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Abstract
Finding the probability that a stochastic system stays in a certain region of its state space over a
specified time—a long-standing problemboth in computational physics and in applied and
theoreticalmathematics—is approached through the extended andmultivariate Rice formula. In
principle, it applies to any smooth processmultivariate both in argument and in value given that
efficient numerical implementations of the high-dimensional integration are available. The
computationalmethod offers an exact integral representation yielding remarkably accurate results
and provides an alternativemethod of computing persistency probability and exponent for a physical
system. It can be viewed as an implementation of path integration for a smoothGaussian process with
an arbitrary covariance. Its high accuracy is due to efficient computation of expectations with respect
to high-dimensional nearly singularGaussian distributions. ForGaussian processes, the computations
are effective andmore precise than those based on theRice series expansions and the independent
interval approximation. For the benchmark diffusion process, it produces the persistency exponent
that is essentially the same as the recently obtained analytical value and surpasses accuracy,
interpretability as well as control of the error, previousmethods including the independent or
Markovian approximation. Themethod solves the two-step excursion dependence for a stationary
differentiable Gaussian process, in both theoretical and numerical sense. The solution is based on
exact expressions for the probability density for one and two successive excursion lengths. The
numerical routineRIND computes the densities using recent advances in scientific computing and is
easily accessible for a general covariance function, via a simple numerical interface. Thework offers
also analytical results that explain the effectiveness of the implementedmethodology and elaborates its
utilization for non-Gaussian processes.

1. Introduction

1.1. Persistency of physical stochastic systems
The persistence phenomenon is fundamental inmany areas of physical sciences. It is concernedwith the fraction
of time (or space) inwhich a physical systempersists in a certain state. The persistence probability P(t) represents
the probability that the system stays in the state inwhich it started at time zero. A remarkable fact about this
probability is that in awide range of physical contexts, it decays either algebraicallyP(t)∼ t− θ, or exponentially
P(t)∼ e− θ t, the two being equivalent through the logarithm-exponent transformation, with θ in both the cases
referred to as the persistence exponent. In a system inwhich the state space is continuous, persistency is typically
referring to the system staying above a certain level. One then observes recurrences of the systems crossing this
level and dividing the time (or space) into regions of excursions above and below the level.

It is not possible to fully account for the vast range of fields where the persistency plays an important role but
to give a perspective on the importance of persistency determinationwe selected some of the recent
contributions in various disciplines. In statistical physics, it has been used for non-equilibrium systems to
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characterize phase transitions, properties of the diffusion equation [1, 2], survival of spin states [3],fluctuating
steps, and interfaces [4]. Inmeteorology and climate research, persistencywas used to statistically analyze the
clustering of extremeweather events in historical climate records [5]. The recurrence interval distribution in
earthquakes has brought persistency analysis into seismology [6] and analysis of heartbeat intervals
demonstrates its importance in physiology [7]. In an analysis of stocks during economic crises and distress, the
tail of the distribution interval between return volatilities above a certain threshold proves that the persistency
coefficient is an important characteristic that allows assessing financial risks of investments [8, 9]. Other
financial questions appear in option pricing under Lévy randomwalkwhere crossing time distributions for
upper or lower barriers are of interest [10]. All these examples highlight the importance of the distribution of
recurrence times or return intervals between extreme events for characterization and understanding of the
behavior of physical systems and phenomena.

For stochastic processes, the persistence probability can be viewed as the ratio of two path integrals. The
numerator integrates over paths obeying the condition of persistence and the normalizing denominator
integrates over all paths. The approach through path integrals has its limitation and in [4], we read ‘But as yet
there is no general scheme for an arbitrary correlation function for calculating the persistence exponent.’While the
statement remains still valid if one considers analytical evaluations of the persistency, it has been largely
overlooked that there is a computationalmethod utilizing the generalized Rice formula that allows effective
computations not only of the persistency exponent but also persistency probabilities. Themethodworks for any
covariance in aGaussian process and extends to non-Gaussianmodels obtained by subjecting theGaussian
measure to a random time change.We advocate themethod as a computational tool for studying persistency
problems in physical systems.

1.2. The problem and some of its early history
The problemof finding the intensity of the zero crossings of a random function has been probablyfirst
formulated as amathematical question by Littlewood andOfford [11]. About the same time it was solved by Rice
[12], who presented the celebrated Rice formula for the first time, also pointing out the physical context:
‘Although this problem is of some physical interest I have been unable to find references to any earlier work. Problems
of this nature occur in the investigation of the current reflected by small random irregularities along telephone
transmission lines.’The result is also knownunder the nameKac-Rice formula due to its solution for random
polynomials in [13]. One of the central problems in Rice’s second article on randomnoise [14] is the statistical
characterization of the zeros of a stationaryGaussian process. Rice’s formula for the expected number of zeros,
andmore generally, of non-zero level crossings, is the first step, but Rice also presents the in- and exclusion
series, the ‘Rice series’, for the distribution of the time between two successivemean level crossings.

The distribution of the number of zero crossings is naturally connected to the distribution of the successive
lengths of excursions above and below zero. Both problemswere followed during the decades following Rice’s
article. However, elegant analytical solutions are elusive and the following quote by Rice [14] remains valid: ‘The
problem of determining the distribution function for the distance between two successive zero seems to be quite difficult
and apparently nobody has as yet given a satisfactory solution.’

The original Rice series was improved considerably by Longuet-Higgins who obtained a rapidly converging
moment series for the probability density of zero-crossing intervals [15, 16] and also compared approximations
based on the initial terms in the series with experimental results [17] andwith earlier alternative series, suggested
byMcFadden [18, 19].

