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Summary
Background The response rates of the clinical chemotherapies are still low in clear cell renal cell carcinoma
(ccRCC). Computational drug repositioning is a promising strategy to discover new uses for existing drugs to treat
patients who cannot get benefits from clinical drugs.

Methods We proposed a systematic approach which included the target prediction based on the co-expression net-
work analysis of transcriptomics profiles of ccRCC patients and drug repositioning for cancer treatment based on
the analysis of shRNA- and drug-perturbed signature profiles of human kidney cell line.

Findings First, based on the gene co-expression network analysis, we identified two types of gene modules in ccRCC,
which significantly enriched with unfavorable and favorable signatures indicating poor and good survival outcomes of
patients, respectively. Then, we selected four genes, BUB1B, RRM2, ASF1B and CCNB2, as the potential drug targets based
on the topology analysis of modules. Further, we repurposed three most effective drugs for each target by applying the pro-
posed drug repositioning approach. Finally, we evaluated the effects of repurposed drugs using an in vitro model and
observed that these drugs inhibited the protein levels of their corresponding target genes and cell viability.

Interpretation These findings proved the usefulness and efficiency of our approach to improve the drug reposition-
ing researches for cancer treatment and precision medicine.

Funding This study was funded by Knut and Alice Wallenberg Foundation and Bash Biotech Inc., San Diego, CA, USA.
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Research in context

Evidence before this study

Profile-based drug repositioning approaches have now
been widely employed to predict the new disease-drug
associations, which repurpose the well-characterized
drugs for disease treatment and dramatically decrease
the cost and duration taken by traditional drug develop-
ment. The highly molecular heterogeneity, low
response rates and drug resistance of ccRCC exacerbate
the challenges in the tumor therapy. Therefore, it is
needed to discover new treatment options for patients
using the novel profile-based drug repositioning
approaches.

Added value of this study

In this study, we found a set of targetable hub genes
which controlled the ccRCC development were associ-
ated with the cell cycle dysfunctions. Further, we devel-
oped a novel drug repositioning approach based on the
analysis of shRNA- and drug-perturbed transcriptomics
profiles of cell line model and identified potentially
effective drugs for each target gene. Importantly, we
validated the drug efficacy in in vitro model, which pro-
vided new chance for the tumor treatment.

Implications of all the available evidence

We demonstrated the feasibility of the integrated
approach combining the disease-target and drug-target
prediction in the treatment of kidney cancer. Besides
that, this approach could be also broadly applied to
other cancers, which provides new insight into cancer
treatment and precision medicine.
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Introduction
Clear cell renal cell carcinoma (ccRCC) is the most com-
mon histological subtype of renal cell carcinoma (RCC),
accounts for 70% of all RCC cases.1 Surgery (radical or
partial nephrectomy) is the standard primary treatment
for patients with localized tumors. The first-line and sec-
ond-line target therapy options for patients with
relapsed after nephrectomy or advanced stage tumor
include tyrosine kinase inhibitors (axitinib, sorafenib,
pazopanib, and sunitinib, etc.), mTOR inhibitors (evero-
limus and tesirolimus), and monoclonal antibodies
against VEGF, PD-1 or PD-L1 (bevacizumab, pembroli-
zumab and avelumab, etc.). However, the National
Comprehensive Cancer Network (NCCN, version:
1.2022) has reported that the response rates of the sin-
gle-agent or combinatory regimens based on these
drugs range from 6% to 50% in different clinical trials.2

Moreover, the average duration of disease control with
these drugs is only 8-9 months for the first-line setting
and 5-6 months for the second-line setting.3 Therefore,
there is a need to discover more tolerated and effective
drugs to widen the options for single-agent or combina-
tory regimens for ccRCC patients.

Computational drug repositioning based on systems
biology methods has become a powerful tool to identify
potential drug-target interactions and drug-disease
interactions.4 The advantage of drug repositioning is
that the pharmacology and safety of the repositioned
drugs have been well-characterized, dramatically
decreasing the cost and duration taken by traditional
drug development and reducing the risk of attrition in
clinical phases.5,6 In general, current drug repositioning
strategies can be classified into drug-based, disease-
based and profile-based.7 Usually, drug-based and dis-
ease-based approaches are conducted by comparing
drug-drug or disease-disease similarity or applying exist-
ing drug treatment knowledge to predict new disease-
drug associations.8,9 In contrast, profile-based
approaches are conducted by analyzing the high-
throughput multi-omics data associated with diseases
and drugs, which do not rely on prior knowledge about
a particular drug or disease and have increased ability to
discover new drug-disease pairs.7

Recently, several studies have employed profile-
based repositioning methods to identify potentially valu-
able drugs for the treatment of ccRCC. A widely used
method is selecting the drug that has a reversed effect
on the disease signature genes.10,11 The idea of this
method is that if the perturbation of gene expression
induced by a drug (drug-perturbed signatures) is nega-
tively correlated with the dysregulation in the tumor tis-
sues compared to normal tissues (disease-specific
signatures), this drug turns out to have therapeutic
value for this tumor type. During the application of the
above approach, ConnectivityMap (CMap)12 is the most
commonly used drug-perturbed gene expression data
source, and it has been recently updated and integrated
into the LINCS Data Portal.13 To date, the LINCS data
portal includes more than three million gene expression
profiles associated with more than 20,000 drugs, gene
overexpression and knockdown in up to more than 200
cell lines.13 However, a drug repurposed in this way is
supposed to have multiple gene targets mixed by onco-
genes and passenger genes, limiting the identification
and validation of the key targets and mechanisms of
drug effect. To avoid this problem, we had a different
strategy by starting from the target prediction and then
repurposing the existed inhibitor of the target genes for
cancer treatment. In our previous study, we identified a
list of candidate target genes which are essential for the
ccRCC tumor cell growth by the genome-scale meta-
bolic model analysis.14 Among these essential genes, we
further filtered out three genes, SOAT1, CRLS1 and
ACACB, whose inhibition is not toxic in the 32 major
normal human tissues by performing an in silico toxicity
test for each essential gene, as the final targetable genes.
Finally, we repurposed a well-known inhibitor of
www.thelancet.com Vol 78 Month April, 2022
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SOAT1, mitotane, and validated its drug efficacy for the
treatment of ccRCC. However, one limitation of this
study is that a systematic drug repositioning approach
is needed to discover more potentially effective drugs
that could inhibit SOAT1. In addition, the candidate tar-
get genes are also needed to extend, which can be not
only limited to the metabolically important genes that
only covers around 20�25% of human genome as
reported in the human metabolic model15 but also can
be non-metabolic genes. In contrast, gene co-expression
network (GCN) analysis that applies all possible human
genes has been widely used to identify the key genes, its
neighbors and functionally related biological
functions.5,16

