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Abstract

The paper presents an optimization-based method for topology error detection
in power systems. The method utilizes the residual analysis in state estimation and
minimization of normalized measurement residual, with the application of matrix
inverse lemma. The work considers a hybrid measurement configuration, i.e., both
SCADA and PMU measurements, for the test systems studied. The proposed method
is implemented on the TOMLAB optimization platform under the mixed integer
nonlinear programming category. The proposed method has been applied and tested
on standard IEEE 14-bus and IEEE 118-bus test systems. The method is designed to
be computationally efficient and produces accurate results for single topology error
detection. The results from the IEEE 14-bus and IEEE 118-bus test systems have
shown that the proposed method produces 100% and 94% accurate results for single
topology error detection, respectively. The proposed method performs robustly with
the increased measurement uncertainties and inclusion of bad data or gross errors
in the measurements. The method has superiority in practical implementation over
the meta-heuristics-based optimization methods. The proposed method can be easily
implemented and could have potential application in the energy management systems
of the power system control center.

Keywords: Network topology, optimization, phasor measurement units, state
estimation, topology error detection

1. Introduction

Topology processing is an integral and vital component of power system state
estimators (SEs). The topology processing module processes the measurements to
determine the physical architecture (interconnection of nodes) of the given network
and any electrical island present in the network [1]. Any error in topology may lead
to the wrong calculation of the state vector and divergence of the state estimation
algorithm [2, 3]. Topology errors may also lead to erroneous results in bad data



identification and wrong database for further analysis of power systems [4]. Topology
errors can also cause an economic impact in real-time power markets due to the
change in the locational marginal price [5].

Topology error detection methods proposed in the literature can be broadly clas-
sified into two general approaches: (l) numerical methods (analytical approaches),
and (2) rule-based methods [6]. The majority of the numerical methods depend on
conventional SE algorithms. The most commonly used state estimation algorithm is
the weighted least squares (WLS) algorithm [1]. The error detection methods used
are either pre-processed or post-processed in usual state estimation.

The topology error detection problem was primarily viewed from the perspective
of statistical analysis; however, later the problem was also approached with geometric
and normalized residuals perspectives. In [7], a method was proposed which improves
the SE performance by considering topological errors in the network model used. In
[8], a method was developed for the detection of topology errors by using a geometric
interpretation of the measurement residuals, and this method was extended further
to multiple topology error detection. In [9], the normalized residuals from state
estimation results are used to detect topological errors and then a unified model
with consideration of these errors is developed.

Further, some researchers also addressed the topology error processing problem
with a hybrid approach, including both numerical and rule-based approaches. In
[6], to calculate the bus voltage angles, the classification of the measurement data is
done by using consistency checks and a network search based on a set of accurate
measurements. Thereafter, the measured and calculated data are used for the de-
tection of topology errors. A method is proposed in [10], which estimates the status
of the suspected erroneous network elements. The method depends on the results of
least absolute value (LAV) SE, which has been proposed as an alternate to WLS SE,
for better handling of bad data. Similarly, an algorithm is proposed in [11] for the
detection of modest topological errors by using a nonlinear LAV SE with local search
algorithms. The normalized Lagrange multipliers are used in [12] for the detection
of topology errors. The normalized residual method forms the basis for this method.
The method proposed in [13] also uses normalized Lagrange multipliers to identify
the topology errors with the consideration of bad data and inaccurate network pa-
rameters. In [14], a new state estimation method is proposed based on conventional
WLS formulation, which considers the status of circuit breakers as state variables.
In [15], a Bayesian-based hypothesis testing procedure is developed and applied to
topology error processing via normalized Lagrange multipliers. The research work
in [16] has proposed a method based on hypothesis testing for topology error de-
tection. This approach is based on residuals which are obtained by comparing the
original measurement with the recovered power flows by solving the network tree.
In [17], a method is proposed for topology determination, bad data processing, and
state estimation based on a fuzzy clustering [18] and pattern matching technique.
A method is proposed for topology processing with PMU measurements in the case
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of partially observed networks in [19]. An exhaustive search based topology error
detection method for PMUs-only observable system is proposed in [20] along with
its validation in a real-time digital simulator. A topology error detection method
has been proposed in [21], which uses fully distributed algorithms over convexified
problem formulations to achieve scalability and near-global optimal solutions.

