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In an unconventional superconductor, the interplay of scattering off impurities and Andreev processes may
lead to different scattering times for electronlike and holelike quasiparticles. Such electron-hole asymmetry
appears when the impurity scattering phase shift is intermediate between the Born and unitary limits and leads
to an expectation for large thermoelectric effects. Here, we examine the thermoelectric response of a d-wave
superconductor connected to normal-metal reservoirs under a temperature bias using a fully self-consistent
quasiclassical theory. The thermoelectrically induced quasiparticle current is cancelled by superflow in an open
circuit setup, but at the cost of a charge imbalance induced at the contacts and extending across the structure.
We investigate the resulting thermopower and thermophase and their dependencies on scattering phase shift,
mean free path, and interface transparency. For crystal-axis orientations such that surface-bound zero-energy
Andreev states are formed, the thermoelectric effect is reduced as a result of locally reduced electron-hole
asymmetry. For a semiballistic superconductor with good contacts, we find thermopowers of order several μV/K,
suggesting a thermovoltage measurement as a promising path to investigate thermoelectricity in unconventional
superconductors.

DOI: 10.1103/PhysRevB.105.104506

I. INTRODUCTION

The interest in thermal currents and thermoelectric effects
in superconductors has been revived in recent years, partly
because the response to temperature gradients in supercon-
ductors is phase coherent [1–8]. In addition, heat management
in nanoscale devices and circuits operating at low temperature
is important in a wide range of applications in, e.g., ther-
mometry, refrigeration, radiation detection [9], and quantum
technologies [10].

The presence of a temperature gradient in a bulk super-
conductor leads to quasiparticle heat flow, reduced by the
presence of the superconducting gap. In addition, an intricate
thermoelectric response appears, where the thermoelectrically
induced normal current is cancelled by counter superflow
[11]. The usual Seebeck effect was therefore initially expected
to vanish. Efforts were instead made to pick up the magnetic
flux created in a ring geometry by the counter superflow
[12–15]. But the experiment is complicated, for instance by
the temperature dependence of the penetration depth, and the
results have to some extent been controversial [16]. On the
other hand, it was shown [17] that in a device geometry with
normal metals coupled to the superconductor, a charge im-
balance signal could be induced by the temperature gradient.

Published by the American Physical Society under the terms of the
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In conventional superconductors, however, the thermoelectric
effect and the contact thermopower are small, since they re-
quire electron-hole asymmetry. Such asymmetry is very small
in most metals because the density of states near the Fermi
level is approximately constant and, in addition, the scattering
time is to a good approximation energy independent. Later,
it was suggested [18] and experimentally confirmed [19], that
the application of a supercurrent in addition to the temperature
gradient leads to an enhanced electron-hole asymmetry and a
large thermopower [20].

More recently, there are theories and experiments on
engineering a large electron-hole asymmetry in supercon-
ducting heterostructures. Examples range from injecting
supercurrent into normal metals in multi-terminal geome-
tries [21,22], over utilizing the spin degree of freedom in
ferromagnet-superconductor hybrid devices [23–29], to in-
jecting supercurrent into topological materials with edge
states [30,31]. Thus the thermoelectric effect in conventional
superconductors and heterostructures has been an active area
of research. In contrast, much less is known about thermoelec-
tric effects in unconventional superconductors.

In d-wave superconductors, the electron-hole symmetry
can be naturally broken when impurities scatter electronlike
and holelike quasiparticles differently [32–36]. Such asym-
metry is induced if the disorder is of certain type where the
impurities scatter with a scattering phase shift δ0, in between
the Born (δ0 small) and unitary (δ0 → π/2) limits. The in-
terplay of scattering off the impurity and Andreev processes
leads to the formation of an impurity resonance state [37]. The
resonance is at an energy within the maximum of the d-wave
gap and is determined by the scattering phase shift. Within a
homogeneous scattering model, where the effect of a dilute
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FIG. 1. Principle setup of our model. A d-wave superconductor
(grey) is connected to two reservoirs via contacts with a transmit-
tance D (black lines). The left “hot“ reservoir is at temperature TL =
T + �T and chemical potential μL, while the right “cold“ reservoir
is at TR = T and chemical potential μR. The angle α specifies the
crystal-axis misalignment.

