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Abstract
Fibre reinforced composites are considered to be one of the material cate-
gories that offer the best possibilities to create efficient lightweight designs.
Many companies in the transport sector therefore work towards increasing the
amount of fibre composites in their products, in an attempt to lower the fuel
consumption of their vehicles. However, from the perspective of simulation-
driven design, an increased use of composite materials is accompanied with
new modelling challenges. In this thesis, two such challenges have been con-
sidered.

The first challenge concerns the often computationally demanding mod-
els needed to simulate delamination in fibre composites. The heterogeneous
through-thickness nature of fibre composites necessitates a very fine through-
thickness discretisation in order to capture the delamination process, which
leads to very long (or even infeasible) simulation times. The second challenge
addressed in this thesis is related to the difficulties arising when simulating
the post-failure response of fibre composites. Specifically, in quasi-static sim-
ulations, the brittle material interfaces of layered fibre composites can lead to
sudden failure, which standard incremental Newton-Raphson solvers are not
able to trace.

To address these problems, two new computational tools have been devel-
oped that can aid the design process of fibre reinforced composites. Firstly,
in Paper A, an adaptive isogeometric shell element has been developed, that
can refine its through-thickness kinematics as delamination propagates. Con-
sequently, only the lowest level of detail needed to capture delamination is
included in the model, which improves efficiency. To address the second is-
sue, a dissipation based path-following solver has been developed in Paper B,
which is able to robustly trace the equilibrium path of the post-peak response
in quasi-static simulations.

Both Paper A and Paper B shows that the developed adaptive isogeometric
shell element and the dissipation based path-following solver can be combined
to robustly and efficiently simulate composite structures with brittle delam-
ination behaviour. Consequently, it is shown that the computational tools
developed in this thesis can be used to aid the design process of fibre rein-
forced structures.

Keywords: Isogeometric analysis, adaptive, delamination, path-following.
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CHAPTER 1

Introduction

The ability to design lightweight structures is of great importance in many
industries, especially in the transport sector, where the weight of the vehicle
is directly related to its fuel consumption. A group of materials that is bene-
ficial for lightweight design are fibre reinforced composites, where fibres (e.g.
carbon, glass, kevlar) are embedded inside a polymer matrix (e.g. epoxy).
Their properties and internal structure are favourable in (at least) two ways.
Firstly, fibre composites possess good stiffness- and strength-to-weight ratios,
and secondly, the orientation and angles of the fibres can be tailored such that
optimal properties are obtained for the specific application.

For these reasons, the aero industry has long been an industry where the in-
creased production cost, typically associated with fibre composites, has been
easily justified. As an example, the airframe of the Boeing 787 (that was
started to be produced 2007), is composed of approximately 50% carbon fibre
reinforced plastics and other composites (by weight) [1]. However, the adap-
tation of composites in other industries, for example the automotive industry,
has been slower, and can mainly be found in some low-series production cars.

There are multiple reasons why fibre composites are not the predominately
used material in industries where lightweight structures are important. One
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Chapter 1 Introduction

big reason is that the cost of fibre composites (raw material and manufactur-
ing) is typically much higher than for traditional materials such as steel and
aluminium. As an example, Heuss et al. [2] estimated that manufacturing
an automotive fender in fibre composite material was 570% more expensive
than the steel counterpart (although also 50% lighter). Other issues that im-
pede the use of fibre composites are challenges in manufacturability, quality
assurance, recycling, experience etc.

Another important challenge accompanied by increased use of fibre com-
posites, which has been the focus of this thesis, is the increased complexity in
computationally predicting the initiation and propagation of damage in the
material. The heterogeneous cross-sectional material properties of fibre com-
posites give rise to a number of complex failure modes, which require very
detailed (and thereby computationally heavy) models to be captured. Since
Computer Aided Engineering (CAE) has a central role in the product develop-
ment process in modern industries, with demand for short simulation times, it
is therefore difficult to properly evaluate the possible benefits obtained by us-
ing fibre composites in the structures. New and more efficient numerical tools
would therefore facilitate the possibility for introducing more fibre composite
materials in the future vehicles being developed.

Another challenge associated with modelling the failure of fibre composites
is that they can typically cause very brittle failure events, which makes it dif-
ficult to use standard solution methods to simulate the post-failure response.
As a result, it is not only important to develop new material and failure mod-
els, but to also develop robust solvers that can simulate the full failure event
of said models.

1.1 Failure mechanisms in fibre composites
Figure 1.1 shows a corrugated NCF composite panel subjected to crushing
(figure taken from the works of Grauers [3]). From this figure it is evident that
fibre composites are characterised by many complex and competing failure
mechanisms, for example delamination, fibre kinking, tensile fibre failure and
matrix cracking. These failure mechanisms can occur simultaneously or in
sequence, and numerical tools that aim to model these phenomenon should
therefore be capable of accurately capturing the interplay between several
progressive failure modes.
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1.1 Failure mechanisms in fibre composites

Figure 1.1: Laminated fibre composite subjected to crushing. Failure mechanisms:
bending of plies (A), compressive failure (B), delamination in mode I
(1), and delamination in mixed mode (2). From Grauers (2013) [3].
Reprinted with permission.

For many applications, the interplay of modes is strongly affected by the
amount of delamination. This is again evident from the laminate subjected
to progressive crushing in Figure 1.1. A central Mode I delamination was
initiated early in the crushing process, which separated the laminates into
two parts, where one part tended to fail predominately in bending, whereas
the lower part tended to fail more in compression modes. Similar results was
also found by Hull [4]. From these experimental results it is obvious that,
in order to get good predictability in simulations, delamination needs to be
accounted for.