The recent approaches show the use of optimization techniques in the detection
of topological errors. In [22], an optimization algorithm is used for the strategic
placement of phasor measurement units (PMU) and traditional measurements in or-
der to enhance topology error processing capability. A method has been proposed to
enhance the accuracy of the network topology optimization in [21]. For the detection
of topology errors, heuristic method-based approaches are used. Similarly, the re-
search works in [23] and [24] present particle swarm optimization [25] and binary bat
algorithm-based methods for the detection of topological errors. The computational
intelligence-based optimization methods have some commonly known challenges such
as, i) the difficulty in tuning the optimization parameters, ii) considerably higher
number of iterations to converge and give the global optimal solution when the size
of the problem increases, and iii) system dependency and different performance under
different conditions. Keeping in mind these challenges in the practical implementa-
tion of such computational intelligence-based optimization methods, a conventional
optimization-based topology error detection method is proposed in this paper. The
main contributions of the paper can be summarized as follows:

• Proposing a conventional optimization-based topology error detection method
for systems with hybrid measurements, i.e., measurement set consisting of both
supervisory control and data acquisition (SCADA) [26] and PMU measure-
ments [27].

• Designing a computationally efficient optimization-based topology error de-
tection method by application of the matrix inverse lemma. The proposed
optimization-based topology error detection method is implemented in TOM-
LAB optimization platform using glcDirect solver.

The rest of the paper is organized as follows. Section 2 describes state estimation-
based topology error detection analysis. The problem formulation for topology error
detection is explained in Section 3. Section 4 presents the proposed method for
topology error detection. Section 5 presents the simulation setup and case studies.
Results are discussed in Section 6. Concluding remarks are outlined in Section 7.

2. State Estimation-based Topology Error Detection Analysis

This section reviews the details of topology error detection using SE residuals.
Further, the concept and procedure of detection of critical branch and critical pair
of branches are discussed. Their pre-calculation helps in reducing the candidates for
topological errors in the optimization problem.

3



2.1. SE Residual Analysis
Linearized measurement equations for WLS SE can be written as [1],

∆z = H∆x+ e (1)

where ∆z is the active power measurement mismatch vector, H is the decoupled Ja-
cobian matrix, e is the noise or measurement error vector, and ∆x is the incremental
state vector (phase angles).

The estimate, ∆x̂, of the linearized state vector in WLS SE is given by [1],

∆x̂ = (HTR−1H)
−1
(HTR−1∆z) (2)

where R−1 is the diagonal weight matrix.
Measurement residual vector, r, can be expressed as [1],

r = ∆z−∆ẑ = ∆z−H∆x̂ (3)

Substituting ∆x̂ from (2) in the above expression, one gets,

r = ∆z−H(HTR−1H)−1(HTR−1∆z) = [I−K]∆z (4)

where K = H(HTR−1H)−1HTR−1 is the so-called hat matrix and I is an identity
matrix.

The residual vector, r, and the noise vector, e, can be shown to be related as,

r = [I−K]e = We (5)

where W is the residual sensitivity matrix, given by,

W = I− (H(HTR−1H)−1HTR−1) (6)

Let there be a single bad measurement in the measurement set, viz., the ath one.
Let the ath element of the vector, e, be ea; the remaining elements being zeros. Then
the residual vector will be,

r = waea (7)

where wa represents the ath column of the matrix, W.
The above shows that residual vector, r, must be collinear with the column of

W, which corresponds to the bad measurement.
The observation on the measurement error can be extended to the topology errors

as well [8]. The measurements, z, can be expressed as functions of the states, x, as

z = a(x) + e (8)

where a(x) is the vector of functions relating the measurements to the states.
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The branch flow vector, b(x), can be related to the measurement function, a(x),
as,

a(x) = Mb(x) (9)

where M is the measurement to branch incidence matrix.
In case of a single branch topology error, the change in branch flow vector, ∆b(x),

will have all elements as zeros except for the one corresponding to the erroneous
branch. Let this error be βj; the erroneous branch being the jth one. Similar to (7),
the residual vector, r, can then be expressed as,

r = βWMlj (10)

where lj is a vector with the jth element as one and the remaining elements as zeros.
A single branch topology error, therefore, results in a residual vector that is

collinear with a column of the product, WM. Consequently, a zero column of the
matrix product, WM, corresponds to an undetectable topology error in a branch
and it is referred to as a critical branch. While collinear columns of the matrix
product, WM, correspond to unidentifiable single topology error in branches, and
they are referred to as a critical pair of branches.

2.2. Detection of Critical Branch and Critical Pair of Branches
A critical branch is the one, whose removal from the network renders the network

unobservable. A critical pair of branches are two branches, after removal of which,
the network becomes unobservable. The preceding subsection showed that a single
topology error can be detected by finding the column of the matrix product, WM,
which is collinear with the residual vector.

