
On test case reduction for testing safety properties of manufacturing
systems

Downloaded from: https://research.chalmers.se, 2025-04-02 20:48 UTC

Citation for the original published paper (version of record):
Khan, A., Mohajerani, S., Fabian, M. (2022). On test case reduction for testing safety properties of
manufacturing systems. Journal of Manufacturing Systems, 63: 203-213.
http://dx.doi.org/10.1016/j.jmsy.2022.02.011

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

On test case reduction for testing safety properties of

manufacturing systems

Adnan Khan, Sahar Mohajerani, Martin Fabian

Chalmers University of Technology, Department of Electrical Engineering, 41296 Göteborg, Sweden

Abstract

This paper presents an approach to reduce the number of test cases, and hence testing time for the
safe input-output conformance simulation relation (safe-IOCOS). The safe-IOCOS relation requires
the implementation to be trace equivalent with respect to the specification only for traces composed
of safety behaviors, which makes safe-IOCOS a suitable relation to test safety properties in practical
settings. However, in typical manufacturing systems, multiple safety behaviors are typically associated
with each nominal operation in the implementation. Thus, if safe-IOCOS is used industrially then
testing for safety related faults becomes time consuming as the traces composed of same safety behaviors
gets tested multiple times. This is possible either if the target states reached after the execution of
traces have the same past behavior or the same future behavior. To remedy this, two reduction
methods are proposed in this paper, subset construction and bisimulation equivalence. Both reduction
methods preserve the traces of the system. Using both subset construction and bisimulation, a given
specification can be maximally reduced and then used to implement the manufacturing system. The
implementation based on a maximally reduced bisimilar specification allows the test engineer to omit
test cases if the same safety behavior has already been tested. Furthermore, faults related to missing
safety behaviors that are associated with multiple traces can be uncovered more efficiently compared
to if the non-reduced specification is used for testing. To summarize, testing is a laborious problem,
which can benefit from methods that enable reduction in testing time and makes the testing procedure
efficient in terms of uncovering errors.

Keywords:
Labelled transition systems, Input-output conformance testing, Bisimulation, Safety, Discrete event
system, Subset construction method

1. Introduction

Currently, many machines in the industrial
sector are controlled via programmable logic con-
trollers (PLCs). These PLCs are usually pro-
grammed such that the installed machines are co-
ordinated to carry out specified tasks. The con-
trolled behavior of such machines is mainly dis-

Email addresses: adnan.khan@chalmers.se (Adnan
Khan), mohajera@chalmers.se (Sahar Mohajerani),
fabian@chalmers.se (Martin Fabian)

crete in nature, therefore these can be formally
modelled as discrete event systems [1].

Discrete event systems evolve with respect to
occurring events, while at each time instant oc-
cupying a specific state where certain conditions
are valid. Formally, the interaction of such sys-
tems can be described by different variants of syn-
chronous composition, see [2].

To ensure safety, a specialized controller called
a safety PLC is typically used. The job of the
safety PLC is to keep both machines and humans
safe in critical situations.

Preprint submitted to Journal of Manufacturing Systems March 24, 2025

When it comes to control code this can be gen-
erated either automatically or manually. For au-
tomatic generation of controllers the supervisory
control theory [3] framework is often used in the
formal domain. However, industrially, engineers
mostly carry out this task manually. After the
controller generation, the physical controller (the
PLC) is coupled with the real plant in a closed-
loop setting referred to as the implementation.

To increase the confidence that the implemen-
tation is fault free, testing of the implementation
is carried out with respect to some specification.
Frequently, this task is done using a formal ap-
proach like model-based testing (MBT) [4].

In model-based testing, the implementation,
which is regarded as a black-box, is exposed to
various inputs in accordance to the specification
and the emitted outputs are observed. There are
several variations of such an approach, and in this
paper, we focus on two approaches i.e. input-
output conformance simulation relation (IOCOS)
[5] and safe input-output conformance simulation
relation (safe-IOCOS) [6].

IOCOS is a more fine-grained variation of IOCO
[7, 8], with an extra requirement on the inputs.
According to the IOCOS testing framework pre-
sented in [5, 9], an implementation fails the IO-
COS relation if the implementation is missing man-
datory inputs or if it generates unexpected out-
puts. However, to uncover faults associated with
safety in practical settings, IOCOS is found to be
inadequate due to the subset requirement on out-
puts and the superset requirement on inputs [6].

Due to this, the safe input-output conformance
simulation relation (safe-IOCOS) [6] is introduced.
The safe-IOCOS relation requires equality for the
inputs and outputs related to safety. And this
requirement makes safe-IOCOS suitable to find
faults related to safety. However, in practical
settings, there are many safety behaviors imple-
mented with each nominal control sequence of a
production system that must be tested per the
definition of safe-IOCOS. This obligation to test
all repetitive safety combinations unnecessarily in-
creases the time spent for testing.

For example, if a floor scanner is activated by a
human entering a certain zone, then all machines

in that zone must pause their activity until the
human leaves. Hence, the safety of the floor scan-
ner input is common for all the machines in that
particular zone.

Though testing can only reveal the presence
of faults, never their absence, it can raise the con-
fidence in the system to be free of obvious and
frequently occurring faults, if the system can be
subjected to enough test cases. Thus, there is a
need to reduce the testing time for this confidence
to be raised. Reducing the testing time can be
achieved if the specification, and hence the im-
plementation, is “well-behaved” in the sense of
not containing unnecessary branching and non-
determinism.

There are various approaches that deal with
reduction of test cases. For example [10], proposes
an approach based on integer linear programming
and on the properties of the control flow graph.
Similarly, the approach proposed in [11] exploits
neural networks to reduce test cases. However
these approaches does not deal with the problem
of unnecessary branching and non-determinism in
relation to safety.

