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Abstract

Finding the probability that a stochastic system stays in a certain region of its state space over a
specified time—along-standing problem both in computational physics and in applied and
theoretical mathematics—is approached through the extended and multivariate Rice formula. In
principle, it applies to any smooth process multivariate both in argument and in value given that
efficient numerical implementations of the high-dimensional integration are available. The
computational method offers an exact integral representation yielding remarkably accurate results
and provides an alternative method of computing persistency probability and exponent for a physical
system. It can be viewed as an implementation of path integration for a smooth Gaussian process with
an arbitrary covariance. Its high accuracy is due to efficient computation of expectations with respect
to high-dimensional nearly singular Gaussian distributions. For Gaussian processes, the computations
are effective and more precise than those based on the Rice series expansions and the independent
interval approximation. For the benchmark diffusion process, it produces the persistency exponent
that is essentially the same as the recently obtained analytical value and surpasses accuracy,
interpretability as well as control of the error, previous methods including the independent or
Markovian approximation. The method solves the two-step excursion dependence for a stationary
differentiable Gaussian process, in both theoretical and numerical sense. The solution is based on
exact expressions for the probability density for one and two successive excursion lengths. The
numerical routine RIND computes the densities using recent advances in scientific computing and is
easily accessible for a general covariance function, via a simple numerical interface. The work offers
also analytical results that explain the effectiveness of the implemented methodology and elaborates its
utilization for non-Gaussian processes.

1. Introduction

1.1. Persistency of physical stochastic systems
The persistence phenomenon is fundamental in many areas of physical sciences. Itis concerned with the fraction
of time (or space) in which a physical system persists in a certain state. The persistence probability P(f) represents
the probability that the system stays in the state in which it started at time zero. A remarkable fact about this
probability is that in a wide range of physical contexts, it decays either algebraically P() ~ ¢~ %, or exponentially
P(t) ~ ¢~ "', the two being equivalent through the logarithm-exponent transformation, with 6 in both the cases
referred to as the persistence exponent. In a system in which the state space is continuous, persistency is typically
referring to the system staying above a certain level. One then observes recurrences of the systems crossing this
level and dividing the time (or space) into regions of excursions above and below the level.

Itis not possible to fully account for the vast range of fields where the persistency plays an important role but
to give a perspective on the importance of persistency determination we selected some of the recent
contributions in various disciplines. In statistical physics, it has been used for non-equilibrium systems to
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characterize phase transitions, properties of the diffusion equation [1, 2], survival of spin states [3], fluctuating
steps, and interfaces [4]. In meteorology and climate research, persistency was used to statistically analyze the
clustering of extreme weather events in historical climate records [5]. The recurrence interval distribution in
earthquakes has brought persistency analysis into seismology [6] and analysis of heartbeat intervals
demonstrates its importance in physiology [7]. In an analysis of stocks during economic crises and distress, the
tail of the distribution interval between return volatilities above a certain threshold proves that the persistency
coefficient is an important characteristic that allows assessing financial risks of investments [8, 9]. Other
financial questions appear in option pricing under Lévy random walk where crossing time distributions for
upper or lower barriers are of interest [10]. All these examples highlight the importance of the distribution of
recurrence times or return intervals between extreme events for characterization and understanding of the
behavior of physical systems and phenomena.

For stochastic processes, the persistence probability can be viewed as the ratio of two path integrals. The
numerator integrates over paths obeying the condition of persistence and the normalizing denominator
integrates over all paths. The approach through path integrals has its limitation and in [4], we read ‘But as yet
there is no general scheme for an arbitrary correlation function for calculating the persistence exponent.” While the
statement remains still valid if one considers analytical evaluations of the persistency, it has been largely
overlooked that there is a computational method utilizing the generalized Rice formula that allows effective
computations not only of the persistency exponent but also persistency probabilities. The method works for any
covariance in a Gaussian process and extends to non-Gaussian models obtained by subjecting the Gaussian
measure to arandom time change. We advocate the method as a computational tool for studying persistency
problems in physical systems.

1.2. The problem and some of its early history

The problem of finding the intensity of the zero crossings of a random function has been probably first
formulated as a mathematical question by Littlewood and Offord [11]. About the same time it was solved by Rice
[12], who presented the celebrated Rice formula for the first time, also pointing out the physical context:
‘Although this problem is of some physical interest I have been unable to find references to any earlier work. Problems
of this nature occur in the investigation of the current reflected by small random irregularities along telephone
transmission lines.” The result is also known under the name Kac-Rice formula due to its solution for random
polynomialsin [13]. One of the central problems in Rice’s second article on random noise [14] is the statistical
characterization of the zeros of a stationary Gaussian process. Rice’s formula for the expected number of zeros,
and more generally, of non-zero level crossings, is the first step, but Rice also presents the in- and exclusion
series, the ‘Rice series’, for the distribution of the time between two successive mean level crossings.

The distribution of the number of zero crossings is naturally connected to the distribution of the successive
lengths of excursions above and below zero. Both problems were followed during the decades following Rice’s
article. However, elegant analytical solutions are elusive and the following quote by Rice [14] remains valid: “The
problem of determining the distribution function for the distance between two successive zero seems to be quite difficult
and apparently nobody has as yet given a satisfactory solution.’

The original Rice series was improved considerably by Longuet-Higgins who obtained a rapidly converging
moment series for the probability density of zero-crossing intervals [ 15, 16] and also compared approximations
based on the initial terms in the series with experimental results [ 17] and with earlier alternative series, suggested
by McFadden [18, 19].

