
Thesis for The Degree of Doctor of Philosophy

Clustering in the Big Data Era: methods for efficient
approximation, distribution, and parallelization

Amir Keramatian

Division of Networks and Systems
Department of Computer Science & Engineering

Chalmers University of Technology | University of Gothenburg
Gothenburg, Sweden, 2022

Clustering in the Big Data Era: methods for efficient approximation,
distribution, and parallelization

Amir Keramatian

Copyright ©2022 Amir Keramatian
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-650-6
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 5116.
ISSN 0346-718X

Technical Report No 217D
Department of Computer Science & Engineering
Division of Networks and Systems
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2022.

ii

Abstract

Data clustering is an unsupervised machine learning task whose objective is to
group together similar items. As a versatile data mining tool, data clustering
has numerous applications, such as object detection and localization using data
from 3D laser-based sensors, finding popular routes using geolocation data,
and finding similar patterns of electricity consumption using smart meters.

The datasets in modern IoT-based applications are getting more and more
challenging for conventional clustering schemes. Big Data is a term used
to loosely describe hard-to-manage datasets. Particularly, large numbers of
data points, high rates of data production, large numbers of dimensions, high
skewness, and distributed data sources are aspects that challenge the classical
data processing schemes, including clustering methods.

This thesis contributes to efficient big data clustering for distributed and
parallel computing architectures, representative of the processing environments
in edge-cloud computing continuum. The thesis also proposes approximation
techniques to cope with certain challenging aspects of big data.

Regarding distributed clustering, the thesis proposes MAD-C, abbreviating
Multi-stage Approximate Distributed Cluster-Combining. MAD-C leverages
an approximation-based data synopsis that drastically lowers the required com-
munication bandwidth among the distributed nodes and achieves multiplicative
savings in computation time, compared to a baseline that centrally gathers
and clusters the data. The thesis shows MAD-C can be used to detect and
localize objects using data from distributed 3D laser-based sensors with high
accuracy. Furthermore, the work in the thesis shows how to utilize MAD-C to
efficiently detect the objects within a restricted area for geofencing purposes.

Regarding parallel clustering, the thesis proposes a family of algorithms
called PARMA-CC, abbreviating Parallel Multistage Approximate Cluster
Combining. Using approximation-based data synopsis, PARMA-CC algorithms
achieve scalability on multi-core systems by facilitating parallel execution of
threads with limited dependencies which get resolved using fine-grained synchro-
nization techniques. To further enhance the efficiency, PARMA-CC algorithms
can be configured with respect to different data properties. Analytical and
empirical evaluations show PARMA-CC algorithms achieve significantly higher
scalability than the state-of-the-art methods while preserving a high accuracy.

On parallel high dimensional clustering, the thesis proposes IP.LSH.DBSCAN,
abbreviating Integrated Parallel Density-Based Clustering through Locality-
Sensitive Hashing (LSH). IP.LSH.DBSCAN fuses the process of creating an
LSH index into the process of data clustering, and it takes advantage of data
parallelization and fine-grained synchronization. Analytical and empirical eval-
uations show IP.LSH.DBSCAN facilitates parallel density-based clustering of
massive datasets using desired distance measures resulting in several orders of
magnitude lower latency than state-of-the-art for high dimensional data.

In essence, the thesis proposes methods and algorithmic implementations
targeting the problem of big data clustering and applications using distributed
and parallel processing. The proposed methods (available as open source
software) are extensible and can be used in combination with other methods.

Keywords: Clustering, Applied ML, Approximation-based synopsis, Dis-
tributed and Parallel Processing

Acknowledgments

I would like to start by expressing my deepest gratitude towards my supervisors
Marina Papatriantafilou, Vincenzo Gulisano, and Philippas Tsigas for their
precious guidance, support, and patience. I would also like to express my
heartfelt appreciation towards Agneta Nilsson and Tomas Olovsson for helping
me through my PhD journey.

I am honored to have Assoc. Prof. Ioannis Chatzigiannakis as the faculty
opponent for my PhD defence. I would also like to thank members of the
grading committee: Prof. Paola Flocchini, Prof. Ralf Klasing, Prof. Vladimir
Vlassov, and Prof. Ulf Assarsson. I also would like to express my gratitude
towards my examiner Prof. Jan Jonsson and also all the follow-up groups
during my PhD.

I am grateful for all the support and assistance from the department’s admin-
istration staff Eva Axelsson, Rebecca Cyren, Jenny Lind, Monica Månhammar,
Michael Morin, Lars Noren, Clara Oders, and Marianne Pleen-Schreiber.

I take this opportunity to thank past and present colleagues in the division.
Many thanks to Adones, Ahmed, Ali, Aljoscha, Aras, Bapi, Bastian, Bei,
Beshr, Boel, Carlo, Charalampos, Christos, Dimitris, Elad, Fazeleh, Francisco,
Georgia, Hannah, Yiannis, Iosif, Ismail, Ivan, Joris, Karl, Katerina, Magnus,
Nasser, Olaf, Oliver, Paul, Romaric, Thomas, Valentin T., Valentin P., and
Wissam.

I would not have been able to come this far if it were not for my parents’
endless love and support. I am grateful also for my friends Alireza, Hamid,
Mozhgan, and Sharon. Last but not least, to my wonderful Karolina Maria, I
feel blessed because of you; thank you and bardzo Cie kocham!

Funding. I would like to acknowledge the financial support by the Swedish
Foundation for Strategic Research, project Factories in the Cloud (FiC), with
grant number GMT14-0032.

Amir Keramatian
Göteborg, April 2022

v

List of Publications

Appended publications

This thesis is based on the following publications:

[A] Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, Philip-
pas Tsigas, “MAD-C: Multi-stage Approximate Distributed Cluster-
combining for obstacle detection and localization”, in the Journal of
Parallel and Distributed Computing (JPDC), vol. 147, pp. 248-267,
Elsevier, 2021.

The above is an extended and elaborated version of the work that previ-
ously appeared in:

Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, Philip-
pas Tsigas, Yiannis Nikolakopoulos, “MAD-C: Multi-stage Approximate
Distributed Cluster-combining for obstacle detection and localization”,
in Euro-Par 2018: Parallel Processing Workshops: Euro-Par 2018 Inter-
national Workshops, Turin, Italy, August 27-28, 2018, Revised Selected
Papers, vol. 11339, pp. 312-324. Springer, 2018.

[B] Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, Philip-
pas Tsigas, “PARMA-CC: A Family of Parallel Multiphase Approximate
Cluster Combining Algorithms”, the Journal of Parallel and Distributed
Computing (JPDC), Under Review After Minor Revision, Elsevier, 2022.

The above is an extended and elaborated version of the work that previ-
ously appeared in:

Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, Philip-
pas Tsigas, “PARMA-CC: Parallel Multiphase Approximate Cluster
Combining”, in the Proceedings of the 21st International Conference on
Distributed Computing and Networking (ICDCN), pp. 20:1-20:10, ACM,
2020.