In this study, we applied an integrated strategy that
involved disease-target prediction and drug-target pre-
diction. First, we extracted a set of robust ccRCC signa-
ture genes whose expression was significantly
associated with patients' survival outcomes. Functional
enrichment analysis showed that these genes were sig-
nificantly enriched in the cell division, cell cycle, DNA
replication, angiogenesis, cell migration and cell differ-
entiation pathways, all of which are well-known hall-
marks in cancer.17 Second, we identified two types of
molecular modules that significantly enriched with the
unfavorable and favorable signatures based on the GCN
analysis of the transcriptomic data of ccRCC tissues.
Third, we extracted four target genes, including BUB1B,
RRM2, ASF1B and CCNB2, showing high centrality in
the modules. Next, we developed a drug repositioning
approach based on the analysis of shRNA-perturbed
and drug-perturbed transcriptomics data from the
LINCS data portal and repurposed the three most effec-
tive drugs for each target. Finally, we tested the drug
effect in Caki-1 cells and showed the efficacy of the
selected drugs Figure 1. showed the whole study design.
Methods

Data and preprocessing
Transcript-expression profiles (TPM and count values)
of 528 TCGA ccRCC samples and 72 adjacent normal
samples were downloaded from https://osf.io/gqrz9.18

We extracted the tumor and normal samples with sam-
ple and vial identifiers of BRC patient barcodes ‘01A0
and ’11A’, respectively, which represent primary solid
tumor tissue and solid normal tissue from the first vial,
respectively. The mRNA expression was quantified by
Kallisto19 based on the GENCODE reference transcrip-
tome (version 24) (Ensembl 83 (GRCh38.P5)). The clini-
cal information of TCGA samples was downloaded by
using the R package TCGAbiolinks.20 The mRNA-seq
data of 100 ccRCC samples of patients from the Japa-
nese cohort21 was downloaded from the European
Genome-phenome Archive (Accession number:
EGAS00001000509). BEDTools22 was used to convert
www.thelancet.com Vol 78 Month April, 2022
BAM to FASTQ file, and Kallisto was used for quantify-
ing the count and TPM values of transcripts based on
the same reference transcriptome of TCGA data. The
sum value of the multiple transcripts of a gene was
used as the expression value of this gene. The genes
with average TPM values >1 were analyzed.

The essential scores of genes of 16 ccRCC cell lines
were downloaded from DepMap Portal (https://dep
map.org/portal/),23 which are estimated based on the
CRISPR-Cas9 essentiality screens. The meaning of the
score is the essentiality of a gene for cancer cell survival
after CRISPR-Cas9 knockout of this gene. More nega-
tive scores indicate more essential. The processed RNA-
seq data of Caki-1 was downloaded from the Cancer Cell
Line Encyclopedia (CCLE) portal (version: CCLE_RNA-
seq_rsem_transcripts_tpm_20180929.txt.gz).24
Ethics
Since all the human RNA-seq data were downloaded
from the public databases, there was no ethical issue.
Statistics
Both the univariate Cox regression model and the
Kaplan-Meier method were used to evaluate the associa-
tion of gene expression with patients’ overall survival
(OS). For Cox analysis, we used a R package named
‘survival’ in which the input data is the expression val-
ues of each gene (TPM values) across all samples of
patients, OS and survival outcomes of patients (death or
alive). For Kaplan-Meier analysis, we classified the
patients into two groups based on the TPM values of
each gene and examined their prognoses. Survival
curves were estimated by the Kaplan-Meier method and
compared by log-rank test. To choose the best TPM cut-
offs for grouping the patients most significantly, all
TPM values from the 20th to 80th percentiles used to
group the patients, significant differences in the sur-
vival outcomes of the two groups were examined, and
the value yielding the lowest log-rank P-value was
selected.

DESeq225 was used to identify differentially
expressed genes (DEGs) between TCGA tumor tissues
and normal tissues groups. The lowly expressed genes
with average TPM�1 were removed, and the raw count
values of the remaining genes were used as the input of
DESeq2. False discovery rate (FDR) was adjusted by the
Benjamini-Hochberg (BH) method. FDR<0.05 was
used to identify significant DEGs.
Functional enrichment analysis
The enrichGo function of the R package ClusterProfiler
was used for Gene Ontology (GO) enrichment,26 which
uses the hypergeometric distribution to estimate
whether a list of genes is significantly enriched in each
3
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Figure 1. The flowchart for the whole study design including target gene identification and drug repositioning for target genes.
Step 1: we identified a set of robust ccRCC prognostic signature genes based on the gene expression profiles of two independent
ccRCC cohorts and the expression of these signature genes could indicate the survival outcomes of ccRCC patients. Step 2: we con-
ducted the GCN analysis in each of the two cohorts and identified two types of reliable gene modules which significantly enriched
with unfavorable and favorable signature genes, respectively. Step 3: several hub genes with consistently high centralities in the
modules were selected as druggable target genes based on the network topology analysis. Further, we developed a drug reposi-
tioning approach based on a systematic study of shRNA- and drug- perturbed signature profiles from CMap. Based on this approach,
we repurposed the three most effective drugs for each target. Step 4: we evaluated the essentiality of target genes and inhibitory
effects of repurposed drugs in a ccRCC cell model Caki-1.
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GO pathway. FDR<0.05 was used to identify signifi-
cantly enriched pathways.
GCN analysis and gene module identification
Spearman correlation was used to estimate the correla-
tion between each two genes across all tumor samples.
The gene-gene links ranked in the top 1% with the high-
est correlation coefficients were extracted to construct
the co-expression networks. A random walks-based algo-
rithm, Walktrap,27 was used to capture the gene mod-
ules with high transitivity from the co-expression
network. The modules with more than 20 nodes and
clustering coefficients higher than 0.6 were extracted
for further analysis. R package ‘igraph’ was used for the
topology analysis.28
Concordance analysis of the prognostic genes
If two lists of prognostic genes, list 1 with L1 genes and
list 2 with L2 genes, have k overlapping genes, among
which s genes show the exact prognostic directions
(both favorable or unfavorable) in the two gene lists, the
probability of observing at least s consistent genes by
chance can be estimated based on the following cumula-
tive hypergeometric distribution model:

P ¼ 1�
Xs�1

i¼0

L2
i

� �
L�L2
L1�i

� �

L
L1

� �

Where, L represents the number of the background
genes commonly measured in the datasets from which
the prognostic genes are extracted. The two gene lists
were considered to be significantly overlapped if P <

0.05. The concordance score s/k is used to represent the
consistency between the two lists of genes. The score
ranges from 0 to 1, and the higher concordance score
indicates the better consistency of two lists of genes.