Some studies by McFadden and Rainal [19-21] are of particular interest for the present article since they
present systematic theoretical as well as experimental studies of the dependence between successive crossing
intervals. Three approximations were studied, independence, ‘quasi’-independence, which assumes that the
sum of two successive intervals is independent of the next one, and the Markov type dependence. The first two
cases were analyzed by renewal type arguments using the Laplace transform [22, 23], and some numerical
solutions were compared to experiments. The Markov assumption [24] was tested by variance and correlation
parameters against experiments. All three assumptions were rejected for general Gaussian processes.

On the theoretical side, formulas for crossing moments of arbitrary order under minimal assumptions for
Gaussian processes have been obtained [25], and a generalized Rice formula for not necessarily Gaussian
processes has been presented by Zihle [26]. Further, a regression technique was introduced in [27, 28] as the first
step towards the numerical algorithms that are discussed in this paper.

1.3. Renewed interest and new exact tools

In the last two decades, the interest in the tail behavior of excursion times remerged in material science, optics,
statistical physics, and other areas [29]. The emphasis was on the tail distribution rate referred to as the
persistency exponent. The ‘independent interval assumption’ (IIA) was applied both to Gaussian processes and to
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Table 1. Un-normalized spectra and covariance functions.

SPECTRUM COVARIANCE FUNCTION SOURCE

Type: Rational spectrum

(1 +uw)? e+ 11 + £/3) LH1
w1 + W) e+ e — 22 + |1°/3) LH7

Type: Shifted Gaussian

cosh(kw)exp(—w?/2) cos(kt)exp(—t2/2), k = 0,1, 2,... WHk

Type: Noise and sea waves

11 sin(t) /t WN
(A + Wiy ! NA BS
JONSWAP NA J

Type: Diffusion

sech(nw), (d =2) sech®/2(t/2), d e N BMSd

Table 2. Numerically calculated persistence exponents 6(d) for

diffusion.

d NL RIND d NL RIND
1 0.1205 0.1206 (0.1203) 10 0.4587 0.4589
2 0.1875 0.1874 (0.1875) 20 0.6556 0.6561
3 0.2382 0.2382 30 0.8053 0.8063
4 0.2806 0.2805 40 0.9232 0.9327
5 0.3173 0.3171 50 1.0415 1.0439

other process models and compared to experiments [23]. The diffusion processes were analyzed in general
[1,30, 31] and an analytical solution for the persistency coefficient for the diffusion of order two was obtained by
arather deep combination of arguments across different developments in theoretical physics [32].

During the same years, new tools were developed in applied probability and scientific computing, and the
exact formula for the joint density of successive crossing intervals was given [33]. It involves the conditional
expectations of the derivatives at crossings and the indicator functions that the process stays above or below the
level between crossings. No analytic expressions are known, but the integral forms are readily computable by the
high-dimensional integration made possible by a carefully designed numerical approach.

1.4. Persistency of non-equlibrium systems—the diffusion case

Nonequilibrium dynamics of physical systems is one area of physics where the persistency problem was
investigated through empirical studies, for example, for first-passage exponent in two-dimensional soap froth
[34], and in aliquid crystal system exhibiting Ising-like behavior [35], the propagation of slow-combustion
fronts in paper sheets [36], for the temporal fluctuations of complex crystalline structures [37], for variation in
the spin orientation of a sample of laser-polarized'**Xe gas [38]. However, due to the statistical nature of the
phenomena, experimental results are rare and the theoretical understanding of the persistency phenomena is
critical. Itis confirmed by theory and experiment that the relation between the persistency exponent and the
characteristic defining the decay of temporal or spatial correlation functions is complex. Probably the most
studied case is a diffusing field starting from a random initial configuration [31, 38]. This model is attractive both
theoretically due to the linear form of the diffusion equation in any dimension, table 1, and experimentally
because of its natural physical interpretation in various non-equilibrium systems. For these reasons, the model
constitutes a mathematically convenient and physically important benchmark for any methodology aiming at
the persistency assessment. This benchmark is used throughout the paper and the results for it obtained through
the proposed computational methodology are compared with the results existing in the literature, table 2.
Examples of what can be expected for non-diffusive systems are also presented in the paper. We also present the
potential of implementation of pathwise integrals for the persistency in non-Gaussian case that is important
when non-linear generalizations of the diffusion equation are considered [36].
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Figure 1. A clipped process D, with the split to backward B and forward A delays.

1.5. Theoretical foundation of the approach
To geta proper insight into the methodology, let us recall a generalized Rice formula. We have opted for a fairly
general while mathematical formulation that is a minor generalization of Theorems 6.2 and 6.4 in [39]. The
reader will see in Example 1 below and section 3 that this is actually a very practical result.

Let Z: U — R%bea twice continuously differentiable Gaussian field, U C R k k> d witha non-singular
covariance matrix at any point. Then for the k — d dimensional measure V of the subset Cy(u) of these #’s in
A C Usuch that Z(t) = u:

EVCa)] = [ [1detzlf,50 @ wdz dr. M

In addition, assume that for each € U one has another continuous field, Y*: W — R", so that (£, w) — (Z(¢),
Y'(w)) defined on U x Wis Gaussian. Then, for abounded and continuous function g: U x C(W,R") — R:

E[fm)g(t, Yt dV(t)] = j; ElldetZ(1)|g(t, YHIZ () = ulfy, (w)dt. )

When the mathematical formalism is stripped out, there are several key points to be made about equation (1)
and, more generally, equation (2). The inner integration is essentially about averaging over the multivariate
Gaussian distribution. Consequently, efficient evaluation of such averages is the central problem in making the
formula usable. One does not need to restrict to the Gaussian universe and the results, under some technical
restrictions, generalize to more general stochastic processes. However, the integration in the conditional
expectation significantly adds to the computational challenge. In the Gaussian case, the integration challenges
have been addressed by proper use of computational linear algebra and numerical integration techniques in
[40,41], where a practically useful routine for computation of high-dimensional normal integrals has been
developed. Brodtkorb [42] combined all the described ideas into a powerful tool, adding new tests to control the
accuracy, and embedding it into a user-friendly code for Gaussian process crossing problems. The routine,
called RIND, based on these methods was included in the MATLAB toolbox WAFO [43, 44].