[C] Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, Philip-
pas Tsigas, “IP.LSH.DBSCAN: Integrated Parallel Density-Based Clus-
tering through Locality-Sensitive Hashing”, Under Review.

vii

viii

Research Contributions

I contributed to all the listed articles as the lead designer, author, and also the
sole implementer.

x

Contents

Abstract iii

Acknowledgement v

List of Publications vii

Personal Contribution ix

1 Overview 1
1.1 Introduction . 1
1.2 The Scope of the Thesis . 2

1.2.1 Challenging Aspects of Data 2
1.2.2 Methods for Big Data Processing and the Associated

Challenges . 3
1.3 Preliminaries . 5

1.3.1 Examples of Data in IoT Applications 5
1.3.2 Distance Measures . 6
1.3.3 Cluster Analysis . 6
1.3.4 Locality-Sensitive Hashing (LSH) 8

1.4 Research Challenges . 10
1.4.1 Distributed Data Clustering with Fog/Edge Devices . . 10
1.4.2 Parallel Data Clustering on Shared Memory Multi-Core

Systems . 11
1.5 Contributions . 13

1.5.1 Approximate Distributed Clustering 13
1.5.2 Parallel Approximate Clustering 14
1.5.3 Parallel Approximate Clustering for High Dimensional

Data . 15
1.6 Advances Relative to the State of the Art 16

1.6.1 Distributed Clustering 16
1.6.2 Parallel Clustering . 16

1.7 Conclusions and Future Work 18

2 Distributed Approximate Clustering and Applications 21
2.1 Introduction . 22
2.2 Preliminaries . 24

2.2.1 System Model and Problem Description 24
2.2.2 Background and Baseline 26

xi

xii CONTENTS

2.3 The MAD-C algorithm . 27
2.3.1 The Key Idea of MAD-C 27
2.3.2 Generating Local Maps by Efficient Summarization of

Local Clusters . 27
2.3.3 Towards a Global Map: Combining Maps 29
2.3.4 Algorithmic Implementation Aspects of MAD-C 30

2.4 MAD-C’s Completion Time Analysis 32
2.4.1 Assumptions, Notations, and Definitions 32
2.4.2 Asymptotic Behaviour of Components of the Completion

Time . 33
2.4.3 Characterizing the Completion Time T0 37

2.5 Extensions and Examples of Further Usages of MAD-C 38
2.5.1 Extensions . 38
2.5.2 Geofencing with the Fusion of LIDAR Point Clouds . . 39

2.6 Empirical Evaluation . 43
2.6.1 Evaluation Setup . 43
2.6.2 Evaluation Data . 44
2.6.3 Evaluation Results . 45

2.7 Related Work . 55
2.8 Conclusions . 56

3 Parallel Approximate Clustering and Applications 59
3.1 Introduction . 60
3.2 Preliminaries . 61

3.2.1 System Model and Problem Description 61
3.2.2 Background . 62

3.3 The PARMA-CC Family of Algorithms 63
3.3.1 High-level View . 63
3.3.2 Rudiments and Definitions 65
3.3.3 The Design Space of PARMA-CC Algorithms 67

3.4 Basic Members of the PARMA-CC Family 69
3.4.1 PARMAH . 69
3.4.2 PARMAF . 70

3.5 Flexi Members of the PARMA-CC Family 71
3.5.1 Flexi Shared Phases . 72
3.5.2 Flexi PARMA-CC Algorithms 72

3.6 Ellipsoid Forest Data Structures and Algorithmic Implementation 73
3.6.1 The Bounding Ellipsoid Data Structure 73
3.6.2 Hierarchical Ellipsoid Forest 74
3.6.3 Flat Ellipsoid Forest . 76
3.6.4 Discussion on System Aspects 77

3.7 Analysis . 77
3.7.1 Ellipsoid Forest Analysis 78
3.7.2 Safety and Completeness Properties 79
3.7.3 Completion Time of PARMA-CC Algorithms 81
3.7.4 On Shared Memory Accesses and Contention 83

3.8 Discussion on the Utilization and Building Components 84
3.8.1 On which PARMA-CC Algorithm to Choose 84
3.8.2 Use Cases Implying Extensions 84

CONTENTS xiii

3.8.3 On Volumetric Summarization Methods 85
3.9 Evaluation . 86

3.9.1 Experiment Setup . 86
3.9.2 Completion Time and Scalability 88
3.9.3 Relative Ratio of Local Clustering to the Completion Time 92
3.9.4 Clustering Accuracy . 93
3.9.5 Shared Memory Contention 93
3.9.6 Summary of the Empirical Evaluation 94

3.10 Related Work . 94
3.11 Conclusions . 96

4 Parallel Approximate Clustering for High Dimensional Data 99
4.1 Introduction . 100
4.2 Preliminaries . 101

4.2.1 System Model and Problem Description 101
4.2.2 Locality Sensitive Hashing (LSH) 101
4.2.3 Related Terms and Algorithms 102

4.3 The Proposed IP.LSH.DBSCAN Method 103
4.3.1 Key Elements and Phases 103
4.3.2 Parallelism and Algorithmic Implementation 104

4.4 Analysis . 106
4.5 Evaluation . 108

4.5.1 Evaluation Data & Parameters 109
4.5.2 Experiments for the Euclidean Distance 110
4.5.3 Experiments for the Angular Distance 113
4.5.4 Highlights of the Results 113

4.6 Other Related Work . 113
4.7 Conclusions . 114

Bibliography 115

xiv CONTENTS

Chapter 1

Overview

1.1 Introduction

Machine learning is one of the fastest growing technical fields which has been
extensively applied throughout science, technology, and commerce [1]. Data
clustering is an unsupervised machine learning task with the objective of
discovering groups of similar samples within a given untagged dataset. Data
clustering facilitates discovering similarities and differences among patterns and
inferring useful conclusions [2]. The concept of data clustering naturally appears
in many fields such as biology, zoology, sociology, archaeology, geology and
engineering. Because of its unsupervised nature and versatility, data clustering
is a fundamental data mining problem arising in many applications [3]. For
instance, data clustering has been leveraged for object detection [4–6], route
analysis [7–9], digital image processing [10, 11], text processing [12], and audio
clustering [13]. Despite all the advancements in data clustering, big data
challenges even the most established methods in the field, where big data is a
term used to refer to hard-to-manage data. As the challenging aspects of big
data keep intensifying in modern datasets, there is a large room for improved
clustering methods that can cope with various aspects of big data.

For improving clustering methods with respect to the challenges imposed
by big data, the advantages and limitations of the computational infrastructure
has to be well understood. The following introduces the elements of a multi-tier
computing infrastructure.

Cloud Computing. It is a common practice to transfer data to the cloud,
where storage, computation, analysis, and decision making take place [14]. As
the typical infrastructure in cloud provides abundant resources (e.g., power-full
high-end servers), cloud computing can be used to solve various computational
problems. Cloud computing has several advantages. Firstly, computational
speedup can be achieved by properly leveraging the resources of high-end
servers. Secondly, the cloud services typically enable the users to pay for the
services in a pay-as-you-go manner, making it more economical than having
on-premise equipment. Thirdly, the infrastructure is maintained by the cloud
service providers, sparing the end users from technical managements. These
advantages show the importance of cloud computing for many problems in IoT-

1

2 CHAPTER 1. OVERVIEW

based systems. On the other hand, cloud computing has some disadvantages as
well. Considering the distance between the devices and cloud service providers,
the services might suffer from high latency. In addition, transmitting the data
from all the devices in the network requires high bandwidth. Furthermore,
even if a high bandwidth data communication channel is utilized, concurrent
transmission of large volume of data does not scale with increasing number of
transmitters as the communication infrastructure might experience jitter [15]
and finally collapse [16].