The hypergeometric distribution model was also
used to test whether the favorable or unfavorable signa-
tures significantly overlap with the genes involved in a
functional module.
Drug repositioning
The shRNA- and drug-perturbed signature profiles
(level 5 data) in HA1E, a kidney cell, were downloaded
from the CMap data portal (https://clue.io/, version:
CMAP LINCS 2020).12 Three or more biological repli-
cates typically do the experiments in CMap. The level 5
data provides the replicate-collapsed Z-scores, represent-
ing a consensus biological response of transcriptomics
to the perturbation of drug treatment or shRNA infec-
tion derived from different replicates.29 Totally, we
obtained 37,669 drug-perturbed signature profiles
related to 6,986 drugs with different doses and time
points and 21 shRNA-perturbed signature profiles
related to BUB1B (six shRNAs), RRM2 (three shRNAs),
www.thelancet.com Vol 78 Month April, 2022
CEP55 (three shRNAs), ASF1B (three shRNAs) and
CCNB2 (six shRNAs).

Our drug repositioning approach hypothesizes that a
drug is considered to have an inhibitory effect on the
expression of a target gene if this drug leads to a wide
perturbation on the gene expression landscape in tumor
cells, similar to the effect of the knockdown of the target
gene. We applied four procedures to identify the drugs
which had the highest possibility to inhibit the expres-
sion of their corresponding target genes by an inte-
grated analysis of the shRNA- and drug-perturbed
signature profiles (see Results section and Figure 5a for
details). (1) Constructing the drug-shRNA matrix for
each target gene. For a given target gene, we extracted
its shRNA-perturbed signature profiles in HA1E cell
line in which the Z-scores represent the biological dysre-
gulation of gene expression in cells after shRNA infec-
tion. As one gene was knocked down by at least three
shRNAs in the experiment setting in CMap, the
shRNA-perturbed signature profiles were presented as a
gene-shRNA matrix. We also extracted the drug-per-
turbed signature profiles in HA1E cell line in which the
Z-scores represent the biological dysregulation of gene
expression in cells after drug treatment and thus gener-
ated a gene-drug matrix. Then, we calculated the Spear-
man correlation between each two possible lists of drug-
perturbed and shRNA-perturbed signatures and thus
generated a correlation coefficient matrix, named drug-
shRNA matrix, in which each row represents a drug
treatment by a specific dose and time point, and each
column represents a specific shRNA for the knockdown
of this target gene. A correlation coefficient in the drug-
shRNA matrix represents the similarity of effects on
gene expression between specific drug treatment and
specific shRNA knockdown. (2) Optimizing the drug-
shRNA matrix. Since the drug treatment with different
doses and time points could induce different effects on
gene expression in cells as well as different similarities
with the effects induced by shRNA knockdown, we only
extracted the optimal dose and time point for each drug
whose perturbation showed the highest similarity (cor-
relation coefficient) with shRNA infection. Thus, we
simplified the rows by keeping a unique and optimal
dose and time point for each drug in the drug-shRNA
matrix. A cell line may respond differently to different
shRNAs even though they target the same genes. Thus,
we simplified the column by extracting the optimal
shRNAs whose signatures consistently correlate with
drug perturbed signatures in the drug-shRNA matrix.
We performed a clustering analysis of different shRNAs
based on the correlation of different columns in the
drug-shRNA matrix and extracted the shRNAs, which
were clustered together and showed better similarity
with drug-perturbed effects. Finally, we extracted
three shRNAs for BUBIB, two shRNAs for RRM2, two
shRNAs for CEP55, two shRNAs for ASF1B, and four
shRNAs for CCNB2. (3) Extracting the top 1% drug
5
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candidates. Based on the optimized drug-shRNA
matrix, we ranked the drugs associated with each
shRNA based on the correlation coefficient from the
largest to smallest. A higher rank indicated a higher cor-
relation. We first extracted a list of drugs involved in the
top 1% with the highest ranks associated with each
shRNA, and then the overlapped drugs among the top
1% lists related to different shRNAs were selected as
candidates. (4) Selecting the three most effective drugs
for each target. The top three drugs with the highest
median ranks were finally considered the most effective
drugs for each target.

We took the drug repositioning for BUB1B as an
example. The drug-shRNA matrix of BUB1B included
37,669 rows associated with 6,986 drugs with different
doses and time points and six columns related to six dif-
ferent shRNAs. After optimization, we obtained a sim-
plified drug-matrix with 6,986 drugs, each with the
best dose and time point and three optimal shRNAs for
knockdown of BUB1B. Then, we extracted the top 1%
drugs (70 drugs) with the highest correlation coeffi-
cients associated with each shRNA. 24 overlapped drugs
were found among the three lists of top 1% drugs.
Among these drugs, the top three drugs, TG-101209,
oxetane, and WH-4-025, with the highest median ranks,
were finally selected as the most effective drugs for tar-
geting BUB1B.
IHC image
The IHC images of ccRCC tumor tissues and normal
kidney tissues were downloaded from the Human Pro-
tein Atlas website (https://www.proteinatlas.org/).30,31