A WAFO-tutorial [45] guides the user through the technicalities of using the computational tools. It also
gives information about the main computational engine, the routine RIND, and presents examples of the code.
An illustration how the result can be practically used is presented next to study the backward and forward delays
via Rice’s formula.

Example 1. We derive the joint pdf of A, B for the clipped process in figure 1. We consider the zero-level

crossing case, but the general case can be treated similarly. In this problem,]n = 2, Z(t) = Z(s, t) = (X (s),
X(t)),s < 0 < t.Further A = [—D, 0] x [0, aland g(t, Y*) = {X;, > 0} + {X,, < 0}. ThenbyRice’s
formula

0 a .
E[Tierzomog® YY) = [ b fO ElldetZ(t)lg(t, YO X, = 0] fy(0)dt ds
Ll E[X(s)"X X X dt d
=2 B t st = .
I, [ EX @ X0 (X > 011X, = 01 £y (0)d ds 3)

The weighted sum E[3", A Z(t):Og(t’ YY]isequalto P(B < b, A < a). Hence, by stationarity of X, the joint
probability density of B, A is given by
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fB)A(by a) = ZE[X(fb)JrX(a)i{be,a > 0} |X7b,a = 0] fX,b,a(O)
— 2E[X O K (@ + B {Xours > 0} Xoass = 01y, (O). @

The persistence problem for non-Gaussian continuous-time models is extremely challenging and not much
work has been done in this direction, see [46]. While, in general, path integrals obtained from the generalized
Rice formula are still conceptually valid within the smooth but non-Gaussian domain, their efficient evaluation
needs to be addressed. The applicability of the approach to non-Gaussian models has not been intensively
studied but one specific case of the conditional Gaussian models has been addressed [47, 48], namely Laplace-
type non-Gaussian models built by Brownian motion with a random (Lévy) time change. A natural method here
is to apply conditioning on the underlying random time and then do additional integration over it. Such an
approach is computationally more expensive and has additional challenges due to the effect of conditioning on
the crossing value. Nevertheless, it is still computationally manageable and in some special cases random time
change analytical ‘shortcuts’ allows for significant improvement of the computational effectiveness. In the final
section of this work, we provide a short overview of this technique.

2. Persistence of a stochastic process

2.1. The point process of crossing instants and the IIA
The excursion time distribution can be formulated through the point process of crossing instants. We consider a
smooth process X(t), — 0o < t < 00 , and the time instants of u-level crossings, S;, leading to two sequences of
interlaced intervals of lengths T, i==+1,£2, ..,for the excursions above u-leveland T; ,i= £ 1, £ 2, ..., for
the analogous excursions below 1. We label the interval that contains the origin [ — B, A], with a forward delay
time A to the first crossing on the positive side, and a backward delay time B since the last crossing on the
negative side, whileitslength T;" = A+ B. Figure 1 explains the principle for indexing. The variable & is
introduced to keep track of excursions above, = 1, or below u, 6 = — 1. The process D(t) = + 1( — 1) when X
() > u( < u)is called the clipped version of the X-process at level u. If the smooth process X(#) is stationary, the
clipped process D(2) is also stationary. The point process of u-level crossings {S;}, is a stationary point process.
The clipped process is not easy to study due to the dependence between A, B, and T;’s. In an approach that is
quite popular in computational physics [31] one approximates this point process by a simpler renewal process
with independent crossing intervals. The covariance of the clipped Gaussian process is readily available and the
covariance of the simple renewal process connects to the distribution of independent intervals. Matching the
covariances of the two processes may give some insight into the distribution of the excursions times. Indeed,
some accurate approximations of the exponent of the tail distribution of T;’s have been obtained by this method.
The match goes via the Laplace transforms and is based on the following relation between the covariance R of
the renewal process with its Laplace transform £R and the probability distribution ® of independent intervals
with its Laplace transform (in the probabilistic sense, i.e. the Laplace transform of a probabilistic measure)
denoted by U:

2 —su(l — s LR(s))
2+ su(1 — s LR(s))

W(s) (5

where 1 is the average length of the renewal interval. Connection is then made by plug-in-style substitution of
the covariance function of a clipped process for the covariance R in the above. The above relation is in agreement
with formula (215) in [31]. However, the success of this method seems to end just right there, as the approach
does not provide any insight what are the probability distributions that satisfy these equations or even when they
exist at all. It has some applications to study persistency exponent since exponential asymptotics can be observed
through the largest negative pole of the Laplace transform. Any other questions about the excursion distribution
would require not only inverting the Laplace transform but first evaluating the Laplace transform of the
covariance. We conclude that the method has quite limited applications.