Some studies byMcFadden andRainal [19–21] are of particular interest for the present article since they
present systematic theoretical as well as experimental studies of the dependence between successive crossing
intervals. Three approximations were studied, independence, ‘quasi’-independence, which assumes that the
sumof two successive intervals is independent of the next one, and theMarkov type dependence. The first two
cases were analyzed by renewal type arguments using the Laplace transform [22, 23], and some numerical
solutionswere compared to experiments. TheMarkov assumption [24]was tested by variance and correlation
parameters against experiments. All three assumptionswere rejected for general Gaussian processes.

On the theoretical side, formulas for crossingmoments of arbitrary order underminimal assumptions for
Gaussian processes have been obtained [25], and a generalized Rice formula for not necessarily Gaussian
processes has been presented by Zähle [26]. Further, a regression techniquewas introduced in [27, 28] as thefirst
step towards the numerical algorithms that are discussed in this paper.

1.3. Renewed interest and new exact tools
In the last two decades, the interest in the tail behavior of excursion times remerged inmaterial science, optics,
statistical physics, and other areas [29]. The emphasis was on the tail distribution rate referred to as the
persistency exponent. The ‘independent interval assumption’ (IIA)was applied both toGaussian processes and to
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other processmodels and compared to experiments [23]. The diffusion processes were analyzed in general
[1, 30, 31] and an analytical solution for the persistency coefficient for the diffusion of order twowas obtained by
a rather deep combination of arguments across different developments in theoretical physics [32].

During the same years, new tools were developed in applied probability and scientific computing, and the
exact formula for the joint density of successive crossing intervals was given [33]. It involves the conditional
expectations of the derivatives at crossings and the indicator functions that the process stays above or below the
level between crossings. No analytic expressions are known, but the integral forms are readily computable by the
high-dimensional integrationmade possible by a carefully designed numerical approach.

1.4. Persistency of non-equlibrium systems—the diffusion case
Nonequilibriumdynamics of physical systems is one area of physics where the persistency problemwas
investigated through empirical studies, for example, forfirst-passage exponent in two-dimensional soap froth
[34], and in a liquid crystal system exhibiting Ising-like behavior [35], the propagation of slow-combustion
fronts in paper sheets [36], for the temporal fluctuations of complex crystalline structures [37], for variation in
the spin orientation of a sample of laser-polarized129Xe gas [38]. However, due to the statistical nature of the
phenomena, experimental results are rare and the theoretical understanding of the persistency phenomena is
critical. It is confirmed by theory and experiment that the relation between the persistency exponent and the
characteristic defining the decay of temporal or spatial correlation functions is complex. Probably themost
studied case is a diffusing field starting from a random initial configuration [31, 38]. Thismodel is attractive both
theoretically due to the linear formof the diffusion equation in any dimension, table 1, and experimentally
because of its natural physical interpretation in various non-equilibrium systems. For these reasons, themodel
constitutes amathematically convenient and physically important benchmark for anymethodology aiming at
the persistency assessment. This benchmark is used throughout the paper and the results for it obtained through
the proposed computationalmethodology are comparedwith the results existing in the literature, table 2.
Examples of what can be expected for non-diffusive systems are also presented in the paper.We also present the
potential of implementation of pathwise integrals for the persistency in non-Gaussian case that is important
when non-linear generalizations of the diffusion equation are considered [36].

Table 1.Un-normalized spectra and covariance functions.

SPECTRUM COVARIANCE FUNCTION SOURCE

Type: Rational spectrum

1 2 3( )w+ - e−| t|(1 + |t| + t2/3) LH1

14 2 4( )w w+ - e−| t|(1 + |t| − 2t2 + |t|3/3) LH7

Type: ShiftedGaussian

kcosh exp 22( ) ( )w w- kt t kcos exp 2 , 0, 1, 2,2( ) ( )- = ¼ WHk

Type: Noise and seawaves

1[−1,1] t tsin( ) WN

1 14 1( )w+ - NA BS

JONSWAP NA J

Type: Diffusion

dsech , 2( ) ( )pw = t dsech 2 ,d 2( ) Î BMSd

Table 2.Numerically calculated persistence exponents θ(d) for
diffusion.

d NL RIND d NL RIND

1 0.1205 0.1206 (0.1203) 10 0.4587 0.4589

2 0.1875 0.1874 (0.1875) 20 0.6556 0.6561

3 0.2382 0.2382 30 0.8053 0.8063

4 0.2806 0.2805 40 0.9232 0.9327

5 0.3173 0.3171 50 1.0415 1.0439
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1.5. Theoretical foundation of the approach
To get a proper insight into themethodology, let us recall a generalized Rice formula.We have opted for a fairly
general whilemathematical formulation that is aminor generalization of Theorems 6.2 and 6.4 in [39]. The
readerwill see in Example 1 below and section 3 that this is actually a very practical result.

LetZ:U→ Rd be a twice continuously differentiable Gaussianfield,U⊂ Rk, k� d, with a non-singular
covariancematrix at any point. Then for the k− d dimensionalmeasure  of the subset  u( )L of these tʼs in
Λ⊂U such thatZ(t)= u:

  u z f z u z tdet , d d . 1Z t Z t,[ ( ( ))] ∣ ∣ ( ) ( )( ) ( )  ò ò=L
L

E

In addition, assume that for each täU one has another continuous field,Y t:W→ Rn, so that (t,w)→ (Z(t),
Y t(w)) defined onU×W is Gaussian. Then, for a bounded and continuous function g:U× C(W,Rn)→ R:




g t Y d t Z t g t Y Z t u f u t, det , d . 2
u

t t
Z t

⎡
⎣

⎤
⎦

( ) ( ) [∣ ( )∣ ( )∣ ( ) ] ( ) ( )
( )

( )
ò ò= =

LL

E E

When themathematical formalism is stripped out, there are several key points to bemade about equation (1)
and,more generally, equation (2). The inner integration is essentially about averaging over themultivariate
Gaussian distribution. Consequently, efficient evaluation of such averages is the central problem inmaking the
formula usable. One does not need to restrict to theGaussian universe and the results, under some technical
restrictions, generalize tomore general stochastic processes. However, the integration in the conditional
expectation significantly adds to the computational challenge. In theGaussian case, the integration challenges
have been addressed by proper use of computational linear algebra and numerical integration techniques in
[40, 41], where a practically useful routine for computation of high-dimensional normal integrals has been
developed. Brodtkorb [42] combined all the described ideas into a powerful tool, adding new tests to control the
accuracy, and embedding it into a user-friendly code forGaussian process crossing problems. The routine,
calledRIND, based on thesemethodswas included in theMATLAB toolboxWAFO [43, 44].