In an attempt to achieve this, a testing ap-
proach based on bisimulation [12] equivalence and
the subset construction method [13] is studied in
this paper.

Bisimulation is an equivalence relation that
considers two states equivalent if they have the
same future behavior. This property can be ex-
ploited to reduce the given specification such that
traces with same future safety behaviors need not
be tested multiple times.

The subset construction method, on the other
hand, removes non-determinism by merging states
with the same past behavior. This method can
help to avoid test cases with non-deterministic be-
havior, which as a consequence allow the test en-
gineer to avoid retesting traces that have already
been tested.

1.1. Contribution

In this paper we show how reduction methods
called bisimulation and subset construction can be
exploited to reduce the complexity of the specifi-
cation before implementation to make testing effi-

2

cient. It is shown that by employing bisimulation
and subset construction, the number of test cases
can be reduced for the safe-IOCOS relation, while
the behavior of the system is preserved. More-
over, as non-determinism is removed from the sys-
tem the confidence in the test procedure will in-
crease. Furthermore, an example is presented to
show how reducing the given specification helps
in reducing test cases and consequently the time
spent during testing of an implementation.

1.2. Outline

This paper is structured in seven sections. In
Section 2, the formal definitions required to de-
scribe safe-IOCOS are detailed. Section 3 gives
an overview of the safe-IOCOS testing relation.
Section 4 introduces the bisimulation relation. In
Section 5 the subset construction method and the
problem associated with non-determinism are in-
troduced. Section 6 introduces the proposed ap-
proach and formal proofs along with some exam-
ples modelled in the tool Supremica [14]. Finally,
Section 7 concludes the paper and presents some
future work directions.

2. Preliminaries

In this section, some formalism and defini-
tions that are used to represent labelled transi-
tion systems (LTS), IOCOS, and safe-IOCOS are
detailed.

For an LTS, consider two disjoint sets of out-
put actions O, and input actions I. The out-
put actions consists of nominal actions On, semi-
nominal actions Osn, and safety actions Ox, such
that it holds that O = On ∪ Ox, Osn ⊆ On, and,
Ox ∩ On = ∅. These output actions are initiated
by the system under test and are expressed with
an exclamation mark, such as !x ∈ O. Similar
to output actions, input actions also consist of
nominal actions In, semi-nominal actions Isn, and
safety actions Ix such that it holds that I = In∪Ix,
Isn ⊆ In, and, Ix ∩ In = ∅. The input actions are
signals to the system such as a ∈ I.

Definition 1. An I/O labelled transition system
(LTS) is a 4-tuple 〈Q, q0,Σ,→〉1 where:

• Q is a non-empty set of states;

• q0 ∈ Q is the initial state;

• Σ is a finite set of actions. These represent the
observable actions of a system, i.e. Σ = I ∪O,
where I and O are as defined previously.

• →⊆ Q×Σ×Q is the transition relation defining
from which state, which action leads to which
next state.

We write transitions in in-fix form, q
a−→ q′

meaning that 〈q, a, q′〉 ∈→, and q
a−→ for a ∈ Σ,

if there exists q′ ∈ Q such that q
a−→ q′. Further-

more, a trace t is a finite sequence of symbols of
Σ, i.e. t ∈ Σ∗, including the empty trace ε. The
transition relation is extended to traces in Σ∗ by

letting q
ε→ q for all q ∈ Q, and q

tσ→ p if q
t→ y

and y
σ→ p for some y ∈ Q. Furthermore, q

t→
means that q

t→ p for some p ∈ Q.
An LTS is said to be non-deterministic if for

some p
a−→ q and p

a−→ q′ it holds that q 6= q′.

Definition 2. The set of traces from a state q in
an LTS is:

traces(q) = {t ∈ Σ∗ | q t−→}. (1)

For an LTS S = 〈QS, q0,Σ,→S〉, its set of
traces are the ones defined from its initial state:

traces(S) = {t ∈ Σ∗ | qo
t−→}. (2)

Definition 3. The set of states reached after a
trace t from a state q is:

after(q, t) = {q′ ∈ Q | q t−→ q′}. (3)

For an LTS S = 〈QS, q0,Σ,→S〉 the set of
states reached after a trace t is:

after(S, t) = {q′ ∈ QS | q0
t−→ q′}. (4)

1This paper does not treat marked states, so this prop-
erty is not formally defined.

3

Figure 1: LTS model of a simple manufacturing system

Definition 4. The set of all outgoing actions en-
abled at a state q is:

act(q) = {σ ∈ Σ | q σ−→}. (5)

The set of all outputs and inputs enabled at a
state q is then given by outs(q) = act(q)∩O and
ins(q) = act(q) ∩ I, respectively.

2.1. Example

To further elaborate the notation, a simple
manufacturing system consisting of a machine and
three buffers is used. The LTS model S of the
system is shown in Fig. 1. The action start rep-
resents that the system receives a workpiece and
starts working on it. Based on the outcome of this
work, the piece will be put in one of three different
buffers, actions DoneG, DoneP, and DoneW. In
S, start is an input action, and !DoneG, !DoneP,
and !DoneW are the output actions. S0 is the
initial state, denoted by the arrow pointing to it.

The traces of S are:

traces(S) = {ε, start, start.DoneG,
start.DoneP, start.DoneW}.

The possible traces from state S1 are:

traces(S1) = {!DoneG, !DoneP, !DoneW}.

The states reached from the initial state S0 after
the trace start.!DoneP is S3, thus after(S0, start.
!DoneP) = {S3}. Moreover, the outgoing actions
from state S1 are act(S1) = {!DoneG, !DoneP,
!DoneW }.