The procedure for the detection of critical branch and critical pair of branches
is explained in this subsection. Additionally, the expression of matrix, W, as given
by (6), involves inverse operation, which requires significant computational effort,
especially for large size or practical power systems [8].

Let us consider a fully observable network with a given measurement set. Let
n be the number of buses and m be the number of measurements. The size of the
Jacobian matrix, H, for a decoupled state estimation will be m× (n− 1).

The procedure for the selection of measurements within a given measurement
configuration in a network is explained here. For a given network configuration, usu-
ally, the location of measurements is fixed. Therefore, the objective of measurement
selection is to select any such (n-1) measurements from a given measurement set,
which can make the network fully observable. This statement holds true for a n-bus
system and P − δ decoupled state estimation.

The Jacobian matrix, H, is rearranged as shown below [8].

H =

[
H1

H2

]
(11)
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where H1 corresponds to such measurements that it is a square matrix and of full
rank.

The size of matrix H1 will be (n− 1)× (n− 1), and the size of matrix H2 will be
(m− n+ 1)× (n− 1). As matrix H1 is of full rank, the network is fully observable
with these (n-1) measurements. Following matrices are now defined [8].

F = H2H
−1
1 (12)

G = [−F I] (13)

The step-wise algorithm for the measurement selection for decomposing the mea-
surement Jacobian matrix in the above manner is presented below [1]. The matrices
calculation involved in the process is explained in the 7 with the help of a five-bus
test system.

1) Form the measurement to bus incidence matrix, Xm1, and the gain matrix,
U = XT

m1Xm1

2) Perform the triangular factorization of gain matrix, U, which results in matrices
CU and DU

3) Form the matrix, P, using an inverse of matrix, CU , considering only non-zero
rows of matrix, DU

4) Consider only the boundary injection measurement at buses where originally
injection measurements were not present and form a matrix, Xm2

5) Form B = Xm2P
T and its reduced echelon form, E

As mentioned in the previous subsection, topology error is reflected by the collinear-
ity of the residual vector with the matrix product, WM. In terms of gain matrix,
G, the residual sensitivity matrix, W, can be expressed as,

W = RGT (GRGT )−1G (14)

Since RGT and (GRGT )−1 are full-rank matrices, collinearity among the residual
vector and WM is equivalent to that among the residual vector and the product,
GM. The measurement to branch incidence matrix, M, is now decomposed in the
same manner, as shown in (11).

M =

[
M1

M2

]
(15)

The product, GM, then becomes [8],

GM = M2 − FM1 (16)
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Instead of analyzing the matrix product, WM, which is a tedious task, the product,
GM, is analyzed to identify the topology errors. Once measurement selection is
over, matrices M1 and M2 can be calculated and thus matrix product, GM, can be
calculated, according to (16). The algorithm is illustrated here by considering the
IEEE 14-bus test system.

The list of measurements is tabulated in Table 1, where measurement types 1
and 2 represent injection and flow measurements, respectively; and type 3 repre-
sents PMU measurements. PMU measurements are further transformed into power
injection and power flow measurements.

Table 1: Measurement Configuration for IEEE 14-bus Test System

Measurement Measurement Measurement
Serial Type Location

1 1 2
2 1 8
3 1 9
4 1 10
5 3 1-2
6 3 1-5
7 2 4-5
8 2 4-7
9 2 6-11
10 2 6-12
11 2 6-13
12 2 9-10
13 2 13-14
14 3 1
15 1 5
16 1 7
17 1 14

For the chosen system and measurement configuration, the matrix, H1, corre-
sponds to the measurements numbered from 1 to 13. The measurements numbered
from 14 to 17 correspond to the matrix, H2. To determine critical branch and criti-
cal pairs of branches, the matrix product, GM, is analyzed. Forming GMT for the
given system configuration,
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GMT =



1 0 −1.0000 0 0
2 0 0.8950 −0.1050 0
3 0 0 0 0
4 0 0 0 0
5 0 −1.0000 0 0
6 0 0 0 0
7 0 1.1050 0.1050 0
8 0 −0.5525 0.4475 0
9 0 −0.5525 −0.5525 0
10 0 1.0000 0 0
11 0 1.5525 0.5525 −1.0000
12 0 0 0.0000 0.0000
13 0 −0.5525 −0.5525 1.0000
14 0 0 0 0
15 0 −0.5525 0.4475 0
16 0 −1.5525 −0.5525 1.0000
17 0 0.5525 0.5525 −1.0000
18 0 −1.5525 −0.5525 1.0000
19 0 0 0 0
20 0 −0.5525 −0.5525 1.0000


As discussed in Section 3, all zero rows of the matrix product, GMT , represent
critical branches, which are not single-topology error detectable. Hence, for a given
measurement configuration, the critical branches are 3, 4, 6, 12, 14, and 19. While
the critical pairs of branches are those rows that are linearly dependent among them-
selves. Here, the critical pair of branches is (8-15).