Fog and Edge Computing. Edge computing refers to the computation,
analysis, storage, and decision making that takes place at the edge of the network,
i.e., the devices (like mobile phones) directly connected to the sensors or an
IoT gateway (e.g., a device that aggregates and transmits sensor data) closely
located to the sensors. Fog computing refers to leveraging the computational
and storage capacities within a local network of systems (e.g., a LAN) to
carry out the computation that would, otherwise, require the resources of a
cloud infrastructure. Compared to cloud computing, fog and edge computing
facilitate processing data closer to where it is produced [14]. As a result,
adapting IoT-based systems to fog/edge computing can provide solutions with
lower latency and higher security, as the data remains within the local network.
Nevertheless, fog/edge computing can impose additional challenging as fog/edge
devices are typically resource-constrained in terms of computational power.
Furthermore, such devices can be connected via limited bandwidth media, e.g.,
wireless networks, which makes transmitting large volumes of data expensive.

The remainder of this chapter is organized as follows: § 1.2 introduces the
research scope of the thesis. § 1.3 lays out the required preliminaries of the
overview chapter. The research challenges within the scope of the thesis are
presented in § 1.4, while § 1.5 outlines the contributions of thesis towards the
research challenges. § 1.6 elaborates on how the thesis advances the state-of-
the-art. Finally, § 1.7 concludes the chapter and provides suggestions for future
research.

1.2 The Scope of the Thesis

This thesis targets the problem of efficient big data clustering using distributed
and parallel computing. The subsequent subsections elaborate on the key
aspects of the scope of the thesis.

1.2.1 Challenging Aspects of Data

The following elaborates on the challenging aspects of big data that this thesis
considers:

• Large Volumes: Processing too large volumes of data with any data
processing method whose computational complexity is higher than almost-
linear requires excessive amounts of time which can be detrimental to
time-sensitive problems [17,18].

1.2. THE SCOPE OF THE THESIS 3

• High Dimensionality : Curse of dimensionality [19] is a term used to
describe the collection of challenges imposed by high data dimensionality.
For instance, the volume of the space in which data resides increases
exponentially with increasing number of dimensions. The latter poses
significant challenges to classical data processing techniques [20].

• Diverse Properties: Depending on the application and how data is gath-
ered, the data can exhibit a wide range of properties which can play
an adversary against most classical processing techniques. For example,
highly skewed data distributions cause spatial indexing data structures
suffer from query performance degradation [21–23].

• Distributed Data Sources: Processing data whose parts get distributedly
gathered (e.g., by distributed sensors) imposes communication and com-
putation challenges [17]. For example, a network of Automated Guided
Vehicle (AGV), for the purpose of navigation and avoiding obstacles,
might be equipped with high-rate laser-based sensors. As the aforemen-
tioned AGVs gather complementing data, it is beneficial to utilize all the
data parts in the processing scheme. However, architecting an efficient
solution with respect to the communication and computation latency is
challenging.

1.2.2 Methods for Big Data Processing and the Associ-
ated Challenges

To address the challenges of processing big data, the methods proposed in
this thesis use the insights in P. Gibbons’ keynote [24]: (i) scaling down the
amount of data to be processed, (ii) utilizing parallel processing and efficient
use of shared memory to scale up the computing on a node, and (iii) utilizing
distributed nodes (e.g., in fog/edge) to scale out the computing to different
nodes. The following expands on the potential opportunities and challenges of
aforementioned guidelines.

Scaling Down the Data

The first line of defence against big data is scaling down the large volume of data.
Scaling down can be applied in a variety of forms [25], for instance, sampling [18,
26], dimensionality reduction [27], compression [28], and bucketization [29,30].

Many applications do not require exact solutions; however, they need to
make decisions as fast as possible [31]. For instance, regarding the problem of
managing AGVs, a real-time solution that approximately detects the objects in
the environment and avoids hitting them is more helpful than an exact solution
that detects the objects with all the details but fails to finish within reasonable
amount of time.

Approximation techniques can be employed to derive a data synopsis orders
of magnitude smaller than the original data, leading to orders of magnitude
speed-up in processing time. Nevertheless, there are challenges in designing
and employing effective approximation approaches with regards to time, space,
practicality, and accuracy factors [17]. For instance, considering the large
volume of data, it is often important that the data synopsis be constructed

4 CHAPTER 1. OVERVIEW

in only one pass over the original data. A data synopsis should also take
into account other data-induced challenges such as high dimensionality, where
applicable.

Scaling up the Computing in one Node

Modern computing platforms support concurrent execution, synchronization,
and communication of many workers (e.g., threads, CPUs, etc), sharing the
available resources of the system, for instance memory. Leveraging parallel
processing and efficient use of the shared memory can lead to scaling up
the computing on a single node. Maximizing such scalability is particularly
important on powerful high-end servers (e.g., those typically employed in the
cloud computing) as they provide abundant resources in terms of computational
power, memory, and storage. For example, a high-end server can consist of
several sockets, each socket accommodating several cores, and each core can
possibly support hyper-threading [32].

However, regarding many problems in IoT-based systems, achieving and
maintaining high scalability with increasing number of workers is challenging.
In fact, increasing the number of workers might even increase computational
latency. The following presents a discussion on two scalability models in order
to shed light on the scalability challenges.

Scalability Models. Amdahl’s law [33] states if a portion of a system can
be improved but the other portion can not be improved, then the unimprovable
portion becomes the dominating factor of the execution. Concretely, Amdahl’s
characterizes the maximum scalability of a system as K

p+(1−p)K , where p denotes

the improvable portion of the system and K is the number of workers. In the
context of the thesis, the execution latency of a task is at least equal to the
duration of its non-parallelizable parts, and further parallelization can not
improve the latency. USL, or the universal scalability law [34], proposed by
Neil Gunther, is another model to quantify the scalability. According to USL,
there are two main obstacles on the way of achieving linear scalability with
the number of workers. The first one is contention, and the second one is
crosstalk [35]. Contention happens when the workers of a task require a shared
resource but can not have it at the same time. Therefore, they have to queue up,
which negatively affects the parallelization of the task. Crosstalk happens when
the pairs of workers need to communicate in order to synchronize and share
their states, which negatively affects the scalability. Based on contention and
crosstalk, USL models the scalability of a system as K

1+δ(K−1)+κK(K−1) , where

K is the number of workers, and δ is the contention degree coefficient, and κ
is the crosstalk penalty coefficient. Note δ gets multiplied by (K − 1) which
shows contention grows linearly in the number of workers (i.e., as they queue
up for a shared resource). On the other hand, κ gets multiplied by K(K − 1)
reflecting the crosstalk between all pairs of workers in the system. Note that,
in an ideal system, coefficients δ and κ are zero; therefore, the scalability of
the system increases linearly with the number of workers. Nevertheless, with κ
and δ being greater than zero, the growth of denominator gets higher than the
numerator, and the speed-up will start to decrease after a large enough value
of K.

1.3. PRELIMINARIES 5

Based on Amdahl’s law, to achieve high scalability, the challenge is to design
computational tasks with minimum non-parallelizable parts. Furthermore,
based on USL, data structures, algorithms, and work sharing schemes should
be designed to minimize the contention for the shared resources and the crosstalk
among the pairs of workers.