Most of the underlying damage mechanisms mentioned above are initiated
in a multi-axial stress state. Thus, for an accurate component design against
damage initiation, it is important to capture the complete three-dimensional
stress state. This means that often a fine resolution of the through-thickness
direction (together with sophisticated damage models) is needed. Further-
more, delamination adds to this complexity, since it is fundamentally a dis-
crete failure which separates the composite laminate into new geometrical
parts.
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Chapter 1 Introduction

1.2 Current composite modelling methods

Current techniques used for modelling fibre reinforced composites can broadly
be divided into two categories. In the first category, the entire layup of the
composite is modelled as a single element. These models are therefore referred
to as Equivalent Single-Layer models (ESL), see Figure 1.2a for an illustration.
The ESL modelling approach is an extension of traditional simulation meth-
ods for homogeneous material such as metals, where each element has three
rotational and three displacement degrees of freedoms per node. As such,
ESL models are considered to be computationally efficient, however, they lack
the capabilities to capture the kinematics of many failure modes. In order to
model some of the complex failure modes with ESL models, phenomenological
material models can be used, see e.g Feraboli et al. [5]. However since these
lack the connection with physical reality, extensive testing and validation is
required for each specific material lay-up. Nevertheless, ESL models are often
used due to their efficiency, especially in crash simulations where they become
the only feasible option.

An alternative modelling approach that enables more physically accurate
simulations, are Layer-Wise (LW) models, see e.g. Costa et al. [6]. As op-
posed to ESL models, LW models resolve the through-thickness directions by
modelling each layer of the composite with one or more solid elements, see
Figure 1.2b. Modelling each layer enables a better representation of the kine-
matics in the delamination process, by also adding cohesive zone elements
between each layer. Furthermore, it is also possible to include damage models
for simulating failure mechanisms such as fibre kinking and matrix cracking
via continuum damage models [7], which means that LW models can in gen-
eral predict the complete failure process. However, a major drawback with
LW models is the huge amount of computational resources required to use
them, especially when the number of plies in the composite is large.

In an attempt to address the computationally heavy models obtained with
the LW models, several authors have proposed adaptive modelling approaches
which aim to combine ESL and LW elements, see e.g. [8]–[11]. The common
idea in these adaptive methods is to initialise the simulation with only ESL
based elements, and then adaptively refine the elements through-thickness
discretisation when damage propagation is detected. In this way, the model
can remain largely efficient by only using detailed LW discretisation where it
is needed.
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1.3 Research scope

(a) Equivalent Single-Layer (b) Layer-Wise model

Figure 1.2: Illustration of two modelling approaches for fibre composites. Red
arrows symbolise displacement degrees of freedom and green arrows
symbolise rotational degrees of freedom.

1.3 Research scope
The complex failure process of fibre reinforced composites makes it difficult to
efficiently and robustly evaluate them for use in lightweight designs. There-
fore, the first research goal of this thesis has been to develop an isogeometric
shell model that can adaptively refine its discretisation at arbitrary interfaces
through the thickness, with the aim of combining the efficiency of ESL mod-
els and kinematical accuracy of LW models. Furthermore, a stress recovery
method for arbitrarily curved geometries has been included in the adaptive
modelling framework, for improved stress prediction in ESL type elements and
to predict the initiation of new delamination zones. Note that as a first step,
no adaptive capabilities in the in-plane direction have been developed.

The adaptive continuum shell element is formulated in an isogeometric
framework, to explore the benefits of having (i) exact representation of the
geometry, (ii) less locking behaviour in shell elements, and (iii) continuity
of the stress and strain field. The first and third point will especially be
advantageous for the stress recovery method.

The second research goal has been to improve the robustness of quasi-static
solution procedures used for analysing the failure behaviour of fibre reinforced
composites. This has been addressed by developing a dissipation based path-
following solver.
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CHAPTER 2

Adaptive isogeometric shell element

To address the issues related to layer-wise and equivalent single-layer models, I
have in this thesis developed an adaptive continuum-shell element (Paper A).
My work is a continuation of the work made by Hosseini et al. [12], and
then later extended by Adams et al. [11], where an adaptive continuum shell
element within an isogeometric framework was proposed.

The main idea with an adaptive model is to initiate the simulation with a
coarse discretisation (and/or computationally efficient element formulation),
and then progressively refine the discretisation as damage starts to form and
propagate, thereby only using the lowest level of detail required for the simu-
lation. The use of adaptive finite element models for analysing fibre reinforced
composites is not a new idea, and several different but related approaches have
already been proposed, see for example [8]–[10]. In this thesis, however, the
current adaptive shell model is developed in an isogeometric framework, which
comes with some interesting advantages. These advantages will be outlined
in this chapter.

The main parts of the adaptive isogeometric shell element can be sum-
marised as follows:

• A standard shell formulation representing the undeformed and deformed
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configurations, described with isogeometric basis functions and curve-
linear coordinates.

• An isogeometric continuum-shell formulation for describing the displace-
ment field. This isogeometric framework allows for flexible control of the
out-of-plane discretisation.

• Utilisation of the stress recovery method for improving the prediction
of the transverse stresses in elements with coarse through-thickness dis-
cretisation. The stress-recovery method is formulated for arbitrarily
curved geometries.

• Criteria based on the stress- and damage-state of the elements for de-
ciding when the adaptive model should be refined.

These four main parts of the element will be described in more detail in the
following subsections. However, first an introduction to isogeometric analysis
will be given.

2.1 Introduction to IGA
IGA was first proposed in 2005 with the goal of reducing the considerable
amount of time spent on meshing and creation of finite element models for in-
dustrial applications [13]. IGA facilitates a reduction in time spent on model
creation by unifying Computer Aided Design (CAD) with computer aided en-
gineering (CAE). What makes the unification of these two fields possible, are
their respective similarities in the geometrical parametrisation of surfaces and
volumes. CAD geometries and surfaces, much like in FE-models, are repre-
sented by a linear combination of control points (nodes) and basis functions.
The main idea with isogeometric analysis is then to utilise these CAD basis
functions directly, and thereby circumvent the sometimes very cumbersome
work of transforming the CAD model to a finite element model.