3. Topology Error Detection Problem Formulation

This section reviews the normalized residuals method which is most commonly
used for topology error detection. Single topology errors are the most common type
of topology errors that occur in the network. If a branch outage renders the network
unobservable, then that particular branch is called a critical branch. For a given
measurement configuration, all critical branches can be pre-calculated, as explained
in Section 2.2.

The absolute values of the normalized residuals are likely to increase whenever
any topology error occurs in the network. Therefore, if the network is simulated
with an individual outage of all possible lines, the one which results in minimum
normalized residual, shall be the solution for topology error detection. In other
words, for correctly assumed topology, the normalized residual will be the minimum
[1].
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To obtain such a solution, the following formulation of original Jacobian matrix,
H, with an individual outage of all possible lines is used [1]:

Hc = H+He (17)

where H is the original Jacobian matrix, He is the matrix that contains elements
reflecting individual line outage, and Hc is the Jacobian matrix reflecting correct
topology.

State estimation equations, given in (2) and (3), are modified for topology error
detection problem as:

∆x̂c = (HT
c R

−1Hc)
−1(HT

c R
−1∆zc) (18)

rc = ∆zc −Hc∆x̂c (19)

where ∆zc is the measurement matrix corresponding to the correct topology of the
network.

4. Proposed Method

For problem formulation of topology error detection using the conventional opti-
mization based method, suspicious lines are defined as the lines in which there are
no flow measurements and are not critical branches as well. The total number of
suspicious lines is Ns.

A binary solution vector, t, is used here. The elements of this vector are either
zero (implies line is in) or one (implies line is out). The number of possible solution
vectors, t, is equal to the number of suspicious lines present in the network [20].

Now substituting (17) into (18) and (19):

∆x̂c = [(H+He)
TR−1(H+He)]

−1[(H+He)
TR−1∆zc] (20)

rc = ∆zc − [(H+He)∆x̂c] (21)

In (20) and (21), matrix He is the only variable; other matrices are fixed. If He

can be expressed as a direct function of solution vector t, then rc also becomes a
function of solution vector t. This can be formulated as:

He = STY (22)

where S is a constant incidence matrix relating measurements and suspicious lines; Y
is a constant admittance matrix relating suspicious lines with bus locations, and T is
the diagonal matrix formed by the elements of the solution vector t. For illustration,
let us formulate matrices Y and S for a test system described in Figure 1.

9



1

5 4 3

2

 !"#$%&!'()%*+,#( !"#$%&!-.#$

Figure 1: Line diagram of a 5-bus system with measurement set.

1. Formation of matrix, S: The size of matrix S will be m×Ns, where m is the
number of measurements and Ns is the number of suspicious lines. The entries
s in each row of matrix S will be done as:

s =


+1, if the injection is at sending end of the line
−1, if the injection is at receiving end of the line
0, otherwise

S =


Ns1 Ns2 Ns3 Ns4 Ns5

inj(2) −1 1 1 0 0
inj(4) 0 0 0 −1 1
flow(1− 5) 0 0 0 0 0


2. Formation of matrix, Y: The size of matrix Y will be Ns × n, where n is the

number of buses and Ns is the number of suspicious lines. The entries y in
each row of the matrix Y will be done as:

y =


+yq, if the bus is sending end of the line
–yq, if the bus is receiving end of the line

0, otherwise

Y =



1 2 3 4 5

Ns1(1− 2) y1 −y1 0 0 0
Ns2(2− 3) 0 y3 −y3 0 0
Ns3(2− 5) 0 y4 0 0 −y4

Ns4(3− 4) 0 0 y5 −y5 0
Ns5(4− 5) 0 0 0 y6 −y6


where yq is the admittance of the considered suspicious line.
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Therefore, the objective function along with the constraints can be expressed as:

min (rTc rc)
1/2 (23)

rc = ∆zc −Hc(H
T
c R

−1Hc)
−1(HT

c R
−1∆zc) (24)

Subjected to constraints:
Ns∑
q=1

t(q) = 1 (25)

where, t(q) is the qth element of the solution vector, t. The solution vector, t, which
gives the minimum value of r will be the desired solution for topology error detection.

