehicles 3 and 4. Table 7.2
displays detailed numerical results, including the regression error
(RMSE) on each test dataset in each vehicle and the overall av-
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(a) Vehicle 1 (b) Vehicle 2

(c) Vehicle 3 (d) Vehicle 4

Figure 7.8: Accumulated error on test dataset in 4 edge vehicles with asynchronous
Federated Learning and other baseline models.
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erage accuracy among the test datasets of all participating edge
vehicles.

Table 7.2: Steering wheel angle regression error (RMSE) on test set of each edge
vehicle (4 vehicles in total)

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Overall
Async FL 4.077 10.358 18.629 6.129 11.275

FL 3.758 9.933 22.967 6.795 12.754
ML 6.422 10.118 21.985 8.264 13.183

Local ML 6.416 16.749 26.196 11.788 16.954

The findings show that asynchronous Federated Learning out-
performs other baseline models in vehicles 3 and 4. In vehicle 1
and 2, models trained by asynchronous Federated Learning only
perform about 0.2 and 0.4 worse than the synchronous Federated
learning method. Based on our findings, we may conclude that the
asynchronous Federated Learning model can provide better pre-
diction performance than the local independently trained model,
and its behaviour can achieve the same or even higher accuracy
level when compared to centralized learning and the synchronous
Federated Learning model.

Furthermore, Figure 7.9 illustrates the shift in regression error
with model training time in order to evaluate model training e�-
ciency. The results show that the asynchronous Federated Learn-
ing method outperforms all of the baseline approaches in terms
of model training e�ciency. With the same training period, our
approach can achieve better prediction e�ciency (with approxi-
mately 50% less regression error) and converge approximately 70%
faster than other baseline models.

The comparison of total training time and bytes transferred be-
tween Federated Learning and three baseline models is shown in
table 7.3. For all the models, the total number of training epochs is
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Table 7.3: Total Training Time and Bandwidth cost with di�erent model training
methods (4 Vehicles in total)

Async FL FL ML Local ML
Training Time (sec) 669.2 5,982.8 2143.7 5,903.4

Bytes Transferred (GB) 0.78 0.78 2.02 -

50. With async FL, FL, and Local ML learning approaches, model
training is accelerated by Nvidia Tesla V100 GPU in edge vehicle
1, while model training is accelerated by Nvidia Tesla T4 GPU in
edge vehicle 3, 4. The ML method completes training on a sin-
gle server with Nvidia Tesla T4 GPU acceleration. As compared
to the traditional centralized learning approach, the bandwidth
cost of both Federated Learning methods is reduced by approx-
imately 60%. The results for model training time indicate that
asynchronous Federated Learning needs significantly less training
time than other baseline methods. However, since there is no GPU
available for synchronous Federated Learning and local learning,
edge vehicle 2 becomes the burden of the entire system. Other ve-
hicles must wait for vehicle 2 to complete its local training round
before performing model aggregation and further training tasks,
which is inflexible and time-consuming. The performance of these
two methods is even lower than that of the centralized learning
system with GPU acceleration. In summary, as compared to the
traditional centralized learning process, asynchronous Federated
Learning reduces training time by approximately 70% and saves
approximately 60% bandwidth. Since our method consumes real-
time streaming data, there is no need to store and train on a large
dataset in a single edge unit, making it cost-e�ective and relevant
to real-world systems.
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7.6 Discussion

Based on the findings of our experiments, our method has major
advantages over widely used centralized learning and synchronous
Federated Learning approaches. Our asynchronous approach achieves
the same or better model prediction accuracy while substantially
reducing model training time and bandwidth costs. Our method
not only outperforms synchronous Federated Learning in terms of
forming the global model of entire datasets without requiring any
user data transmission, but it also tolerates heterogeneous hard-
ware settings of di�erent edge devices and dramatically improves
model training performance. Furthermore, the model quality is
greatly improved and can produce much better results with the
model sharing and aggregation process.

Because of these benefits, real-time end-to-end Federated Learn-
ing can assist in a number of other meaningful use cases. The tech-
nique described in this paper can be applied not only to self-driving
vehicles, but also to other applications that involve continuous ma-
chine learning model training on resource-constrained edges, such
as camera sensors, cell phones, household electrical appliances,
and so on. Furthermore, due to user data privacy and network
bandwidth limitations, our approach can be implemented in sys-
tems that need a constantly evolving model to adapt to rapidly
changing environments.

7.7 Conclusion and Future Work

In this paper, we present a novel approach to real-time end-to-end
Federated Learning using a version-based asynchronous aggrega-
tion protocol. We validate our approach using a critical use case,
steering wheel angle prediction in self-driving cars. Our findings
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show the model’s strength and advantages when trained using our
proposed method. In our case, the model achieves the same or even
better prediction accuracy than widely used centralized learning
methods and other Federated Learning algorithms while reduc-
ing training time by 70% and bandwidth cost by 60%. Note that
the decrease would be more visible if the number of participating
devices is expanded more, which proves to be cost-e�ective and
relevant to real-world systems.