Scaling out the Computing to Distributed Nodes in Fog/Edge

Increasing the number of computing nodes is another approach to deal with
big data [24, 36, 37]. To that end, an interconnected network of fog/edge
devices (with attached sensors) can be leveraged to process the gathered sensor
data. As the communication takes place in the local network of the devices,
the communication latency is lower than the cloud computing setup, and the
privacy of data is preserved within the boundaries of the local network.

Nevertheless, there are two challenges that need to be considered in designing
an IoT-based system that scales out the computing. The first one concerns
the fact that the fog/edge devices are weaker than the high-end servers, in the
sense that they have limited computational and memory capacities. The second
challenge concerns the limitations associated with the shared communication
medium such as limited bandwidth and jitter.

1.3 Preliminaries

This section introduces highlights of background that is useful when reading
the subsequent sections.

1.3.1 Examples of Data in IoT Applications

LIDAR (LIght Detection And Ranging) is a scanning method to generate a
3-D representation of a target by illuminating the target with pulsed light
waves. The 3-D model is generated based on the time that light waves take to
return. A LIDAR scanner typically leverages several laser beams (e.g., 8 to 128).
Located on the spinning head of the sensor, each laser beam emits photons
and reads back their reflection several times in a second. As the spinning head
of the LIDAR scanner makes a full rotation, a 360 degree high resolution 3-D
representation of the environment is attained [38]. The readings from a LIDAR
sensor are named point clouds [39]. Point clouds generated by certain types
of LIDAR sensors can contain hundreds of thousands of 3-D points, or even
more. The point cloud from a full rotation of a LIDAR sensor’s spinning head
contains points corresponding to scene objects (e.g., pedestrians, vehicles, etc)
in the environment in which the sensor is installed. The readings in a point
cloud generated by such a sensor are sorted with respect to time and space. In
general, the thesis uses the term spatio-temporal locality to indicate the extent
to which the points in a dataset are sorted with respect to time and space.

In contrast to 3D point clouds, points in different datasets might contain
much more number of features, i.e., dimensions. For instance, digital repre-
sentation of images, audio, and video usually require much more number of
features. Even a low-resolution 28×28-pixel image is digitally represented by a
784-feature vector [40].

6 CHAPTER 1. OVERVIEW

1.3.2 Distance Measures

Given a domain S, a function Distance from S×S to non-negative real numbers
is called a metric [41] (or equivalently a distance measure) if it satisfies the
following conditions for any x, y, z ∈ S:

[A] non-negativity: Distance(x, y) ≥ 0

[B] identity of indiscernibles: Distance(x, y) = 0 ⇐⇒ x = y

[C] symmetry: Distance(x, y) = Distance(y, x)

[D] triangle inequality: Distance(x, z) ≤ Distance(x, y) + Distance(y, z)

Among the metrics that satisfy above conditions are Euclidean distance,
Manhattan distance, angular distance, edit distance, and hamming distance [18].
The following specifies Euclidean distance and angular distance since they are
used in the thesis.

Euclidean Distance. For x and y in Rd, Euclidean distance measures the
length of the line segment between x and y, which is, following the Pythagorean
formula,

√
(x1 − y1)

2 + · · ·+ (xd − yd)
2.

Angular Distance. Considering x and y as vectors in Rd, angular distance
measures the angle that x and y make, which is arccos(x·y

||x||×||y||), where x · y
is the inner product of x and y, and ||x|| is the length (i.e., the Euclidean
distance of x from the origin) of x. It is shown that angular distance is more
suitable than Euclidean distance for high dimensional data as angular distance
better reflects the contrast between near and far points [18, 42]. See § 1.4.2
for a discussion on the limitations of utilizing the Euclidean distance on high
dimensional data.

1.3.3 Cluster Analysis

Cluster analysis, or clustering, is the task of partitioning a given set of items
into clusters, where within a cluster items are more similar to each other than
to those in other clusters [2, Ch. 11-16]. More specifically, the task is to assign
the same clustering label to the items in the same cluster, but different from
those in other clusters.

There are numerous data clustering approaches targeting different purposes
and applications. For instance, certain clustering algorithms rely on cost
function optimization, where the cost function is formulated based on the
requirements of a specific problem. One of the most famous algorithms of this
type is K-means [43]. Given K, prior knowledge on the number of clusters,
the goal of K-means is to partition the data into K clusters, where each point
belongs to the cluster with the closest centroid. In addition to requiring prior
knowledge on the number of clusters, K-means is computationally difficult,
and it is sensitive to noise and outlier points. On the other hand, graph-based
approaches are usually more robust to noise and outlier points. In spectral
clustering [44], for instance, data is modeled via a graph whose nodes are the
samples and the edges denote the corresponding similarity values. The goal of

1.3. PRELIMINARIES 7

spectral clustering is to cut the graph into communities with maximum inter-
community similarity and minimum cross-community similarity. Nevertheless,
spectral clustering methods are not suitable for large volumes of data as,
in general, their computational complexity is cubic in the number of data
points [45]. Considering the scope of the thesis regarding the challenging
aspects of data (mentioned in § 1.2.1) and also the desirable applications (such
as object detection using LIDAR data), the thesis considers the following two
versatile clustering algorithms.

Distance-based Clustering. The items grouped together in a distance-
based cluster satisfy some distance-related criteria. For example, the Euclidean
clustering algorithm [5,6] partitions a given point cloud into an a priori unknown
number of clusters. It works with two adjustable parameters: minPts and ϵ.
The algorithm produces clusters each containing at least minPts number of
points, and within each cluster, each point lies in the ϵ-radius neighbourhood of
at least another point in the same cluster. Points not belonging to any cluster
are characterized as noise. Lisco [46] is a single-pass continuous version of the
Euclidean clustering algorithm designed for sorted data; e.g., a point cloud
gathered by a LIDAR sensor is angularly sorted because the point cloud is
collected by the spinning head of the sensor.

Density-based Clustering. The density-based clustering algorithms par-
tition a given point-cloud into high density regions (clusters), separated by
contiguous regions of low density regions. For example, Density-Based Spatial
Clustering of Applications with Noise, or DBSCAN [47], is a density-based clus-
tering algorithm that partitions a given point-cloud into an a priori unknown
number of clusters. Similar to the Euclidean clustering algorithm, DBSCAN
works with two adjustable parameters: minPts and ϵ. A Cluster found by
DBSCAN consists of at least one core point and all the points that are density-
reachable from it. Point p is a core point if it has at least minPts points in
its ϵ-radius neighbourhood. Point q is directly reachable from p if q lies in the
ϵ-radius neighbourhood of p. Point q is density-reachable from p, if q is directly
reachable either from p or another core point that is density-reachable from
p. Non-core points that are not density-reachable from any core-points are
outliers [20]. DENCLUE [48], STING [49], and OPTICS [50] are some other
well-known density-based clustering algorithms.

Problem Description

Given an input dataset D, neighbourhood radius ϵ, threshold value minPts, the
goal is to use approximation to efficiently partition D into an a priori unknown
number of disjoint clusters according to the requirements of either Euclidean
clustering or DBSCAN. In case of DBSCAN, the clustering may be performed
with distance measures other than Euclidean distance. Dataset D might be
available in a central location, or it might as well be spread among many edge
devices.