In (24), the inverse of the matrix (HT
c R

−1Hc) is required, to find the fresh es-
timate of state variables and substitute it for evaluation of measurement residuals.
The size of the matrix (HT

c R
−1Hc) is n× n, where n is the number of buses. For an

nth order matrix, inverse calculations requires n3 operations. For higher-order sys-
tems, where the number of buses is large, it require significant computational effort
and involves large truncation errors. Thus, it turns out to be very costly for all math-
ematical applications and direct inversion of such a huge matrix is avoided. Under
certain measurement configurations, the direct matrix inversion method may some-
times fail to give correct results for topological error detection problem, especially
when the matrix (HT

c R
−1Hc) tends to become singular.

A matrix inverse lemma-based approach is proposed to avoid matrix inversion
calculations. The commonly used form of matrix inverse lemma technique is given
as [28]:

(A−BD−1C)−1 = A−1 +A−1B(D−CA−1B)−1CA−1 (26)
Let us substitute (17) into the matrix (HT

c R
−1Hc), and expand:

HT
c R

−1Hc = HTR−1H+HT
e R

−1He +HT
e R

−1H+HTR−1He (27)

The following notations are used to illustrate the matrix computation process:

HTR−1H+HT
e RHe = A1 (28)

HTR−1H+HT
e R

−1He +HT
e R

−1H = A1 +HT
e R

−1H = A2 (29)
HTR−1H+HT

e R
−1He +HT

e R
−1H+HTR−1He = A2 +HTR−1He = A3 (30)

Here, in this problem, matrix He is a highly sparse matrix in which only a few
elements change from the base case matrix. In (26), to obtain the inverse of a matrix
(A−BD−1C), it further requires the inversion of matrix A and matrix (D−CA−1B).

In the topology error detection problem of (27), matrix A is equivalent to HTR−1H,
which is a known matrix and whose inverse can be pre-calculated and can be used
further. Also, the size of the matrix (D−CA−1B) will be the same as that of matrix
D. If matrix D can be expressed as a scalar quantity (with corresponding values of
matrix B and C), then the term (D −CA−1B) will also become a scalar quantity.
This detailed problem formulation is presented as follows:
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Inversion of A1 in (28) can be broken in the standard form of inverse lemma tech-
nique (26), as follows:

A = HTR−1H, B1 = He
T , D1 = R, C1 = He

Further, B1 and C1 can be expressed in terms of solution vector, t, as:
B1 = NQtT , C1 = tQTNT

Thus,
A−1

1 = (A−B1D
−1
1 C1)

−1

= A−1 +A−1B1(D1 −C1A
−1B1)

−1C1A
−1

Inversion of A2 in (29) can be broken in the standard form of inverse lemma tech-
nique (26), as follows:

A1 = HTR−1H+HT
e R

−1He, B2 = He
T , D2 = R, C2 = H

Further, B2 and C2 can be expressed in terms of solution vector, t, as:
B2 = NQtT , C2 = tJH

Thus,
A−1

2 = (A1 −B2D
−1
2 C2)

−1

= A−1
1 +A−1

1 B(D2 −C2A
−1
1 B2)

−1C2A
−1
1

Inversion of A3 in (30) can be broken in the standard form of inverse lemma tech-
nique (26), as follows:

A2 = HTR−1H+HT
e R

−1He +HT
e R

−1H, B3 = HT , D3 = R, C3 = He

Further, B3 and C3 can be expressed in terms of solution vector, t, as:
B3 = HTJT tT , C3 = tQTNT

Thus,
A−1

3 = (A2 −B3D
−1
3 C3)

−1

= A−1
2 +A−1

2 B3(D3 −C3A
−1
2 B3)

−1C3A
−1
2

where N is a constant admittance matrix of size n× nline, which relates line admit-
tances with bus locations; Q is a constant incidence matrix of size nline ×Ns, which
relates all the lines with suspicious lines; J is also a constant incidence matrix of
size Ns ×m, which relates measurements with suspicious lines and H is the original
Jacobian matrix. Here, n is the number of buses, nline is the total number of lines,
Ns is the number of suspicious lines, and m is the number of measurements.

D1, D2, and D3 are scalar quantities that represent the weights assigned to
measurements in state estimation. Here, matrices (D1−C1A

−1B1), (D2−C2A
−1
1 B2),

and (D3 − C3A
−1
2 B3) are scalar quantities. The matrix A−1

3 corresponds to the
desired inverse of the matrix (HT

c R
−1Hc).

12



5. Simulation Setup and Case Studies

This section presents the simulation setup which includes the optimization and
solver setup and case studies for the IEEE 14-bus and IEEE 118-bus test systems
[29], to evaluate the performance of the proposed method.