AWAFO-tutorial [45] guides the user through the technicalities of using the computational tools. It also
gives information about themain computational engine, the routineRIND, and presents examples of the code.
An illustration how the result can be practically used is presented next to study the backward and forward delays
via Rice’s formula.

Example 1.Wederive the joint pdf of A B, for the clipped process infigure 1.We consider the zero-level
crossing case, but the general case can be treated similarly. In this problem,] n 2= , Z Z s t X st , ,( ) ( ) ( ( )= =
X t( )), s t0< < . Further b a, 0 0,[ ] [ ]L = - ´ and g Y X Xt, 0 0s t s t

t
, ,( ) { } { }= > + < . Then by Rice’s

formula

g Y Z g Y X f t s

X s X t X X f t s

t t t

0

, det , 0 0 d d

2 0 0 d d . 3

Z
b

a

s t X

b

a

s t s t X

t t
t t

, 0

0

0
,

0

0
, ,

s t

s t

,

,

⎡⎣ ⎤⎦( ) [∣ ( )∣ ( )∣ ] ( )

[ ( ) ( ) { }∣ ] ( ) ( )

( )


 

ò ò

ò ò

å = =

= > =

ÎL =
-

-

+ -

E E

E

Theweighted sum g Yt,Zt t
t

, 0[ ( )]( )å ÎL =E is equal to B b A a,( ) P . Hence, by stationarity ofX, the joint
probability density of B A, is given by

Figure 1.A clipped processDcwith the split to backwardB and forwardA delays.
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f b a X b X a X X f

X X a b X X f

, 2 0 0 0

2 0 0 0 0 . 4

B A b a b a X

a b a b X

, , ,

0, 0,

b a

a b

,

0,

( ) [ ( ) ( ) { }∣ ] ( )

[ ( ) ( ) { }∣ ] ( ) ( )

 

 
= - > =

= + > =

+ -
- -

+ -
+ +

-

+

E

E

The persistence problem for non-Gaussian continuous-timemodels is extremely challenging and notmuch
work has been done in this direction, see [46].While, in general, path integrals obtained from the generalized
Rice formula are still conceptually validwithin the smooth but non-Gaussian domain, their efficient evaluation
needs to be addressed. The applicability of the approach to non-Gaussianmodels has not been intensively
studied but one specific case of the conditional Gaussianmodels has been addressed [47, 48], namely Laplace-
type non-Gaussianmodels built by Brownianmotionwith a random (Lévy) time change. A naturalmethod here
is to apply conditioning on the underlying random time and then do additional integration over it. Such an
approach is computationallymore expensive and has additional challenges due to the effect of conditioning on
the crossing value.Nevertheless, it is still computationallymanageable and in some special cases random time
change analytical ‘shortcuts’ allows for significant improvement of the computational effectiveness. In the final
section of this work, we provide a short overview of this technique.

2. Persistence of a stochastic process

2.1. The point process of crossing instants and the IIA
The excursion time distribution can be formulated through the point process of crossing instants.We consider a
smooth processX(t),−∞< t<∞ , and the time instants of u-level crossings, Si, leading to two sequences of
interlaced intervals of lengthsTi

+, i=± 1,± 2, ..., for the excursions above u-level andTi
-, i=± 1,± 2, ..., for

the analogous excursions below u.We label the interval that contains the origin [− B,A], with a forward delay
timeA to thefirst crossing on the positive side, and a backward delay timeB since the last crossing on the
negative side, while its length T A B0 = + . Figure 1 explains the principle for indexing. The variable δ is
introduced to keep track of excursions above, δ= 1, or below u, δ=− 1. The processDc(t)=+ 1(− 1)whenX
(t)> u(< u) is called the clipped version of theX-process at level u. If the smooth processX(t) is stationary, the
clipped processDc(t) is also stationary. The point process of u-level crossings {Si}, is a stationary point process.

The clipped process is not easy to study due to the dependence betweenA,B, andTiʼs. In an approach that is
quite popular in computational physics [31] one approximates this point process by a simpler renewal process
with independent crossing intervals. The covariance of the clippedGaussian process is readily available and the
covariance of the simple renewal process connects to the distribution of independent intervals.Matching the
covariances of the two processesmay give some insight into the distribution of the excursions times. Indeed,
some accurate approximations of the exponent of the tail distribution ofTiʼs have been obtained by thismethod.

Thematch goes via the Laplace transforms and is based on the following relation between the covarianceR of
the renewal process with its Laplace transform R and the probability distributionΦ of independent intervals
with its Laplace transform (in the probabilistic sense, i.e. the Laplace transformof a probabilisticmeasure)
denoted byΨ:




s

s s R s

s s R s

2 1

2 1
, 5( ) ( ( ))

( ( ))
( )m

m
Y =

- -
+ -

whereμ is the average length of the renewal interval. Connection is thenmade by plug-in-style substitution of
the covariance function of a clipped process for the covarianceR in the above. The above relation is in agreement
with formula (215) in [31]. However, the success of thismethod seems to end just right there, as the approach
does not provide any insight what are the probability distributions that satisfy these equations or evenwhen they
exist at all. It has some applications to study persistency exponent since exponential asymptotics can be observed
through the largest negative pole of the Laplace transform. Any other questions about the excursion distribution
would require not only inverting the Laplace transformbut first evaluating the Laplace transformof the
covariance.We conclude that themethod has quite limited applications.