2.2.Dependence of level crossing intervals

The ITA is a popular method of approximating the persistence of stochastic processes, thus it is important to
investigate the degree of the dependence between crossing intervals and evaluate its effect on the approximation
accuracy. It is well-known that no Gaussian process can have exactly independent mean level crossing intervals
[15,19,49]. In this sense, the ITA is never exact. Here, we give an account of numerical evaluation of the degree of
the dependence for Gaussian processes. The exact approach through the generalized Rice formula is explained
and evaluated using the RIND routine, the technical details of the computations are given in [45]. We compare
the exact RIND pdf with the IIA-based pdf for the spectra in table 1, extending the cases extensively studied in
[50], and illustrate the results. We group these examples in two groups: spectra with near independent half-
periods, i.e. intervals between two subsequent crossings, and with strongly dependent half-periods. Note that the
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Figure 2. Joint pdf for spectra with almost independent half periods: the diffusions BMSd, d = 1,2 and LH1, WHO, BS, WN. Level
curves enclose 10, 30, ..., 99.9 % of the distributions. Red solid curves: pdf computed by RIND; Blue solid curves: pdf under ITA
assumption, with marginal pdf from RIND; Black dashed curves: simulated pdf from about 2.6 million pairs.

marginal distributions are computed from the exact pdf by integration and not by the ITA approach, which is
incapable of retrieving the marginal distribution as discussed later. The name convention for the spectra and
covariances in table 1 is as follows. LHk and WHK hint at [15] and [51]. The diffusion spectra BMSd were used in
[31]. WN is low-frequency white noise with a Butterworth approximation BS, and the Jonswap spectrum J is an
example of an ocean wave spectrum. Note that the spectra and covariance functions are listed in the un-
normalized form. In the examples, they are normalized so that the variance of the process and its derivative are
both equal to zero and thus the average length of a zero-crossing interval equals 7.

We start with a class of processes where successive zero-crossing intervals are ‘almost’ independent,
representing diffusion in d dimensions, where d = 1, 2 correspond to physically feasible experiments [31],
section 9. For all quantile levels, except for the most extreme, the true pdf and the one obtained by the
independent approximation are almost identical as shown in figure 2 Left. Similar results have been seen for
other d-values.

The remaining graphs in figure 2 show joint pdf for spectra with near independent intervals. There is a clear
visual agreement between the exact pdf (red) and the pdf with independent margins. The Gaussian spectrum
WHO and the approximating LH1 are centered at zero frequency and follow the IIA model almost perfectly. The
white noise spectrum WN deviates noticeably from how one normally envisages independent variables. For the
approximating Butterworth spectrum BS the pdfis near to the independence.

Figure 3 Left-Middle shows examples with clear or even strong dependence. As seen in the graphs, the
dependence can take many different shapes, which makes it difficult to catch it in a simple parametric form.

The RIND function is not limited to mean level crossings but works for any level as illustrated on the shifted
Gaussian spectrum model WHG6 for levels u = 0.1, 0.3. Figure 3 Right shows dependence and good agreement
between the RIND results and simulated pdf:s.

2.3. The persistence via the exact distributions
The most common meaning of persistence is as the tail of the first-crossing distribution

Qr = P(X(t)does not change sign betweent = Oandt = T), (6)

in particular for large T. For Gaussian processes, the asymptotics depends only on the covariance but general
results are scattered and not very precise. The most precise statements about the decay have been formulated for
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Figure 3. Left and Middle: Joint pdf with clear dependence: LH7, J, WH4, WH9 with correlation coefficient 0.13, 0.44, 0.30, 0.48
and Kullback-Leibler distance 0.05, 0.14, 0.11, 0.55; Right: Joint pdf of intervals above and below levels u = 0.1, 0.3 for shifted
Gaussian spectrum WH6.

processes with non-negative correlation function, while for oscillating correlation only upper and lower bounds
have been found.

Non-negative correlation:—[52], Thm. 1.6 gives a precise meaning to the ‘exponential tail” property: if the
correlation function () of a stationary Gaussian process X(t) is everywhere non-negative, there exists a non-
negative limit

b = — lim llogp( inf X(1) > o). @)
T—ooT t€[0,T]

The limit b, is necessarily finite [53] and thus it is meaningful to formulate the persistence tail as

1€[0,T] +€[0,T]
— 2~ (O+o(TNT — o—(O+o(THT (8)

QT:P( inf X(t) > 0) + P( sup X () <0)

with 0 < 6 = b, as the persistence exponent. Since nothing is said about the asymptotics of o(T) x T, equation (8)
only gives the main order of decay.

Oscillating correlation:—Very little is known about the persistence of oscillating correlation. The authors of
[54] studied the low-frequency white noise process with correlation function r(¢) = sin(t) /t and proved the
existence of exponential upper and lower bounds,

0<eT<Qr <e T, withe, C > 0. 9)

The ITA was used in [ 1] to find 04 for different dimensions of the diffusion processes defined by the
covariances in table 1, and compared with simulations, while experimental evidence for d = 1 was presented in
[38]. An efficient simulation procedure to estimate the persistence for arbitrary dimension was devised in [55],
which yielded the simulation-based evaluation of the corresponding persistence exponents. Recently, a definite
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answer for dimension d = 2 was given in [32], namely (2) = 3/16 = 0.1875, a value that agrees with the
simulation in [55]. At present, no exact values are known for other dimensions.

The persistence estimates in [55], Tab. 1 come from a large and well-controlled simulation experiment of
over 10° realizations of first crossing events. We have designed the following numeric procedure to estimate the
persistence exponent.

(i) Fix a maximum T,, and a grid t, =kA,, t,A;= T,,; this resembles the logarithmic grid in the [55]
simulations. T,, should be chosen so large that any numeric or stochastic uncertainty in the tail is
filtered out.

(ii) Compute, with RIND, Qrfor T=f;, k=1, ..., m; in [55] Qris estimated by simulation.

(iii) Make repeated independent runs to compute Qr and take the average Qr; RIND uses Monte Carlo
integration for extreme cases, and averaging will reduce the stochastic uncertainty.