The basis functions used in modern CAD software belong to a family of
curves called spline functions. These spline functions possess some interesting
properties compared to the standard Lagrange polynomials used in FEM. One
important property, is that splines are (at least) C1 continuous over element
boundaries, whereas Lagrange polynomials are always C0 continuous, see Fig-
ure 2.1 for a visual comparison of the different basis functions in a domain.
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2.1 Introduction to IGA

A benefit from this higher order continuity is that they lead to a higher con-
vergence rate (in terms of the number of degrees of freedom in the model).
Furthermore, higher order continuity also leads to continuity of the stress and
strain fields within the IGA-patch (i.e. part of the domain). Another bene-
fit is that spline functions can be constructed as rational polynomials, which
means that they can be used to represent conical sections (for example circles)
exactly. This means that IGA based models do not introduce any geometrical
approximation, since the domain is represented exactly.

Isogeometric analysis does however face some challenges that currently pre-
vent it from being the go-to design tool in the industry. Some examples of these
challenges are; connection of IGA-patches, how to handle trimmed surfaces,
local refinement, to name a few. I will not attempt to explain these issues
in this thesis, but the interested reader can see the works of e.g. Bazilevs
et al. [14] or Leidinger et al. [15]. These challenges however, have been active
research topics within the IGA community from the start, and promising im-
provements in all these topics have been made. Furthermore, there now exists
many papers demonstrating an isogeometric workflow [15] (i.e. cad geome-
tries used directly for analysis), and industry CAE software developers has
started to implement IGA functionality in to their solvers, see for example in
LS-DYNA [16].

In the next section, the fundamentals of isogeometric basis functions (B-
spline basis functions) will be introduced.

2.1.1 B-Splines functions
The underlying basis functions used in CAD geometries and isogeometric anal-
ysis are so-called B-spline basis functions. They are generated using the Cox-
de Boor recursive algorithm:

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2.1)

where

Ni,0(ξ) =
{

1 ξi ≤ ξ ≤ ξi+1

0 otherwise
(2.2)

In the above definition, Ni,p(ξ) are B-spline basis functions, and p and n
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Chapter 2 Adaptive isogeometric shell element

(a) IGA with spline functions.

(b) FEM with Lagrange polynomials.

Figure 2.1: Comparison of a IGA and FEM discretisation of a plate with a hole.
The basis functions from the IGA domain are C1 continuous over ele-
ment boundaries.

are the order and number of basis functions, respectively. The values ξi are
so-called knot values, which are collected in a non-decreasing knot vector, Ξ:

Ξ = [ξ1, ξ2, . . . , ξn+p+1]. (2.3)

In Figure 2.2a, seven second order (p = 2) basis functions constructed from
the knot vector Ξ = [0, 0, 0, 1, 2, 3, 4, 5, 5, 5] are shown (note that the first and
last knot values have been repeated in order to an obtain interpolating ends).

The knot vector and knot values have important roles for the construction
of the basis functions, as they can be used to control the number of elements in
the IGA discretisation. Furthermore, the knot vector can also be used to con-
trol the continuity of the basis functions, as will be shown in Subsection 2.1.2.

Geometrical B-spline curves, C(ξ), can be constructed as a linear combina-
tion of B-spline basis functions:
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2.1 Introduction to IGA

C(ξ) =
n∑

i=1
Ni,p(ξ)x̂i (2.4)

where x̂i are control points (as comparted to nodal coordinates in the finite
element method). As en example, Figure 2.2b shows a curve defined by the
basis functions in Figure 2.2a and 7 control points. Surfaces and volumes can
be constructed in a similar fashion via a tensor product of multiple B-spline
basis functions in different parametric direction.

The most common type of spline function used in CAD software is Non-
Uniform Rational B-splines (NURBS). They have become the standard due
to their ability to represent conical sections (e.g. circles) exactly (which is not
possible with polynomial functions such as B-splines). NURBS basis func-
tions, Ri,p, are associated with an weight, wi > 0, and are constructed as:

Ri,p = Ni,p(ξ)wi

W (ξ) , with W (ξ) =
n∑

i=1
Ni,p(ξ)wi (2.5)

NURBS functions can then be combined in a similar manner as in Equa-
tion (2.4), to represent curves (and surfaces and volumes).

000 1 2 3 4 555

1

(a) B-spline basis. (b) B-spline curve.

Figure 2.2: Illustration of B-Spline basis functions and a B-spline curve. The con-
trol points in (b) are illustrated as red circles.
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2.1.2 Knot insertion
Knot-insertion is a fundamental technique used in IGA to refine the discretisa-
tion of the domain. It is performed by inserting new knots into the knot-vector
Ξ. A important feature of knot-insertion is that it can be performed without
altering the original geometry of the domain. In order to see this, consider
a knot vector where a new knot has been inserted at ξ̄ ∈ [ξk, ξk+1]. The
new set of m = n + 1 control points,

{
P̄A

}m

A=1, are then formed as a linear
combination of the original points {PA}n

A=1:

P̄A =


P1, A = 1
αAPA + (1 − αA)PA−1, 1 < A < m

Pn A = m

(2.6)

where

αA =


1, 1 ≤ A = 1 ≤ k − p

ξ̄−ξA

ξA+p−ξA
, k − p + 1 ≤ A ≤ k

0 A ≥ k + 1
(2.7)

As an example, Figure 2.3a shows an enriched set of basis functions when
a knot ξ = 3.5 has been inserted into the original knot vector Ξ = [0, 0, 0, 1,
2, 3, 4, 5, 5, 5] from Figure 2.2a. Figure 2.3b shows the corresponding spline
curve with the new set of control points, but note that the geometry of the
curve is left unchanged.