concentration of impurities is taken into account, an impurity
band is formed. In thermal conductivity measurements, the
so-called universal limit has been found [38–40], showing
the importance of the impurity band in transport. In addition
to the impurity band in the density of states, electron-hole
asymmetric scattering rates appear, which leads to the pos-
sibility of large thermoelectric effects that to the best of our
knowledge have not been measured experimentally. Note that
the electron-hole asymmetry we are considering here is only
present in the superconducting state, and we will ignore any
asymmetry in the band structure or normal state scattering
times [41]. From a fundamental point of view, this type of
thermoelectric response can be used to probe the influence
of impurities in unconventional superconductors. However,
it has further implications for applications of unconventional
superconducting devices, as for instance based on the high-Tc

cuprates [42].
In this work, we consider the thermoelectric effect in

d-wave superconductors with impurities scattering with an
intermediate phase shift [36,43]. Building on our recent, fully
self-consistent calculations of charge flow and charge im-
balance in superconducting devices with normal metal leads
[44], we study a d-wave superconductor between two normal
metal reservoirs with a temperature bias �T , see Fig. 1. We
compute the thermopower, i.e., the thermoelectrically induced
voltage �V due to the temperature bias �T , in an open-
circuit geometry where the charge current is zero. The induced
voltage leads to a charge imbalance extending into the bulk
of the superconductor and is large by the combined effects
of the electron-hole asymmetric impurity scattering and the
abundance of quasiparticle states around the nodes of the su-
perconducting order parameter. The associated quasiparticle
current flow is canceled everywhere by the moving conden-
sate. As a result there is also a net superconducting phase
difference, a thermophase, induced across the superconductor.

The paper is organized as follows. In Sec. II A, we give the
main assumptions of the model, while in Sec. II B, we out-
line the quasiclassical theory. A few details of the numerical
procedures are given in Sec. II C. The results are collected in
Sec. III, and the final Sec. IV gives a summary and discussion.

II. MODEL AND METHODS

A. Model

The model we use to study thermoelectric effects in d-wave
superconductors is depicted in Fig. 1. A superconducting film
is connected to two normal-metal reservoirs, one on the left
side and one on the right side. Here, we assume that both
reservoirs are connected via insulating barriers of equal trans-
parency D. The left reservoir is kept at a temperature TL =
T + �T , while the right is at TR = T . Experimentally, the
temperature T corresponds to the temperature of the cryostat
that the hybrid structure is placed in, and one reservoir—in
our case the left—is heated.

The temperature bias across the structure results in the
injection of quasiparticles from the reservoirs into the super-
conductor and transport in the superconducting ab plane (xy
plane). The film is considered homogeneous in the perpendic-
ular c-axis direction. In addition, the temperature difference
is assumed to be applied from left to right in a homoge-
neous fashion in the transverse y direction. The thermoelectric
response will then also be translationally invariant in the trans-
verse direction and we may compute the flow of heat and
charge along the x direction only. Since the charge current is
zero everywhere, there is no induced magnetic field and the
vector potential is zero.

We consider system sizes LS smaller than the inelastic scat-
tering length �in, while the elastic mean free path � can take
arbitrary values. As we discussed in some detail in Ref. [44],
this means that the dwell time for injected nonequilibrium
quasiparticles is short compared to timescales of inelastic
scattering processes in the superconductor [45–47], and the
final relaxation takes place far inside the normal metal con-
tact reservoirs. Here we consider relatively small nanodevices
with LS < 100ξ0, where this can be met.

We assume that a static temperature difference between left
and right sides can be upheld. In addition, we assume that
any transient response present in a real experiment during the
establishment of this temperature difference has been damped
out by dissipation in the reservoirs. In this case, we may
consider the long-time limit nonequilibrium stationary state.

B. Methods

The steady-state nonequilibrium response of our structure
to the external temperature bias is obtained by solving the
time-independent quasiclassical equation of motion

ih̄vF · ∇ǧ + [ετ̂31̌ − ȟ, ǧ] = 0, (1)

where [Ǎ, B̌] denotes a commutator between matrices Ǎ and
B̌. In addition to Eq.(1), the quasiclassical Green’s function ǧ
has to satisfy the normalization condition ǧ2 = −π21̌. These
equations were originally derived by Eilenberger [48] and
independently by Larkin and Ovchinnikov [49] and later gen-
eralized to the nonequilibrium case by Eliashberg [45]. The ˇ
denotes that ǧ is a matrix in Keldysh space,

ǧ(pF, R, ε) =
(

ĝR(pF, R, ε) ĝK(pF, R, ε)
0 ĝA(pF, R, ε)

)
. (2)

In the following, we will omit the explicit reference to the
dependencies on momentum direction pF, coordinate R, and
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energy ε if it does not lead to confusion. The spectrum is
determined by the retarded (R) and advanced (A) components
while the distribution function is related to the Keldysh (K)
propagator. All three elements in Eq. (2) carry a ˆ to indicate
that they are matrices in particle-hole (Nambu) space. We
denote Pauli matrices in Nambu space τ̂i (i = 1, 2, 3), and
the third, τ̂3, enters in Eq. (1). The retarded and advanced
components have the form