In the future, we plan to further analyze our algorithm with dif-
ferent combinations of hyper-parameters, such as the aggregation
frequency bound al and au. As the parameter settings become
more important with the number of participating learning vehi-
cles increases, we would like to add more federated edge users in
order to test device output that may di�er with these bounds. In
addition, we will test our approach in additional use cases and in-
vestigate more sophisticated neural networks combined with our
approach. In addition, we plan to develop more appropriate aggre-
gation algorithms and protocols in order to increase model train-
ing performance on resource-constrained edge devices in real-world
embedded systems.
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CHAPTER 8

AF-DNDF: Asynchronous Federated Learning of Deep

Neural Decision Forests

This chapter has earlier been published as
AF-DNDF: Asynchronous Federated Learning of Deep
Neural Decision Forests
Zhang H., Bosch J., Holmström Olsson H. and Koppisetty, A.C.
In 2021 47th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA) (pp. 308-315). IEEE.

Federated learning is an emerging machine learning methodol-
ogy that was first proposed by Google [33] in 2016. The concept
was originally used to solve the problem of local model training and
updating in Android mobile devices [72]. The design goal of Fed-
erated Learning is to carry out e�cient machine learning among
multiple parties or multiple computing end nodes with the purpose
of protecting the privacy of the end-user personal data during big
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data exchange. Since the edge devices in Federated Learning train
the machine learning models continuously on new data, bottle-
necks with centralized training and deployment of ML models on
edge are minimized. Due to these characteristics, the advantage
of Federated learning is significant. It is capable to utilize local
computation resources and ease the computation pressure of the
central server. Furthermore, the system can provide rapid model
deployment and evolution because of the local training fashion
[175].

In addition, the machine learning algorithm that can be used in
Federated Learning is not limited to neural networks, but can also
include other important algorithms such as the random forests, etc.
With the inspiration of [176], we further investigate the concept
of Deep Neural Decision Forests (DNDF) and the way to combine
it with Federated Learning. As the network unites deep neural
networks and decision forests, the methodology leverages the ro-
bustness of decision trees where the final fully connected layer in
convolutional neural networks are sensitive. Thus, it is desirable
to be utilized for classification tasks with the help of Federated
Learning.

Although the concept of Deep Neural Decision Forests and train-
ing the model with the Federated Learning method has significant
benefits, it is often a complicated process for industries and compa-
nies to build a reliable and applicable Federated Learning system
[71]. Our previous research shows the challenges of deploying Ar-
tificial Intelligent (AI)/Machine Learning (ML) components into
a real-world industrial context. As we defined in “Engineering

AI Systems: A Research Agenda" [149], AI engineering refers to
AI/ML-driven software development and deployment in industrial
production contexts. We found that the transition from prototype
to the production-quality deployment of ML models proves to be
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challenging for many companies [66].
In this paper, in order to make the concept to be applicable

to real-world industrial requirements, such as heterogeneous hard-
ware settings and limited communication bandwidth, we propose
a novel algorithm “AF-DNDF". The contribution of this paper is
threefold. First, we combine the asynchronous Federated aggre-
gation protocol with the concept of Deep Neural Decision Forests.
The asynchronous approach can enhance the model training e�-
ciency among all participated edge devices. Second, we introduce
an optimal method for selecting decision trees based on their clas-
sification performance, which significantly reduces the communi-
cation bandwidth when updating local models to the aggregation
server. Third, we evaluate our approach with an important auto-
motive use case, road object recognition in the field of autonomous
driving. Based on our results, we show that our AF-DNDF algo-
rithm significantly reduces the communication overhead and, at
the same time, accelerates model training speed without sacrific-
ing model classification performance, which turns out to be more
suitable when deploying the method in an industrial context.

The remainder of this paper is structured as follows. In Sec-
tion 8.1, we introduce the background of this study. Section 8.2
details our research method, including the simulation testbed, the
utilized machine learning method and the evaluation metrics. Sec-
tion 8.3 presents the Asynchronous Federated Deep Neural Deci-
sion Forests approach proposed in this paper. Sections 8.4 includes
evaluation of the proposed method to data sets that are relevant
to industrial applications. Section 8.5 outlines the discussion on
our observed results. Finally, Section 8.6 presents conclusions and
future work.
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8.1 Background

Deep Neural Decision Forests

Deep neural decision forests were firstly were first introduced by
Kontschieder et al. [177] in the year 2015. Their results demon-
strated that the method outperforms the baseline convolutional
neural network and random forest with the same individual archi-
tectural settings. A DNDF consists of two parts, namely convolu-
tional neural network and decision forests. Convolutional neural
networks are often used in image classification and object detec-
tion because of their excellent performance without explicit feature
extraction. By using di�erent convolution kernels, features can be
extracted from the data source. The decision forest is also a com-
mon machine learning algorithm based on the tree structure. Due
to the low complexity and strong learning ability, decision forests
have been successfully applied to many machine learning problems
[178].