8 CHAPTER 1. OVERVIEW

Metrics of Interest

The following explains the evaluation metrics used in this thesis to compare
the proposed approximate methods with the exact ones.

Accuracy. Given the clustering outcomes of two clustering methods (one
exact and one approximate) on the same data, the thesis utilizes rand index [51]
to measure the similarity of the two clustering outcomes. Concretely, rand
index measures the ratio of the number of pairs of elements that are either
clustered together or separately in both clusterings, to the total number of
pairs of elements.

Computational Complexity and Latency. Given a clustering algorithm,
the thesis measures its computational complexity with respect to number
of data points, dimensionality, number of workers (e.g., threads, fog/edge
devices), and other related parameters. The thesis also empirically measures
the computational latency in terms of elapsed real time.

1.3.4 Locality-Sensitive Hashing (LSH)

Locality-sensitive hashing is a relatively recent and established approach for
approximate similarity search, based on the idea that if two data points are
considered close, their hashed values are equal with high probability. Similarly,
if two points are considered far apart, their hashed values are non-equal with
high probability [19, 29, 52]. LSH can be used for low and high dimensional
data, and appropriate LSH functions have been suggested for the Euclidean
distance, angular distance, hamming distance, and etc.

Let S be the domain of the data points, and let Distance be the distance
measure required by the applications. A family of LSH functions H= {h : S →
U} is (d1, d2, p1, p2)-sensitive for distance measure Distance if for any p and q

in S the following conditions hold:

• if Distance(p, q) ≤ d1, then PrH[h(p) = h(q)] ≥ p1

• if Distance(p, q) ≥ d2, then PrH[h(p) = h(q)] ≤ p2,

where the probabilities are stated over the random choices in H. Figure 1.1
illustrates the (d1, d2, p1, p2)-sensitivity.

The following introduces LSH families for the Euclidean and the angular
distances.

LSH Family for the Euclidean Distance. For a randomly chosen u in
domain S, hu(x) = ⌊ x·uϵ ⌋ is an LSH function, where ⌊.⌋ is the floor function, · is
the inner product, and ϵ is an arbitrary constant1. The family is applicable for
any number of dimensions. In a 2-dimensional domain, it is (ϵ/2, 2ϵ, 1/2, 1/3)-
sensitive [18]. Intuitively, for a given LSH function hu(.), the hash value of x is
the id of the bucket in which the orthogonal projection of x on u is located,
where the width of the buckets is ϵ.

1In clustering, this constant can be chosen in accordance to the clustering parameter ϵ.

1.3. PRELIMINARIES 9

distance(x,y)

p[
h(

x)
=h

(y
)]

dist(x,y)<
🠞P[h(x)=h(y)]>

dist(x,y)>
🠞P[h(x)=h(y)]<

Figure 1.1: Visual illustration of (d1, d2, p1, p2)-sensitivity for a family of hash functions.

LSH Family for the Angular Distance. For a randomly chosen u in
domain S, h(x) = sgn(x · u) is an LSH function, where sgn is the sign function.
This family is (θ1, θ2, 1 − θ1

π , 1 − θ2
π)-sensitive, where θ1 and θ2 are any two

angles (in radians) such that θ1 < θ2 [53]. Intuitively, for a given LSH function
hu(.), the hash value of x indicates whether x is located on the positive or
negative side of the hyper-plane defined by normal vector u.

Amplifying an LSH Family

The following explains how the sensitivity of LSH functions can be amplified [18].

AND-construction. This construction creates a new LSH family where
each member is composed by independently choosing M arbitrary functions
in H, namely h1, h2, · · · , hM. With the new hash function, p and q get hashed
to the same bucket if hi(p) is equal to hi(q) for all i∈ {1, · · · , M}. The resulting
LSH family is (d1, d2, p1

M, p2
M)-sensitive.

OR-construction. Similar to AND-construction, OR-construction creates a
new LSH family hash function where each member is composed by independently
choosing L arbitrary functions inH, namely h1, h2, · · · , hL. Nevertheless, in this
case, p and q get hashed to the same bucket if hi(p) is equal to hi(q) for at least
one i. The resulting LSH family is (d1, d2, 1− (1− p1)

L, 1− (1− p2)
L)-sensitive.

Cascading the two Constructions. The aforementioned constructions
can be arbitrarily cascaded in order to create new LSH families with different
sensitivities, suitable for different applications. Figure 1.2 shows the probability
of two given points p and q being hashed to the same bucket as a function of
their angular distance using a variety of cascading, where the AND construction
is applied first, and then cascaded with an OR construction.

10 CHAPTER 1. OVERVIEW

0 /2
0

0.5

1

0 /2
0

0.5

1

Figure 1.2: The probability of two given points p and q being hashed to the same bucket as
a function of their angular distance using a variety of cascading, where the AND construction
is applied first, and then cascaded with an OR construction.

1.4 Research Challenges

This thesis studies the problem of efficient big data clustering and its applica-
tions as a representative problem in IoT-based systems. To that end, the thesis
explores the associated challenges of utilizing the scale down, scale up, and scale
out guidelines [24]. Particularly, the thesis looks into the challenges of achieving
high efficiency and scalability by integrating approximation (as a scale down
approach) into the algorithmic design of distributed and parallel data clustering
algorithms. The thesis also studies the challenging application-related aspects
of data clustering. For example, (i) the problem of object detection and local-
ization using distributed LIDAR point clouds in an environment scanned by
several LIDAR sensors, (ii) the problem of geofencing (i.e., detecting objects
within a restricted area in an environment), and (iii) the problem of route
analysis using geolocation data. § 1.4.1 and § 1.4.2 outline the challenges of
efficient distributed and parallel data clustering, respectively.

1.4.1 Distributed Data Clustering with Fog/Edge Devices

Combining readings from multiple sensors is commonly recognized as sensor
fusion. In certain scenarios it is useful to have multiple sensors scan the
environment simultaneously. For example, a LIDAR sensor installed in a
particular place in the environment might have an occluded view. In order to
address the occlusion [54] and increase safety and robustness, multiple LIDAR
sensors can be installed in different locations to scan the environment from
different perspectives. However, leveraging a distributed network of sensors
induces further challenges, explained in the following.

Challenges. Centrally gathering all the local sensor data into a single source
and performing the clustering algorithm on their union, known as the fused
data, is cumbersome. Firstly, transmitting multiple sources of data (each con-
taining hundreds of thousands or even millions of points) imposes high latency
and takes long time [55, 56], as long as a few tens of seconds. Furthermore,

1.4. RESEARCH CHALLENGES 11

concurrent transmission of large volumes of data is not scalable with increasing
number of devices because at some point the communication channel throttles
and may collapse [15,16]. Despite the advancements in the field of data com-
munication, the aforementioned issues will continue to be problematic because
the data collection rates of IoT sensors keep rising as well [57]. Moreover,
computationally speaking, performing the clustering algorithm on the fused
data takes prohibitive amount of time on the fog/edge devices because of the
large volumes of the cumulative data.

Research Questions

The aforementioned challenges arise from centrally gathering distributedly
gathered data. On the other hand, considering the distributed nature of the
problem, the following research questions arise.

• Q1. How to distribute computational workload across cloud, fog, and
edge devices to optimize communication and computation overheads?

• Q2. How can approximation-based synopsis help balance the required
communication and computational overheads with respect to accuracy?