The protocol of IHC was provided in.30,31 For a given
gene, we selected the IHC images of normal tissue and
tumor tissue conducted by the same antibody. TPX2,
ASF1B, CCNB2 and TCF4 IHC images were done by the
HPA005487, HPA069385, HPA008873 and
HPA020722 antibodies, respectively.
Cell culture
Human ccRCC cell line Caki-1 was obtained from the
Karolinska Institute of Environmental Medicine, Stock-
holm, Sweden, derived from a male ccRCC patient. The
cells were cultured in RPMI 1640 medium with 10%
fetal bovine serum (FBS) and 1% penicillin/streptomy-
cin. The cells were cultivated at 37°C in a humidified
incubator with 5% CO2.
siRNA transfection
20£103 cells were plated by quadruplicate into a 96-well
plate per well. Day after seeding, 1 pmol siRNAs for tar-
geting BUB1B, RRM2, ASF1B, CCNB2 and CEP55 (Ori-
Gene Technologies Inc., USA) were transfected into
cells using the Lipofectamine� RNAiMAX reagent
(Invitrogen) for three days. Then, we used the cells for
cell viability assay and harvested protein lysate for West-
ern blot analysis after 3-day transfection.
Drug treatment
The drugs, TG-101209, NVP-TAE684, MK-0752, acti-
nomycin-d, and panobinostat were purchased from
Selleckchem (S2692, S1108, S2660, S8964, S1030,
Selleckchem, Houston, TX, USA), and withaferin-a
was purchased from Sigma (W4394, Sigma-Aldrich,
Saint Louis, MO, USA). These drugs were dissolved
in DMSO. The cells were seeded in a 96-well plate
at 20£103 cells per well. Day after seeding, drugs
were added to the wells at a proper concentration,
TG-101209 (6nM), NVP-TAE684 (3nM), MK-0752
(5nM), withaferin-a (4uM), actinomycin-d (0.3nM),
and panobinostat (5nM) and treated for one day. The
cells in the negative control group were only treated
by DMSO for one day.
Western blots
The cells were washed with PBS and lysed with CelLytic
M (C2978, Sigma-Aldrich, Saint Louis, MO, USA) lysis
buffer containing protease inhibitors. The lysates were
centrifuged at 12,000 rpm for 5 min, and the superna-
tant was collected. The proteins were separated by Mini-
PROTEAN� TGXTM Precast Gels (BioRad, Berkeley,
CA, USA) and transferred to a Trans-Blot Turbo Mini
0.2um PVDF Transfer Packs membrane (BioRad, Ber-
keley, CA, USA) by using Trans-Blot� TurboTM Trans-
fer System (Bio-Rad, Berkeley, CA, USA). The
antibodies for BUB1B (HPA008419), RRM2
(HPA056994), CEP55 (HPA023430), ASF1B
(HPA069385), CCNB2 (HPA008873), and GAPDH
(sc47724, Santa Cruz Biotechnology, Inc.) were used
for primary immunoblotting. All the antibodies were
diluted at 1:10000 concentration. The membranes were
incubated in primary antibody solution overnight at 4°C
with gentle rocking. Secondary antibody, goat Anti-Rab-
bit HRP (ab205718) or goat anti-mouse IgG-HRP
(sc2005, Santa Cruz Biotechnology, Inc.), was blotted
for 30 min at 4°C with gentle rocking. The protein
bands were detected with ImageQuanattm LAS 500
(29-0050-63, GE) automatic exposure procedure or
6 min exposure.
Cell viability assay
Cell proliferation was detected by Cell Counting Kit-
8 (CCK-8) assay. The 10 ul of CCK-8 reagent (1:10)
was added to each well of 96-well plate with siRNA
transfected cells or drug-treated cells by man-
ufacturer’s instruction. The 96-well plate was incu-
bated at 37°C for 2 h and then measured absorbance
at 450 nm using a microplate reader (Hidex Sense
Beta Plus).
www.thelancet.com Vol 78 Month April, 2022
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Role of the funding source
This study was funded by Knut and Alice Wallenberg
Foundation and Bash Biotech Inc., San Diego, CA,
USA. The funder has no role in study design, data col-
lection, analysis, interpretation and writing of the
report. The corresponding author had full access to all
the data in this study and held the final responsibility
for the decision to submit for publication.
Results

Identification of ccRCC signature genes
We applied both Kaplan-Meier analysis and univariate
Cox model to investigate the associations of the mRNA
expression levels of genes with the patients’ OS in
TCGA and Japanese ccRCC cohorts. We performed a
Kaplan-Meier survival analysis by classifying the
patients into two groups with high and low expression
(TPM values) of the investigated gene by selecting an
optimal cut off from the 20th and 80th expression per-
centiles yielding the lowest log-rank P-value as in our
previous study.32,33 Meanwhile, we performed the uni-
variate Cox analysis by calculating the hazard ratio of
each gene. As a result, we identified an overlap of 7,813
prognostic genes by Kaplan-Meier and Cox survival
analysis in the TCGA cohort (FDR<0.05). Similarly, we
identified 1,335 prognostic genes in the Japanese cohort
(FDR<0.05). The two sets of genes had a significant
overlap (n=1,129, hypergeometric distribution test, P <

1.11e-16), and the concordance score of these overlapped
genes (both favorable or unfavorable genes) is 99.91%
(Figure 2a). Among these 1,129 prognostic genes, there
were 342 unfavorable genes and 787 favorable genes
whose high expression indicated poor and good survival
outcomes of patients, respectively. Functional enrich-
ment analysis showed that the unfavorable genes were
significantly enriched in cell division and cell cycle path-
ways. In contrast, the favorable genes were significantly
enriched in the angiogenesis, vasculogenesis, cell
migration and cell differentiation pathways
(FDR<0.05, Figure 2b), which are well-known hall-
marks in cancer.17 Therefore, we used these genes as
unfavorable and favorable signature genes for ccRCC.
Identification of functional modules in the GCN
GCN analysis is a powerful method to identify the hub
genes that drive the key cellular signaling pathways,
including a set of co-expressed or functionally associ-
ated genes during tumor development. The conservative
co-expressed pattern may confer a selective advantage
for tumor cells if it could be validated in independent
datasets.34,35 We calculated the Spearman correlation
between two possible gene pairs based on the mRNA
expression profiles of ccRCC patients in TCGA and Jap-
anese cohort, respectively. To balance the sensitivity for
www.thelancet.com Vol 78 Month April, 2022
detecting the functional gene modules and the robust-
ness for validation in independent datasets, gene-gene
links involved in the top 1% with the highest correlation
coefficients were extracted to build the GCN. We
obtained around 900,000 gene-gene links with correla-
tion coefficients ranging from 0.74 to 1 in the co-expres-
sion network of the TCGA cohort. Then, we used a
random walks-based algorithm, Walktrap,27 to identify
the gene modules with high transitivity based on the
topology of the GCN. To discover functionally meaning-
ful modules in which genes show a good connectivity,
we extracted the modules with more than 20 genes and
clustering coefficients higher than 0.6. Finally, we
obtained 18 modules (M1-18) in the TCGA cohort
(Figure 2c). Further, we investigated the association of
each module with the unfavorable and favorable signa-
ture genes by concordance analysis (Table S1). We
found that the 41 genes involved in M11 had a signifi-
cant overlap with the 342 unfavorable signature genes
(n=40, hypergeometric test, FDR<0.05). Thus, we
determined the M11 as an unfavorable module. Mean-
while, we observed that the genes involved in M1 (184
genes), M2 (177 genes), M3 (88 genes), M4 (76 genes)
and M18 (22 genes) had significant overlaps with the
787 favorable signature genes, respectively (n=51, 86,
33, 18 and 6, hypergeometric test, FDR<0.05), which
were determined as favorable modules. Then, we inves-
tigated the biological function of these modules by func-
tional enrichment analysis. We found that the genes
involved in unfavorable module were significantly
enriched in cell division, cell cycle, DNA replication and
MAPK activity pathways (FDR<0.05, Figure 2c). The
genes involved in favorable modules were significantly
enriched in the angiogenesis, vasculogenesis, cell
migration, cell differentiation, cell adhesion and several
signaling pathways (cAMP-mediated signaling, ERK1
and ERK2 cascade, Ras protein signal transduction and
Rho protein signal transduction) (FDR<0.05,
Figure 2c).