Figure 8.1: Network Structure of the Deep Neural Decision Forests

DNDF algorithm is a modification of convolutional neural net-
works where the final softmax layer of CNNs is replaced by deci-
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sion forests. Predictions are made by applying a certain routing
algorithm in the decision tree in order to reach the last leaf node.
Figure 8.1 demonstrate a specific network structure.

In this network, the full connection layer and the previous layer
are the same as the general convolutional neural network, and the
mapping from the full connection layer node to the decision node
is the same.

dn(x; ◊) = ‡(fn(x; ◊)) (8.1)

where X is the input. ◊ represents the parameter. ‡ is the
sigmoid function. The function realizes the mapping from full
connection layer to the decision nodes. In order to reach the leaf
node through the tree, we need to plan the routing algorithm:

µl(x|◊) =
Ÿ

nœN

dn(x; ◊)À
d̄n(x; ◊)√ (8.2)

where dn(x; ◊) = 1 ≠ dn(x; ◊)À. N is the decision node set.
dn(x; ◊)À indicates the route from the current node to the left
while l is the leaf node. According to the formula, if we want to
route to leaf node 4:

µl4 = d1(x)d̄2(x)d̄5(x) (8.3)

The probability of classifying input x as y is:

P [y|x, ◊, fi] =
ÿ

lœL

filyµl(x|◊) (8.4)

For the decision forests F = T1, T2, ..., Tk:

PF [y|x] = 1
k

kÿ

h=1
PTh

[y|x] (8.5)
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The accuracy of classification can be significantly improved by
discriminating di�erent decision trees in the decision forests.

Federated Learning and Asynchronous Aggregation

Machine Learning has attracted tremendous attention from both
research and society. The main challenge of it is: although the
computation capability continues to increase with time, the com-
putational needs of many Machine Learning systems grow even
faster [71]. For example, when applying deep neural networks, in
order to achieve good model performance, the network needs to
contain millions or even billions of neurons, which may result in
the problem of longer training time and less model flexibility [42].

With the concept of cloud computing and decentralized data
storage, AI engineering [149] has the opportunity to expand to a
distributed setting. Federated Learning is proposed to improve
traditional Machine Learning approaches, as it enables edge de-
vices to collaboratively and continuously learn a shared Machine
Learning model. The theory of Federated Learning has been ex-
plored previously in [33][73] where the main goal was to build a
global statistical model using a variety of edge devices. The chal-
lenge is to minimize the following finite-sum objective function 8.6
in particular:

min
w

f(w), where f(w) :=
nÿ

i=1
⁄ifi(w) (8.6)

Here, w denotes model parameters, n the total number of edge
devices, and fi(w) the local objective function defined by the ith
device’s high-dimensional tensor w. ⁄i (⁄i Ø 0 and q

i ⁄i = 1) is
the impact of the ith remote device which is defined by users.

With the concept first applied by Google in 2016 [72], there
have been several Federated Learning architectures, frameworks
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and solutions proposed to solve real-world issues [31]. A Feder-
ated Learning system requires no transfer of the edge data but
only local model updates are sent to a central aggregation server
to form a consensus global knowledge. The model updates could
be performed either by updating the complete model architecture
or just by updating the model parameters and hyper-parameters.
Furthermore, with the local training and validation, a Machine
Learning model can be quickly and continuously verified and de-
ployed, which is more suitable for a quick-evolving system.

However, the commonly applied Federated Learning aggregation
algorithms, such as FedAvg [158], assumes that all the participated
edge devices have the same computation power and be able to up-
date the models at the same time, which is incompatible with the
industrial cases. In our previous research [179], we proposed a
version-based asynchronous aggregation protocol to tackle these
challenges. With the asynchronous aggregation protocol, the edge
devices no longer need to wait for other equipment to complete
their model training round but directly send the local model to
the aggregation server. In this paper, we will not only combine
asynchronous aggregation protocol with DNDF but also optimize
the local model updating procedure by further reducing the com-
munication overhead without sacrificing the model classification
performance.

8.2 Method

To produce a quantitative assessment and comparison between
Federated Learning and centralized learning techniques, the empir-
ical method and learning procedure provided in [100] were applied
in this study. We also compared our AF-DNDF approach with
the commonly used synchronous Federated Learning algorithm.
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In the following sections, we present our testbed, data traces, the
convolutional neural network architecture and hyper-parameters
of decision forests that were utilized in this research.

Data Traces and Testbed

In this research, in order to provide a comprehensive evaluation,
we selected two well-known automotive driving data sets, namely
FLIR and BDD 100K data set.