5.1. Optimization and Solver Setup
The objective function of the optimization problem is to minimize the function

r and finding the solution vector, t, corresponding to this minimum value of r.
The size of the solution vector, t, varies with the size of the test system. For a given
measurement configuration, the suspicious lines constitute the possibilities of solution
vector, t. The proposed method is implemented in a computer with configuration as
Intel(R) Xeon(R) CPU E5-1650@3.20 GHz and 10.0 GB RAM. The implementation
is done using MATLAB(R) R2014a and TOMLAB 8.1 toolbox [30]. The optimization
model is developed and formulated using the optimization toolbox TOMLAB that
offers various optimization categories and solvers. The optimization problem in the
proposed method is solved under the mixed integer nonlinear programming (MINLP)
category. The glcDirect solver along with its default options is employed in this
work. This solver is a modified version of the algorithm DIRECT implemented
in [31] for solving a constrained mixed integer global optimization. The original
DIRECT algorithm is modified and expanded by TOMLAB for the handling of the
nonlinear/linear equalities along with the linear inequalities.

5.2. Case Studies
The proposed method is applied on IEEE 14-bus and IEEE 118-bus test systems

[29] whose details along with the measurement configuration are presented as follows:

5.2.1. IEEE 14-bus test system
The measurement details and locations are tabulated in Table 2. While the

critical branches and critical pairs of branches are presented in Table 3. For the
considered measurement configuration, there are nine flow measurements and six
critical branches, with one common line, so there are six suspicious lines.

Table 2: Location of Different Measurements for IEEE 14-bus Test System

Location of injection
measurements

(SCADA)

Location of flow
measurements

(SCADA)

Location of PMU
measurements

2, 5, 7, 8, 9, 10, 14 4-5, 4-7, 6-11, 6-12,
6-13, 9-10, 13-14

1 (Injection-1,
Flow- 1-2, 1-5)
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Table 3: Critical Lines and Critical Pairs of Lines for IEEE 14-bus Test System

Critical Lines Critical Pairs of Lines
2-3, 2-4, 3-4, 6-12, 7-8, 12-13 (4-7, 7-9)

5.2.2. IEEE 118-bus test system
The measurement details and locations for this test system are tabulated in Ta-

ble 4. While the critical branches and critical pair of branches are presented in
Table 5. For the considered measurement configuration in IEEE 118-bus system
[29], there are fifty suspicious lines.

Table 4: Location of Different Measurements for IEEE 118-bus Test System

Location of
injection
measure-
ments

(SCADA)

Location of flow measurements
(SCADA)

Location of
PMU mea-
surements

1, 2, 4, 6, 8,
12, 13, 15,
17, 19, 20,
22, 23, 25,
27, 28, 31,
32, 34, 36,
37, 38, 41,
42, 45, 48,
49, 55, 61,
63, 68, 71,
73, 77, 78,
85, 89, 92,

94, 100, 103,
105, 108, 110,
115, 116, 118

1-3, 3-12, 4-5, 5-11, 6-7, 7-12, 8-9, 8-30, 11-12,
12-14, 12-16, 13-15, 15-17, 15-19, 15-33,
16-17, 17-113, 19-20, 22-23, 23-25, 24-70,
24-72, 25-26, 26-30, 27-32, 28-29, 29-31,

32-113, 32-114, 33-37, 34-37, 34-43, 35-36,
35-37, 37-39, 38-65, 39-40, 40-42, 41-42,
43-44, 45-49, 46-48, 47-49, 47-69, 49-54,
49-69, 52-53, 53-54, 54-55, 54-56, 55-56,
56-57, 50-57, 54-59, 60-61, 60-62, 61-62,
61-64, 62-67, 64-65, 65-68, 66-67, 68-81,
69-70, 70-75, 71-72, 74-75, 75-77, 76-118,
76-77, 83-85, 84-85, 85-89, 89-90, 91-92,

92-94, 93-94, 94-95, 94-100, 95-96, 99-100,
100-101, 100-106, 101-102, 103-105, 104-105,
105-106, 106-107, 108-109, 109-110, 114-115

10, 58, 80, 82,
87, 98, 112
(Injection-

10, 58, 80, 82,
87, 98, 112

Flow-
9-10, 56-58,
51-58, 77-80,
77-82, 79-80,
80-81, 80-96,
80-97, 80-98,
80-99, 82-83,
82-96, 86-87,

98-100,
110-112)
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Table 5: Critical Lines and Critical Pairs of Lines for IEEE 118-bus Test System