ĝR,A =
(

g f
f̃ g̃

)R,A

, (3)

while the Keldysh component is

ĝK =
(

gK f K

− f̃ K −g̃K

)
. (4)

The diagonal components are propagators, while the off-
diagonal anomalous propagators encode superconductivity.
Particle-hole conjugation gives a relation

Ã(pF, R, ε) = A∗(−pF, R,−ε∗), (5)

between tilde and “nontilde“ objects. The elements of ĝR,A,K

are formally matrices in spin space, but we assume a spin-
degenerate system and spin singlet d-wave superconductivity.

The self-energies taken into account are the mean-field
superconducting order parameter as well as scalar impurities,

ȟ(pF, R, ε) = ȟmf (pF, R) + ȟs(R, ε). (6)

The singlet d-wave order parameter is

�(pF, R) = �0(R)ηd (pF)iσ2, (7)

where iσ2 is the singlet spin structure (σ2 is the 2nd Pauli
matrix in spin space). The d-wave orbital basis function is
η(pF) = √

2 cos[2(ϕF − α)], where ϕF is the angle between
pF and the x axis and the angle α gives the misorientation
of the d-wave clover to the device main axis, see Fig. 1.
The order parameter amplitude satisfies the following gap
equation:

�0(R) = λNF

∫ εc

−εc

dε

8π i
〈Tr[iσ2ηd (pF) f K(pF, R, ε)]〉FS, (8)

where the trace over spin projects out the singlet component,
λ is the superconducting coupling constant, εc is an energy
cutoff, and NF is the density of states per spin in the normal
state. The linearized gap equation can be used to eliminate the
coupling constant λ and the cutoff εc in favor of the super-
conducting transition temperature Tc, which then becomes the
natural energy scale of the theory. We assume a circular Fermi
surface, in which case the Fermi surface average appearing in
Eq. (8) is defined as

〈. . . 〉FS =
∫ 2π

0

dϕF

2π
(. . . ). (9)

The Keldysh matrix structure of ȟmf is simple, ȟmf = �̂1̌,
while the Nambu structure is �̂ = �(�)τ̂1 − �(�)τ̂2. In equi-
librium, the order parameter can be taken real, while under
nonequilibrium it is complex. We may introduce the phase
χ (R) of the order parameter as �0(R) = |�0(R)| exp[iχ (R)].
Its gradient gives the superfluid momentum ps(R) = h̄

2 ∇χ (R)
and is related to the presence of superflow.

Assuming an average dilute impurity concentration ni, the
impurity self-energy is found from the t-matrix equation in the
noncrossing approximation [50]:

ȟs = niť ≡ ni

(
t̂ R t̂K

0 t̂ A

)
. (10)

For scattering that is isotropic in momentum space with an
s-wave scattering potential u0 the elements of ť satisfy the
equations

t̂ R,A = u01̂ + u2
0NF〈ĝR,A〉FS

1̂ − [u0NF〈ĝR,A〉FS]
2 , (11)

t̂K = NFt̂R〈ĝK〉FSt̂
A. (12)

We will express the two free parameters of this scattering
model, ni and u0, in terms of the scattering energy �u and
scattering phase shift δ0,

�u ≡ ni

πNF
, (13)

δ0 ≡ arctan(πu0NF). (14)

The so-called pair-breaking energy is then given by

� ≡ �u sin2 δ0, (15)

which is also related to the normal-state mean free path

� = h̄vF

2�
. (16)

The natural length scale of superconducting phenomena is the
superconducting coherence length, defined as

ξ0 ≡ h̄vF

2πkBTc0
. (17)

The properties of an unconventional superconductor typically
depend on the ratio between mean free path and the supercon-
ducting coherence length �/ξ0. For d-wave superconductors,
scalar impurities are pair breaking and the mean free path is
bounded by a critical mean free path, �c ≈ 3.6ξ0, below which
the superconducting order parameter vanishes [51].