1.4.2 Parallel Data Clustering on Shared Memory Multi-
Core Systems

In addition to distributed data clustering, the thesis also examines the problem
of efficient data clustering using shared memory multi-core systems. To that
end, the thesis explores the possibilities of scaling up the computation [24] on
a single node (as noted in § 1.2.2) in form of parallelization in a wide range of
settings. The following categorizes the associated challenges.

Parallelization Challenges. A parallel clustering algorithm employing
several workers imposes the following challenges: (i) the distribution of the
workload among the workers, (ii) how each worker processes its assigned
workload, and (iii) synchronization and communication among the workers. To
gain efficiency and scalability, the aforementioned challenges must be addressed
in a way to decrease the contention for the shared resources and the crosstalk
among each pair of workers, as suggested by USL, see § 1.2.2.

Data-driven Challenges. Neighbourhood and range queries are extensively
required by the clustering algorithms that the thesis studies (see § 1.3.3).
To avoid expensive brute-force approaches, indexing data structures can be
utilized. For example, KD-trees [58] is a space partitioning tree where each
level partitions the data along one of its dimensions, and different levels
alternate between different dimensions. However, the majority of commonly
used indexing data structures (including KD-trees [58], Octrees [59], and voxel
grids [5]) grow in size with respect to the size of dataset. Furthermore, the cost
of common queries and operations can become expensive (e.g., super linear
in the number of data points). Skewed data distributions can also critically
challenge the performance of such data structures [21–23, 60]. For example,
Figure 1.3 visualizes the structure of a balanced KD-tree (where each partition

12 CHAPTER 1. OVERVIEW

divides the data into two equal parts) on a highly skewed two-dimensional
data distribution. The distribution peaks at the bottom left corner, where
the figure zooms-in twice. As the figure illustrates, the cell sizes vary vastly
across the structure, but most points are located in very small-size (in width
and height) cells. Therefore, most range and neighbourhood queries require
to examine a substantial portion of the points, rendering the efficiency of the
KD-tree structure similar to a brute-force approach. Furthermore, as data in
different applications can exhibit different levels of spatio-temporal locality,
special methods for different levels of spatio-temporal locality are needed for
higher efficiency.

-0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

-0.9 -0.8 -0.7 -0.6 -0.5

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.9 -0.85 -0.8

-0.92

-0.9

-0.88

-0.86

-0.84

-0.82

-0.8

Figure 1.3: The structure of a KD-tree on a highly skewed two-dimensional data distribution.
The distribution peaks at the bottom left corner, where the figure zooms-in twice. Majority
of points are located in small-size cell. Therefore, most range and neighbourhood queries
require to examine a substantial portion of the points, rendering the efficiency of the structure
similar to a brute-force approach.

Challenges Regarding High Dimensional Data. One of the most detri-
mental effects of high number of dimensions is the concentration effect of
Lp norms [61], which “is the surprising characteristic of all points in a high
dimensional space to be at almost the same distance to all other points in that
space” [62]. Being a special case of Lp norms when p = 2, the Euclidean
distance is one of the most commonly used distance measures, but its usability
is limited in use-cases concerning high dimensions because of the concentration
effect of Lp norms. Furthermore, the computational complexity of classical
neighbourhood query methods, commonly used in data processing, increases
exponentially with the number of dimensions [20]. Quoting from [20] about the
classical indexing structures: “Similar to R*-trees and most index structures,
grid-based approaches tend to not scale well with increasing number of dimen-
sions, due to the curse of dimensionality [citations]: the number of possible
grid cells grows exponentially with the dimensionality”. It has been shown that
angular distance is a more suitable alternative for high dimensional data as it
better reflects the contrast between near and far points [18,42]. However, most
challenges of efficient parallel clustering using the angular distance (and other
alternative distance measures) remain unaddressed as most scientific efforts
on parallel data clustering have only focused on utilization of the Euclidean
distance, e.g., [7, 46,63–66].

1.5. CONTRIBUTIONS 13

Research Questions

The work-sharing design of a parallel clustering algorithm distributes the work-
load among the workers and regulates the processing of each worker, as well as
the communication and synchronization among the workers. Furthermore, the
algorithmic approach of a clustering algorithm determines the level at which
data-related challenges are met. Consequently, the following research questions
arise regarding efficient and scalable parallel data clustering.

• Q3. How to reduce the total workload as well as the contention and
crosstalk among the workers using an approximation-based approach?

• Q4. How to adjust the trade-off between the execution latency and the
approximation accuracy?

• Q5. How can an algorithmic approach be structured with respect to
the properties of the data it has to process (e.g., high skewness, high
dimensionality, and varying levels of spatio-temporal locality)?

1.5 Contributions

The thesis contributes towards efficient big data clustering and applications. To
counter-balance the challenging aspects of big data (discussed in § 1.2.1) and
achieve efficiency and scalability, the methods in the thesis leverage scaling down,
scaling up, and scaling out (discussed in § 1.2.2) guidelines [24]. The thesis takes
into account concerns regarding the design and algorithmic implementation
of the methods based on the behaviour of the target platform and also the
properties of the data to be processed. Regarding parallel data clustering, the
thesis proposes methods that are aligned with the key data characteristics
(such as skewness, spatio-temporal locality, and dimensionality) to lower the
contention and crosstalk among the workers, as suggested by USL. Regarding
the distributed devices in fog/edge computing, the thesis proposes methods
that minimize the communication volume among the fog/edge devices, and
perform the computational tasks as close as possible to the generating sources
of data.

This section outlines the contributions of the thesis regarding the research
questions in § 1.4. § 1.5.1 outlines the contributions of the thesis towards
distributed data clustering using the scaling down and scaling out techniques.
§ 1.5.2 describes the contributions regarding parallel data clustering on shared-
memory multi-core systems using scaling down and scaling up techniques. § 1.5.3
introduces the contributions regarding high dimensional data clustering on
shared-memory multi-core systems using scaling down and scaling up techniques.
§ 1.6 elaborates on how the thesis advances the state-of-the-art.

1.5.1 Approximate Distributed Clustering

Targeting the problem of distributed data clustering with fog/edge devices, the
thesis, in Chapter 2, proposes MAD-C, abbreviating Multi-stage Approximate
Distributed Cluster-combining for Obstacle Detection and Localization.

14 CHAPTER 1. OVERVIEW

MAD-C’s Approach to Q1. In MAD-C, the devices, distributedly and
in parallel, perform the substantial portion of the required processing locally.
Each device summarizes the locally detected clusters. The devices transmit
their local summaries to collaboratively create a global summary of the clusters.

MAD-C’s Approach to Q2. Employing an approximation-based synopsis,
each device locally approximates the results of its local processing. Afterwards,
the fog/edge devices communicate and combine the approximation-based syn-
opses in order to make a global synopsis corresponding to the clustering of
the merged data. Each fog/edge device can generate its local approximate-
based synopsis incrementally with only one pass over the data. As the local
synopses are much smaller in size (compared to the original local data) and
can be combined efficiently, MAD-C achieves significant communication and
computational savings.

In addition to analytical results, empirical evaluation of MAD-C, both in
simulation and a setup of fog/edge devices, show MAD-C leads to commu-
nication savings proportional to the volume of data, and it multiplicatively
decreases the computation time while preserving a high accuracy. The thesis
elaborates on MAD-C’s capabilities for real-time distributed object detection
and localization as well as geofencing.