Knot-insertion can also be used to control the continuity of the basis-
functions. This is achieved by increasing the multiplicity of a knot value in
the knot vector. For example, continuing with the set of B-spline basis func-
tion in shown Figure 2.2a, Figure 2.4a illustrate how the continuity of a basis
function is reduced to C0 continuity, when the knot value ξ = 4 is repeated.
This feature will be used for flexible control the out-of-plane discretisation in
the proposed shell element.

2.2 Adaptive isogeometric shell element
As mentioned in the introduction of this chapter, the adaptive shell ele-
ment is developed in an isogeometric framework, which means the underlying
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000 1 2 3 3.5 4 555

1

(a) Enriched B-spline basis. (b) Resulting B-spline curve

Figure 2.3: The basis functions and resulting B-spline curve after a knot has been
inserted at ξ = 3.5.

000 1 2 3 44 555

1

(a) B-spline basis. (b) Resulting B-spline curve.

Figure 2.4: The basis functions and resulting B-spline curve after a knot has been
inserted at ξ = 4.

parametrisation of the geometry is described with spline functions. On top of
this, the adaptive shell formulation has been built. In this section, the four
main parts (introduced in the beginning of this chapter) of the shell element
is described.

2.2.1 Shell kinematics
The underlying geometric and kinematic description of the element is based
on a standard formulation for shells. The mid-surfaces of the undeformed
and deformed configurations, seen in Figure 2.5, are defined by a curve-linear
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θ1

θ2θ2

θ3

E1
E2

G3 = D

G1
G2

S0

θ1

θ2

θ3

g3

g1
g2

S

X0 X

x

u

X Y

Z

Ω0

Figure 2.5: Kinematics of the continuum shell in the undeformed and deformed
configuration.

coordinate system with coordinates θ1, θ2 and θ3 (where θ3 is the coordinate
in the thickness direction). A material point in the undeformed configuration,
X (θ1, θ2, θ3), is computed as:

X (θ1, θ2, θ3) = X0 (θ1, θ2) + θ3
t

2D (θ1, θ2) , −1 ≤ θ3 ≤ 1 (2.8)

where t is the thickness of the shell, X0 is the position corresponding to a
point at the mid-surface of the shell and D is a unit vector normal to the
surface. A material point in the deformed configuration, x (θ1, θ2, θ3), can be
expressed as:

x (θ1, θ2, θ3) = X (θ1, θ2, θ3) + u (θ1, θ2, θ3) (2.9)

where u is the displacement field. The kinematic description of the displace-
ment field may be chosen in multiple ways, for example using the Kirchhoff-
Love or Mindilin-Reissner assumptions, however in this thesis a continuum-
shell representation has been chosen.

For a more detailed description of the full shell formulation, the reader is
referred to Hosseini et al. [12].
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2.2 Adaptive isogeometric shell element

2.2.2 Adaptive refinement of through thickness kinematics

The displacement field u introduced in Equation (2.9) is described using a
continuum-shell representation:

u(θ1, θ2, θ3) =
Ncp∑
I=1

N(θ1, θ2, θ3)aI , (2.10)

where Ncp are the number of control points, aI are displacement degrees of
freedom, and N(θ1, θ2, θ3) are tri-variate basis functions. The basis functions
has been constructed as a combination of bi-variate in-plane NURBS basis
functions H(θ1, θ2), and uni-variate out-of-plane B-spline functions S(θ3):

NI = Hi(θ1, θ2)Sj(θ3),
i = [1, . . . , k],
j = [1, . . . , l],

(2.11)

where k and l are the number of control-points in the in-plane and out-of-plane
directions, respectively. This split of the in-plane and out-of-plane directions
allows for individual control of the discretisation level and kinematics of each
respective direction.

As an illustration, consider a shell element consisting of three layers, where
the out-of-plane direction is discretised by second order (p = 2) B-spline basis
functions. We will now consider three different configurations for which the
control-points of the element can take; lumped, layered and discontinuous.
These configurations are described below.

lumped
The coarsest possible discretisation in a control point is obtained with the
knot vector Ξ = [−1, −1, −1, 1, 1, 1], and can be seen in Figure 2.6a. A control
point in this configuration is said to be in a lumped state, because all layers are
lumped into one element through the thickness. Note that this state resem-
bles an ESL model, and as such, is relatively computationally efficient. Due
to the coarse out-of-plane resolution, an element in this configuration can not
predict the transverse stresses normal to the mid-surface with sufficient accu-
racy. However, as known from classical laminate theory, the in-plane stresses
are accurately captured.
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Chapter 2 Adaptive isogeometric shell element

layered
A more refined discretisation can be achieved by using the knot-insertion tech-
nique described in Section 2.1.2. By inserting knots with multiplicity p = 2 at
the coordinates corresponding to the ply interfaces, a layered configuration is
obtained, see Figure 2.6b. Continuing with our example from above, the knot
vector now takes the form Ξ = [−1,−1, −1, −1/3, −1/3, 1/3, 1/3, 1, 1, 1].
This configuration has a much more refined through thickness discretisation,
and can therefore accurately predict the through-thickness quantities such
as the transverse stress. However, a consequence of this is that the layered
state is much more computationally demanding compared to the lumped state.

discontinuous
A final configuration can be obtained by inserting a third knot into the knot
vector at the coordinates where we want to model ply separation. This state
is denoted the discontinuous state, and is exemplified in Figure 2.6c where the
knot vector now takes the form Ξ = [−1,−1, −1, −1/3, −1/3, 1/3, 1/3, 1/3,
1, 1, 1]. Furthermore, cohesive zone elements are used in this configuration to
simulate the delamination process.

The three configurations presented above (lumped, layered and discontinu-
ous) can now be used to adaptively refine the model. The model is initiated
with control points in a lumped configuration, and then progressively refined
as damage is detected and propagated. In this manner, a combination of
an ELS and LW modelling approach is achieved, which will lower the total
computational effort of the model.