In terms of these parameters, the retarded impurity self-
energy takes the form

ĥR
s (R, ε) = �u

sin δ0 cos δ01̂ + sin2 δ0
1
π
〈ĝR(pF, R, ε)〉FS

cos2 δ0 + sin2 δ0
(

1
π
〈ĝR(pF, R, ε)〉FS

)2

≡
(

�R
s (R, ε) �R

s (R, ε)
�̃R

s (R, ε) �̃R
s (R, ε)

)
, (18)

with an analogous expression for the advanced self-energy
ĥA

s . By tuning δ0 we vary the character of scattering between
the two limiting cases of the weak-scattering Born limit,
δ0 → 0, �u → ∞, with � constant, and the strong-scattering
unitarity limit, |δ0| → π/2. The first term proportional to the
unit-matrix in Nambu space quantifies the amount of electron-
hole asymmetry induced by the impurities [32–36]. In the
Born and unitary limits, it vanishes, while for intermediate
phase shifts it is finite. The Keldysh selfenergy ĥK

s is obtained
by combining Eqs. (10) and (12), and has the elements

ĥK
s (R, ε) ≡

(
�K

s (R, ε) �K
s (R, ε)

−�̃K
s (R, ε) −�̃K

s (R, ε)

)
. (19)
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FIG. 2. Imaginary part of the Keldysh self-energy �K in equilib-
rium (dashed blue) and nonequilbrium self-consistent (solid orange)
for �T = 0.1kBTc, T = 0.25kBTc, D = 1, � = 0.1π , and δ0 = π/4,
computed at the center of the superconductor at x = Ls/2.

Within the quasiclassical approximation, the normal state
electron-hole asymmetry due to bandstructure is neglected.
In contrast, the electron-hole asymmetry in Eq. (18) is finite
for T < Tc already in equilibrium, meaning that there is a
bulk first-order (linear) thermoelectric response [36]. Here
we go beyond linear response and compute the stationary
nonlinear thermopower in a device geometry. In Fig. 2, we
show the energy dependence of the diagonal component in
Nambu space of the Keldysh self-energy both in equilibrium
and nonequilibrium. The electron-hole asymmetric scattering
rate is clear from ��K(−ε) �= −��K(ε).

There is a freedom to parameterize the Keldysh Green’s
function ĝK (pF, R, ε) in terms of different distribution func-
tions. As we discussed in Ref. [44], one choice that is
appealing when interpreting results is to use the distribution
matrix f̂ (pF, R, ε),

ĝK = ĝR f̂ − f̂ ĝA. (20)

The matrix f̂ (pF, R, ε) itself can be written as

f̂ = f11̂ + f3τ̂3 =
(

h 0
0 −h̃

)
. (21)

The two components, f1(pF, R, ε) and f3(pF, R, ε), be-
come after averaging over momentum the energy mode,
〈 f1(pF, R, ε)〉FS, and charge mode, 〈 f3(pF, R, ε)〉FS, used in
literature on nonequlibrium phenomena in diffusive s-wave
superconductors [52]. The relevant observables can be written
in terms of the two momentum-dependent distributions.

The quasiparticle chemical potential has the form

φ(R) = − 1

2e

∫ ∞

−∞
dε〈 f3(pF, R, ε)N (pF, R, ε)〉FS, (22)

the charge current is

j(R)=−eNF

∫ ∞

−∞
dε〈vF f1(pF, R, ε)N (pF, R, ε)〉FS, (23)

and the energy current reads

jth(R)=−NF

∫ ∞

−∞
dε ε〈vF f3(pF, R, ε)N (pF, R, ε)〉FS. (24)

We use j0 = evFNFkBTc as the unit for charge current, and
jth
0 = vFNF(kBTc)2 as unit for energy current. In all of the

above equations, N (pF, R, ε) is a normalized, momentum-
resolved local density of states per spin:

N (pF, R, ε) = − 1

4π
Im Tr[τ̂3ĝR(pF, R, ε)]. (25)

It is related to the total local density of states via

N (R, ε) = 2NF〈N (pF, R, ε)〉FS. (26)

An alternative separation of the Keldysh Green’s function is
obtained by splitting the distribution function into a local-
equilibrium distribution function

hle(R, ε) = tanh
ε − eφ(R)

2T
, (27)

with the base temperature T , and an anomalous part ha, such
that

h = hle + (h − hle ) ≡ hle + ha. (28)

With this choice, we have ĝK = ĝle + ĝa, where the so-called
anomalous part ĝa contains all the information of the nonequi-
librium form of the distribution. The advantage, as we shall
see below, is that quasiparticle flow due to the temperature
gradient is mainly given by the anomalous part while the
condensate response is mainly given by the local equilibrium
term:

j(R) = jle(R) + ja(R). (29)

Indeed, noting that the local equilibrium distribution in
Eq. (27) is momentum-independent, when inserted in
Eq. (23), the contribution to the Fermi-surface average comes
from an imbalance in the local density of states for left-
moving and right-moving states. For the negative-energy
continuum, forming the condensate, the Doppler shifts vF · ps

due to superflow self-consistently form the supercurrent that
shows up in jle(R).