Based on the same methodology, we obtained
around 900,000 gene-gene links with correlation coef-
ficients ranging from 0.68 to 1 in the GCN of the Japa-
nese cohort. We found five modules (M1-5) based on the
exact cutoff setting (Figure 2d). M3 (81 genes) and M1
(770 genes) had significant overlaps with the unfavor-
able and favorable signature genes, respectively (n=76
and 222, hypergeometric test, FDR<0.05, Figure 2d,
Table S2), which were correspondingly determined as
unfavorable and favorable modules. Functional enrich-
ment analysis of the two modules exhibited an identical
set of biological pathways resulting from the TCGA
cohort (Figure 2d). Based on these results, we inferred
that M11 from the TCGA cohort and M3 from the Japa-
nese cohort indicated the same unfavorable gene mod-
ule and M1, M2, M3, M4 and M18 from the TCGA
cohort and M1 from the Japanese cohort indicated the
same favorable gene module. As shown in Figure 2e
7



Figure 2. Identification of signature genes and functional gene modules for ccRCC. (a) Venn diagram showing the consistency of
prognostic genes identified from TCGA and Japanese cohorts with 528 and 100 patients, respectively. (b) Top 20 most significantly
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and 2f, we visualized the individual genes in these two
modules. The M3 from the Japanese cohort wholly cov-
ered all the genes involved M11 from the TCGA cohort,
which is highly significant overlap (n=41, hypergeomet-
ric test, P < 1.1e-16, Figure 2g). Moreover, each of M1,
M2, M3, M4 and M18 from the TCGA cohort had a sig-
nificant overlap with M1 from the Japanese cohort
(n=98, 168, 78, 73 and 20, hypergeometric, all P < 1.1e-
16) (Table S3). Thus, we merged the genes from M1,
M2, M3, M4 and M18 in the TCGA cohort and gener-
ated an integrated module M1/2/3/4/18. These findings
suggested that we found two types of gene modules that
lead to unfavorable and favorable survival outcomes of
patients in ccRCC, which had high confidence since
these modules were validated in an independent cohort
with different racial and geographical characteristics.

We found the genes involved in M7 and M17 from
the TCGA cohort were significantly enriched in the
innate immune response pathways (phagocytosis, mac-
rophage activation and Toll-like receptor signaling path-
way) and the genes involved in M5, M6, M12 and M15
were significantly enriched in the adaptive immune
response pathways (T/B cell activation, T cell differenti-
ation and B cell receptor signaling pathway). Interest-
ingly, the genes involved in M2 from the Japanese
cohort were significantly enriched in an identical set of
both innate and adaptive immune response pathways.
Concordance analysis showed that each of the modules
from the TCGA cohort mentioned above had a signifi-
cant overlap with M2 from the Japanese cohort (Table
S4), suggesting these immune-related modules identi-
fied from the TCGA cohort were also independently val-
idated in the Japanese cohort. In addition, the genes
involved in M4 from the Japanese cohort were enriched
in the fatty acid metabolic process. In our previous
study, we have reported three molecular subtypes of
ccRCC characterized by the different activity of energy
metabolism in terms of cell viability and proliferation,
cell differentiation and fatty acid metabolism,14 which
are consistent with the functions of the modules we
identified in this study. The genes involved in M5 from
the Japanese cohort were significantly enriched in the
translational initiation, protein targeting to the endo-
plasmic reticulum, protein targeting to membrane, viral
transcription and viral gene expression pathways. Inter-
estingly, two of the three subtypes we identified in our
previous study were characterized by the opposite
GO pathways enriched with unfavorable (red bars) and favorable sig
fied in (c) TCGA and (d) Japanese cohorts. Only the modules with mo
shown. Two modules are linked if there are a positive correlation be
correlated with the corresponding numbers of genes from the mod
with unfavorable signature genes. The blue nodes indicate the mo
endoplasmic reticulum. Visualization of the genes involved in (e) M1
and color of nodes are correlated with the betweenness values of g
of genes involved in the M11 from TCGA cohort and M3 from Japan
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dysregulation of these pathways, corresponding to
patients' best and poorest survival outcomes.14
Identification of the potentially druggable target
genes
Analysis of network topology could provide insight into
the importance of a given gene in the network. The
genes with high centrality are considered as hub genes
in the network, and we predicted that these are potential
targets that are worthwhile to be further evaluated. We
calculated the degree, betweenness and closeness of
each gene in each unfavourable and favourable module.
These three measurements are commonly used to char-
acterize the centrality of nodes from three distinct per-
spectives: a higher degree indicates that the node is
involved in more interactions; a higher betweenness
indicates that the node acts as a bridge which lies on the
shortest path between other nodes; a higher closeness
indicates that the node shows shorter paths to all the
other nodes and is likely to be the geometric center of
the module.36�39 We then calculated the Spearman cor-
relation of each centrality measurement between the
two unfavorable modules (or favorable modules) identi-
fied from TCGA and Japanese datasets. As shown in
Figure 3a and 3b, the correlation coefficients of degree,
betweenness and closeness were 0.77, 0.73 and 0.78
between M11 from the TCGA cohort and M3 from the
Japanese cohort, and 0.73, 0.71 and 0.72 between M1/2/
3/4/18 from TCGA cohort and M1 from the Japanese
cohort. This result suggests that the topology of the
unfavorable and favorable modules identified from the
TCGA cohort are highly similar to the Japanese cohort
even though the two cohorts have different racial and
geographical characteristics. We ranked the genes
involved in each unfavourable and favourable module
based on decreasing order of the degree, betweenness
and closeness values. We then selected the common
genes involved in the top 10 gene lists with the highest
rank based on at least one of the three centrality meas-
urements in both TCGA and Japanese cohorts as the
hub genes. Consequently, we found six hub genes,
namely BUB1B, TPX2, RRM2, CEP55, ASF1B and
CCNB2, from the two unfavorable modules (Figure. 3c
and S1a) and four hub genes, including ERG, ARAP3,
TCF4 and MMRN2, from the two favorable modules
(Figure. 3d and S1b). Here we ignored CD93 in the
nature genes (blue bars), respectively. The gene modules identi-
re than 20 genes and clustering coefficients higher than 0.6 are
tween the genes from these two modules. Sizes of modules are
ules. The red nodes indicate the modules significantly enriched
dules significantly enriched with favorable signature genes. ER,
1 from TCGA cohort and (f) M3 from Japanese cohort. The sizes
enes in the modules. (g) Venn diagram showing the consistency
ese cohort.
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Figure 3. Topology analysis of the unfavorable and favorable modules. (a) Spearman correlation of degree, betweenness or close-
ness centralities of genes from M11 in the TCGA cohort and M3 in the Japanese cohort. Coef, Spearman correlation coefficient. (b)
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favorable modules since it had no significant association
with prognoses of patients. The prognostic effects of
these hub genes were shown in Figs. S2 and S3.