1.5.2 Parallel Approximate Clustering

Targeting the problem of parallel data clustering on shared-memory multi-
core systems, the thesis, in Chapter 3, proposes PARMA-CC, a Family of
Parallel Multistage Approximate Cluster Combining algorithms. Employing
the same approximation-based synopsis developed for MAD-C to scale down
the large volume of data, PARMA-CC algorithms facilitate leveraging an
arbitrary number of workers to achieve a high degree of scalability with tunable
approximation granularity.

PARMA-CC’s Approach to Q3. The approximation-based data synopsis
that PARMA-CC algorithms utilize scales down the computational workload.
Particularly, the thesis shows the reduction in the workload can be quadratic
with respect to the approximation granularity. Furthermore, the synergy
between the data structures and the workload distribution schemes in PARMA-
CC reduces the contention on the shared resources and the crosstalk between
pairs of workers, as suggested by USL. More specifically, PARMA-CC leverages
data-parallelism and a specially designed shared data structure that facilitates
work partitioning and work stealing. Furthermore, PARMA-CC’s data structure
supports in-place operations to eliminate the need for data copying or migration.

PARMA-CC’s Approach to Q4. PARMA-CC algorithms facilitate tuning
the trade-off between the approximation quality and the required amount of
workload. The latter is achieved by systematically determining the approxima-
tion granularity.

PARMA-CC’s Approach to Q5. The approximation and algorithmic ap-
proach of PARMA-CC algorithms addresses the challenges of highly skewed

1.5. CONTRIBUTIONS 15

data distributions by splitting the data into portions of lower density. Further-
more, PARMA-CC algorithms take specialized approaches regarding workload
distribution and synchronization, targeting different levels of spatio-temporal
locality. Concretely, to speed-up the computation on data exhibiting a high
level of spatio-temporal locality, certain PARMA-CC algorithms utilize a data
access control that takes advantage of a work-saving mechanism which proves
useful on data with high levels of spatio-temporal locality. On the other hand,
other PARMA-CC algorithms take on a wait-free data access pattern which
proves to be more useful on data with low levels of spatio-temporal locality.

Analytical and empirical evaluations show that PARMA-CC algorithms
achieve significantly higher scalability than the state-of-the-art methods while
preserving a high accuracy, even on skewed data distributions.

1.5.3 Parallel Approximate Clustering for High Dimen-
sional Data

Targeting the problem of parallel clustering on multi-core systems, the thesis, in
Chapter 4, proposes IP.LSH.DBSCAN, abbreviating Integrated Parallel Density-
Based Clustering through Locality-Sensitive Hashing. IP.LSH.DBSCAN fuses
the data clustering process into creating a data synopsis based on locality
sensitive hashing. Using the aforementioned data synopsis and through data
parallelization and fine-grained synchronization, IP.LSH.DBSCAN facilitates
efficient concurrent data clustering on massive data-sets, scaling with number
of points and dimensions.

IP.LSH.DBSCAN’s Approach to Q3. IP.LSH.DBSCAN creates an LSH
structure in which nearby points get hashed to the same bucket with high
probability. Fusing the clustering process into creating the LSH structure,
IP.LSH.DBSCAN utilizes the same data structure to identify and merge density-
reachable points. Furthermore, the LSH structure in IP.LSH.DBSCAN facili-
tates in-place operations via one level of indirection (i.e., pointers). Moreover,
data access and modifications are largely performed in a data parallel manner,
and concurrent data modifications are synchronized using fine-grained syn-
chronization techniques. Due to the aforementioned provisions, the workload
in IP.LSH.DBSCAN is almost linear in the input size, and the contention on
the shared resources and the crosstalk between pairs of workers are marginal.
The results show the amount of work-load in IP.LSH.DBSCAN is significantly
smaller than a clustering method that just utilizes a similar LSH structure
because IP.LSH.DBSCAN fuses the clustering process into creating the data
synopsis.

IP.LSH.DBSCAN’s Approach to Q4. IP.LSH.DBSCAN facilitates straight-
forward adjustment of accuracy through tuning the LSH parameters, i.e., its
underlying data synopsis. The analytical and empirical results show trade-offs
between total workload and IP.LSH.DBSCAN’s accuracy.

IP.LSH.DBSCAN’s Approach to Q5. IP.LSH.DBSCAN’s underlying data
synopsis is based on locality-sensitive hashing, which has been proved to be

16 CHAPTER 1. OVERVIEW

useful for high dimensional data, various distributions, and a variety of distance
measures.

Analytical and empirical evaluations show that IP.LSH.DBSCAN can effec-
tively cluster various data types (e.g., low/high dimensional, low/high skewness)
using a wide-range of distance measures (e.g., Euclidean distance and angu-
lar distance) with high tunable clustering accuracy. Particularly, the results
show IP.LSH.DBSCAN can be up to several orders of magnitude faster than
state-of-the-art methods on high dimensional data.

1.6 Advances Relative to the State of the Art

The subsequent subsections reflect on how the thesis contributes towards
distributed clustering and parallel clustering, respectively.

1.6.1 Distributed Clustering

The common practice regarding the problems that concern multiple sources of
data is to centrally gather and process the union of different pieces of the data.
Centrally gathering and processing the accumulated data has been suggested
for point clouds in [67], for instance. Nevertheless, as pointed out in § 1.4.1,
when the data is gathered distributedly, centrally gathering and clustering of
the data is inefficient. In such cases, distributed clustering algorithms can be
leveraged. For example, DBDC [68], density-based distributed clustering, is a
client-server method that approximates the clustering outcome of DBSCAN.
Client nodes in DBDC locally perform operations on their data and transmit
some representatives, on which the server performs some extra processing
and forwards the results back to the clients. Unlike MAD-C’s constant-size
approximation-based synopsis, there are no guarantees on the number of
representatives in DBDC. Furthermore, MAD-C nodes can operate with an
arbitrary connection topology. Authors in [69] propose distributed versions of
some center-based clustering algorithms (e.g., K-Means, K-Harmonic-Means,
and Expectation-Maximization). In an iterative approach, each local node
computes sufficient statistics for its local data and then receives and aggregates
sufficient statistics from other nodes to attain a global sufficient statistics.
Nevertheless, MAD-C is more efficient at communication as the transmission
of data between MAD-C nodes takes place only once.

1.6.2 Parallel Clustering

The following introduces three categories of related work to PARMA-CC and
IP.LSH.DBSCAN.