(iv) Make a regression of —log(2Qr) against T; this can be done globally, over the entire interval [0, T,,], or
locally to allow for slow asymptotics in equation (8). The persistence exponent is then estimated as the slope
of the fit. We used quadratic polynomial fit to identify any typical trend in the exponential e G+ADT,

We used this scheme to estimate the persistence exponent for the 10 dimensions in [55]. We set A, = 0.05
and T,,, = 15 for d > 4, which corresponds to the time span used in that paper, A, = 0.1, and T,,, = 30, 30, 20 for
d=1,2,3. We computed Qr as the average of 400 independent runs of RIND with the SOBNIED method and
highest precision. The quadratic fit indicated that the local slope increased slowly with T. Table 2 shows the
exponents from [55], labeled NL and the RIND-values, represented by the local §7in the middle of the interval,
T=T,/2.

For dimensions d = 1, 2 we give two values in parenthesis to take account of the asymptotic character of the
persistence exponent. To accomplish this, we increased T, to 40, 35, respectively, and estimated the local rate of
decay for large T. For d = 1, the value = 0.1206 is the best estimate over the interval (0, 30), while the value
0.1203 is the stable value for large T. The NL-value 0.1205 is probably too high, based on a too short time span.
The RIND-value 0.1203 agrees with the value computed by ITA. For d = 2 the stable value is 0.1875, equal to the
theoretical value 3/16, given in [32]. For the diffusion in two dimensions, we evaluate the persistence for other
than zero levels and obtain values 0.2052, 0.2283, 0.2426, for levels u = 0.1, 0.2, 0.3, respectively, suggesting
some monotone dependence of the persistency on the level.

3. Exact distribution method

3.1. The Durbin-Rychlik formula

We have seen the ITA has limited application to studies of the excursion intervals even in the cases when the
independence seems nearly satisfied. On the other hand, the exact method not only yields more accurate results
but is also readily available. The root of the exact formula is Slepian’s ‘doubly conditioned’ process [28], which
explicitly describes a process with a level upcrossing at 0 and downcrossing at #; the conditioning is implicit in
Rice’s original paper [14]. The Rice series approximations achieve the qualifications by restricting the number of
extra crossings in the interior of the intervals by higher-order moments for the number of crossings. Recursive
formulas how to compute all truncated moments to a very high computational cost are found in [56]. The exact
formula for the distribution oflevel crossing intervals in Gaussian processes, developed in [57, 58], can be fairly
easily derived from (2). In our derivations, we use the following notational conventions from [33]: X; , ,, = (X(s),
X(), X(w)), X;;ﬁ = X(s)*X (1) X (u)*,and X, , = X (s)X (t)X (u). Moreover, a < X,, < b means that for
eachu € (s, 1): a < X(u) < b.

To understand how the formula is used for the crossing distribution one has to reformulate the problem. We
consider pairs of instants of an u-upcrossing and the following u-downcrossing and ask first how many of the
upcrossings, on average, are found in the unit interval. This is the intensity of the upcrossings and thus is found
from the standard Rice formula

v ety _ 1 [=i#x(0) o
vy = EXy [Xo = w)fy, (w) = - /—rX © exp( 20 (0))’ (10)

where rx is the (smooth) covariance function of X. Finding the survival function of the excursion time reduces
thus to the evaluation of how many of these pairs on average represent the length larger than, say, t, > 0. Thisisa
more challenging task, which can be approached by embedding it into a higher dimension and applying the
generalized Rice formula.
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Namely, in the theorem, we set n = 2 and take Z(t) = Z(t, s) = (Xp X;15), A = [0, 1] x [0, t,], Y'(w) = X(w),
and g(t, Y*) = {X,,,, > u}. It should be pointed out that in this case the function gis not continuous and some
technical results should be used to augment (2); see the proof of theorem 7.1 in [59] for mathematical details of
the argument. We note that the measure is of the dimension zero and thus it is again the counting measure. Now,
when it comes to Z (t) itisa2 x 2 triangular matrix with (X;, X, ;) on the diagonal. Then using our abbreviated
notation, we have det Z (t) = X,, | ,and itis not difficult to see that (2) yields the searched average

L pty .
E[SCienzomus® Y] = [ [ Bl ZOlg(t, YOI s = ulfy,, (s dt
— fo " EMXo, (Xos > u}Xos = ulfy, (wds, (11)

where the second equality is by stationarity. Consequently, the pdf of T is given by

(0 = —EIX, (Xog > )Xo, = ]  fy, (wL (12)

u

An analogous argument is given in the appendix to obtain the distribution of A, B. For a Gaussian process,
when u is equal to the mean level, the clipped process is symmetric with respect to the abscissa. Let ;" and 1~
denote the mean value of T;’sand T; s, respectively, while 1 is their common value in the symmetric case. For a
symmetrically clipped process, the joint density of the forward delay A and the backward delay B has the density

fr(a +b)

fap@ b) = (13)
For the asymmetric case, with 6 = £ 1 indicating the status of the interval that contains the origin, the
distribution of (A, B, 9) is given through
wh B
Pl=1)=—— POl=-D=——, (14)
po+ ot po+ ot
ta+b) “(a+b)
fA,B|5(a’ bll) = fT: fA,B|(5(a’ bl - 1) = fii’ (15)

where f4 s stands for the conditional density.

The discrepancy between the long-run interval distributions in a stationary point process and distributions
taken from a frozen starting point has been first discussed for telephone calls. The solution has been worked out
using the Palm measures, renewal processes, horizontal window conditioning, and the Rice formula. The
mathematical foundations have been long resolved [60—63], as in the key renewal theorem. We observe that the
intervals of a constant value (plus or minus) that include the origin of the horizontal axis are not distributed the
same as the similar intervals (excursions) as observed over the entire real line, see figure 4. As seen in the graphs,
the excursion time distribution over the whole line is closer to the distribution of the distance from the origin to
the first crossing rather than the distribution of the entire excursion interval containing the origin. Statistically
speaking the origin of the horizontal line hits larger intervals than those following the excursion time
distribution. Thus the well-known inspection paradox, according to which observing a renewal interval at a fixed
time yields on average longer length of it than that of an average renewal interval, can be also demonstrated in the
dependent renewal times case.