Though, for brevity, the example only has a
finite set of traces, in general traces(·) is an infi-
nite set, see for instance Fig. 5. So, even though
each trace is finite in length, testing them all is
impossible. The set of states is finite, however,
thus the testing can stop when the global state
space of the given LTS is exhausted.

Two or more LTSs can interact with each other
by simultaneously executing shared actions. This
is modeled by synchronous composition.

Definition 5. For two LTSs A and B with the
same set of actions, their synchronous composi-
tion is A||B = 〈QA × QB,Σ, 〈qA0, qB0〉,→A||B〉,
where

〈p, q〉 σ−→A||B 〈p
σ−→, q σ−→〉 (6)

if both p
σ−→ and q

σ−→ are defined, else undefined.

Since synchronous composition requires simul-
taneous execution of shared actions, such actions
are blocked if they cannot occur in one of the LTSs
from its current state.

Reduction of LTSs essentially merges equiva-
lent states. Thus, there needs to be rigorously de-
fined the notion of equivalence classes over states.

Definition 6. Let Q be a set of states. A relation
∼ ⊆ Q×Q is called an equivalence relation on Q
if it is reflexive, symmetric, and transitive. Given
an equivalence relation ∼ on q, the equivalence
class of q ∈ Q is [q] = { q′ ∈ Q | q ∼ q′ }, and

Q̃ = { [q] | q ∈ Q } is the set of all equivalence
classes modulo ∼.

Def. 6 defines an equivalence relation on states
Q, i.e. if two states are equivalent then they be-
long to the same class of states.

Definition 7. Let S = 〈QS, q0,Σ,→S〉 be an LTS
and let ∼ ⊆ QS × QS be an equivalence rela-
tion. The quotient LTS of S modulo ∼ is S̃ =
〈Q̃S, q̃0,Σ,→/∼〉, where →/∼ = {〈[q], σ, [q1]〉 |
∃q′ ∈ [q], q′1 ∈ [q1] : q′

σ→ q′1}, q̃0 = {[q0] | q0 ∈ q0}.

Def. 7 defines an quotient modulo operation,
which is an equivalence relation on the state set.

4

3. Input-output conformance relations

Black-box conformance testing [15] is typically
based on a specification model to uncover faults
in an implementation. There are several confor-
mance relations that are based on black-box test-
ing, however their conformance principles differ
from each other.

Some conformance relations require partial con-
formance, e.g. the input-output conformance rela-
tion (IOCO) [7]. In IOCO, an implementation is
required to have a subset of the specified outputs
after the execution of each trace for all possible
traces in the specification. An important point
here is that the IOCO relation does not put any
requirement on the inputs of the implementation.

Definition 8. For a given implementation G and
specification K with equal sets of labels, G is said
to be IOCO with respect to K if

∀t ∈ traces(K) : outs(after(G, t)) ⊆ outs(after(K, t))
(7)

The requirement on inputs is addressed by
the input-output conformance simulation relation
(IOCOS) [5]. The IOCOS relation tests an imple-
mentation for unexpected outputs, and the rejec-
tion of mandatory inputs [9]. In other words, the
implementation must have all the specified inputs
and must not have any unspecified outputs after
the execution of each trace for all possible traces
per the specification.

Definition 9. For two LTS S and P , a relation
R ⊆ (QP ∪QS)× (QP ∪QS) is an iocos-relation
if for any 〈p, q〉 ∈ R it holds that [5]:

(i) ins(q) ⊆ ins(p)

(ii) ∀a ∈ ins(q) and ∀p′ : p
a−→ p′, there exist

q
a−→ q′ such that 〈p′, q′〉 ∈ R

(iii) ∀!x ∈ outs(p) and ∀p′ : p !x−→ p′, there exists

q
!x−→ q′ such that 〈p′, q′〉 ∈ R

Def. 9 defines the three conditions that are re-
quired to be fulfilled by a state pair in an imple-
mentation and specification to be iocos-related.

Definition 10. IOCOS relation = ∪ {R ⊆ (QP ∪
QS)×(QP ∪QS) | R is an iocos-relation}, and we
write, 〈p, q〉 ∈ IOCOS [5].

Def. 10 defines IOCOS over all pairs of states,
even state-pairs that are in practice unreachable.
However, in a practical setting, only state-pairs
actually reachable in the implementation and de-
fined by the specification are of interest. Thus,
Lemma 1, below, shows that when the initial pair
〈p0, q0〉 fulfills Def. 10, then for all mutual traces
in G||K, the reached state-pairs are IOCOS.

Lemma 1. For given non-deterministic LTSs K =
〈QK , q0,Σ,→K〉 and G = 〈QG, p0,Σ,→G〉. 〈p0, q0〉 ∈
IOCOS =⇒ ∀t ∈ traces(G||K), ∀p ∈ after(G, t),
∃〈p, q〉 ∈ after(G||K, t) : 〈p, q〉 ∈ IOCOS

Proof. This is proved by induction on a trace t.

• Base case: For t = ε, 〈p0, q0〉 is reached, and
we know that 〈p0, q0〉 ∈ IOCOS.

• Inductive step: Assume for t ∈ traces(G||K)
that ∃〈p, q〉 ∈ after(G||K, t) : 〈p, q〉 ∈ IOCOS.
Now, for a ∈ Σ assume ∀q′ ∈ after(K, ta) :
〈p′, q′〉 6∈ IOCOS. From Def. 9, this means
that 〈p, q〉 6∈ IOCOS, which contradicts the
assumption that 〈p, q〉 ∈ IOCOS. Therefore,
〈p′, q′〉 ∈ IOCOS.

• Conclusion: According to the principle of in-
duction, ∀t ∈ traces(G||K), ∀p ∈ after(G, t),
∃〈p, q〉 ∈ after(G||K, t) : 〈p, q〉 ∈ IOCOS.