FLIR dataset is a thermal image data set [180]. With the devel-
opment of thermal imaging cameras, the automotive industry has
begun to explore the use of thermal imaging for machine learning
to develop advanced driving assistance and autonomous driving
systems. The data set contains annotated thermal images of day
and night scenes, from which we extracted three categories of road
objects. Figure 8.2 demonstrate the example samples in the data
set.

Figure 8.2: FLIR Thermal Sensing Advanced driver-assistance system Dataset

The second data set applied is BDD 100K [181], which was re-
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Figure 8.3: BDD100K: A Large-scale Diverse Driving Video Dataset

leased by the AI Laboratory of Berkeley University. The data set
contains the largest and most diverse public driving records. The
data sets contain 10,000 pieces of high-definition video. Each video
is about 40 seconds while the keyframe is sampled to get 10,000
pictures. The image size is a 1280x720 RGB image. Each image
file is pointed to a specific number that can be found in every label
image. In order to perform objective recognition, in this paper, we
extracted 60,000 samples from the RGB frame images based on the
labelled objective bounding area. The training data contains six
di�erent road object classes with 10,000 samples in each category.
Figure 8.3 gives an example of the selected data set.

Before our simulation, as we included three vehicles in our ex-
periment, the data from both data sets were divided into three
parts and uniformly distributed to those edge vehicles. In each
edge vehicle, the first 70% data were regarded as the input driving
information which was used for model training while the rest 30%
were considered as the test set. All the image samples were resized
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Figure 8.4: Convolutional neural network layer description

to 512 ◊ 512 and normalized to [≠1, 1].
Hardware information for all of the servers is provided in Table

8.1. In order to simulate aggregation and edge operations, one
server was designated as the aggregation server, while the others
were designated as edge vehicles.

Table 8.1: Hardware setup for testbed servers

CPU Intel(R) Xeon(R) Gold
6226R

Cores 8
Frequency 2.90 GHz
Memory 32 GB
OS Linux 4.15.0-106-generic
GPU Nvidia Tesla T4 GPU

Machine Learning Method

In order to find the optimal network, the random search [182]
strategy was applied. The following is the detailed description
of the convolutional neural network architecture and for the forest
hyper-parameters, we selected parameters that eventually gave the
best classification accuracy. Figure 8.4 illustrates the convolutional
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neural network part of our deep neural decision forest architecture.
Three 3x3 convolution layers were set in the input branch, which
has 12 output channels. The second layer contains 24 output chan-
nels while the third layer has 36 output channels, followed by 4x4
max pooling. All layers are activated with the ELU function [183].
The output is connected to the decision forests. The convolutional
neural network is acting as a feature layer that can abstract useful
features from source images and pass them to the decision forests.

The optimal model parameters for training a local DNDF net-
work are those that minimize the following model training loss
function:

L(◊, fi; x, y) = ≠log(PT [y|x, ◊, fi]) (8.7)

For the hyper-parameter of decision forests, we list all the set-
tings in the following table 8.2:

Table 8.2: Hyper-parameter settings for Decision Forests layer

NUMBER_EPOCHS 20
TREE_DEPTH 8

NUMBER_TREE 12
FEATURE_RATE 0.75
DROPOUT_RATE 0.05

Evaluation Metrics and Baseline Model

We chose three evaluation metrics and three baseline models to
give a complete review. The three metrics reflect three important
aspects when deploying machine learning methods in an industrial
context, namely model performance, model training e�ciency and
communication cost for data transfer between the edge nodes and
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the central server. [3].
- Classification Accuracy & mean Average Precision: Clas-
sification accuracy and average precision are important metrics
that indicate the quality of the classification model. Classifica-
tion accuracy is defined as the percentage of correctly recognized
images among the total number of testing images.

AUCC = T

T + F
(8.8)

where T represents the number of correct classifications while F is
the number of false classifications. Average precision summarizes
the precision-recall curve as a weighted average of the precision
obtained at each threshold. Here the increase of recall from the
previous threshold is used as a weight [184][185].

AP =
ÿ

n

(Rn ≠ Rn≠1)Pn (8.9)