2.2.Dependence of level crossing intervals
The IIA is a popularmethod of approximating the persistence of stochastic processes, thus it is important to
investigate the degree of the dependence between crossing intervals and evaluate its effect on the approximation
accuracy. It is well-known that noGaussian process can have exactly independentmean level crossing intervals
[15, 19, 49]. In this sense, the IIA is never exact. Here, we give an account of numerical evaluation of the degree of
the dependence forGaussian processes. The exact approach through the generalized Rice formula is explained
and evaluated using theRIND routine, the technical details of the computations are given in [45].We compare
the exactRIND pdfwith the IIA-based pdf for the spectra in table 1, extending the cases extensively studied in
[50], and illustrate the results.We group these examples in two groups: spectrawith near independent half-
periods, i.e. intervals between two subsequent crossings, andwith strongly dependent half-periods. Note that the
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marginal distributions are computed from the exact pdf by integration and not by the IIA approach, which is
incapable of retrieving themarginal distribution as discussed later. The name convention for the spectra and
covariances in table 1 is as follows.LHk andWHk hint at [15] and [51]. The diffusion spectraBMSdwere used in
[31].WN is low-frequencywhite noise with a Butterworth approximationBS, and the Jonswap spectrum J is an
example of an oceanwave spectrum.Note that the spectra and covariance functions are listed in the un-
normalized form. In the examples, they are normalized so that the variance of the process and its derivative are
both equal to zero and thus the average length of a zero-crossing interval equalsπ.

We start with a class of processes where successive zero-crossing intervals are ‘almost’ independent,
representing diffusion in d dimensions, where d= 1, 2 correspond to physically feasible experiments [31],
section 9. For all quantile levels, except for themost extreme, the true pdf and the one obtained by the
independent approximation are almost identical as shown infigure 2 Left. Similar results have been seen for
other d-values.

The remaining graphs infigure 2 show joint pdf for spectrawith near independent intervals. There is a clear
visual agreement between the exact pdf (red) and the pdf with independentmargins. TheGaussian spectrum
WH0 and the approximating LH1 are centered at zero frequency and follow the IIAmodel almost perfectly. The
white noise spectrumWN deviates noticeably fromhowone normally envisages independent variables. For the
approximating Butterworth spectrumBS the pdf is near to the independence.

Figure 3 Left-Middle shows examples with clear or even strong dependence. As seen in the graphs, the
dependence can takemany different shapes, whichmakes it difficult to catch it in a simple parametric form.

TheRIND function is not limited tomean level crossings but works for any level as illustrated on the shifted
Gaussian spectrummodelWH6 for levels u= 0.1, 0.3. Figure 3 Right shows dependence and good agreement
between theRIND results and simulated pdf:s.

2.3. The persistence via the exact distributions
Themost commonmeaning of persistence is as the tail of the first-crossing distribution

Q X t t t Tdoes not change sign between 0and , 6T ( ( ) ) ( )= = =P

in particular for largeT. ForGaussian processes, the asymptotics depends only on the covariance but general
results are scattered and not very precise. Themost precise statements about the decay have been formulated for

Figure 2. Joint pdf for spectrawith almost independent half periods: the diffusionsBMSd, d = 1, 2 andLH1,WH0,BS,WN. Level
curves enclose 10, 30,K, 99.9 %of the distributions. Red solid curves: pdf computed byRIND; Blue solid curves: pdf under IIA
assumption, withmarginal pdf fromRIND; Black dashed curves: simulated pdf from about 2.6 million pairs.
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processes with non-negative correlation function, while for oscillating correlation only upper and lower bounds
have been found.

Non-negative correlation:—[52], Thm. 1.6 gives a precisemeaning to the ‘exponential tail’ property: if the
correlation function r(t) of a stationaryGaussian processX(t) is everywhere non-negative, there exists a non-
negative limit

b
T T

X tlim
1

log inf 0 . 7r
t T0,

⎛
⎝

⎞
⎠

( ) ( )
[ ]

= -
 ¥

>
Î

P

The limit br is necessarily finite [53] and thus it ismeaningful to formulate the persistence tail as

Q X t X t

e e

inf 0 sup 0

2 , 8

T
t T t T

o T T o T T

0, 0,
⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

( )

[ ] [ ]
( ( )) ( ( ))

= > + <

= =q q

Î Î

- + - +

P P

with 0� θ= br as the persistence exponent. Since nothing is said about the asymptotics of o(T)× T, equation (8)
only gives themain order of decay.

Oscillating correlation:—Very little is known about the persistence of oscillating correlation. The authors of
[54] studied the low-frequencywhite noise process with correlation function r t t tsin( ) ( )= and proved the
existence of exponential upper and lower bounds,

e Q e c C0 , with , 0. 9cT
T

CT ( ) < >- -

The IIAwas used in [1] tofind θIIA for different dimensions of the diffusion processes defined by the
covariances in table 1, and comparedwith simulations, while experimental evidence for d= 1was presented in
[38]. An efficient simulation procedure to estimate the persistence for arbitrary dimensionwas devised in [55],
which yielded the simulation-based evaluation of the corresponding persistence exponents. Recently, a definite

Figure 3. Left andMiddle: Joint pdf with clear dependence: LH7, J,WH4,WH9with correlation coefficient0.13, 0.44, 0.30, 0.48
andKullback-Leibler distance0.05, 0.14, 0.11, 0.55;Right: Joint pdf of intervals above and below levels u = 0.1, 0.3 for shifted
Gaussian spectrumWH6.
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answer for dimension d= 2was given in [32], namely θ(2)= 3/16= 0.1875, a value that agrees with the
simulation in [55]. At present, no exact values are known for other dimensions.