Z

(a) lumped state

Z

(b) layered state

Z

(c) discontinuous state

Figure 2.6: The three configurations considered in this work, denoted lumped,
layered and discontinuous. The knot vectors, Ξ, are, a)
[−1, −1, −1, +1, +1, +1] b)

[
−1, −1, −1, − 1

3 , − 1
3 , + 1

3 , + 1
3 , +1, +1, +1

]
and c)

[
−1, −1, −1, − 1

3 , − 1
3 , + 1

3 , + 1
3 , + 1

3 , +1, +1, +1
]
.
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2.2 Adaptive isogeometric shell element

2.2.3 Stress recovery
It was previously mentioned that the coarse out-of-plane discretisation in
lumped elements leads to poor prediction of the out-of-plane transverse stresses.
In order to improve the transverse stress prediction, a method known as stress
recovery has been used [17], [18]. The main idea of the stress recovery method
is to use the equilibrium equations together with the gradients of the in-plane
stresses to recover the transverse stresses.

The stress recovery method is at this point a relatively established method
for improving the stress predictions in ESL models, and has been shown to be
effective for flat plates and shells by several authors, see e.g. Främby et al. [9].
In recent years, the method has also been extended to curved geometries, see
e.g. Daniel et al. [19] and Patton et al. [20].

In this thesis we use the stress recovery formulation derived in Daniel et al.,
for curved geometries. Since our shell element is formulated in an isogeo-
metric framework, we obtain some interesting advantages compared to shells
formulated with standard finite elements. First, the higher continuity of the
spline functions in IGA results in in-plane continuity of the stress field in the
domain. This means that it is possible to obtain first and second order stress
gradients directly in each material point, in contrast to standard finite ele-
ments where the C0 basis functions predict less accurate stress gradients. In
this way, a pre-processing step for obtaining estimates of the stress gradients,
as in for example Främby et al. [9], is circumvented.

A second advantage with using a stress recovery method in an isogeometric
framework is that the geometry of the curved shell is represented exactly. This
means that the curvature of the shell (required in the stress recovery method
derived by Daniel et al.) can be computed exactly. With standard finite
elements, the geometry is often meshed with piece-wise linear/flat elements
with zero curvature, and therefore a patch-wise estimation of the curvature is
needed here as well.

Following the works of Daniel et al., the transverse stresses for an arbitrarily
curved shell can be recovered from the values and gradients of the in-plane
stresses as:
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σ13 = − 1
λ2

1λ2

∫ z

−t/2

λ1λ2

a1
σ11,1 + λ2

1
a2

σ12,2+

λ2
1a2,1

a1a2
(σ11 − σ22) + 2λ1λ2a1,2

a1a2
σ12 dz + C1

λ2
1λ2

, (2.12)

σ23 = − 1
λ1λ2

2

∫ z

−t/2

λ1λ2

a2
σ22,2 + λ2

2
a1

σ12,1+

λ2
2a1,2

a1a2
(σ22 − σ11) + 2λ1λ2a2,1

a1a2
σ12 dz + C2

λ1λ2
2

, (2.13)

σ33 = 1
λ1λ2

∫ z

−t/2
κ1λ2σ11 + κ2λ1σ22 − λ1a2,1

a1a2
σ12

− λ2a1,2

a1a2
σ23 dz + C3 + zC4

λ1λ2
. (2.14)

where z is a coordinate in the out-of-plane directions, indices 1, 2 refer to the
coordinate directions ξ̂1 and ξ̂2 oriented in the principal curvature directions
of the mid-surface, and •,i denotes derivative with respect to ξ̂i. The factors
aα, α = 1, 2 and λi, i = 1, 2, 3 are defined as:

λi = 1 + κiz aα =
√

ḡα · ḡα with α = 1, 2 (2.15)

where κi are the curvature in each principal curvature direction, and ḡ are
tangent vectors of the mid-surface (covariant base vectors). Furthermore, C1-
C4 are constants arising from the integration over the shell thickness.

A recovery of the out-of-plane stresses for elements in a lumped configuration
using Equations (2.12)-(2.14) is performed in each time-step. These stresses
are then used to determine if a refinement of the element should be performed,
a process which is described in the next section.
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2.2 Adaptive isogeometric shell element

2.2.4 Refinement criteria
An important aspect of any adaptive method is to decide when a kinematical
refinement of the model should be made. In this thesis, we follow the works
by Främby et al. [9], where two refinement criteria are proposed. The first
criterion is used to determine when a new delamination zone should be in-
serted. The criterion is based on the (recovered) stress state at the location
of the interface between two adjacent plies:

⟨σ33⟩2
+

σ2
fn

+ σ2
13 + σ2

23
σ2

fs
≥ r2

I (2.16)

where σfn and σfs are the interlaminar normal and shear strengths, respec-
tively. The Macaulay brackets ⟨•⟩+ are used since compressive stresses should
not propagate the crack. Note that it is important to enhance the element
(either from lumped or layered to discontinuous) well before the quadratic
failure criterion exceeds 1, such that the new cohesive zone element does not
enter the damage zone immediately upon insertion.