Lemma 1 shows that for any two given LTSs
if the initial state-pair is IOCOS then the IOCOS
relation also holds for all other reachable state-
pairs. Now we give a new formal definition of
IOCOS based on Lemma 1, that is more useful in
practical settings compared to Def. 10.

Definition 11. For an implementation G and a
specification K with initial states p0 ∈ QG and
q0 ∈ QK, respectively, we say that G is IOCOS
with respect to K, denoted G IOCOS K, if
〈p0, q0〉 ∈ IOCOS.

5

For testing safety properties, the IOCOS re-
lation is found to be inadequate as some faults
can go undetected [16]. For example, due to the
subset requirement on outputs, missing outputs
in the implementation that are prescribed by the
specification will not be registered as faults. For
safety properties these undetected faults can have
dangerous consequences.

Due to this, the safe input-output conformance
simulation relation (safe-IOCOS) [6] was intro-
duced. safe-IOCOS requires equality for traces as-
sociated with safety behaviors, common between
the implementation and specification. The equal-
ity requirement enables detection of faults related
to safety outputs/inputs that are prescribed by
the specification.

The safe-IOCOS relation is in [6] defined for
deterministic LTSs, while here it is extended to
cover non-deterministic LTSs.

Definition 12. Given LTSs G and K, and safety
actions Σx, a relation R ⊆ (QG∪QK)×(QG∪QK)
is safe-IOCOS if ∀〈p, q〉 ∈ R:

(i) act(p) ∩ Σx = act(q) ∩ Σx;

(ii) ∀σ ∈ act(p),∀p′ : p
σ→ p′,∀q′ : q

σ→ q′ ∧
〈p′, q′〉 ∈ R

The union over all such R relations is said to be
the safe-IOCOS relation between G and K.

4. Bisimulation

Typically, multiple safety behaviors are asso-
ciated with each nominal activity of a production
system. Depending on the severity of the safety
action, corrective safety actions affect the associ-
ated nominal activity of the production system.
Hence, during testing, such safety behaviors must
be tested in regard to each nominal activity as
their absence makes that specific nominal activity
unsafe. This means that the test engineer cannot
skip a test of a safety scenario that has already
been tested for another nominal operation.

The safe-IOCOS testing relation requires the
implementation to be tested for all possible traces
in the specification that are composed of safety

behaviors, i.e. of actions from Σx. And to be
safe-IOCOS, for each tested trace, the implemen-
tation must exhibit the exact specified safety be-
havior (both inputs and outputs). This repetitive
testing of common safety behaviors adds unneces-
sary time to the testing process. Especially, if the
system under test has a large number of traces.

The root of the problem lies in the very nature
of how behaviors are prescribed in the specifica-
tion used for implementation. If this is don in
such a way that skipping certain traces compro-
mises test coverage, then the approach used to
prescribe the repetitive behaviors in the specifi-
cation needs to be modified. And to remedy this
the bisimulation relation [12, 17] can help.

A bisimulation relation is an equivalence rela-
tion that considers as equivalent two states with
the same future behaviour. Such states are said
to be bisimilar.

Definition 13. Let S = 〈QS, q0,Σ,→S〉 and G =
〈QG, p0,Σ,→G〉 be two LTSs. A relation ≈⊆ (QS∪
QG)× (QS ∪QG) is said to be a bisimulation be-
tween S and G if, ∀〈p, q〉 ∈≈ and ∀σ ∈ Σ:

(i) ∀σ ∈ act(p),∀p′ : p σ−→ p′,∃q σ−→ q′ : 〈p′, q′〉 ∈≈

(ii) ∀σ ∈ act(q),∀q′ : q σ−→ q′,∃p σ−→ p′ : 〈p′, q′〉 ∈≈

S and G are bisimilar if there exists a bisimulation
≈ between S and G such that 〈p0, q0〉 ∈≈.

A bisimulation reduction is a method to re-
duce the state-space of an LTS by merging bisim-
ilar states. The traces of the original LTS are pre-
served by the reduced one. Thus, for safe-IOCOS,
traces with the same safety behaviors can con-
verge to a single state. Now, this reduced spec-
ification can be used to implement the system.
If the systems are implemented using a reduced
specification, the common safety behaviors need
to be tested only for a single trace to confirm their
presence per specification. And if the test passes,
then for the rest of the traces these safety behav-
iors can be omitted.

Systems that are implemented according to
the reduced specification not only enable test case
reduction but also preserves the safe-IOCOS rela-
tion, as shown by the following lemma.

6

Lemma 2. Given non-deterministic implementa-
tion G = 〈QG, p0,Σ,→G〉 that is constructed us-
ing non-deterministic specification K = 〈QK , q0,Σ,

→K〉. Let K̃ = 〈Q̃K , q̃0,Σ,→K̃〉 be the specifi-
cation reduced via bisimulation on K such that
K ≈ K̃ and G̃ = 〈Q̃G, p̃0,Σ,→G̃〉 be the imple-

mentation based on K̃ such that G ≈ G̃ then the
following condition hold:

• G safe-IOCOS K =⇒ G̃ safe-IOCOS K̃

Proof. Assume that G safe-IOCOS K. Then for
all 〈p, q〉 ∈ R ⊆ (QG∪QK)×(QG∪QK) there ∃a ∈
act(q) such that p

a→ p′ and q
a→ q′, and 〈p′, q′〉 ∈

R. From Def. 12 this means that act(p) ∩ Σx =
act(q) ∩ Σx.

Assume now that G̃ not safe-IOCOS K̃. Then
there ∃〈p̃, q̃〉 ∈ R̃ ⊆ (Q̃G ∪ Q̃K)× (Q̃G ∪ Q̃K) such
that for some a ∈ act(q̃), p̃

a→ p̃′ and q̃
a→ q̃′

but 〈p̃′, q̃′〉 6∈ R̃. From Def. 12 this means that
act(p̃′) ∩ Σx 6= act(q̃′) ∩ Σx.