The persistence estimates in [55], Tab. 1 come from a large andwell-controlled simulation experiment of
over 108 realizations offirst crossing events.We have designed the following numeric procedure to estimate the
persistence exponent.

(i) Fix a maximum Tm and a grid tk= kΔt, tmΔt= Tm; this resembles the logarithmic grid in the [55]
simulations.Tm should be chosen so large that any numeric or stochastic uncertainty in the tail is
filtered out.

(ii) Compute, withRIND,QT forT= tk, k= 1, K,m; in [55]QT is estimated by simulation.

(iii) Make repeated independent runs to compute QT and take the average Q ;T RIND uses Monte Carlo
integration for extreme cases, and averagingwill reduce the stochastic uncertainty.

(iv) Make a regression of Qlog 2 T( )- against T; this can be done globally, over the entire interval [0, Tm], or
locally to allow for slow asymptotics in equation (8). The persistence exponent is then estimated as the slope
of the fit.We used quadratic polynomialfit to identify any typical trend in the exponential e( θ+A(T))T.

We used this scheme to estimate the persistence exponent for the 10 dimensions in [55].We setΔt= 0.05
andTm= 15 for d� 4, which corresponds to the time span used in that paper,Δt= 0.1, andTm= 30, 30, 20 for
d= 1, 2, 3.We computed QT as the average of 400 independent runs ofRINDwith theSOBNIEDmethod and
highest precision. The quadratic fit indicated that the local slope increased slowlywithT. Table 2 shows the
exponents from [55], labeledNL and theRIND-values, represented by the local θT in themiddle of the interval,
T= Tm/2.

For dimensions d= 1, 2we give two values in parenthesis to take account of the asymptotic character of the
persistence exponent. To accomplish this, we increasedTm to 40, 35, respectively, and estimated the local rate of
decay for largeT. For d= 1, the value θ= 0.1206 is the best estimate over the interval (0, 30), while the value
0.1203 is the stable value for largeT. TheNL-value 0.1205 is probably too high, based on a too short time span.
TheRIND-value 0.1203 agrees with the value computed by IIA. For d= 2 the stable value is 0.1875, equal to the
theoretical value 3/16, given in [32]. For the diffusion in two dimensions, we evaluate the persistence for other
than zero levels and obtain values 0.2052, 0.2283, 0.2426, for levels u= 0.1, 0.2, 0.3, respectively, suggesting
somemonotone dependence of the persistency on the level.

3. Exact distributionmethod

3.1. TheDurbin-Rychlik formula
Wehave seen the IIA has limited application to studies of the excursion intervals even in the cases when the
independence seems nearly satisfied.On the other hand, the exactmethod not only yieldsmore accurate results
but is also readily available. The root of the exact formula is Slepian’s ‘doubly conditioned’ process [28], which
explicitly describes a process with a level upcrossing at 0 and downcrossing at t; the conditioning is implicit in
Rice’s original paper [14]. The Rice series approximations achieve the qualifications by restricting the number of
extra crossings in the interior of the intervals by higher-ordermoments for the number of crossings. Recursive
formulas how to compute all truncatedmoments to a very high computational cost are found in [56]. The exact
formula for the distribution of level crossing intervals inGaussian processes, developed in [57, 58], can be fairly
easily derived from (2). In our derivations, we use the following notational conventions from [33]:Xs,t,u= (X(s),
X(t),X(u)), X X s X t X us t u, , ( ) ( ) ( )   =+-+ + - +, and X X s X t X us t u, , ( ) ( ) ( )   = .Moreover, a� Xs,t� bmeans that for
each uä (s, t): a� X(u)� b.

To understand how the formula is used for the crossing distribution one has to reformulate the problem.We
consider pairs of instants of an u-upcrossing and the following u-downcrossing and askfirst howmany of the
upcrossings, on average, are found in the unit interval. This is the intensity of the upcrossings and thus is found
from the standard Rice formula

X X u f u
r

r

u

r

1

2

0

0
exp

2 0
, 10u X

X

X X
0 0

2

0
⎜ ⎟
⎛
⎝

⎞
⎠

( ∣ ) ( ) ̈ ( )
( ) ( )

( )n
p

= = =
-

-+ +E

where rX is the (smooth) covariance function ofX. Finding the survival function of the excursion time reduces
thus to the evaluation of howmany of these pairs on average represent the length larger than, say, t0> 0. This is a
more challenging task, which can be approached by embedding it into a higher dimension and applying the
generalized Rice formula.
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Namely, in the theorem, we set n= 2 and takeZ(t)= Z(t, s)= (Xt,Xt+s),Λ= [0, 1]× [0, t0],Y
t(w)= X(w),

and g(t,Yt)= {Xt,t+s> u}. It should be pointed out that in this case the function g is not continuous and some
technical results should be used to augment (2); see the proof of theorem7.1 in [59] formathematical details of
the argument.We note that themeasure is of the dimension zero and thus it is again the countingmeasure. Now,
when it comes to Z t( ) it is a 2× 2 triangularmatrix with X X,t t s( )  + on the diagonal. Then using our abbreviated
notation, we have Z Xtdet t t s,( ) = + and it is not difficult to see that (2) yields the searched average
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where the second equality is by stationarity. Consequently, the pdf ofT+ is given by

f t X X u X fu u
1

. 12T
u
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An analogous argument is given in the appendix to obtain the distribution ofA,B. For aGaussian process,
when u is equal to themean level, the clipped process is symmetric with respect to the abscissa. Letμ+ andμ−

denote themean value ofTi
+ʼs andTi

-ʼs, respectively, whileμ is their common value in the symmetric case. For a
symmetrically clipped process, the joint density of the forward delayA and the backward delayBhas the density

f a b
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, . 13A B
T
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+