The second refinement criterion is used to decide when the delamination
zone should propagate. It is known from cohesive zone modelling that the
traction profile in front the crack tip play an important role for the behaviour
of the cohesive zone [21], and it is therefore important to have a number of
elements in front of the cohesive zone in a discontinuous configuration. In each
converged time-step, the damage variables in the cohesive elements around the
crack front are monitored. If their damage variable exceeds a predefined value
(defined by the user), a search around the element is performed where lumped
or layered elements within the search radius is upgraded to a discontinuous
state.
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CHAPTER 3

Dissipation based path-following solver

When designing fibre reinforced composite structures, it is often important
to get a good understanding of its failure behaviour in order to optimise
the structural design. However, if the information about the failure process
is obtained using standard incremental quasi-static solvers, it is common to
encounter convergence issues. These convergence issues are typically caused
by the brittle failure behaviour of the cohesive zone elements used to model
the delamination process. As en example, Figure 3.1 shows a (generic) force-
displacement curve from a quasi-static simulation of an end-notch-flexure test,
where the brittle interface parameters causes the structure to "snap-back".
This snap-back can not be traced with a displacement controlled Newton
solver, meaning that valuable information about the post-peak behaviour is
lost. In order to more reliably obtain converged simulations and results in
quasi-static solvers, it is therefore common to use so-called path-following
solvers. The core idea of path-following methods is to extend the equilibrium
equations with and additional path-following constraint.

The use of path-following solvers to analyse mechanical systems and struc-
tures first appeared in the 1970s. Wempner [22] and Riks [23] were the first
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Figure 3.1: Illustration of snap-back behaviour when simulating an end-notch-
flexure test (simply supported beam with an initial crack and applied
load in the centre).

to propose a group of path-following solvers denoted as arc-length solvers1,
which are successful methods for analysing geometrically non-linear behaviour
such as buckling. One drawback of classical arc-length solvers however, is that
they are known to encounter convergence issues if they are used in simulations
where local material instabilities are present. This inability to deal with mate-
rial instabilities makes them unsuitable to simulate the delamination process
in fibre reinforced composites.

Another group of path-following solvers that have shown to be effective in
dealing with local material instabilities are dissipation-based path-following
solvers. These solvers formulate the path-following constraint in terms of the
dissipation rate of the active failure mechanism, and the locality of the ma-
terial instability is therefore incorporated directly into the constraint. As an
example, Guitierrez [24] and later Verhoosel et al. [25] derived three path-
following constraints for (i), linear continuum elements with damage, (ii)
linear continuum with plasticity, and (iii) non-linear continuum with damage.
In Paper B, we propose an alternative dissipation-based path-following con-
straint that is based on the local dissipation rate in each material point. The
benefit with this formulation is that it generalises the dissipation constraint

1Due to the success of arc-length solvers, they have become synonymous with path-
following solvers.
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3.1 Fundamentals of path-following solvers

to include all types of damage mechanisms.
The remainder of this chapter is organised as follows. First the equations

used by path-following solvers are briefly introduced. Next, existing path-
following constraints proposed in the literature are presented, followed by the
path-following method constraint proposed in Paper B.

3.1 Fundamentals of path-following solvers
As a starting point to explain the basic relations used in path-following solvers,
consider the discretised governing equations in finite element form:

r(a) = f int(a) − λf̂ , (3.1)

where a is a vector of unknown degrees of freedom (typically displacements),
r(a) is the residual vector, f int is the internal force vector, λ is a load mul-
tiplier, and f̂ is a unit vector defining the direction of the forces. In a quasi-
static setting, Equation (3.1) can be solved incrementally by controlling the
load parameter λ together with a Newton-Raphson iteration scheme. How-
ever, in path-following solvers, the load parameter is treated as an unknown
variable, turning the residual into a function of two variables, r(a, λ). By
considering both the a and λ as unknowns, it is possible for path-following
solvers to trace the equilibrium path in the full force-displacement space.

Since an additional unknown variable has been added to the system, an
additional equation has to be added as well. This equation is called the path-
following constraint, φ(a, λ), and takes the general form:

φ(a, λ) = 0 (3.2)

The constraint equation φ should be a functions of a (and possibly also λ),
and be monotonically increasing.

Combining Equation (3.1) and Equation (3.1), we obtain a new system of
equations, [

r(a, λ)
φ(a, λ)

]
=

[
0
0

]
. (3.3)

By linearising the above equations, we can solve for both λ and a in an
incremental fashion using a Newton-Raphson scheme. The linearised system
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of equations take the form:[
da

dλ

]
=

[
K −f̂

hT w

]−1 [
−r

−φ

]
, (3.4)

where da and dλ are the incremental updates in a Newton-Rapson scheme,
and where the Jacobian consists of the following contributions:

K = ∂f int

∂a
, h = ∂φ

∂a
, w = ∂φ

∂λ
. (3.5)

Note that K is the standard tangent stiffness matrix.

3.2 Path-following constraints
The path-following constraint used in traditional arc-length solvers, for exam-
ple in Crisfield [26], takes the form:

φ(a, λ) = ∆aT ∆a + ∆λ2 − ∆L2 = 0, (3.6)

where ∆a and ∆λ is the incremental displacements and loads between two
load steps, and ∆L is a path parameter controlling the size of the incremental
step. As mentioned in the introduction to this chapter, this type of constraint
is suitable for problems involving buckling, but encounters convergence issues
when local material instabilities are present in the simulation.

With the aim to make path-following solver applicable to problems with
material instabilities, Gutierrez [24] proposed to formulate the path-following
constraint in terms of the total dissipation, G, of a body as

G = P − V̇ , (3.7)

where P is the external power and V̇ are the rate of change of elastic energy.
Equation (3.7) can be used to formulate path-following constraints for different
damage mechanisms. As an example, a constraint for geometrically linear
solids with damage can be derived by expressing the elastic energy V and the
external power P as:

V = 1
2

∫
Ω

σ : ε dΩ = 1
2aT f int (3.8)
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and

P = λf̂T ȧ, (3.9)

where the last equalities coms from a suitable finite element discretisation,
and Ω is the integration domain of the body being analysed. Using the two
equations above, together with a forward Euler time discretisation, the corre-
sponding incremental path-following constraint takes the form:

φ(a, λ) = 1
2 (λ0∆a − ∆λa0) − ∆τ = 0, (3.10)

where ∆τ denotes the path parameter controlling the amount of dissipation
allowed between two load steps, and subscript 0 denotes the previous time-step
(which emanates from the use of a forward Euler time discretisation). This
constraint equation was shown to give increased robustness in simulations
where continuum-damage models are used.