However, from Def. 7 we have that since G̃ and
K̃ are quotient LTSs of G and K, respectively,
act(p̃′) = act(p′) and act(q̃′) = act(q′) which
contradicts the assumption.

Lemma 2 proves that if a non-deterministic G
is safe-IOCOS with respect to non-deterministic
K, then G̃, which is constructed by using bisim-
ilulation reduction K̃, is also safe-IOCOS with re-
spect to K̃. Thus, since the the bisimilar K̃ has
usually less states compared to K, then the imple-
mentation based on K̃ has less states compared to
G, which results in reducing the test cases. The
following example further illustrates how bisimu-
lation preserves the safe-IOCOS relation.

4.1. Example

Consider the implementation G that is based
on the specification K in Fig. 2 with safety actions
prefixed with !. The states in the implementation
G are enumerated using the prefix p, while the
states in specification K, are enumerated using
the prefix q. This same way of enumerating states
is followed throughout the paper.

First, G is tested with respect to K for the
safe-IOCOS relation for the prescribed traces a.!x.!y

Figure 2: Implementation G (left), specification K (right).

Figure 3: Implementation G̃ (left), specification K̃ (right).

7

and a.!z.!y in K. As can be seen, after executing
the action a in G both the safety behaviors, i.e.
!x.!y and !z.!y, follow. Thus, the safe-IOCOS re-
lation is validated as all the traces composed of
prescribed safety behaviors !x.!y are present in K.

Fig. 3 shows K̃ that is a bisimulation reduction
of K, and the implementation G̃, which is con-
structed based on K̃. Testing G̃ for safe-IOCOS
with respect to the specification K̃ reveals that
the safe-IOCOS relation is valid also in this case.
This is because after executing the action a, the
presence of the safety behaviors !x.!y and !z.!y is
confirmed. And due to bisimulation reduction,
the same behavior !y need to be tested only for
one trace and can be omitted for the other.

K̃ and G̃ are non-deterministic, hence, when
the action a is executed with the intention to test
!x it may never happen. This is because, the
G̃ may always choose its right non-deterministic
branch and the same is true if the intention is to
test !z after a. Thus, it is better to remove non-
determinism as it strengthens the testing proce-
dure by giving the test engineer more control on
what to expect. This can be achieved by the sub-
set construction method.

5. The subset construction method

In addition, to repetitive testing of the same
behaviors, the presence of non-determinism in the
implementation can further lengthen the whole
testing process. Since the implementation is a
black-box, the exact state reached after the exe-
cution of a trace is unknown. Thus, though test-
ing can never guarantee a fault-free system, the
added mystery of non-determinism does not help
in raising the confidence of a fault-free system.

Furthermore, non-determinism can cause the
same trace to pass on some test runs, while it
fails on other, seemingly identical test runs. This
is because different states may be reached after
each execution. The faults uncovered due to this
sporadic behavior could be false positives, i.e. the
implementation is not actually faulty but the test
results say otherwise. And the same is true the
other way around, that is, for false negatives. This
further amplifies the uncertainty associated with

the testing procedure and the implementation can-
not be trusted to be safe-IOCOS.

Both problems mentioned above can be present
in an implementation if the specification that was
used by the engineers to implement the system
is non-deterministic. The implementation as dis-
cussed above is a closed-loop system of a con-
troller with a real physical plant.

Also, depending on the chosen traces, faults
may get uncovered on the first few test runs or it
can take forever especially in the presence of non-
determinism. This so since the test engineer or a
randomized test generator can pick or choose any
random trace based on the specification.

The subset construction method [13] trans-
forms a non-deterministic LTS to a determinis-
tic LTS by merging states that have the same
past behavior and this transformation preserves
the traces of the original system.

Definition 14. Let N = 〈QN , n0,ΣN ,→N〉 be a
non-deterministic LTS and N ′ = 〈QN ′ , n0,ΣN ,
→N ′〉 be a deterministic LTS. The states of N ′,
i.e. QN ′, are computed via the subset construction
method, resulting in:

• QN ′ is a non-empty set of states such that for
all q ∈ QN ′, we have q ⊆ QN

• →N ′ the transition function of N ′ that maps a
state qN ′ ∈ QN ′ and an action a ∈ ΣN to the
set, after(qN ′ , a) = q′N ′ where ∀q ∈ qN ′ ∃q a→ q′

with q′ ∈ q′N ′

As the subset construction method converts
the non-deterministic LTS to a deterministic one,
it can be used to reduce a given specification. This
reduced specification is then used for implemen-
tation, as well as for testing.

Using the reduced specification will remove
uncertainty attached to the testing procedure. This
so since a specific state is reached after each trace.
Thus, the number of test executions are decreased
and consequently it can help to reduce testing
time. Moreover, the safe-IOCOS relation can be
validated with confidence due to the absence of
non-determinism. The following lemma proves
that subset construction preserves safe-IOCOS.

8

Figure 4: Implementation GS (left), specification KS

(right)

Lemma 3. Given non-deterministic implemen-
tation G = 〈QG, p0,Σ,→G〉 that is constructed
according to non-deterministic specification K =
〈QK , q0,Σ,→K〉. Let KS = 〈QKS

, qS0 ,Σ,→KS
〉 be

the deterministic specification that is constructed
via subset construction on K and GS = 〈QGS

, pS0 ,
Σ,→GS

〉 be the implementation constructed ac-
cording to KS. Then the following condition holds:

G safe-IOCOS K =⇒ GS safe-IOCOS KS

Proof. Assume G safe-IOCOS K but GS is not
safe-IOCOS with respect to KS. Then there is an
action a ∈ Σ such that a trace ta ∈ traces(KS)
but ta 6∈ traces(K) or vice versa. This implies
that traces(K) 6= traces(KS). But the sub-
set construction method preserves the traces, i.e.
traces(K) = traces(KS). This contradicts the
assumption, hence GS is safe-IOCOS KS.