For the asymmetric case, with δ=± 1 indicating the status of the interval that contains the origin, the
distribution of (A,B, δ) is given through
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where fA,B|δ stands for the conditional density.
The discrepancy between the long-run interval distributions in a stationary point process and distributions

taken from a frozen starting point has beenfirst discussed for telephone calls. The solution has beenworked out
using the Palmmeasures, renewal processes, horizontal window conditioning, and the Rice formula. The
mathematical foundations have been long resolved [60–63], as in the key renewal theorem.We observe that the
intervals of a constant value (plus orminus) that include the origin of the horizontal axis are not distributed the
same as the similar intervals (excursions) as observed over the entire real line, see figure 4. As seen in the graphs,
the excursion time distribution over thewhole line is closer to the distribution of the distance from the origin to
thefirst crossing rather than the distribution of the entire excursion interval containing the origin. Statistically
speaking the origin of the horizontal line hits larger intervals than those following the excursion time
distribution. Thus thewell-known inspection paradox, according towhich observing a renewal interval at afixed
time yields on average longer length of it than that of an average renewal interval, can be also demonstrated in the
dependent renewal times case.

We note that the exact distribution can be dealt with in the samemanner over other-than-zero levels at
which the process is clipped. Using themethod, we have explored the relationship between the persistency and
the crossing level for the diffusion process in dimension two having the covariance r t t2 sech 2X ( ) ( )= . In
figure 5 (left), we see increasing dependence of the persistency on the crossing level.

3.2. The joint crossing distribution andMarkovian approximation
The investigation of the excursions can be extended to the joint distribution of subsequent intervals. In
particular, it can shed some light on the dependence structure and the accuracy of the IIA as well as of the
Markovian approximation.

For our purpose, we add an extra condition to Slepian’s ‘doubly conditioned’ process to get a ‘triply
conditioned’ process with a zero downcrossing at t= 0with upcrossings at s< 0< u.We derive the exact joint
distribution from (2) by the embeddingmethod. In the notation of that theorem, t= (r, t, s), r< 0< s,
Z(t)= Xt+r,t,t+s,Y

t(τ)= X(τ), Z Xtdet t r t t s, ,( ) = + + , andΛ= [t1, 0]× [0, 1]× [0, t2]. The ‘triply
conditioned’ crossing intensity is equal to the truncated product-moment of a conditional Gaussian distribution
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, the zero up/downcrossing intensity, ν+−+(s, t, u)/ν is the conditional
intensity of upcrossings at s, u, given a downcrossing at t.

To get the distribution of successive crossing intervals one has to qualify the expectation in equation (16) by
requiring that the process stays above 0 in the entire left interval and below in the right interval around t. Since
weworkwith a stationary process, we can take t= 0, and consider the indicator functions {Xs,0> 0} and
{X0,u< 0} to be included in the conditional expectation in equation (16). Further, set

g Y X X X Xt, 0 0 0 0 , 17t r t t t s t r t t t s
t

, , , ,( ) { }{ } { }{ } ( )= < > + > <+ + + +

andRice’s formula gives
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The exact expression for the probability density of the length of two successive zero crossing intervals is, [33],
equation (10) and [59], Thm. 7.1,

Figure 4.Distributions for: the distance from the origin to thefirst crossing (blue); the excursions including the origin (black, dash-
dotted); all the excursions (red) for the spectrum 1 2 3( )w+ - .

Figure 5. Left: Persistence exponent of the non-zero levels for the 2Ddiffusion. Exponential fits a xexp( )q- to the tail aboveT = 20
presented here at the logarithmic scale for the tail probability.Right:Dependencemeasures for shiftedGaussian spectra.
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Likemost, so-called, ‘explicit solutions’ tomathematical problems, the expectation in (19) has to be evaluated
numerically. The complexity is the same as computing the distribution of themaximumof a smoothGaussian
processX(t), X t xmax T0,( ( ) )[ ] P , see [64] for efficient software, and [65] for an analysis of numerical accuracy.

Due to the strong local dependence for smoothGaussian processes, theway to compute the expectation in
(19) is to replace the ‘infinite-dimensional’ indicator X X0t t,0 0,1 2

{ }> >- by afinite-dimensional one. To obtain
sufficient accuracy onemay have to take a dense gridwhich can result in an almost singularmultivariate
Gaussian distribution. The result, theMATLAB routineRIND, is included in the packageWAFO [44]. The
approach gives upper and lower bounds for the approximation errorwith controlled accuracy of computations.

We have seen that the relation between the dependence and the accuracy of the IIA approximation is
complicated and rather sensitive to small departures from the independence assumption. Inwhat follows, we
have compared the exactRIND pdfwith the IIA-based pdf for all themodels in table 1 andwe present numerical
dependencemeasures. First, we report that for the diffusion spectraBMSdused in [31], we have nearly
independence as can be seen infigure 2. Infigure 5 (right), we present the dependence for shiftedGaussian
spectra and in table 3 for other examples of spectra. The name convention for the spectra and covariances is as
follows.LHk andWHk hint at [15] and [51].WN is low-frequencywhite noise with a Butterworth
approximationBS, and the Jonswap spectrum J is an example of an oceanwave spectrum.

For each of the spectra, we computed the correlation between successive half periods and theKullback-
Leibler distance between the exact pdf and the IIA pdf. Figure 5 (right) shows the smooth relation between the
regularityα, where 1/α is the average number of localmaxima per crossing, i.e. r r r1 0 0 0X X X

2 4 2( ) ( ) ̈ ( )( )a = , and
the dependence for the shiftedGaussian spectra,WH0-WH9. The presented theoretical correlations agree with
those illustrated in [51],figure 8. The spectra in the other group aremore diverse and do not exhibit any
systematic relation, as seen in table 3.