where Pn and Rn are the precision and recall at the nth threshold.
We calculate the mean of the Average Precision among all target
classes to evaluate the quality of the classifier.
- Model training time: This metric represents the cost of train-
ing a model at the edge in terms of time. This metric demonstrates
the speed at which the edge vehicles locally update their knowl-
edge, in this case, gained from the machine learning models. The
metric is crucial for those systems which need to evolve continu-
ously and adapt rapidly to the changes in data that is caused by
changes in the local environment. The metrics were measured in
all the vehicles by checking the model deployment timestamp.
- Bandwidth utilization: The total number of bytes transferred
during the whole training operation is defined as this metric. This
statistic depicts the overall cost of communication resources re-
quired to achieve an applicable AF-DNDF model.
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The three baseline models include the model trained by applying
the centralized learning approach (CL), the independently local
learning (IL) and the synchronous Federated Average algorithm
(FedAvg). These baseline approaches are commonly used archi-
tectures used in federated learning systems and are used to bench-
mark our proposed AF-DNDF architecture.
Centralized Learning (CL):
The centralized learning approach is used to train this baseline
model. All data from edge vehicles is gathered to a single server
prior to model training. The hyper-parameters applied are the
same as Federated Learning which is mentioned in section 8.2.
Independently Local Learning (IL):
Each edge vehicle is directly used to train these baseline models.
Unlike Federated Learning, however, throughout the training pro-
cess, there will be no model exchange between the edge and central
nodes. To show how Federated Learning can outperform those in-
dividually trained local models, the prediction performance may
be compared to the Federated Learning model.
Synchronous Federated Average algorithm (FedAvg):
FedAvg [158], a synchronous Federated Learning aggregation pro-
tocol that is frequently used in Federated Learning research, is the
method used here. Before performing global model aggregation,
the server must wait for all of the participating edge vehicles to
finish their local training cycles.

8.3 AF-DNDF: Asynchronous Federated Deep
Neural Decision Forests

With the asynchronous aggregation protocol, the vehicle no longer
needs to wait for other equipment to complete its local model
training iterations. Instead, they can directly send the optimal
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model to the aggregation server and fetch the global knowledge,
which significantly improves the e�ciency of global model training.
Figure 8.6 illustrates the diagram of the learning procedure in
the whole system. In each training cycle, the edge vehicle has to
perform local model training and performance validation locally.
In order to further save the communication bandwidth, in an AF-
DNDF network, each edge nodes will only submit partial decision
trees instead of the whole forest. Figure 8.5 demonstrates how
an individual edge vehicle updates its optimal local model to the
aggregation server.

The decision trees are selected based on mean average precision
among all objective categories.

mAP =
q

K

k=1 AP (k)
K

(8.10)

Here, K represent the total number of classes while k represents
a specific class. The optimal group of decision trees will be se-
lected based on the metric and updated to the aggregation server
together with the feature layer and form a global knowledge among
all participating edge vehicles.

In this paper, as we described in Section 8.2, the local model
contains 12 decision trees in each vehicle. However, only 4 trees
and the local feature CNN layer were updated to the aggregation
server. At the end of the iteration, the model will be sent back to
the vehicle and continuously enhance the local model.

Figure 8.6 shows the diagram of AF-DNDF updates and ag-
gregation. A detailed description of the three stages within an
AF-DNDF system are listed below:
Stage I: Edge vehicles calculate the model locally, then pull the
global model version and compare it to their local version value
after each local training session. The model version di�erence
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Figure 8.6: Three stages of the Asynchronous Federated Deep Neural Decision
Forests

computed by ver (global model version) and verk (local model
version of edge vehicle k) and the frequency bound limitations (al

and au) are used to make the decision. The maximum limit of the
model version di�erence is au, whereas the lower limit is al. There
are three requirements:

• If the local version is out of date (the client version is aged),
the edge vehicle should download the most recent model and
restart local training.

• If the local version is too near to the most recent version (the
client is too active), it should be avoided upgrading and local
training should be performed again.

• Clients can then assess the outputs of all decision trees in
the forest if the local version is between the higher and lower
bounds. After that, the best set of trees is chosen and sub-
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mitted to the aggregation server, along with the feature CNN
layers.

Stage II: To build a global knowledge of all local models, the
central server executes aggregation based on the ratio computed
by the global and local model versions. The decision forests layer
will be replaced by the updated set of local decision trees in the
network, while the feature CNN layer will be aggregated using the
formula:

wt+1 Ω≠ (1 ≠ –) ◊ wt + – ◊ w
l

t+1 (8.11)

where wt represents the global model while w
l

t+1 is the updated
local model. In addition, the ratio – is defined based on model
versions:

– = 1
verg ≠ verl

(8.12)

where verg is the version of the global model while verl repre-
sents the updated local model version.
Stage III: The aggregation server updates the global model and
sends back the aggregated result (including the incremented model
version) to the edge vehicles who request the latest model.

The aggregation server only deploys the global model if the
edge vehicles request it as the method is a pull-based algorithm.
In terms of aggregation, once the edge vehicles update their own
models, the server will aggregate them based on their local ver-
sion. When it comes to merging global knowledge, the older the
model version is, the lower the ratio is. Furthermore, while the
model update frequency is entirely dependent on local hardware
settings, there are two bound limitations to guarantee that local
client update frequencies are within an acceptable range [al, au].
In our paper, based on the number of participating cars, we set the
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lower frequency bound al to 1 and the upper frequency bound au

to 4. Throughout our experiments, the settings we chose resulted
in the best classification accuracy and model training e�ciency.