We note that the exact distribution can be dealt with in the same manner over other-than-zero levels at
which the process is clipped. Using the method, we have explored the relationship between the persistency and
the crossing level for the diffusion process in dimension two having the covariance ry (t) = 2 sech(¢/2).In
figure 5 (left), we see increasing dependence of the persistency on the crossing level.

3.2. Thejoint crossing distribution and Markovian approximation

The investigation of the excursions can be extended to the joint distribution of subsequent intervals. In
particular, it can shed some light on the dependence structure and the accuracy of the ITA as well as of the
Markovian approximation.

For our purpose, we add an extra condition to Slepian’s ‘doubly conditioned’ process to get a ‘triply
conditioned’ process with a zero downcrossing at f = 0 with upcrossings ats < 0 < u. We derive the exact joint
distribution from (2) by the embedding method. In the notation of that theorem, t = (, ,5), 7 < 0 <5,

Z() =Xy rirro Y (D) =X(7), det Z(t) = X; 4 11t 4+ oand A =[t;,0] x [0, 1] x [0, ,]. The ‘triply
conditioned’ crossing intensity is equal to the truncated product-moment of a conditional Gaussian distribution

9
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Figure 4. Distributions for: the distance from the origin to the first crossing (blue); the excursions including the origin (black, dash-
dotted); all the excursions (red) for the spectrum (1 + w?)~>.
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Figure 5. Left: Persistence exponent of the non-zero levels for the 2D diffusion. Exponential fits a exp(—6x) to the tail above T = 20
presented here at the logarithmic scale for the tail probability. Right: Dependence measures for shifted Gaussian spectra.

S,HLwAs, tu

o0 0 o0
vt t(s, t, u) = f f f 21202 fx x . (21, 20, 22, 0, 0, 0)dz dzo dz,
21=0 Y zp=—00 Y z,=0

=E[X,. Xoou = (0, 0, 0)] x fy (0,0, 0). (16)

St u

Withv = j(‘) > 2fy ©0),X(0) (z, 0)dz, the zero up/downcrossing intensity, v,

intensity of upcrossings at s, u, given a downcrossing at .

To get the distribution of successive crossing intervals one has to qualify the expectation in equation (16) by
requiring that the process stays above 0 in the entire left interval and below in the right interval around ¢. Since
we work with a stationary process, we can take t = 0, and consider the indicator functions { X, , > 0} and
{Xo,. < 0} tobeincluded in the conditional expectation in equation (16). Further, set

t, u)/vis the conditional

gt YY) = {Xiprr < O {Xpris > 0} + {Xpyre > 0} { X4 145 < 0}, (17)
and Rice’s formula gives
0 pl pb .
E[Sienzwm0g® YH] = j: fo fo EfldetZ(0g(t, YHIZ(®) = 0] f,, (0)dr dt ds

0 pn o
- f fo 2E[X, 0y (X0 < 0, Xo > 0} |Xpo = 01 f, (Odrds.  (18)
f >

The exact expression for the probability density of the length of two successive zero crossing intervals is, [33],
equation (10) and [59], Thm. 7.1,

10



10P Publishing

J. Phys. Commun. 6 (2022) 035007 G Lindgren et al

Table 3. Dependence measures for rational, noise, and wave spectrum.

Model LH1 LH2 LH3 LH4 LH5 LH6 LH7 WN BS J
« 0.33 0.45 0.49 0.49 NA 0.50 NA 0.74 0.72 0.70
Corr(Ty, T>) —0.02 —0.02 —0.02 0.25 0.04 0.19 0.23 —0.01 —0.02 0.44
KL 0.00 0.00 0.00 0.03 0.01 0.02 0.05 0.04 0.01 0.14
1 .
fT[,T/(_S) M) = _E[|X5,0,u|{Xs,0 >0 > XO,u} |Xs,0,u = (0) 0, 0)] fX;Ou(O’ 0, 0) (19)
v 0,

Like most, so-called, ‘explicit solutions’ to mathematical problems, the expectation in (19) has to be evaluated
numerically. The complexity is the same as computing the distribution of the maximum of a smooth Gaussian
process X(t), P(maxo, 71X (t) < x), see [64] for efficient software, and [65] for an analysis of numerical accuracy.

Due to the stronglocal dependence for smooth Gaussian processes, the way to compute the expectation in
(19) is to replace the ‘infinite-dimensional’ indicator {X_, o > 0 > X, ,,} by a finite-dimensional one. To obtain
sufficient accuracy one may have to take a dense grid which can result in an almost singular multivariate
Gaussian distribution. The result, the MATLAB routine RIND, is included in the package WAFO [44]. The
approach gives upper and lower bounds for the approximation error with controlled accuracy of computations.

We have seen that the relation between the dependence and the accuracy of the IIA approximation is
complicated and rather sensitive to small departures from the independence assumption. In what follows, we
have compared the exact RIND pdf with the ITA-based pdf for all the models in table 1 and we present numerical
dependence measures. First, we report that for the diffusion spectra BMSd used in [31], we have nearly
independence as can be seen in figure 2. In figure 5 (right), we present the dependence for shifted Gaussian
spectra and in table 3 for other examples of spectra. The name convention for the spectra and covariances is as
follows. LHk and WHKk hint at [15] and [51]. WN is low-frequency white noise with a Butterworth
approximation BS, and the Jonswap spectrum J is an example of an ocean wave spectrum.