We conclude this part by providing an insight into theMarkovian approximation (MA) for zero crossing
intervals, which dates back toMcFadden [19] andRainal [20, 21], who also tested themodel using the sequence
of correlations.Having the exact joint distribution of successive zero crossing intervals a natural next step is to
test theMarkov chain dependence of the full sequence of crossing intervals. If f t t,T T, 1 21 2

( ) is the joint density of
two successive crossing intervals, one can construct aMarkov transition kernel as k t t f t t f t,T T T2 1 , 1 2 11 2 1

( ∣ ) ( ) ( )= .
Since the numerical algorithm gives the joint density in the discretized form it is natural to construct a discrete
Markov chainwith discrete states x1, x2, K, xn, and transitionmatrix
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Weconsider aMarkov process with transition probabilities given by equation (20) and use it to obtain an
approximation for thewhole crossing sequence. A natural, exact, and rather strong test of themodel can be
based on the trivariate distribution of three consecutive intervals. The exact tri-variate density f t t t, ,T T T, , 1 2 31 2 3

( ) is
computed byRINDwith the same degree of complexity as the bivariate density. If the crossing sequence is
Markovian, then the conditional pdf of the lengthT2, given the lengthT1 of the previous interval, should be
equal to its conditional pdf, given the lengths of the two previous ones (T0,T1), i.e., for all xi, xj, xk
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We illustrate the technique on theWH3,WH6,WH8 processes, as examples of processes with ‘almost
independent’, ‘moderately dependent’, and ‘strongly dependent’ successive intervals.We use theRIND
applications cov2ttpdf and cov2tttpdf to compute the 2D and 3Ddensities in equations (20) and (21) and then
compute and plot the left-hand sides conditional densities for selected values of xj and, for each xj, for different
xi. Figure 6 shows the results.

Table 3.Dependencemeasures for rational, noise, andwave spectrum.

Model LH1 LH2 LH3 LH4 LH5 LH6 LH7 WN BS J

α 0.33 0.45 0.49 0.49 NA 0.50 NA 0.74 0.72 0.70

Corr(T1,T2) −0.02 −0.02 −0.02 0.25 0.04 0.19 0.23 −0.01 −0.02 0.44

KL 0.00 0.00 0.00 0.03 0.01 0.02 0.05 0.04 0.01 0.14
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From the graphs, we can conclude the dependence between intervals forWH3. However, the colored curves
in each subplot do not deviatemuch from the respective black curve, except for the shortest interval, which
indicates that theMarkov chain approximation can be used. ForWH6 the deviation from aMarkovmodel is
stronger, and forWH8 theMarkovmodel fails altogether.

Figure 6.Markov tests:WH3 (top),WH6 (middle), andWH8 (bottom). The left plot shows the 2Ddensity of successive lengths, while
the right one shows in the black thick lines the densities forT2, conditioned onT1 = xj. The colored curves show the effect of
conditioning on the precedingT0.
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3.3. Evaluation of the excursions in higher dimensions
The generalized Rice formula is not limited to one dimension and can be applied to randomfields depending on
temporal andmultivariate spatial arguments. In higher dimensions, persistence is harder to define since the
excursion sets cease to have a simple formof a union of compact intervals andmay create complex random
topological structures. Figure 7 presents excursion sets forfieldsW(t, p)with a time variable t and a space
variable p. Although bothfieldsmay have similar behavior along the temporal axis, the excursion sets and
persistencemay be quite different if the spatial relations are taken into account. For example, if the intensity of
the crossings ismeasured by the average length of the contour per unit square, it is quite clear that the second
field has longer contours than the first one. Despite the apparent complexity, some properties can be still
quantified by the generalized Rice formula andRIND routine.

As an illustration, let us consider the point process on the planes at the localmaxima of the process. This
problemwas thoroughly studied in [66]. In further development, the stochastic representation of the process at
the localmaximumknown as the Slepianmodel has been given in [67]. Herewe consider the localmaxima
within the excursion sets togetherwith the closest point at the crossing contour at which the tangent line is
perpendicular to the contour. The disk located at themaximumand tangent to the contour at that point is
entirely enclosed in the excursion set. If such disks were used for the renormalizedfield to obtain the same
crossing rates in space and time, it would lead to ellipsoids and their sizes quantify the persistence of the
stochastic field, see figure 8 (left). In [68], themethod of the generalized Rice formula and theRIND integration
has been applied to evaluate the three-dimensional distribution (A,R,Θ), whereA is the height in the local
maximum,R is the distance to the point at the level contour, andΘ is the spatial-temporal azimuth of the line
connecting the location of themaximumwith the point on the contour. The distribution ismeasured by the
observed relative frequencies of the localmaximawith a given property.

Figure 7.Temporal-spatial excursion sets for evolving spatial randomprocessW(t, p): strong spatial dependence (left) andweak
spatial dependence (right).

Figure 8.Excursion in 2D. (Left): the ellipsoids centered at the localmaximumand the black arrows identifying the closest point at the
contour after the rescaling to obtain the same crossing frequencies in time and space.A is the value of the field at themaximum,R is
the arrow’s length, andΘ is the angle the arrowmakeswith the temporal axis.We see the joint distributions of (R,A) (middle) and (Θ,
R) (right) given thatA is bigger than the 83%-percentile of its distribution.
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Weproceed in the familiar fashion by first addressing the overall frequency of the positive localmaxima
obtained from equation (1) by takingZ= (Wt,Wp), so that d= k. Themeasure is zero-dimensional so thatwe
count isolated points as we did in all previous examples.Moreover, Z is amatrix of the second partial derivatives
ofW and some simple computation leads to the Jacobian Z W W Wdet tt pp tp

2∣ ∣ ∣ ∣ = - . Sincewe are interested only

in points whereW has localmaximum,we need tomark by negative definiteness of Z t( ) to avoid counting
saddle points which leads to the Jacobian J W W W W ,pp tt tp pp

2( )= -- - where x xmax 0,( )= -- .Marking
additionally by the positive value of the localmaxima allows evaluating the intensity of the positive localmaxima
per temporal-spatial unit

W J v Z v f v vf0 00 0 0 , 0 0 d . 22J Z Z0 0max
0

0( ( ) ∣ ( ) ( ) ) ( ∣ ) ( ) ( )( ) ∣ ( ) ( )òn = > = =
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+ P

The algebraic formula in terms of special functions has been obtained through a rather lengthy derivation in
[66], pp. 351-353.However, to obtain the joint density of (R,A,Θ) the problem is considerablymore complex
and there is no hope for an analytical solution. Instead, one can resort to theRINDmethodology as follows.