Critical Lines Critical Pairs of Lines

3-5, 8-9, 9-10, 12-14, 12-117,
14-15, 46-47, 51-52, 52-53, 53-54,
56-59, 59-60, 59-63, 62-66, 63-64,
65-66, 68-116, 69-75, 70-74, 71-73,
74-75, 80-97, 83-84, 84-85, 85-86,
85-88, 86-87, 88-89, 89-90, 90-91,
91-92, 96-97, 110-111, 110-112

(1-2, 2-12) (1-3, 3-12) (4-5, 4-11)
(11-13, 13-15) (12-16, 16-17) (15-33,

33-37) (25-26, 26-30) (32-113,
17-113) (37-39, 39-40) (40-41, 41-42)
(54-55, 55-59) (68-81, 80-81) (80-98,

98-100) (94-95, 95-96) (100-103,
104-105) (105-107, 106-107)

5.3. Consideration of Measurement Uncertainties
The measurement meters are installed in the field and the measurements are re-

ceived through communication channels, which leads to unwanted phenomena such as
the addition of noise, data packet loss, etc., making the measurements contaminated.
To incorporate the noise, uncertainties are added to the measurements without the
loss of generality. It is simulated by adding uncertainties based on the Gaussian
distribution associated with the type of measurements. Further, the added Gaus-
sian noise has zero mean and the maximum measurement uncertainties associated
with the different type of measurements are shown in Table 6 [32]. To analyze the
impact of measurement uncertainties on the accuracy of the proposed method, ad-
ditional case studies with increased measurement uncertainties are performed. The
maximum measurement uncertainties associated with different measurement types
for the additional case studies are presented in Table 7.

Table 6: Standard Maximum Measurement Uncertainties Associated with Different Measurement
Types

Measurement
Type

SCADA Measurements PMU Measurements
Power Injection Power Flow Voltage Current

Maximum
Uncertainty 3% 3% 0.02% 0.03%

Table 7: Maximum Measurement Uncertainties Associated with Different Measurement Types for
Additional Case Studies

Measurement Uncertainty

Sl. No.
SCADA Measurements PMU Measurements

Power Injection Power Flow Voltage Current
Case Study 1 4% 4% 0.03% 0.04%
Case Study 2 5% 5% 0.04% 0.05%
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6. Results and Discussion

This section presents the results obtained through the application of the proposed
method for topology error detection in IEEE 14-bus and IEEE 118-bus test systems.
The software-based TOMLAB optimization platform is employed in the proposed
method to solve the topology error detection problem.

6.1. Accuracy of the Proposed Method
This subsection presents the accuracy of the proposed method under different

case studies such as standard measurement uncertainties, increased measurement
uncertainties, and, inclusion of bad data.

6.1.1. With Standard Measurement Uncertainties
The results for all possible cases of topology error detection with IEEE 14-bus

and IEEE 118-bus test systems for a given measurement configuration are presented
in Table 8. While the percentage accuracy obtained using the proposed method (in
case of the single topology error detection) for IEEE 14-bus and IEEE 118-bus test
systems is presented in Figure 2.
Table 8: Results of Topology Error Detection with the Proposed Method for IEEE 14-bus and
IEEE 118-bus Test Systems

Methods IEEE 14-bus IEEE 118-bus

Possible cases 6 50

Number of cases with
correct detection 6 47

Figure 2: Percentage accuracy for topology error detection using the proposed method with IEEE
14-bus and IEEE 118-bus test systems.
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It can be seen from Figure 2 that the proposed matrix inverse lemma-based con-
ventional optimization method produces 100% and 94% correct results for single
topology error detection with IEEE 14-bus and IEEE 118-bus test systems, respec-
tively. The reason behind such high accuracy is the capability of the proposed
method to handle large inverse operations. The impact of large inverse operations
on the accuracy will be less significant in the case of small test systems. But as the
size of the system increases, the direct inversion process becomes more tedious and
produces high truncation errors which could lead to wrong results. As presented
in Figure 2, the proposed method performs well with both IEEE 14-bus and IEEE
118-bus test systems and thus its performance remains largely independent of the
size of the test system. The proposed method shall give similar percentage accuracy
with the increase in the size of the network.

6.1.2. With Increased Measurement Uncertainties
Measurement uncertainties may have an impact on the accuracy of the proposed

topology error detection method. In order to test the performance of the proposed
method under such conditions, case studies are performed with different maximum
measurement uncertainties as presented in Table 7. The results obtained with both
case studies have shown the same percentage accuracy as in the previous subsection.
The proposed method in these case studies have produced 100% and 94% correct
results for single topology error detection with IEEE 14-bus and IEEE 118-bus test
systems, respectively. The results of these case studies confirm the robustness of
the proposed topology error detection method in case of increased measurement
uncertainties or higher measurement noise.