In a nonequilibrium situation, a local temperature is not
well defined since the energy mode is modified and there is a
spatially dependent electrochemical potential. But following
Ref. [53], we may define a spatially dependent effective tem-
perature. First we note that the energy mode in equilibrium
is f eq

1 (ε, T ) = tanh(ε/2kBT ). From a Sommerfeld expansion,
one can show that∫ ∞

0
dε ε

[
f eq
1 (ε, T = 0) − f eq

1 (ε, T )
] = π2

6
k2

BT 2. (30)

In nonequilibrium, we then define the local effective tempera-
ture Teff (R) as

k2
BTeff (R)2 ≡ 6

π2

∫ ∞

0
dε ε

[
f le
1 (R, ε, T = 0)

−〈 f1(pF, R, ε)〉FS

]
, (31)

where f le
1 (R, ε, T = 0) = 1 − �[ε − eφ(R)] − �[ε +

eφ(R)] is the zero-temperature local equilibrium energy
mode for local potential φ(R). Furthermore, we define
left-mover and right-mover averages of f1 and f3 in Eq. (21)
via

〈 f1〉→← = 〈h〉± − 〈h̃〉∓
2

, 〈 f3〉→← = 〈h〉± + 〈h̃〉∓
2

. (32)
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Here we use a partial Fermi surface average

〈A〉± ≡
∫ 2π

0

dϕF

π
A(ϕF)�(± cos ϕF), (33)

where the Heaviside step function �(± cos ϕF) is unity if the
projection of �vF on the transport axis x̂ is positive (+) or
negative (−), and zero otherwise. The half-space averaged f1

( f3) in Eq. (32) is an odd (even) function of energy, just as
its full Fermi surface average and the corresponding longi-
tudinal (transversal) mode in Usadel theory. Note also that
the normalization in Eq. (32) is such that 〈 fi〉FS = (〈 fi〉→ +
〈 fi〉←)/2. We then obtain an effective temperature Teff,→ for
right movers by replacing the full Fermi-surface average in
Eq. (31) by 〈 f1〉→ as defined in Eq. (32), with an analogous
defintion for Teff,←.

C. Calculation scheme

To solve Eq. (1), we use a parametrization of Eqs. (3)
and (4) in terms of coherence amplitudes [54–56] γ and
γ̃ , and distribution functions x and x̃ [57,58]. Using GR ≡
(1 − γ Rγ̃ R)−1 and FR ≡ GRγ R, we have

ĝR = −2π i

(
G F

−F̃ −G̃

)R

+ iπτ̂3, (34)

with an analogous definition for the advanced functions, while
the Keldysh component takes the form

ĝK ≡ −2π i

(
G F

−F̃ −G̃

)R(
x 0
0 x̃

)(
G F

−F̃ −G̃

)A

. (35)

The parametrizing functions themselves satisfy a set of cou-
pled transport equations. The coherence function γ satisfies a
Riccati equation,

(ih̄vF · ∇ + 2ε)γ R,A = (γ �̃γ + �γ − γ �̃ − �)R,A, (36)

while the equation for the distribution function x reads

ih̄vF · ∇x − [γ �̃ + �]Rx − x[�γ̃ − �]A

= −γ R�̃Kγ̃ A + �Kγ̃ A + γ R�̃K − �K. (37)

These equations for γ̃ and x̃ can be obtained by the tilde
symmetry, Eq. (5). The transport equations are solved from a
start point to an end point along a trajectory direction specified
by vF. Analytic solutions to Eqs. (36) and (37) can be found
in a region of constant self-energies [58]. We thus model
our self-energy in the superconductor as piecewise constant
in space and numerically calculate the analytic solution to
Eqs. (36) and (37) in order to propagate the relevant functions
along the trajectory [59]. The functions in the normal reser-
voirs and the central superconducting region are connected
via boundary conditions written in terms of scattering matri-
ces for the normal metal-insulator-superconductor interfaces
[57,58,60]. In this paper, the scattering matrix, or equivalently
the transparency D in Fig. 1, is assumed to be independent of
the trajectory angle ϕF. The functions in the normal reservoirs
entering the boundary conditions are assumed to have their
normal metal reservoir forms. The coherence amplitudes are
zero, γ = γ̃ = 0, while the distributions have equilibrium
form, xL/R = tanh[(ε − μL/R)/2kBTL/R], in terms of the reser-
voir temperatures including the temperature bias as well as

the thermoelectrically induced chemical potential difference,
see below. The parametrization of ĝK in terms of distribution
functions x and x̃ in Eq. (35) leads to an equation of mo-
tion, Eq. (37), that is easier to solve than the corresponding
equations for the distributions h and h̃ [58]. At the end of
the calculations we may transform back from x(x̃) to h(h̃) as
used in Eqs. (20) and (21). The latter two functions facilitate
interpretation of the stationary nonequilibrium in terms of the
modes f1 and f3. For further details, we refer to Ref. [44].