We visualized the expression levels of the 10 hub
genes based on the gene expression profiles of TCGA
tumors and adjacent normal samples. As shown in
Figure 4a and 4b, most of these hub genes, especially
the six unfavorable hub genes, presented very low
expression in normal tissues, while their expression lev-
els were significantly increased in the tumor tissues. As
these unfavorable hub genes encode cell mitosis and
cell cycle-related proteins, this alteration may indicate
that low expression of these genes maintains normal
cell renewal and metabolism, but increased expression
promotes tumorigenesis or tumor progression. Mean-
while, the significantly increased expression levels of
favorable hub genes in tumor tissue may imply activat-
ing a protective mechanism to mediate anti-tumor effect
in cancer. Further, we investigated the altered coverage
of these hub genes in TCGA tumor tissues. The result
showed 84-96% of patients presented a high expression
of unfavorable hub genes, which leads to poor survival
outcomes of patients and 59-73% of patients showed an
increased expression of favorable genes, which leads to
good survival of patients (Figure 4c), suggesting that
most of the ccRCC patients may carry the common
molecular alterations induced by the unfavorable hub
genes but not for their anti-tumor mechanisms. To con-
firm the expression changes at the protein level, we vali-
dated the expression differences that we observed at the
mRNA level using the immunohistochemistry (IHC)
images of the hub genes in normal tissue and tumor tis-
sue from the Human Protein Atlas30,31 (Figure 4d).
Four hub genes with selected antibodies showed a
higher protein expression in tumor cells than corre-
sponding normal tissues. For example, TPX2 was not
detected in normal glomeruli cells, and lowly expressed
in normal tubule cell, but showed medium expression
in tumor cells (Figure 4d).

Moreover, we extracted the essential scores of these
hub genes in 16 ccRCC cell lines from the Dependency
Map (DepMap) portal.23 The essential scores were evalu-
ated based on genome-scale CRISPR-Cas9 loss-of-func-
tion screens and corrected by a computational method
CERES.23 A more negative score of a gene indicates this
gene is more essential for tumor cell proliferation and
survival. As shown in Figure 4e, most of the unfavor-
able hub genes were more essential than the favorable
genes in ccRCC. We also investigated the mRNA
Spearman correlation of degree, betweenness, and closeness centr
the TCGA cohort and M1 in the Japanese cohort. Coef, the Spearma
dence interval for the prediction of the linear model. (c) The top 1
cohort and M3 from the Japanese cohort, respectively. The common
(d) The top 10 genes with the highest degree centrality in M1/2/3/
respectively. The common genes between the two cohorts were hig
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expression levels of these hub genes in Caki-1, a com-
monly used ccRCC cell model. The result showed that
the unfavorable hub genes had appropriate expression
levels in Caki-1 (Figure 4f). Considering these, the unfa-
vorable hub genes are considered more appropriate tar-
get genes, and the inhibitory effect on these genes (e.g.,
shRNAs and chemical inhibitors) should be further
evaluated.
Drug repositioning for target genes
To find the potential therapeutic drugs for candidate tar-
gets, we developed a drug repositioning approach based
on an integrated analysis of the drug- and shRNA-per-
turbed signature profiles from the CMap database.29