The following example will illustrate Lemma 3.

5.1. Example

Consider Fig. 2, which shows the implementa-
tion G that is safe-IOCOS according to specifica-
tion K. Fig. 4 on the other hand shows KS that
is constructed via subset reduction on K, and the
implementation GS, which is based on KS.

When GS is tested for safe-IOCOS, the pres-
ence of the safety actions, i.e. !x, !z, and !y after
the action a, are validated per KS. Hence GS

safe-IOCOS KS.

Figure 5: Original specification

The example above shows how subset construc-
tion method helps in strengthening the testing
procedure by removing non-determinism. Hence,
the test engineer knows that after the execution of
a trace a specific state is reached, thus the output
generated by the implementation can be trusted.

The use of bisimulation on the other hand as
shown in Sec. 4 helps in reducing test cases for
traces with repetitive behaviors.

When we combine bisimulation and subset con-
struction to maximally reduce the given specifica-
tion, the resultant specification will be free of both
repetitive behaviors as well as non-determinism.
This reduction preserves the traces of the system
and consequently preserves safe-IOCOS, as shown
by Theorem 1 presented in the next section.

6. Approach

The problems related to repetitive testing of
same behavior and non-determinism mentioned
above can be addressed by reducing the given
specification using bisimulation reduction and the
subset construction method before implementing
the system. The same reduced specification is
then used by the test engineer for safe-IOCOS val-

9

Figure 6: Implementation based on original specification

idation, which enables the engineer to execute less
test cases to uncover faults (if any).

Lemma 2 and Lemma 3 above show how ap-
plying bisimulation and subset construction pre-
serves safe-IOCOS individually. Now, the follow-
ing theorem proves that applying both bisimula-
tion and subset construction together on a given
specification preserves safe-IOCOS.

Theorem 1. Let K = 〈QK , q0,Σ,→K〉 be a non-
deterministic specification and let G = 〈QG, p0,Σ,
→G〉 be the implementation based on K. Then
the constructed GBS after reducing K to KBS via
bisimulation and subset construction method pre-
serves the safe-IOCOS relation.

G safe-IOCOS K =⇒ G safe-IOCOS KBS

Proof. Assume G safe-IOCOS K. Now we show
that GBS safe-IOCOS KBS. This is shown by
showing that the traces(KBS) = traces(K).

From Lemma 2, we know that bisimulation
preserves the traces of the system i.e. traces(K) =
traces(KB). Similarly, from Lemma 3, we know
that subset construction preserved traces as well
this means, traces(KS) = traces(K) . This im-
plies traces(KB) = traces(KS), which means

that traces(KBS) = traces(K). So we can write,
G safe-IOCOS KBS.

6.1. Reducing the specification before implemen-
tation

Now, to reduce the given specification, the ap-
proach is as follows:

• The first step is to apply bisimulation reduc-
tion on the given specification. The reason for
applying bisimulation first is that the compu-
tational complexity of bisimulation is polyno-
mial [17], while the subset construction has ex-
ponential (in the number of states) complex-
ity [13]. Bisimulation reduction merges states,
which results in the reduced specification de-
noted by KB. This reduction not only reduces
the number of states but also preserves the safe-
IOCOS relation as shown in Lemma 2.

• In the second step, KB is further reduced by ap-
plying the subset construction method, result-
ing in the maximally reduced specification KBS.
Again, KBS preserves safe-IOCOS as shown in
Lemma 3. The transformation of non-deterministic
LTS to deterministic LTS is done to avoid un-
certainty attached to test cases that are plagued
with non-determinism. This so since the safe-
IOCOS relation requires equality for safety ac-
tions, which is harder to identify if multiple
states can be reached on the execution of a sin-
gle trace. For example, if a test engineer is test-
ing the left branch in the LTS and expecting a
certain safety behavior, while the implementa-
tion chooses the right branch in the LTS that
has other prescribed safety behavior. Then this
would register as a fault. However, in reality
this is not an actual fault because the correct
behavior is present in the left branch. Thus,
the validity of safe-IOCOS may never be con-
firmed in the presence of non-determinism. In
contrast, with deterministic behavior, the test
engineer would know that after executing a cer-
tain trace, a specific state is reached and if the
expected safety behavior is different from the
prescribed one then it is an actual fault.

After reduction of the given specification, the
maximally reduced specification, KBS, is given to

10

the engineer who is responsible to implement the
system. Furthermore, the resultant specification
KBS does not affect the safe-IOCOS properties in
general, as shown by Theorem 1.

6.2. Testing based on maximally reduced specifi-
cation

Now, the system that has been implemented
with respect to KBS is tested by another engi-
neer who is typically not involved in the imple-
mentation. During testing, if the test engineer
applies various traces using KBS randomly, the
whole purpose of reducing the specification goes
in vain and the test cases cannot be reduced.

Thus, to exploit the full advantage of the max-
imally reduced specification, an example is pre-
sented that shows how testing should be done
based on KBS. The example first shows how im-
plementation and testing is done using the orig-
inal specification, and then with the maximally
reduced specification.

6.3. Example

Based on the given specification in Fig. 5, an
implementation of the system is carried out, which
is shown in Fig. 6. In terms of faults, the imple-
mentation has in state p14 a missing safety action
!resume load that is prescribed by the specifica-
tion in state q14.

Both the implementation from the non-reduced
and the maximally reduced specifications are used,
and tested according to the respective specifica-
tions. Showing both approaches helps in compar-
ing them, and also highlights the advantages of
using the maximally reduced specification.