Determining the thermopower of the superconductor re-
quires finding the potential difference between the two
reservoirs that develops as a result of the applied temperature
bias. The temperature bias leads to the injection of a nonequi-
librium distribution into the superconductor. Starting from an
equilibrium guess for all self-energies, we solve Eq. (1) for
ĝR,A,K and use the solutions to update all self-energies. We can
iteratively find the chemical potential of the two reservoirs via
a fixed-point iteration of the form

μ
(n+1)
L(R) = μ

(n)
L(R) − p

kBTc0 jL(R)

j0
, (38)

where jL(R) is the current flow between the superconductor
and the left (right) reservoir and p is a numerical parameter
of order unity. The iteration then converges towards jL(R) =
0. Physically, no current flows between the superconductor
and the reservoirs in the steady state in an open-circuit setup.
Inside the superconductor we require conservation of charge
current, meaning in this case that the current everywhere is
zero. This is guaranteed by solving for the self-energies and
the φ-potential self-consistently. The results shown here have
| j(R)| < 10−5 j0 everywhere.

Once a self-consistent solution is obtained, we obtain the
thermopower

S = −μL − μR

�T
, (39)

where μL − μR is the voltage drop across the structure and
�T is the applied temperature bias.

III. RESULTS

In Fig. 3, we present the main physical quantities for a
temperature bias of �T = 0.1Tc0 and base temperature T =
0.25Tc0. The temperature bias leads to a thermal current from
hot to cold jth = 1.45 · 10−3 jth

0 , that in the absence of inelastic
scattering is conserved across the device. The temperature
gradient also leads to a thermoelectric response, a quasipar-
ticle or so-called anomalous current, ja(x), that also flows
from hot to cold, see Fig. 3(a). In a bulk linear response
calculation [36], we would have ja = −η∂xT > 0, where η

is the thermoelectric response function (η > 0 for δ0 > 0).
Here we show the stationary nonlinear response between left
and right normal metal reservoirs. In the interior of the su-
perconductor, the condensate moves, which shows up as a
local equilibrium component, jle(x). The total current is zero,
j(x) = ja(x) + jle(x) = 0, everywhere. In Fig. 3(b), we show
the potential φ(x) that develops to ensure that the total current
vanishes also at the interfaces to the reservoirs at x = 0 and
x = LS. For instance, at the left interface, the potential is
negative, meaning that it suppresses ja down to zero and no
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(a)

(b)

(c)

(d)

FIG. 3. Main physical quantities for a temperature bias �T =
0.1Tc0 and physical parameters given by δ0 = 0.9, � = 0.1πkBTc0,
LS = 20ξ0, D = 1, and T = 0.25Tc0. (a) The anomalous, ja, and
local-equilibrium, jle, currents across the superconductor. They add
up to a total current, j, that is zero everywhere. (b) The quasiparticle
chemical potential and (c) the phase drop throughout the structure.
(d) The effective temperature Teff , as well as the right-mover and
left-mover effective temperatures Teff,→ and Teff,←.

current is flowing out to the contact in the open circuit setup.
The counter superflow from right to left leads to that the phase
χ (x) of the superconducting order parameter grows from the
right lead to the left lead, see Fig. 3(c). As a result a phase
difference,

�χ = χ (0) − χ (LS), (40)

also called thermophase, is formed in response to the tem-
perature bias. Throughout the superconductor, the electron
distribution has a nonequilibrium form. To quantify it we
separate it into the right-moving and left-moving energy and
charge modes. The energy mode 〈 f1(pF, x, ε)〉FS is close to a
thermal distribution and the introduction of a local effective
temperature Teff (x) is illuminating, see Fig. 3(d). The effec-
tive temperatures of the right- and left-moving quasiparticles,
Teff,→(x) and Teff,←(x), connect to the temperatures of the
respective reservoirs of origin in the case of fully transmissive
interfaces. For finite transparency, there is a jump between
reservoir temperatures and right- and left-mover tempera-
tures, determined by the thermal resistance of the barrier. The
temperatures Teff,→← are analogues of the right-moving and