Using the same principle as in Equation (3.7), Verhoosel et al. [25] derived
two additional dissipation based constraints. For example, for geometrically
non-linear solids with damage, the dissipation based constraint is:

φ(a) = 1
2∆a

(
λ0f̂ − f∗

0

)
− ∆τ = 0, with f∗

I =
∫

Ω
E : C : NI dΩ

(3.11)
and where f∗

0 is a global vector that needs to be assembled each load step.
Furthermore, E is the Green-Lagrange strain, C is the material tangent, and
NI are basis functions. This constraint equation was shown to give increased
robustness in problems with cohesive-zone models.

3.3 Our dissipation based path-following constraint
In Paper B, we propose to express the dissipation G as an integral of the local
dissipation rate in all material points, Ḋ:

G =
∫

Ω
Ḋ dΩ. (3.12)

By using a backward Euler scheme to time-discretise Equation (3.12), the
path-following constraint equation φ(a) takes the form
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φ(a) =
∫

Ω
∆D dΩ − ∆τ = 0, (3.13)

where ∆D is the incremental energy dissipation between two load steps. The
advantage of this local formulation of the path-following constraint, is that new
dissipation constraints does not need to be derived for each specific dissipa-
tion mechanisms (such as in Equation (3.10) or (3.11)), since Equation (3.13)
generalises all dissipation mechanisms into one constraint equation. As an
example, large strain plasticity, gradient damage and phase-field damage is
also covered by Equation (3.13). Furthermore, it also allows for several simul-
taneous mechanisms to be considered, which is an additional improvement
compared to dissipation based constraints derived for specific damage mech-
anisms.

With regards to implementation details, note that with the formulation in
Equation (3.13), the computation of the constraint has been moved to the
material routine, instead of being determined from global quantities as in
for example Equation (3.10). Finally, an important aspect of the proposed
path-following constraint is that an expression for Ḋ must exist. This is
however often true if the material or damage model is developed in a thermo-
dynamically consistent framework.

3.4 Algorithmic aspects
In this section, some algorithmic aspects of a path-following solver is discussed.

3.4.1 Elastic regimes of the equilibrium curve
If the gradient h in Equation (3.5) is equal to zero, i.e. no dissipation is
present in the simulation, the jacobian in Equation (3.4) will be singular.
This situation is encountered when the structure behaves purely elastically,
for example in the beginning of the simulations or if the structure is loaded
cyclically. In order to handle elastic loading, the initial steps of the simulation
should be initiated with, for example, a standard force controlled or an arc-
length solver. A switch to the dissipation based solver mode (Equation (3.13))
can then be made when the dissipation in the simulation exceeds some user-
defined value, ∆τswtich. This value should be chosen such that the solver
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3.4 Algorithmic aspects

switches to the dissipation based path-following equations before the first
load-peak is reached.

Note that the simple switching algorithm outlined above will not work for
complex load cases where the structure is loaded cyclically, and the structure
change between dissipative and elastic behaviour throughout the simulation,
in which more advanced switching techniques should be developed.

3.4.2 Adaptive adjustment of the path-following parameter
If the path-following parameter ∆τ is set to a small value at the start of the
simulation, each load step will become small, and the total simulation time
will be long. On the other hand, if ∆τ is set too large, there is a significant risk
that the solver will diverge at load-steps where the equilibrium path is difficult
to trace (such as sudden force drops). Therefore, an automatic adjustment
of the path-following solver should be employed. In this thesis, the path
parameter at load step (n) is determined from the number of iterations, I,
that was needed to reach convergence at previous time step (n − 1)

∆τ(n) = ∆τ(n−1)(α)z, z = β(I(n−1) − Iopt) (3.14)

where α and β are parameters that define how aggressively the path parameter
should be increased/decreased, and Iopt is the optimal number of iterations
needed in the Newton-Raphson scheme. Suitable values for α, β and Iopt vary
depending on the type of problem, but standard values are 0.5, 0.25 and 5,
respectively.

If the automatic adjustment in Equation (3.14) has increased ∆τ to a large
value near the vicinity of a sharp or sudden force drop, the Newton-Raphson
iterations will likely fail to converge. In cases like these, it has been valuable to
automatically half ∆τ until convergence is reached for the current load-step.
This can be expressed as:

∆τ(n) = ∆τ(n−1)

(
1
2

)IF

(3.15)

where IF is the number of non-converged attempts at the current load step.
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CHAPTER 4

Discussion and concluding remarks

A full scale simulation of a modern fibre composite structure, where the num-
ber of layers can exceed 50 layers, will be extremely time-consuming if one
wants to capture all relevant damage modes. An adaptive modelling approach,
such as the one presented in this thesis, is an attempt to obtain a compro-
mise between an efficient and accurate simulation model. The potential speed
improvements, however, are heavily dependent on a number of factors. For
one, if initial crack sizes are large in relation to the in-plane dimensions of the
structure, a majority of the model will be initialised in a discontinuous state,
and little speed improvements are to be gained with an adaptive model. Fur-
thermore, if a delamination expands into a large part of the domain early on in
the simulation, the same conclusion can be made. On the other hand, if a large
structure is to be analysed, where the location and extension of delamination
is unknown beforehand, large computational savings can be obtained.

In Paper A (and in Chapter 2 of this thesis), the developed adaptive shell
element utilises the knot insertion technique from IGA, to allow for simple
and flexible enhancement of the kinematics in the through-thickness direction.
This facilitates more efficient simulation of delamination in fibre composites by
combining the features of ESL and LW models. The isogeometric framework
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also provides an exact description of the geometry and smooth representation
of the stress field which is beneficial for the stress recovery method.