We hypothesized that a drug has an inhibited effect on
the expression of a target gene in tumor cells if the drug
treatment leads to a similar dysregulation of gene
expression induced by shRNA knockdown. The outline
of our drug repositioning approach was described in
Figure 5a. In brief, it consists of the following four steps
(see Method section for details): (1) Constructing the
drug-shRNA matrix for each target gene. We extracted
the drug-perturbed and shRNA-perturbed signature
matrix of the HA1E cell line, the only kidney cell line in
CMap database. TPX2 was not analyzed in the following
analysis because its shRNA knockdown data was not
provided in CMap. For each of the other five target
genes, we constructed a correlation matrix, namely
drug-shRNA matrix, by calculating Spearman correla-
tion between all possible combinations of drug-per-
turbed and target-specific shRNA-perturbed signatures.
The correlation coefficients in this matrix represent the
similarity of effects on gene expression induced by spe-
cific drug treatment and specific shRNA knockdown.
(2) Optimizing the drug-shRNA matrix. For a specific
drug, different doses and treated time points were set
for cell line treatment in the CMap experiments. Thus,
we usually obtained several perturbed profiles associ-
ated with the same drug treatment in a cell line. It has
been reported that the effects of drug on human cells is
highly dependent on the dose setting.40 Under different
doses, drug-target binding affinities could be changed
and the downstream pathways can be affected differ-
ently, especially for cell cycle related pathways.40 To
maximally represent the drug efficacy, we only kept the
optimal dose and time point with the highest similarity
with each shRNA knockdown. For a specific gene
knockdown experiment, different shRNAs were set for
alities between genes from the merged module M1/2/3/4/18 in
n correlation coefficient. The gray area indicates the 95% confi-
0 genes with the highest degree values in M11 from the TCGA
genes between the two cohorts were highlighted by red color.
4/18 from the TCGA cohort and M1 from the Japanese cohort,
hlighted by blue color.
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Figure 4. The alteration of hub genes in tumor tissues or cell lines. (a) Box plots showing the mRNA expression levels (TPM values) of
unfavorable hub genes in TCGA 528 tumors compared to 72 normal tissues. The differential expression analysis was performed by
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targeting the same gene. These shRNAs are the specific
sub-sequences from the investigated gene, whose
sequences could be completely different or share some
common bases. To maximally represent the gene knock-
down efficacy and avoid the effects from the off-target
shRNAs, we extracted at least two shRNAs which
showed a consistently higher correlation with drug
treatment by a clustering analysis (Fig. S4). As a
result, we obtained five simplified drug-shRNA
matrixes, each of the matrixes had 6,986 drugs
(rows) while three shRNAs (columns) for BUB1B, two
shRNA for RRM2, two shRNA for CEP55, two shRNA
for ASF1B, and four shRNA for CCNB2, respectively
(Tables S5�S9). (3) Extracting the top 1% drug candi-
dates. In a given drug-shRNA matrix, we ranked the
drugs based on the correlation with each shRNA. We
extracted the overlapped drugs, which ranked in the
top 1% (70) drug lists with the highest correlation
with each shRNA as candidates. (4) Selecting the
three most effective drugs for each target. The top
three drugs with the highest median rank across dif-
ferent shRNAs were finally considered as the most
effective drugs for each target. As shown in
Figure 5b, we discovered that TG-101209, oxetane,
WH-4-025 target BUB1B, NVP-TAE684, MK-0752,
and withaferin-a target RRM2, actinomycin-d, tri-
phenyl-tin, RS-I-002-6 target CEP55, BRD-
K26510616, panobinostat and tacedinaline target
ASF1B and oxetane and BRD-K54343811 target
CCNB2.
Validation of target genes and drug effect
To confirm the essentiality of the target genes in ccRCC,
we inhibited the expression of target genes by transfect-
ing siRNAs to Caki-1 and investigated the effect on cell
viability. Western blots showed that the protein expres-
sion of the five target genes was successfully suppressed
in Caki-1 transfected with siRNAs compared with nega-
tive control (Figure. 6a�e and S5). We performed a
CCK-8 assay to measure cell proliferation. The result
indicated that the cell viability was significantly
decreased by the knockdown of BUB1B, RRM2, ASF1B
and CCNB2 in Caki-1 but not for the knockdown of
CEP55 (Figure 6a�e). Thus, CEP55 was excluded in the
following experiments.
DESeq2. *represents FDR<0.05. (b) Box plots showing the mRNA e
tumor tissues compared to normal tissues. *represents FDR<0.05. (c
gene in each TCGA tumor sample and the average expression value
vidual tumor samples. (d) The IHC images of hub genes in normal t
were conducted by the same antibody, which was described in the
genes in 16 ccRCC cell lines. More negative scores indicate more e
expression levels (TPM values) of hub genes in the Caki-1 cell line. I
25th and 75th percentiles. The whiskers represent the minimum an
sents the median value.
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Further, we investigated whether the drugs we
repurposed could inhibit their corresponding target
genes. Only TG-101209, NVP-TAE684, MK-0752, with-
aferin-a, actinomycin-d, and panobinostat were success-
fully purchased, and these drugs were tested in Caki-1
in the following experiments. As shown in Figure. 6f
and S6a, we observed that the protein level of BUB1B
was significantly decreased by the treatment of TG-
101209, which was identified as the most effective drug
for BUB1B compared to the negative control, and the
cell viability was also significantly reduced. NVP-
TAE684, MK-0752, and withaferin-a were the top three
effective drugs that we identified for targeting RRM2.
As shown in Figure. 6g and S6b, c, we observed the pro-
tein level of RRM2 was significantly suppressed by both
NVA-TAE684 and withaferin-a but not by MK-0752.
The cell viability was significantly reduced by NVA-
TAE684 and withaferin-a but not by MK-0752, consis-
tent with the result showing in Western blots. We also
tested the effect of actinomycin-d, actually targeting
CEP55 based on our prediction, on RRM2. The Western
blot showed that this drug does not work for inhibiting
RRM2. The protein level of ASF1B was significantly
decreased by its target drug panobinostat and cell viabil-
ity was also significantly reduced after the drug treat-
ment (Figure. 6h and S6d). Unfortunately, we could
not test the effect of CCNB2 since its target drugs are
not available for purchase. In summary, these results
suggest that our drug repositioning approach can be
used for identifying effective drug candidates, and
BUB1B, RRM2 and ASF1B are confirmed as druggable
targets.
Discussion
ccRCC is a heterogeneous tumor that has been stratified
into several molecular subtypes characterized by distinct
mRNA expression patterns and opposite survival out-
comes of patients.14,41,42 Different subtypes of patients
respond differently to chemotherapy. Low response
rates and drug resistance exacerbate the challenges in
ccRCC therapy. Thus, there is an urgent need for discov-
ering new treatment options for patients who cannot
benefit from the commonly used chemotherapies. In
this study, we proposed an integrated approach combin-
ing the target prediction and drug repositioning for
xpression levels (TPM values) of favorable hub genes in TCGA
) The log2 fold changes between the expression value of a hub
of this gene in TCGA normal samples. The x-axis represents indi-
issues and tumor tissues. The images related to the same gene
Method section. Scale bar, 50µm. (e) The essential scores of hub
ssential for tumor cell survival and proliferation. (f) The mRNA
n the box plots, the bottom and top of the boxes represent the
d maximum values that are not outliers. The central band repre-
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Figure 5. Drug repositioning for the target genes. (a) The flowchart of drug repositioning approach. The details have been described
in Method section. (b) Box plots showing the three most effective drugs for each target gene. Each point represents the similarity
(calculated as spearman correlation coefficient) between the repurposed drug perturbed effects and shRNA knockdown perturbed
effects on cells. The bottom and top of the boxes represent the 25th and 75th percentiles. The whiskers represent the minimum
and maximum values that are not outliers. The central band represents the median value.
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Figure 6. Validation of target genes and drug effects. (a�e) Western blots showing the protein levels of target genes in Caki-1 with siRNA
transfection and negative control and bar plots showing the change of cell viability. (f�h) Western plots showing that the protein levels of
target genes were inhibited by the treatment of their corresponding target drugs and bar plots showing the change of cell viability. The
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ccRCC treatment. As a result, we identified four promis-
ing druggable target genes which encode the proteins
involved in cell mitosis and cell cycle regulation, includ-
ing BUB1B, RRM2, ASF1B and CCNB2, for treatment of
ccRCC. BUB1B encodes a mitotic spindle checkpoint
and exhibits a cell cycle dependent expression. It is
undetectable in G1 and exhibits a gene expression peak
in G2/M.43,44 RRM2 encodes ribonucleotide reductase
M2 subunit and it is responsible for the ribonucleotide
dezoxyribonucleotide conversion during the S phase of
the cell cycle.45 Thus, it is only expressed during the late
G1 /early S phase and degraded in late S phase.46