8.4 Results

Classification Performance

We first compared the classification accuracy of our approach with
a pure convolutional neural network (CNN) and random forest
(RF) to demonstrate the e�ectiveness of DNDF when encountered
the task of object recognition. The hyper-parameter settings are
the same as AF-DNDF. (Random forests settings are the same as
the values listed in Table 8.2 while the CNN network is demon-
strated in Figure 8.4.) The results of the FLIR data set are listed
in Table 8.3.

Table 8.3: Classification Accuracy and mean Average Precision of FLIR Dataset

AF-DNDF RF CNN
AUCC 79.9% 67.3% 74.7%
mAP 0.894 0.751 0.828

From the results, we can observe that after combining the deci-
sion forests and convolutional neural network, the classification ac-
curacy of AF-DNDF increased 10% compared with RF and about
5% compared with CNN. The situation also applies to the mean
average precision, where the value improved by about 10% if the
DNDF network is applied.

The same conclusion can be obtained with BDD 100K data set.
Table 8.4 gives the classifier performance among three di�erent
machine learning methods. The classification accuracy can in-
crease around 18% compared with RF and about 5% compared
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Table 8.4: Classification Accuracy and mean Average Precision of BDD 100K
Dataset

AF-DNDF RF CNN
AUCC 68.6% 49.4% 63.3%
mAP 0.753 0.505 0.705

Table 8.5: Comparison of Classification Accuracy and mean Average Precision
with three baseline learning approach in two data sets

AF-DNDF FedAvg

FLIR AUCC 79.9% 80.7%
mAP 0.894 0.904

BDD 100K AUCC 68.6% 67%
mAP 0.753 0.748

CL IL

FLIR AUCC 75.1% 58.4%
mAP 0.875 0.690

BDD 100K AUCC 69.8% 60.8%
mAP 0.766 0.662

with CNN. For the mean Average Precision, the value can be im-
proved at least 5% with AF-DNDF. The results above demon-
strate the e�ectiveness of DNDF after combining CNN and de-
cision forests when performing object recognition with our data
sets.

Moreover, in order to analyze the model classification perfor-
mance, we compared our model training approach with three base-
line learning architectures, namely centralized learning (CL), inde-
pendently local learning (IL) and synchronous Federated Average
algorithm (FedAvg). First of all, Table 8.5 shows the classifier
accuracy and mean Average Precision.

The results show that when compared to centralized learning
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and synchronous Federated Learning, the AF-DNDF model can
achieve the same or even higher levels of accuracy. If we compare
it with an independently trained model, the AF-DNDF model can
provide a more accurate prediction which is about 20% better with
the FLIR data set and 10% better with the BDD 100k data set.

Model Training E�ciency

During the evaluation, in order to simulate heterogeneous hard-
ware settings, we accelerated local model training by Nvidia Tesla
T4 GPU in two edge vehicles while another one is trained with-
out hardware acceleration. Figure 8.7 shows the change of the
loss value with model training time. The results reveal that the
AF-DNDF approach surpasses all baseline approaches in terms of
model training e�ciency. With the same amount of training time,
our method can converge 60% quicker than other existing baseline
models.

Bandwidth Utilization

During the experiment, we also recorded bandwidth utilization by
applying each learning approach. Figure 8.8 shows the results for
bandwidth utilization.When compared to the centralized learning
technique, the bandwidth cost of both Federated Learning meth-
ods is lowered by roughly 80%. Moreover, in our AF-DNDF ap-
proach, as our method only selects the optimal part of the model
to update, the bandwidth usage is further reduced by about 60%
compared with the synchronous Federated Learning algorithm.

In summary, AF-DNDF reduces training time by around 60%
and saves bandwidth by about 80% when compared to the cen-
tralized learning approach, which is cost-e�ective and suitable to
real-world systems.
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(a) BDD100K

(b) F LIR

Figure 8.7: The comparison between model training loss and the model training
time with AF-DNDF and three baseline models
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(a) BDD100K

(b) F LIR

Figure 8.8: Bandwidth consumption of di�erent learning algorithm with two data
sets
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8.5 Discussion

From our experiment results, our architecture of asynchronous
Federated Learning of deep neural decision forests proves to have
significant advantages compared with commonly used centralized
learning and synchronous Federated Learning methods.

Furthermore, the results demonstrate that AF-DNDF requires
much less model training time than alternative baseline learning
architectures. However, as for synchronous Federated Learning
and independently local learning, the vehicle without access to
GPU settings becomes a heavy burden among all participated
learning vehicles. Other vehicles must wait until all edge vehi-
cles have completed their local training round before performing
model aggregation and additional training, which is rigid and time-
consuming. These two strategies are even less e�cient than the
centralized learning method.