FIG. 4. Example of the distribution f3 for the same parameters
as in Fig. 3. (a) Mode 〈 f3〉FS across the structure. The orange curves
are the shapes in the superconductor directly at the N-S interfaces.
(b) Separation of 〈 f3〉FS (solid orange) into components for right-
movers (〈 f3〉→, dash-dotted blue) and left-movers 〈 f3〉← (dashed
green) at the left N-S interface (x = 0). (c) The same separation but
at the right N-S interface (x = LS).

left-moving quasipotentials, φ→←(x), appearing in a voltage
bias setup [44]. We note that the example in Fig. 3 is for
a rather dirty system. For cleaner systems, the difference
between Teff,→(x) and Teff,←(x) is larger. The charge mode
〈 f3(pF, x, ε)〉FS is presented Fig. 4. The nonmonotonic energy
dependence is due to the nontrivial energy-dependence of
the scattering rate, given by the diagonal component ��K

displayed in Fig. 2.
In Fig. 5, we present an overview of the base temperature

dependence of observables for different impurity parameters.
Only positive phase shifts are shown, since for negative δ0

both the thermopower and the thermophase change signs as
the electron-hole asymmetry is inverted. Technically, this is
due to the sign change of the first term in Eq. (18) propor-
tional to the unit matrix in Nambu space. Since we have
a finite temperature bias �T = 0.1Tc0, the thermopower in
Fig. 5(a) ends at finite values. In the linear response case [36],
the thermoelectric coefficient η vanishes linearly with T as
T → 0, while here it remains finite since the hot reservoir
injects quasiparticles at T = �T . In the normal state, for
T > Tc, the electron-hole asymmetry vanishes in our quasi-
classical theory, and S = 0. Therefore, as T approaches Tc,
the thermopower goes to zero. The thermopower as well
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(a)

(b)

(c) (d)

FIG. 5. Base temperature dependence of (a) thermopower and
(b) thermophase for a variety of scattering phase shifts for a fixed
pairbreaking parameter � = 0.1πkBTc0 (mean free path � = 10ξ0 =
0.5LS). The markers in (b) correspond to the ones given in (a).
(c) Base temperature dependence of the thermal conductance for
a variety of pairbreaking parameters. The phase shift is δ0 = 0.9
but the thermal conductance is largely phase shift independent.
(d) Thermopower as function of pairbreaking parameter for fixed
bath temperature T = 0.25Tc0 and δ0 = 0.9. The line is a guide to
the eye. In all cases D = 1 and �T = 0.1Tc0.

as the thermophase is therefore the largest at intermediate
temperatures. The phase-shift dependence reflects the amount
of electron-hole asymmetry, and the thermopower and ther-
mophase are the largest at phase shifts between the Born and
unitary limits. On the other hand, the thermal conductance has
a very weak dependence on the phase shift, and is instead
limited by the mean free path �, see Fig. 5(c). As a trans-
port quantity, the thermal conductance is larger in ballistic
systems.

In Fig. 5(d), we show the dependence of the thermopower
on the pairbreaking parameter �. The nonmonotonic depen-
dence can be understood as follows. For small values of �

an injected quasiparticle is unlikely to scatter while passing
through the supercondutor since � > LS, and thus, the ther-
mopower is small. For the intermediate range � ≈ LS the
thermopower saturates and only weakly depends on �. On
the other hand, for large �, the energy-dependence of the
self-energy seen in Fig. 2 is increasingly broadened and the
electron-hole asymmetry is reduced, which reduces the ther-
mopower. In addition, for diffusive devices, in the sense � �
LS, the right-mover and left-mover distributions become more
equal to each other which reduces the thermoelectric response.
In summary, to maximize the thermopower the device should

not be in the ballistic (� � LS) or diffusive (� � LS) limits,
i.e., LS should be comparable or larger than the mean free
path �.

Lastly, we address how interface transparency and crystal-
axis misalignment affect the thermovoltage. Figure 6(a) shows
S(T ) for two transparencies, D = 1 and 0.5, and two mis-
aligment angles, α = 0 and π/4. For α = 0 and temperatures
T � 0.5Tc0, reduced transparency leads to a reduction of the
thermopower. Reduced transparency leads to back reflection
of quasiparticles and a thermal resistance of the interface. The
effective temperature then jumps across the interfaces and the
temperature gradient is reduced in the interior superconductor
and the thermoelectric effect is also reduced. On the other
hand, for lower temperatures, T � 0.5Tc0, the reduction of
the transparency instead leads to an enhanced thermopower.
This is a combination of two effects that become of impor-
tance at lower temperature. Firstly, in the case of D = 1,
the electron-hole asymmetry gets suppressed by the inverse
proximity effect, where superconductivity is suppressed near
the contacts, thereby reducing the thermopower. Secondly,
in the case of D = 0.5 the interface resistance is higher and
a higher voltage is required to cancel the thermoelectrically
induced current. These two effects compensate for the thermal
resistance of the barrier and the thermopower is enhanced at
D = 0.5.