6.1.3. With Inclusion of Bad Data or Gross Errors
The proposed method is tested with the inclusion of bad data or gross errors in the

measurement set. This effect is simulated by randomly selecting and contaminating
2 and 18 number of measurements in IEEE 14-bus and IEEE 118-bus test systems,
respectively. After measurement selection, uncertainties in the range of 10 − 20%
are added randomly to these measurements [33]. All possible cases of topology error
detection with IEEE 14-bus and IEEE 118-bus test systems are simulated with the
inclusion of bad data. There is no substantial impact of bad data or gross errors
on the accuracy of the proposed method and the same percentage accuracy level is
achieved in both IEEE 14-bus and IEEE 118-bus test systems.

6.2. Execution Time of the Proposed Method
The average TOMLAB execution time for the IEEE 14-bus and IEEE 118-bus

test systems are presented in Table 9. The execution time is further classified under
three categories as symbolic processing, elapsed, and CPU time.

1. Symbolic processing time refers to the initial setup of the problem formulation.
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2. Elapsed time refers to the effective time spent by the solver to converge and
reach the best found solution.

3. CPU time refers to the total time spent by each processor thread (parallel
processing).

The CPU time is in principle higher than the elapsed time since it accounts for
the aggregated sum of the time spent by each thread that processes the parts of the
glcDirect solver.

It can be seen from Table 9 that the symbolic processing time are similar in case
of IEEE 14-bus and IEEE 118-bus test systems. It also shows that the symbolic
processing time has a minor impact in the overall computation time. Further, the
average elapsed time and CPU time increases with the size of the test system which
is expected due to processing of larger matrices and more possibilities for the can-
didates. However, the average elapsed time comes out as 0.1368 seconds and the
average CPU time comes as 0.8512 seconds which is within the acceptable range.

Table 9: Average Execution Time with the Proposed Method for IEEE 14-bus and IEEE 118-bus
Test Systems (in Seconds)

Category IEEE 14-bus IEEE 118-bus

Symbolic Processing Time 0.0848 0.0950

Elapsed Time 0.0190 0.1368

CPU Time 0.0219 0.8512

7. Conclusion

A methodology for topology error detection for power systems is proposed in this
paper. The method is based on residual analysis in state estimation and minimization
of normal residual. The proposed method utilizes the matrix inverse lemma method
and a conventional optimization method. The conventional optimization formula-
tion is implemented on the TOMLAB optimization platform under the mixed inte-
ger nonlinear programming category. The proposed method is applied to standard
IEEE 14-bus and IEEE 118-bus test systems. The method performed adequately
and produced results with high percentage accuracy for topology error detection in
case of both test systems. The proposed method also performed robustly with the
increased measurement uncertainties and inclusion of bad data or gross errors in the
measurement set. The method is designed to perform in a computationally efficient
manner and thus it has potential application in power system monitoring and con-
trol. The results of topology error detection have a direct impact on the output of
state estimation, which in turn is very important for system security and reliability.
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The extension of the method to detect multiple topology errors under various other
measurement configurations is planned for future studies.
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Appendix A. Measurement Placement Example

Here the problem of measurement placement as presented in Section 2.2 is illus-
trated with a test case.

Consider an example of a five-bus system. A single line diagram for a test sys-
tem with five bus and six lines along with two power injection and one power flow
measurement is shown in Figure 1.

The various matrices for measurement selection algorithm in the case of this test
system are as follows:
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Xm1 =

−1 3 −1 0 −1
1 0 0 0 −1
0 0 −1 2 −1

 ,U =


2 −3 1 0 0
−3 9 −3 0 −3
1 −3 2 −2 2
0 0 −2 4 −2
0 −3 2 −2 3



C =


1

−1.5 1
0.5 −0.33 1
0 0 −2 1
0 −0.67 1 0 1

 ,D =


2
4.5

1
0
0

 ,P =

[
0 0.67 2 1 0
1 0.33 −1 0 1

]

Xm2 =

 2 −1 0 0 −1
0 −1 2 −1 0
−1 −1 0 −1 3

 ,B =

−0.67 0.67
2.33 −2.33
−1.67 1.67

 ,E =

1 −1
0 0
0 0


It can be seen, from matrix E, that by placing injection measurements at non-
zero rows location, i.e., bus 1, the network becomes fully observable. This same
methodology was implemented for measurement selection in IEEE 14-bus and IEEE
118-bus test systems, keeping the network observability intact.
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