Without losing model classification accuracy, our asynchronous
method may considerably reduce model training time and band-
width costs. Our approach not only outperforms synchronous Fed-
erated Learning by forming a global knowledge of the entire data
sets without requiring any user data sharing, but it also toler-
ates heterogeneous hardware settings across di�erent edge vehi-
cles, which improves training e�ciency significantly. Furthermore,
the model quality is considerably improved as a result of the model
sharing method and produce much better outcomes.

Because of these benefits, AF-DNDF can be applied in various
use cases. The algorithm introduced in this paper can be used
in di�erent applications involving object detection on resource-
constrained edges, such as camera sensors, mobile phones, and
home electrical appliances, in addition to self-driving vehicles. Fur-
thermore, the new aggregation methodology for decision forests
and the neural network combination might stimulate further re-
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search and increase possible commercial applications.

8.6 Conclusion

In this work, we introduce “AF-DNDF", a new technique for DNDF
model training in an asynchronous federated manner. We validate
our technique with a real-world case: recognizing road objects in
self-driving vehicles. Our findings illustrate the model’s strength
and benefits by using the method we suggest. In comparison to the
commonly applied centralized learning approach and other Feder-
ated Learning architectures, the model can achieve at least equal
or even greater prediction accuracy but decreases training time
by 60% and bandwidth cost by 80% in our scenario. We high-
light that if the number of participating vehicles is raised further,
the decrease will be more noticeable, which is cost-e�ective and
suitable to industrial scenarios.

In the future, we would like to add additional edge nodes so that
we can assess the system’s performance on a broader scale. We
also intend to identify more appropriate aggregation protocols to
further improve model training e�ciency, reduce bandwidth uti-
lization and enhance edge model quality on resource-constrained
edge devices in real-world embedded systems.
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CHAPTER 9

Concluding Remarks and Future Work

To sum up, in this thesis, we present research that identifies is-
sues that industries are attempting to solve when dealing with
Machine Learning cases, as well as the reasons why they antici-
pate Federated Learning as an applicable technique. The empir-
ical results show that due to privacy and data collection issues,
more and more industrial cases are trying to solve their problem
by using the Federated Learning framework. When implement-
ing the Federated Learning method into a real-world context, we
have proposed an asynchronous aggregation way to communicate
between the edge and server to avoid synchronization problems
when dealing with large scale systems. Synchronization and com-
munication e�ciency are the top priorities for a company when
implementing model training and sharing components into hetero-
geneous hardware settings. We also combined Federated Learning
with advanced machine learning methods such as neural decision

163



Chapter 9 Concluding Remarks and Future Work

forests and validate our solution with two important use cases, in-
cluding steer wheel angle prediction and image recognition. Our
results show the e�ectiveness of applying the Federated Learning
method and our improved strategies if compared with widely used
centralized learning methods.

Furthermore, we also highlight the issues that industries are
attempting to address when adopting and transitioning their ma-
chine learning components to Federated Learning, including com-
ponents failures, ine�cient communication, unstable model perfor-
mance, large-scaled end customers and incomplete system security.
In addition, we suggest five critical criteria for designing and op-
erating a dependable industrial Federated Learning system. The
research questions framed in Chapter 3 are addressed as follows:

RQ1. What are the main challenges with existing Ma-
chine Learning workflows and how can Federated Learning
help in addressing and solving these challenges?

In order to answer this question, we conducted a literature re-
view and interview-based case study to identify the benefits of
applying Federated Learning to embedded systems. We figure out
that there is three major concern associated with the typical ma-
chine learning workflow in the embedded system domain, including
privacy, e�ciency and storage concern. The Federated Learning
method has the distinct advantage of retaining privacy, as there
is no need to transfer the original data, which is always kept local
to the device. The new model enables the device to download the
model in real-time and iterate over it, allowing the new model to
respond to user behaviour as quickly as possible, resulting in a
real-time model update. The method is suitable for distributed
systems where data cannot or is hard to be collected to a central
location in the typical machine learning workflow. Furthermore,
Federated Learning can reduce network latency, transmission us-
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age, and make the most use of local computer capacity. Despite
the impending introduction of 5G, internet speeds are not guaran-
teed in all circumstances and locales. In a sluggish network speed
scenario, if all of the user’s data is uploaded to the cloud and the
service itself is fed from the cloud, network latency will dramati-
cally damage the user experience. This is not true for Federated
Learning-enabled services because the service is obtained locally.
The studies help us gain the basic knowledge and motivation to
help companies implement Federated Learning components.

RQ2. What are the primary constraints and limitations
of current Federated Learning systems?

To answer this topic, we draw on current literature as well as
the experience of industrial engineers. We identified the chal-
lenges that industries are attempting to address when adopting
and transitioning their machine learning components to Federated
Learning, such as component failures, ine�cient communication,
unstable model performance, large-scaled end customers, and in-
su�cient system security. Furthermore, we provided six open re-
search topics that will drive future studies on the implementation
of Federated Learning in real-world contexts.