For α = π/4 and D = 1, we see a reduction in S(T ), as
compared with α = 0. This is because we inject quasiparticles
into the node of the d-wave order parameter where there are
a lot of states. The device is more like a normal metal, with
lower thermopower. For α = π/4 and D = 0.5, there is a
large density of zero-energy Andreev bound states formed
at the surface [61,62]. Comparison of �R(x, ε) in Figs. 6(b)
and 6(c) shows that the bound states effectively invert the
bulk electron-hole asymmetry at the interface, and suppress
the bulk asymmetry over a length scale of several coherence
lengths. This leads to a further reduction of the thermopower.

IV. SUMMARY AND DISCUSSION

In this paper, we have studied the stationary nonlinear ther-
moelectric response of a d-wave superconductor connected
to normal-metal reservoirs under a temperature bias. Earlier
results [36] had predicted within linear response a large bulk
thermoelectric effect caused by an impurity-induced electron-
hole asymmetry for scattering phase shifts in between the
Born and unitary limits. Using self-consistent quasiclassical
theory for the stationary nonequilibrium response, we studied
physical quantities such as the thermopower, the thermophase,
and the nonequilibrium distribution in a device setup with
normal metal leads. Aside from varying the base temperature
of the setup, we examined the effects of varying interface
transparency, crystal-axis misalignment, and mean free path.

Our results show that the thermoelectric response of the
superconductor leads to a thermovoltage between the reser-
voirs, with the thermopower being maximal for δ0 ∼ π/4. For
such intermediate phase shifts, a system with good contacts
and a mean free path on the order of the system size has
a thermopower of S ≈ 5 × 10−2 kB/e. Taking YBa2Cu3O7−δ

(Tc ≈ 90 K) as an example compound, an applied temperature
difference of �T = 0.1Tc ≈ 9 K results in a voltage drop of
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(a) (b)

(c)

FIG. 6. Influence of interface transparency D and crystal-axis misalignment α. (a) Thermopower S for two different values of D and two
values of α. For all cases we have δ0 = 0.9, � = 0.1πkBTc0, LS = 20ξ0, and �T = 0.1Tc0. (b) Imaginary part of the equilibrium impurity
self-energy �R at different spatial positions for D = 0.5 and α = π/2. (c) Imaginary part of the equilibrium impurity self-energy �R at
different spatial positions for D = 0.5 and α = 0. The comparison between (b) and (c) shows that Andreev bound states at the interface reduce
the electron-hole asymmetry. As a result, the thermopower S reduces in (a) for D = 0.5 when α = π/4.

�V ≈ −40 μV, a value that is experimentally easily accessi-
ble.

Within our quasiclassical theory, any electron-hole
asymmetry induced by bandstructure or normal state
energy-dependent scattering times, are neglected. Instead
the asymmetry we consider is induced in the superconducting
state through impurity scattering, the interplay with Andreev
processes, and the resulting impurity resonance states. There
is a recent interest in the Seebeck effect in the nonsupercon-
ducting state of high-temperature superconducting materials
where superconductivity is suppressed by a high magnetic
field [41]. Since the electron-hole asymmetry is modified in
the superconducting state, our results indicate that additional
information about for instance impurity scattering in the
material could be extracted in the superconducting state
through a thermopower measurement between normal metal
leads. The thermoelectric signal we find is sufficiently large
that it could compete with other contributions already present
in the normal state. For instance, different types of impurities,
scattering with different signs of the scattering phase shift,
would lead to opposite signs of the Seebeck effect in the
superconducting state.

In conclusion, our results predict a measurable ther-
movoltage in normal-metal/d-wave superconductor hybrid
structures. This suggests a voltage measurement in such struc-

tures as a promising complimentary experimental approach to
the flux measurements on purely superconducting rings. Our
conclusions should be valid in a broader perspective for other
symmetries of the order parameter, as long as impurities lead
to a large electron-hole asymmetry. Also in a conventional
superconductor with an impurity band of Yu-Shiba-Russinov
states at finite energies within the s-wave gap, a similarly
large thermoelectric response coefficient has been predicted
through a linear response calculation [63], and our approach is
valid in this case as well. Lastly, we point out that our predic-
tion of a large thermopower implies a non-negligible Peltier
effect that could influence the charge-transport behavior of
d-wave superconducting devices. We leave an examination of
this effect to future studies.
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