Note that the implementation model (Fig. 6)
is presented only for illustration of the issues, it
is not relied upon neither during reduction nor
testing. The innards of the implementation are
unknown to the tester, as this is a black-box test-
ing approach.

6.4. Implementation based on original specifica-
tion

The original specification is shown in Fig. 5.
The nominal operations are related to drilling,
and consist of the actions part in, Drill hole1,

Drill hole2, and Drill hole3. In terms of safety,
each state in the specification has an emergency
stop sequence associated with it. This safety se-
quence gets triggered via the !E Stop action, which
as a result should stop the drilling operation via
the Stop Drill action. To restore the nominal dril-
ling operation, the !reset action needs to be exe-
cuted from the states that are reached after the
Stop Drill action.

Furthermore, the action !E Stop in state q1
should also stop the part loading operation via the
action stop load. After the stop load action, the
nominal loading operation can be restored via the
!resume load action. This safety sequence related
to the loading operation adds non-determinism in
the specification.

6.5. Testing based on original specification

To test the implementation, the test engineer
is given the same specification, and can select in-
puts to the system to execute different traces to
validate the safe-IOCOS relation.

Since the given specification has multiple repet-
itive safety behaviors in the form of various inputs
and outputs related to the emergency stop se-
quence, the test engineer must execute each trace
that contains Stop Drill.!reset to uncover faults.
This is due to the fact that the implementation is
a black-box and the test engineer does not know
which trace is faulty and which is not.

Also, only after testing each trace contain-
ing the Stop Drill.!reset trace, can the test en-
gineer validate the safe-IOCOS relation for these
traces. Thus, the test engineer cannot skip any
trace containing the Stop Drill.!reset trace even
though these may have been tested before for an-
other trace. This so since if the Stop Drill.!reset
trace goes missing in any trace that is not tested
then this fault cannot be uncovered.

Furthermore, in state q1 of the specification,
the execution of the action !E Stop might transit
to either q3 or q13. This means that if the test en-
gineer chooses to execute the trace part in.!E Stop,
this takes the implementation from state p0 to p1,
and then to p3 or p13. Due to this non-determinism,
the fault related to the missing !resume load in
state p14 may never get uncovered, because it is

11

Figure 7: Reduced specification using bisimulation KB

quite possible that each time the trace part in.
!E Stop is executed, state p3 is reached.

6.6. Implementation based on maximally reduced
specification

To show the viability of the presented approach,
the specification illustrated in Fig. 5 is reconsid-
ered. According to the presented approach, the
given specification is first reduced using bisimu-
lation reduction. The resultant specification de-
noted KB is depicted in Fig. 7. The bisimula-
tion reduction merges states (q3, q7, q8, q9), and
(q10, q11, q12, q6), as these states have the same fu-
ture behavior in terms of the actions Stop Drill
and !reset, respectively.

After the application of bisimulation reduc-
tion, the reduced specification KB is further re-
duced using subset construction, which gives the
maximally reduced specification KBS, illustrated
in Fig. 8. The application of subset construction
removes the non-determinism from state q1, which
was due to the safety action !E Stop.

Figure 8: Maximally reduced specification KBS

Now, the maximally reduced specificationKBS

leads to the implementation depicted in Fig. 9.
This implementation has a fault in terms of a
missing safety action !resume load in state p8, which
will in the following section be uncovered using
the proposed testing steps.

6.7. Testing with respect to maximally reduced spec-
ification

After reducing the given specification using
bisimulation and subset construction, i.e. KBS,
the implementation illustrated in Fig. 9 is now
tested with respect to KBS using the steps de-
scribed above.

The first step is to identify the safety related
traces and as can be seen in Fig. 8, except for the
nominal trace part in.Drill hole1.Drill hole2.Drill
hole3.new part, each trace in KBS contains the
safety action !E Stop.

Then in the second step, the trace part in.!E
Stop.Stop Drill.!reset is selected, and the safe-IOCOS
relation is validated for this trace.

The rest of the traces containing !E Stop that

12

Figure 9: Implementation based on maximally reduced
specification

converge to the state (q3, q7, q8, q9) are then tested.
After reaching this state, the remaining traces
composed of Stop Drill.!reset can be omitted from
testing as this is already tested for the trace part in.
!E Stop.Stop Drill.!reset, hence time is saved.

In the fourth step the remaining trace i.e. part in.
!E Stop.stop load.!resume load per KBS is tested.
The execution of this trace uncovers the fault re-
lated to the missing !resume load in state p8. An
important point here is that each time this trace
is executed it will uncover the fault, as the non-
determinism that was present in the original spec-
ification K has been removed by the subset con-
struction method.

6.8. Implication of using the reduced specification

From the example above, it is clear that if the
given implementation is tested using the original
(non-reduced) specification (Fig. 5), then the test
engineer has to execute each transition to uncover
errors. And among these transitions many transi-
tions are repeatedly tested. This repeated testing

of the same transitions increases the testing time
unnecessarily.

Similarly, non-determinism makes testing in-
efficient. This because the implementation is a
black-box and the test engineer never knows which
state has been reached in the implementation af-
ter the execution of an action.

However, if the test engineer uses the reduced
specification (Fig. 8), then due to the applica-
tion of bisimulation reduction, transitions having
the same actions on them converge to a single
state, which allows single execution of each tran-
sition. Again, this saves time. Reducing the origi-
nal specification model using bisimulation enables
polynomial reduction in complexity.

Furthermore, the application of subset con-
struction removes non-deterministic behavior from
the specification, which enables exponential re-
duction in complexity of the original specification.
This makes the testing procedure more efficient.