RQ3. What are the solutions that can help companies in
the embedded systems domain build Federated Learning
in practice?

We proposed the major components and five critical criteria
for constructing and operating a dependable industrial Federated
Learning system based on prior knowledge acquired from books
and industrial engineers. Furthermore, in order to address the
challenges associated with the transition to Federated Learning,
we o�ered and examined various architecture alternatives, as well
as suggested viable approaches for certain industrial scenarios. We
devised an asynchronous aggregation protocol for Federated Learn-

165



Chapter 9 Concluding Remarks and Future Work

ing to analyze and learn data in real-time in order to tackle the
heterogeneous hardware di�culties. We also coupled Federated
Learning with neural decision forests and optimized the model
sharing mechanism to improve model learning performance while
reducing communication overhead. Our results show that using
Federated Learning and our upgraded approaches, the system can
achieve the same or even greater prediction accuracy than com-
monly used centralized learning methods while lowering training
time and bandwidth costs. The reduction would be more evident
if the number of participating devices were increased, proving to
be cost-e�ective and applicable to real-world systems.

9.1 Key Contributions

Based on our research and collaboration with companies in the
software-intensive embedded systems domain at Software Center,
we first identify the di�culties associated with traditional machine
learning approaches and the challenges that companies encoun-
tered (data collection, model training, model distribution, etc.)
while attempting to use machine learning to improve service qual-
ity in this thesis. We investigate why industries believe Federated
Learning is a viable solution to the issues connected with the de-
ployment of machine learning components in the domain of em-
bedded systems, and we demonstrate the benefits that companies
get after making the switch to Federated Learning. In order to
further investigate Federated Learning and the ways to improve
the method, we identified the key challenges and limitations of ex-
isting Federated Learning systems, as well as the challenges that
industries in the embedded system domain are attempting to solve
when adopting and transitioning to Federated Learning. We re-
view the services and requirements needed for a dependable Feder-
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ated Learning system and o�er six open research problems for fu-
ture Federated Learning research. We introduce four architecture
alternatives that have been or can be applied to a Federated Learn-
ing system based on the challenges we identified and discussed
with our industrial collaborators. The benefits and drawbacks of
several architecture solutions for Federated Learning systems are
discussed. In order to overcome the communication and training
e�ciency problem, we present a unique real-time end-to-end Fed-
erated Learning technique for asynchronously training Machine
Learning models in a distributed context and consuming real-time
streaming data for Federated Learning. The asynchronous aggre-
gation protocol is also combined with the concept of Deep Neural
Decision Forests. The proposed methods are validated with key
automotive use cases, steering wheel angle prediction and road
objective recognition in the field of autonomous driving by using
empirical datasets. In summary, the main objectives of contribu-
tion are as follows:

• Objective 1: To identify the limitations of current machine
learning workflow

• Objective 2: To identify how Federated Learning can influ-
ence the business and improve the service quality in the em-
bedded systems

• Objective 3: To identify what are the main challenges of Fed-
erated Learning systems in a real-world context.

• Objective 4: To propose the solution which can help compa-
nies to implement Federated Learning components.
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9.2 Future Work

In the future, we plan to further analyze our algorithm with di�er-
ent combinations of hyper-parameters and aggregation protocols,
such as quality-based aggregation algorithms. As the parameter
settings become more important with the increase of the number
of participating learning vehicles, we would like to add more feder-
ated edge users in order to test device output that may di�er with
these bounds. In addition, we will test our approach in additional
use cases and investigate more sophisticated neural networks com-
bined with our approach.

Another direction for our future work is to explore autonomously
improving algorithms, such as reinforcement learning, etc. Rein-
forcement learning has re-emerged as a topic of interest in academia
and industry. When implemented in a real-world environment,
however, reinforcement learning is typically shown to be unstable
and unable to generalize to varied contexts. To our knowledge, the
majority of reinforcement learning research either places the algo-
rithm in a game context or assumes a fixed running space. How-
ever, because the real world is a complex dynamic system rather
than a static environment, the practicality of the reinforcement
learning method must also be addressed in real-world applications.
Because most reinforcement learning models are generated in a
static environment, methods that enable the industry to apply the
methods in real-world embedded systems are worth investigating.
Reinforcement learning (RL) is a learning approach that is con-
cerned with how software agents respond in an environment in
order to maximize cumulative rewards. Because of this charac-
teristic, the agent can learn from past experiences and iterate to
adapt to the environment. In the next stage, we’d like to look at
the viability of combining Federated Learning and reinforcement
learning to allow edge devices to evolve themselves without the
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need for human intervention. We’d like to conduct research into
how to merge those two approaches and the way to e�ciently train
a reinforcement learning model in a Federated Learning system.
We would like to work with our industrial partners to test our
techniques in various application domains.
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