For each of the spectra, we computed the correlation between successive half periods and the Kullback-
Leibler distance between the exact pdf and the ITA pdf. Figure 5 (right) shows the smooth relation between the
regularity c, where 1/ is the average number of local maxima per crossing, i.e. 1/a? = ry(0)r{’(0) /#%(0), and
the dependence for the shifted Gaussian spectra, WHO-WH9. The presented theoretical correlations agree with
those illustrated in [51], figure 8. The spectra in the other group are more diverse and do not exhibit any
systematic relation, as seen in table 3.

We conclude this part by providing an insight into the Markovian approximation (MA) for zero crossing
intervals, which dates back to McFadden [19] and Rainal [20, 21], who also tested the model using the sequence
of correlations. Having the exact joint distribution of successive zero crossing intervals a natural next step is to
test the Markov chain dependence of the full sequence of crossing intervals. If le,Tz (t, tp)is the joint density of
two successive crossing intervals, one can construct a Markov transition kernel as k (t,|t) = fn,TZ (i, 1) / le (#).
Since the numerical algorithm gives the joint density in the discretized form it is natural to construct a discrete
Markov chain with discrete states xy, x,, ..., X, and transition matrix

le,Tz (xj) Xk)

P(hh = xiT = xj)) = ———.
! >t 1, (% xi0)

(20)

We consider a Markov process with transition probabilities given by equation (20) and use it to obtain an
approximation for the whole crossing sequence. A natural, exact, and rather strong test of the model can be
based on the trivariate distribution of three consecutive intervals. The exact tri-variate density fTbT2 1,(ts 1y 13) is
computed by RIND with the same degree of complexity as the bivariate density. If the crossing sequence is
Markovian, then the conditional pdf of the length T>, given the length T} of the previous interval, should be
equal to its conditional pdf, given the lengths of the two previous ones (To, T}), i.e., for all x;, xj, xi

fTO,Tl,Tz (x5 Xjs Xk)

EifTO,ThT2 (x]1 Xk> xn)

P(Ty = xilTo = xi, T| = xj) = = P(T = x| T = x)). 2D

We illustrate the technique on the WH3, WH6, WHS8 processes, as examples of processes with ‘almost
independent’, ‘moderately dependent’, and ‘strongly dependent’ successive intervals. We use the RIND
applications cov2ttpdf and cov2tttpdf to compute the 2D and 3D densities in equations (20) and (21) and then
compute and plot the left-hand sides conditional densities for selected values of x;and, for each x;, for different
x;. Figure 6 shows the results.
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Figure 6. Markov tests: WH3 (top), WH6 (middle), and WH8 (bottom). The left plot shows the 2D density of successive lengths, while
the right one shows in the black thick lines the densities for T,, conditioned on Ty = x;. The colored curves show the effect of
conditioning on the preceding Ty,

From the graphs, we can conclude the dependence between intervals for WH3. However, the colored curves
in each subplot do not deviate much from the respective black curve, except for the shortest interval, which
indicates that the Markov chain approximation can be used. For WHG6 the deviation from a Markov model is
stronger, and for WH8 the Markov model fails altogether.
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Figure 7. Temporal-spatial excursion sets for evolving spatial random process W(t, p): strong spatial dependence (left) and weak
spatial dependence (right).

Lo,

¢ R " @ [radians]

Figure 8. Excursion in 2D. (Left): the ellipsoids centered at the local maximum and the black arrows identifying the closest point at the
contour after the rescaling to obtain the same crossing frequencies in time and space. A is the value of the field at the maximum, R is
the arrow’s length, and © is the angle the arrow makes with the temporal axis. We see the joint distributions of (R, A) (middle) and (O,
R) (right) given that A is bigger than the 83%-percentile ofits distribution.

3.3. Evaluation of the excursions in higher dimensions

The generalized Rice formula is not limited to one dimension and can be applied to random fields depending on
temporal and multivariate spatial arguments. In higher dimensions, persistence is harder to define since the
excursion sets cease to have a simple form of a union of compact intervals and may create complex random
topological structures. Figure 7 presents excursion sets for fields W(z, p) with a time variable tand a space
variable p. Although both fields may have similar behavior along the temporal axis, the excursion sets and
persistence may be quite different if the spatial relations are taken into account. For example, if the intensity of
the crossings is measured by the average length of the contour per unit square, it is quite clear that the second
field has longer contours than the first one. Despite the apparent complexity, some properties can be still
quantified by the generalized Rice formula and RIND routine.

Asan illustration, let us consider the point process on the planes at the local maxima of the process. This
problem was thoroughly studied in [66]. In further development, the stochastic representation of the process at
the local maximum known as the Slepian model has been given in [67]. Here we consider the local maxima
within the excursion sets together with the closest point at the crossing contour at which the tangent line is
perpendicular to the contour. The disk located at the maximum and tangent to the contour at that point is
entirely enclosed in the excursion set. If such disks were used for the renormalized field to obtain the same
crossing rates in space and time, it would lead to ellipsoids and their sizes quantify the persistence of the
stochastic field, see figure 8 (left). In [68], the method of the generalized Rice formula and the RIND integration
has been applied to evaluate the three-dimensional distribution (A, R, ©), where A is the height in the local
maximum, R is the distance to the point at the level contour, and © is the spatial-temporal azimuth of the line
connecting the location of the maximum with the point on the contour. The distribution is measured by the
observed relative frequencies of the local maxima with a given property.
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We proceed in the familiar fashion by first addressing the overall frequency of the positive local maxima
obtained from equation (1) by taking Z = (W,, W,), so that d = k. The measure is zero-dimensional so that we
count isolated points as we did in all previous examples. Moreover, Z is a matrix of the second partial derivatives
of Wand some simple computation leads to the Jacobian | det Z| = |W, Wyp — WZ,L Since we are interested only
in points where W has local maximum, we need to mark by negative definiteness of Z (t) to avoid counting
saddle points which leads to the Jacobian ] = W,,(W; — Wé, / W,p)~, where x~ = max(0, —x). Marking
additionally by the positive value of the local maxima allows evaluating the intensity of the positive local maxima
per temporal-spatial unit

Vmax — j;oo P(W(0) > 01J(0) = v, Z(0) = 0)V f}4)12¢0) (V0 AV ) (0). (22)

The algebraic formula in terms of special functions has been obtained through a rather lengthy derivation in
[66], pp. 351-353. However, to obtain the joint density of (R, A, ©) the problem is considerably more complex
and there is no hope for an analytical solution. Instead, one can resort to the RIND methodology as follows.