7. Conclusion

This paper presents an approach to reduce
test cases from a given specification to decrease
testing time for the safe-IOCOS testing relation.
safe-IOCOS requires equality for traces associated
with safety behaviors common between the imple-
mentation and specification. And that coincides
with real-life practicality, as corrective safety ac-
tions in critical situations must be implemented
with respect to the design documents (nothing
more, nothing less). However, there are some
safety behaviors that are commonly attached to
many nominal activities. And during testing the
same behaviors gets tested repeatedly, which con-
sumes time unnecessarily.

In addition to the repeated testing of some
safety behaviors, the presence of non-determinism
makes the test results dubious. This so since
safe-IOCOS requires equality for traces associated
with safety, which in a non-deterministic setting
is difficult to validate, as the safety actions might
get distributed to multiple branches with the same
action sequence. Thus, when an engineer chooses
to test one branch per specification, the imple-
mentation can choose another branch. This can

13

then register as a fault per safe-IOCOS definition
though it is not an actual fault.

The paper highlights that if the specification is
modified before implementation then the above-
mentioned problems can be rectified. Hence, to
address these issues, the proposed approach ex-
ploits the properties of bisimulation and subset
construction to reduce a given specification.

The bisimulation reduction method is useful
for removing repetitive safety behaviors by merg-
ing bisimilar states, which as a consequence helps
to reduce test cases. Removing from the given
specification non-determinism by the subset con-
struction method rectifies the problem associated
with fault detection.

Due to the well-known state-space explosion
problem, the computation of bisimulation reduc-
tion and the subset construction are hampered by
computational complexity. Of interest is there-
fore to investigate how existing approaches, such
a compositional methods [18], can help to miti-
gate this problem.

Acknowledgements

This work was supported by the Swedish Re-
search Council project SyTeC VR 2016-06204, and
by the Swedish Governmental Agency for Inno-
vation Systems (VINNOVA) under project TE-
STRON 2015-04893, and was partly supported
by the Wallenberg AI, Autonomous Systems and
Software program (WASP) funded by the Knut
and Alice Wallenberg Foundation.

References

[1] C. Cassandras, S. Lafortune, Introduction to Discrete
Event Systems, SpringerLink Engineering, Springer
US, 2009. doi:10.1007/978-0-387-68612-7.

[2] A. Hellgren, M. Fabian, B. Lennartson, Prioritised
synchronous composition of inhibitor arc Petri nets,
in: Discrete Event Systems, Springer, 2000, pp. 459–
466.

[3] P. J. Ramadge, W. M. Wonham, Supervisory control
of a class of discrete event processes, SIAM Journal
on Control and Optimization 25 (1) (1987) 206–230.
doi:10.1137/0325013.

[4] M. Utting, B. Legeard, Practical Model-Based
Testing: A Tools Approach, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007.
doi:10.1016/B978-0-12-372501-1.X5000-5.

[5] C. Gregorio-Rodŕıguez, L. Llana, R. Mart́ınez-
Torres, Input-output conformance simulation (iocos)
for model based testing, in: Formal Techniques for
Distributed Systems, Springer, 2013, pp. 114–129.
doi:10.1007/978-3-642-38592-69.

[6] A. Khan, M. Fabian, On the safe IOCOS relation for
testing safety PLC code, in: 2019 24th IEEE Inter-
national Conference on Emerging Technologies and
Factory Automation (ETFA), 2019, pp. 1449–1452.

[7] G. Tretmans, Test generation with inputs,
outputs and repetitive quiescence, 1996,
https://research.utwente.nl/en/publications/test-
generation-with-inputs-outputs-and-repetitive-
quiescence-2 46 (1996).

[8] J. Tretmans, Model based testing with labelled tran-
sition systems, in: Formal methods and testing,
Springer, 2008, pp. 1–38.

[9] C. Gregorio-Rodŕıguez, L. Llana, R. Mart́ınez-Torres,
Effectiveness for input output conformance simula-
tion iocos, in: International Conference on Formal
Techniques for Distributed Objects, Components,
and Systems, Springer, 2014, pp. 100–116.

[10] M. Mongiov̀ı, A. Fornaia, E. Tramontana, A network-
based approach for reducing test suites while main-
taining code coverage, in: International Confer-
ence on Complex Networks and Their Applications,
Springer, 2019, pp. 164–176.

[11] X. Zhang, J. Chen, C. Feng, R. Li, Y. Su, B. Zhang,
J. Lei, C. Tang, Reducing test cases with attention
mechanism of neural networks, in: 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2021,
pp. 2075–2092.

[12] R. Milner, Communication and concurrency, Vol. 84,
Prentice hall Englewood Cliffs, 1989.

[13] J. E. Hopcroft, J. D. Ullman, Introduction to au-
tomata theory, languages and computation. adison-
wesley, Reading, Mass (1979).

[14] R. Malik, K. Åkesson, H. Flordal, M. Fabian,
Supremica-–an efficient tool for large-scale discrete
event systems, in: IFAC World Congress, Tolouse,
France, 2017.

[15] M. Krichen, S. Tripakis, Black-box conformance test-
ing for real-time systems, in: International SPIN
Workshop on Model Checking of Software, Springer,
2004, pp. 109–126.

[16] A. Khan, D. Thönnessen, M. Fabian, On-the-fly con-
formance testing of safety PLC code using quickcheck,
in: 2019 IEEE 17th Transactions on Industrial Infor-
matics (INDIN’19), IEEE, 2019, “in press”.

[17] J.-C. Fernandez, An implementation of an efficient al-
gorithm for bisimulation equivalence, Science of Com-
puter Programming 13 (2-3) (1990) 219–236.

[18] S. Mohajerani, R. Malik, M. Fabian, Compositional
synthesis of supervisors in the form of state machines
and state maps, Automatica 76 (2017) 277–281.
doi:https://doi.org/10.1016/j.automatica.2016.10.012.

14