The capabilities of the adaptive shell element are in Paper A demonstrated
for the case of a doubly notched fibre composite specimen loaded in bending.
From this numerical example it is shown that the through-thickness discreti-
sation of the shell model can be refined at arbitrary interfaces, and that a
speed-up factor of 1.3 is obtained (when compared to a fully resolved model).
The rather small speed-up comes from the reasons discussed in the previous
paragraph; the initial crack covers the half of the domain and expands into the
full domain early in the simulation. It is still shown, however, that the shell
element has the potential to give substantial speed gain. Note that further
improvements to the efficiency of the element is possible, and is discussed in
Chapter 5. Furthermore, in Paper A, it is also demonstrated that the shell
element can accurately recover the through-thickness stresses for a doubly
curved structure with unsymmetrical lay-up. The smooth representation of
the stress field allows for element-local stress recovery, without the need for a
pre-processing step for estimating the in-plane gradients.

In Section 2.2.4, two separate criteria were introduced, one for initiating
new delaminations (based on the stress state of the shell), and another one
for propagating the delamination zone (based on the damage state of the co-
hesive zone). Theoretically, the former stress-based criterion should be a good
indicator for both initiation and propagation of the delamination zone. How-
ever, the shear and normal traction at the crack front is under-predicted, and
can therefore not be a reliable refinement criterion to propagate the delami-
nation zone. As such, the second criterion was introduced, and is crucial to
ensure that the crack can propagate freely without interruption.

When an element in an adaptive model is refined, either from lumped to
layered or layered to discontinuous, the model needs to be extended with new
degrees of freedom. This will however cause changes to the internal forces,
and the equilibrium state will no longer be exactly fulfilled. In a quasi-static
simulation, this will result in convergence issues and an increased number of
iterations will be needed to obtain convergence in the next load-step (leading
to longer simulation times). A possible way to alleviate this phenomenon, was
suggested by Främby et al. [9] for explicit transient simulations. Therein, they
proposed to introduce a small correction force to the newly created interface
nodes, and then gradually degrade the force such that the discontinuities
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are introduced smoothly. A similar approach could be used for quasi-static
simulations.

In Paper B (and in Chapter 3 of this thesis), a path-following solver based
on the dissipation of the structure is presented. The path-following constraint
is formulated in terms of the integral of the local (specific) dissipation rate in a
material point. An advantage of this constraint is that it encapsulates multiple
dissipation based path-following constraints into one convenient formulation,
which also allows the use of the solver in a wider range of problem formulations.

The robustness of the solver is demonstrated in four numerical examples in
Paper B. The solver is able to trace the equilibrium path through multiple
snap-back events caused by delamination in fibre composite structures. Fur-
thermore, in the fourth numerical example of Paper B, it is shown that the
proposed solver is uniquely able to trace the full equilibrium path for a load
case where multiple failure mechanisms are active at once. As such, the pro-
posed dissipation based-solver offers the possibility to robustly solve a wider
range of problems previously not possible.

In Subsection 6.2 of Paper A, the adaptive isogeometric shell element and
dissipation based path-following solver are combined to solve a load case con-
sisting of a composite cantilever beam with two initial delamination cracks.
It is shown that the shell element is adaptability refined as the delamina-
tion propagates through the structure, and that the full force-displacement
path is traced through sharp snap-back behaviour. Furthermore, the result-
ing force-displacement curve shows good agreement with the experimental
results. Consequently, the computational tools developed in this thesis can be
used to aid the design process of fibre reinforced composite materials.
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CHAPTER 5

Future work

In the implementation of the presented shell element, the delamination pro-
cess is modelled using cohesive zone elements. A drawback of cohesive zone
elements, however, is that they require a fine mesh density at the crack-front
in order to accurately capture the delamination behaviour, which results in
increased computational cost. A strategy to alleviate the requirement of a fine
mesh density would therefore be beneficial for the efficiency of the adaptive
shell element.

One strategy to alleviate the computational cost associated with fine mesh
sizes required for cohesive zone elements, is to allow for adaptive mesh refine-
ment of the in-plane direction. In this way, the adaptive shell model would
only require small elements in the vicinity of the crack-front, thereby drasti-
cally reducing the computational effort. This strategy has already been inves-
tigated in the literature, see e.g. the work by Trabal et al. [27] or Lu et al. [28],
where a floating node based formulation was used to adaptively refine the mesh
around the crack-tip.

Another approach for addressing the computational demand of cohesive
zone elements, is to use a different crack modelling technique. Here, the
virtual crack closure technique (VCCT) presents an interesting alternative,
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since it has been shown to allow for element sizes that are larger than what is
typically needed for cohesive zone elements [29]. Note however that the VCCT
only works in quasi-static simulations, and needs to be further developed for
use in dynamic simulations. Furthermore, many authors have also suggested
improved modelling methods for cohesive zone elements. For example, Russo
et al. [30] demonstrated that the use of C1 continuous structural elements
with rotational degrees of freedom, together with a higher order integration
schemes, was able to capture the traction profile in front of the crack-tip with
relatively large cohesive zone elements.

As stated in the introduction of this thesis, the heterogeneous through-
thickness properties of fibre composites creates a multitude of different failure
mechanisms. The main contribution of the developed shell element, however,
is an adaptive framework for modelling of delamination. Although delamina-
tion plays an important role in the post-peak failure response, it is important
to track all possible damage mechanisms such that the correct post-failure
behaviour can be obtained. In order to use the adaptive continuum-shell ele-
ment in more general load cases, it should therefore be extended with suitable
models for intralaminar failure.

Regarding the dissipation based path-following solver, it would be inter-
esting to investigate the use of the solver in other types of problems. For
example, crystal-plasticity modelling or matrix materials with visco-plastic
material models are both fields where snap-back might occur, and therefore
could benefit from more robust solution methods.
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