We consider W(q), which plays the role of Y’ in (2). The event that marks the positive local maxima is then
B = {Vq € D, W(q) > 0}, where D, is the disk centered at 0 having radius . In agreement with our previous
notational conventions, let B be also identified with an indicator function of an event B, i.e. equal one if Bholds
and zero otherwise. Then, by embedding into dimension four with

X(0, q) = (W:(0), W,(0), Wo(@), W(q) (23)
the joint pdf of A, R, © is given by

f . 0) = ——EU(r, 0)BIX(0, p) = 0, W(0) = hlfyqp1v10 0> ), (24)

max

for the Jacobian
J (1, 0) = Wyp(0) (W5 (0) — Wit (0) /Wy (0)) | Wag (r, ) Wi(r, 0)],

where Wyy, W, are partial derivatives in the polar coordinates (¢, p) = (r cos 0, r sin 8). The derivation is similar
to the cases already presented and thus omitted.

For the density f (h, r, §) in equation (24), RIND is utilized and an example of computations for the
JONSWAP spectrum spread by a cosine function are shown in figure 8 (middle-right). There we see the
distribution of rather rare events due to the condition on A to be above the 83% quantile. The RIND computed
distribution matches the intense simulation data well.

It follows from the asymptotic properties of the Gaussian fields that as the value of A is getting larger, the
evaluation of the joint pdf of (4, R) ) is getting easier (and faster). This is because, in the numerical evaluation, the
indicator Il in the formula can be replaced by one. This is in contrast to using the simulation approach to
approximate the pdfs involving A by counting observed frequencies—very high local maxima occur very seldom
and the computational cost increases.

3.4. Non-Gaussian stochastic models

Although the generalized Rice formula is also valid for non-Gaussian processes, the RIND is developed strictly
for Gaussian models and the computational extensions beyond the Gaussian domain are challenging even for
one-dimensional excursion sets. However, there is one class of models for which RIND is still applicable
although the computational challenges are greater than in the Gaussian case. In these models, the Brownian
noise has the time affected by a random time change represented by a non-decreasing Lévy process. Technically
speaking, this process, given the random time change, becomes a non-homogeneous Gaussian process to which
both (2) and RIND apply. Thus by introducing additional integration with respect to random time one can still
utilize the convenience of high-dimensional strongly dependent multivariate Gaussian distributions.

Things are not that straightforward though, since one has to address first what is the distribution of the
random time change around a crossing of the process. This was considered in [47] and a stochastic form of the
noise at the crossing instants was given. At the moment, the numerical implementation is not yet available in a
convenient interface to address the excursion distribution problem. Instead, we illustrate the difference between
Gaussian and non-Gaussian models featuring Lévy time change through a simpler case of the slope distribution
at the crossing. The problem does not involve high-dimensional integration and is reduced to finding the joint
distribution of the process and its derivative at a crossing.

Itis well known that, for a stationary Gaussian process, the derivative at alevel crossing is independent of the
level value, which may seem counterintuitive. One of the few analytical results in the crossing distribution theory
states that the derivative at a crossing is Rayleigh distributed. These two elegant results are no longer true for
non-Gaussian models. To illustrate this we consider a non-Gaussian response to the Brownian motion with time
changed by the gamma process. In figure 9, we show the derivative distributions at different crossing levels for
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Figure 9. The excursions are driven by noise entering the systems with the impulse response given in the upper-right corners (all
yielding identical covariances). The Gaussian model is driven by the standard Brownian motion strangely gives the same Rayleigh
distribution for the slope dX/dt at all crossing levels u (left). If the Brownian motion is distorted by a random (Gamma) time change,
then the slope behaves differently: a symmetric impulse response (1niddle), a casual impulse response (right).

processes having the same covariance of a smoothed Ornstein-Uhlenbeck type, which are obtained from the
kernels (impulse responses) presented in the graphs as well. The computations for the non-Gaussian case have
been made using the Rice formula and numerically evaluating the joint distribution of the process and its
derivative at the single location [48, 69]. The derivative becomes steeper at higher levels, which is due to the
steepness of the chosen kernel around zero and thus kernels of different shapes will produce different results.

4. Conclusions

The progress in solving analytically the classical problem of the excursion distribution has been slow. In
computational physics, some quasi-analytical approaches, such as the IIA or Markovian approximation of the
persistence exponent, have been developed. However, their applicability is limited to the properties that are
easily expressible through the Laplace transforms On the other hand, recent advances in statistical computing
have made it possible to compute probabilities and expectations for very high-dimensional while nearly singular
Gaussian distributions. It has been discussed how the MATLAB implementation RIND of these methods can be
used to solve intricate level crossing problems for stochastic processes and fields. The approach is very precise for
the excursion sets of Gaussian processes in one dimension. Moreover, as shown through examples from
dynamical random fields and certain non-Gaussian models, a wide range of advanced excursion problems are
now numerically accessible. Consequently, the Rice-based method combined with effective high-dimensional
integration routines constitutes as an important computational tool for studying the level crossing distributions
of alarge variety of random physical systems.
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