CCNB2, encoding cyclin B2, is involved in the G2-M
transition in eukaryotes by activating CDC2 kinase47�49

and it also shows a gene expression peak in G2/M.44

ASF1B, encoding one of the isoforms of the histone
H3�H4 chaperone anti-silencing function 1, is neces-
sary for cell proliferation and differently expressed in
the cycling and non-cycling cells.50 It has been reported
that BUB1B is an independent prognostic marker,51

RRM2 is a drug resistance-related marker,52 ASF1B and
CCNB2 are metastasis markers for ccRCC.53,54 These
target genes are significantly upregulated in tumor tis-
sues compared to the adjacent normal tissues in our
analysis. Moreover, broad coverage of upregulated alter-
ation for each of these target genes was observed in
ccRCC patients (Figure 4c), implying that most patients
may benefit from treatment of these target genes even
disease states varied for individual patients.

Further, we developed a drug repositioning approach
using the correlation analysis between shRNA-per-
turbed and drug-perturbed signatures and identified the
three most effective drugs for each target. In the end,
we validated the inhibitory effect of TG-101209 for tar-
geting BUB1B, NVP-TAE684, and withaferin-a for tar-
geting RRM2, and panobinostat for targeting ASF1B
using in vitro model. TG-101209, a JAK2 inhibitor, was
developed for patients with myeloproliferative disorders
who carry the JAK2V617F mutation.55 It also inhibits
the tumor cell growth in myeloma56 and lung cancer57

using in vitro or in vivo models. NVP-TAE684, an ALK
inhibitor, was designed to inhibit oncogenic ALK-rear-
ranged fusion proteins (e.g., NPM-ALK).58 It has been
reported that NVP-TAE684 suppressed the cell prolifer-
ation in pancreatic adenocarcinoma59 and neuroblas-
toma,60 and reversed multidrug resistance in
osteosarcoma.61 Withaferin-a, a steroidal lactone derived
from the medicinal plant Withania somnifera Dunal
(Solanaceae), has a wide range of pharmacological activ-
ities, including cardioprotective, anti-inflammatory, and
anti-angiogenesis.62 It has been reported that witha-
ferin-a induced cell apoptosis by inhibiting the
cells in the negative control group were only treated by DMSO. The cha
sided T-test. Four replicates were set in each group. Error bar represen
***represents P< 0.001.
expression or activation of STAT3 in ccRCC cells63 and
other cancer cells.64�66 Panobinostat, a non-selective
histone deacetylase inhibitor, is an FDA-approved oral
drug to treat multiple myeloma.67 The preclinical study
demonstrated that panobinostat induced cell cycle arrest
and apoptosis by mediating the dual degradation of
Aurora A and B kinases in different renal cancer cell
lines.68 The drug effect of panobinostat is worthwhile to
further explore for early-stage ccRCC patients by single-
drug therapy or combination therapy even through a
phase 2 trial, including only 20 advanced ccRCC
patients showed no benefit from panobinostat.69 Since
all the three druggable targets, BUB1B, RRM2 and
ASF1B, are cell cycle dependent genes, we speculate
that the combination of their corresponding repurposed
drugs could generate a synergistic effect on the inhibi-
tion of the tumor cell growth. On the other hand, the
synergistic effect by combining our repurposed drugs
with the clinically used first-line chemotherapy drugs
(e.g., tyrosine kinase inhibitors, mTOR inhibitors and
monoclonal antibodies against VEGF) is also worth-
while to investigate in the future work. Interestingly,
the treatment effects of the combination of panobinostat
with tyrosine inhibitor axitinib70 or proteasome inhibi-
tor bortezomib71 have been demonstrated in vitro or in
vivo ccRCC models.

The integrated approach we proposed in this study
could be broadly applied to other cancers. There are sev-
eral requirements for the application of this approach.
First, at least two independent RNA-seq datasets should
be guaranteed to extract the repeatable disease-specific
signature genes. The reliability of gene expression data
determines the accuracy of the target genes we pre-
dicted. In this study, we collected the two RNA-seq data-
sets from two ccRCC cohorts, TCGA and Japanese
cohorts. At the beginning, we observed quite different
numbers of prognostic genes (7,813 and 1,335 genes) in
these two cohorts. One reason is that the Japanese
cohort only includes 100 samples whereas the TCGA
cohort includes 528 samples, which leads to relatively
low statistical power during survival analysis in Japa-
nese cohort. More importantly, since the patients in the
two cohorts have very different races, geographical char-
acteristics and culture backgrounds, these heterogene-
ities also contribute to the difference. Even under this
situation, the two sets of prognostic genes showed sig-
nificantly high concordance. Moreover, we found the
common functional modules in the two cohorts based
on co-expression network analysis. These evidences sug-
gested that there is a common tumor-driven molecular
mechanism controlled by a set of hub genes in ccRCC. Sec-
ondly, the target-specific shRNA-perturbed signature
nge of cell viability between the two groups was compared by two-
ts standard deviation. *represents P < 0.05. **represents P < 0.01,
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profiles are necessary for our drug repositioning analysis.
In this study, we extracted the shRNA-perturbed signatures
from the CMap data portal. Researchers could use their
own shRNA-perturbed gene expression profiles to generate
the signatures as well. In addition, overexpression-per-
turbed data is an excellent alternative to replace the
shRNA-perturbed data. Notably, a drug is considered to
inhibit a target gene if these target-specific overexpression-
perturbed signatures are negatively correlated with drug-
perturbed signatures. In conclusion, we proposed a useful
approach for disease-target prediction and drug-target pre-
diction. We also successfully validated the essentiality of
target genes and drug efficacy using an in vitro model.
This study provides new insight into the treatment of
ccRCC and promotes precision medicine.
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