We considerW(q), which plays the role ofYt in (2). The event thatmarks the positive localmaxima is then
B Wq q, 0r{ ( ) }= " Î , where r is the disk centered at 0 having radius r. In agreement with our previous

notational conventions, letB be also identifiedwith an indicator function of an eventB, i.e. equal one ifBholds
and zero otherwise. Then, by embedding into dimension fourwith

W W W WX q q q0, 0 , 0 , , 23t p( ) ( ( ) ( ) ( ) ( )) ( )= q

the joint pdf ofA,R,Θ is given by

f h r J r B W h f hX p, ,
1

, 0, 0, 0 0, , 24WX p
max

0, , 0( ) [ ( ) ∣ ( ) ( ) ] ( ) ( )( ) ( )q
n

q= = =+ E

for the Jacobian

J r W W W W W r W r, 0 0 0 0 , , ,pp tp tt pp r
2( ) ( )( ( ) ( ) ( ))∣ ( ) ( )∣q q q= - qq

whereWθθ,Wr are partial derivatives in the polar coordinates t p r r, cos , sin .( ) ( )q q= The derivation is similar
to the cases already presented and thus omitted.

For the density f (h, r, θ) in equation (24),RIND is utilized and an example of computations for the
JONSWAP spectrum spread by a cosine function are shown infigure 8 (middle-right). Therewe see the
distribution of rather rare events due to the condition onA to be above the 83%quantile. TheRIND computed
distributionmatches the intense simulation datawell.

It follows from the asymptotic properties of theGaussian fields that as the value ofA is getting larger, the
evaluation of the joint pdf of (A,R) ) is getting easier (and faster). This is because, in the numerical evaluation, the
indicator B in the formula can be replaced by one. This is in contrast to using the simulation approach to
approximate the pdfs involvingA by counting observed frequencies—very high localmaxima occur very seldom
and the computational cost increases.

3.4. Non-Gaussian stochasticmodels
Although the generalized Rice formula is also valid for non-Gaussian processes, theRIND is developed strictly
forGaussianmodels and the computational extensions beyond theGaussian domain are challenging even for
one-dimensional excursion sets. However, there is one class ofmodels for whichRIND is still applicable
although the computational challenges are greater than in theGaussian case. In thesemodels, the Brownian
noise has the time affected by a random time change represented by a non-decreasing Lévy process. Technically
speaking, this process, given the random time change, becomes a non-homogeneous Gaussian process towhich
both (2) andRIND apply. Thus by introducing additional integrationwith respect to random time one can still
utilize the convenience of high-dimensional strongly dependentmultivariate Gaussian distributions.

Things are not that straightforward though, since one has to address first what is the distribution of the
random time change around a crossing of the process. This was considered in [47] and a stochastic formof the
noise at the crossing instants was given. At themoment, the numerical implementation is not yet available in a
convenient interface to address the excursion distribution problem. Instead, we illustrate the difference between
Gaussian and non-Gaussianmodels featuring Lévy time change through a simpler case of the slope distribution
at the crossing. The problemdoes not involve high-dimensional integration and is reduced tofinding the joint
distribution of the process and its derivative at a crossing.

It is well known that, for a stationaryGaussian process, the derivative at a level crossing is independent of the
level value, whichmay seem counterintuitive. One of the few analytical results in the crossing distribution theory
states that the derivative at a crossing is Rayleigh distributed. These two elegant results are no longer true for
non-Gaussianmodels. To illustrate this we consider a non-Gaussian response to the Brownianmotionwith time
changed by the gammaprocess. Infigure 9, we show the derivative distributions at different crossing levels for
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processes having the same covariance of a smoothedOrnstein-Uhlenbeck type, which are obtained from the
kernels (impulse responses) presented in the graphs aswell. The computations for the non-Gaussian case have
beenmade using the Rice formula and numerically evaluating the joint distribution of the process and its
derivative at the single location [48, 69]. The derivative becomes steeper at higher levels, which is due to the
steepness of the chosen kernel around zero and thus kernels of different shapes will produce different results.

4. Conclusions

The progress in solving analytically the classical problemof the excursion distribution has been slow. In
computational physics, some quasi-analytical approaches, such as the IIA orMarkovian approximation of the
persistence exponent, have been developed.However, their applicability is limited to the properties that are
easily expressible through the Laplace transformsOn the other hand, recent advances in statistical computing
havemade it possible to compute probabilities and expectations for very high-dimensional while nearly singular
Gaussian distributions. It has been discussed how theMATLAB implementationRIND of thesemethods can be
used to solve intricate level crossing problems for stochastic processes and fields. The approach is very precise for
the excursion sets of Gaussian processes in one dimension.Moreover, as shown through examples from
dynamical randomfields and certain non-Gaussianmodels, a wide range of advanced excursion problems are
nownumerically accessible. Consequently, the Rice-basedmethod combinedwith effective high-dimensional
integration routines constitutes as an important computational tool for studying the level crossing distributions
of a large variety of randomphysical systems.
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