Grid-based Methods. Most parallel data clustering methods employ a grid-
based space partitioning approach, for instance [7, 20, 63, 64]. Such approaches
have critical shortcomings in a number of ways. First, the performance of
grid-based approaches degrades severely with highly skewed data distribu-
tions [21–23]. On the other hand, both PARMA-CC and IP.LSH.DBSCAN
perform efficiently even with highly skewed data distributions. Second, the
methods in this category do not offer any systematic approach on balancing

1.6. ADVANCES RELATIVE TO THE STATE OF THE ART 17

Table 1.1: Properties of PARMA-CC and IP.LSH.DBSCAN and related clustering algorithms

Parallel
Effective

against high
dimensionality

Effective
against highly
skewed data

Balancing
workload with

accuracy

Supporting an
assortment of

Distance measures

Spatio-
temporal

optimization

Grid-based
[7, 49,63,64]

✓ ✗ ✗ ✗ ✗ ✗

LSH-based
[70,71]

✗ ✓ ✗ ✓ ✓ ✗

ρ-approximate
[7, 65]

✓ ✗ ✗ ✗ ✗ ✗

PARMACC ✓ ✗ ✓ ✓ ✗ ✓

IP.LSH.DBSCAN ✓ ✓ ✓ ✓ ✓ ✗

the workload with respect to the required accuracy, but both PARMA-CC
and IP.LSH.DBSCAN facilitate tuning the workload with respect to accuracy.
Third, the algorithms in this category do not offer the possibility to take advan-
tage of the spatio-temporal locality (if such a property exists in data), but some
PARMA-CC algorithms are designed to leverage the spatio-temporal locality
to achieve higher efficiency. Fourth, the methods in this category are designed
to utilize only the Euclidean distance. However, other distance measures (such
as the angular distance) might be needed for high dimensional applications due
to the concentration effect of Euclidean distance (i.e., loss of contrast between
nearest and furthest points) in high dimensions. IP.LSH.DBSCAN can utilize
an assortment of Distance measures (such as the angular distance which is a
better choice for high dimensional spaces). Fifth, as the number of possible
grid cells grows exponentially with increasing number of dimensions, the afore-
mentioned methods fail to scale with increasing number of dimensions [20]. On
the other hand, IP.LSH.DBSCAN can easily scale with increasing number of
dimensions.

LSH-based Methods. LSH indexing can be utilized to address the shortcom-
ings of grid-based approaches. For instance, [70,71] are approximate sequential
density-based clustering methods that use LSH for fast neighbourhood queries.
Although the aforementioned methods can enjoy the versatility of LSH, they
are prone to the negative effects of skewed data distributions (i.e., the number
of items returned by the majority of neighbourhood queries is proportional to
the size of the data when the distirbution is highly skewed). On the other hand,
IP.LSH.DBSCAN fuses the natural LSH bucketization of the points into the
process of density-based clustering in a concurrent fashion. Esfandiari et al. [13]
propose an almost linear approximate DBSCAN that identifies core-points by
mapping points into hyper-cubes and counting the points in each hyper-cube.
It uses LSH to find and merge nearby core-points. IP.LSH.DBSCAN integrates
core-point identification and merging in one structure altogether, leading to
better efficiency and flexibility in leveraging the desired distance measure.

Other Approximate-based Methods. Besides LSH-based methods, there
exists other approximate-based methods that sacrifice accuracy to gain per-
formance. For example, ρ-approximate DBSCAN [20] produces a clustering
outcome which is sandwiched between those of DBSCAN with density parame-

18 CHAPTER 1. OVERVIEW

ters ϵ and ϵ(1 + ρ). Nevertheless, it has been shown that exact DBSCAN is
faster than ρ-approximate DBSCAN for appropriately chosen parameters [7,20].
STING [49] also approximates the clustering outcome of DBSCAN. Other
approximation approaches employ sampling techniques, e.g., [72]. These ap-
proaches do not address the challenges by the curse of dimensionality, but
for low-dimensional data clustering, these methods can be incorporated in
PARMA-CC’s approximation-based synopsis.

Table 1.1 summarizes the comparison of PARMA-CC and IP.LSH.DBSCAN
with respect to the state-of-the-art methods.

1.7 Conclusions and Future Work

This thesis studies the problem of efficient data clustering in the era of big data
using the processing environments in the edge-cloud computing continuum. The
methods in the thesis target a wide range of challenging big data properties such
as large volume, high dimensionality, high skewness, and distributed sources.

To address the challenges of efficient big data clustering, the thesis follows
the scale down, scale up, and scale out guidelines [24]. To scale down the
data, the thesis utilizes approximation-based data synopsis for a wide range
of challenging data properties. Furthermore, the thesis proposes methods
tailored for scaling up the computation in one node using parallelization and
methods tailored for scaling out the computation to several edge nodes for
distributed computing. The methods in the thesis integrate the approximation
techniques into the algorithmic design in order to increase the synergy between
the software and the processing environment.

Regarding distributed approximate clustering on edge, the thesis proposes
MAD-C. In comparison with a standard baseline which centrally gathers and
processes the accumulated data, MAD-C leads to communication savings pro-
portional to the number of points and multiplicative decrease in the dominating
component of the processing complexity with high clustering accuracy. Regard-
ing parallel approximate clustering, the thesis proposes a family of clustering
algorithms called PARMA-CC, which take specialized approaches regarding
workload distribution and synchronization targeting different data properties.
Analytical and empirical evaluations show that PARMA-CC algorithms achieve
significantly higher scalability than the state-of-the-art methods while pre-
serving a high accuracy. Regarding high dimensional data clustering, the
thesis proposes IP.LSH.DBSCAN which shows great versatility and benefits in
clustering different data types (e.g., low/high dimensional, low/high skewness)
using a wide-range of distance measures (e.g., Euclidean distance and angu-
lar distance) with high tunable clustering accuracy. Analytical study shows
IP.LSH.DBSCAN’s computational complexity is almost linear, and empirical
evaluations show IP.LSH.DBSCAN is several orders of magnitude faster than
state-of-the-art algorithms on high dimensional data.

The thesis showcases the applications of MAD-C for efficient object detection
and localization using distributed LIDAR sensors. The thesis also shows how
MAD-C can be adopted for efficient geofencing problems (i.e., detecting objects
within a restricted area in an environment). Furthermore, the thesis provides
further use-cases of PARMA-CC algorithms for efficient query processing such

1.7. CONCLUSIONS AND FUTURE WORK 19

as approximating the distance of a given point to the set of detected clusters,
or predicting the clustering label of new point based on the existing clusters.
The contributions of the thesis are publicly available as open source software.

The methods introduced in this thesis can form a basis for a more general
data processing framework. A future line of research regarding MAD-C can
fuse data from various types of sources (e.g., positioning sensors) with LIDAR
data, in order to increase accuracy and safety. Another future line of research
is to extend the methods to predict the type (e.g., pedestrian, cyclist, etc) of
the scene-objects. Moreover, it is worthwhile to investigate the possibilities of
extending the proposed methods for stream processing applications. For in-
stance, as the readings from consecutive rotations of a LIDAR sensor are mostly
similar, it is expected that an approximation-based synopsis corresponding to
one rotation of a LIDAR sensor can efficiently be adjusted for the next rotation
of the LIDAR sensor. Another interesting future study regarding MAD-C
can study parallelization of the workload on distributed machines (e.g., using
PARMA-CC algorithms). A general line of future work regarding PARMA-
CC and IP.LSH.DBSCAN is to adapt the methods for GPU enabled systems.
The latter seems to be a reasonable choice specially for IP.LSH.DBSCAN
which extensively utilizes hashing techniques. Furthermore, IP.LSH.DBSCAN
and PARMA-CC are expected to facilitate pipeline processing in conjunction
with stream-processing oriented data structures. The performance and accu-
racy of IP.LSH.DBSCAN can further be enhanced by incorporating probing
techniques [73,74] into the method.

20 CHAPTER 1. OVERVIEW

Chapter 2

Distributed Approximate
Clustering and Applications

MAD-C: Multi-stage Approximate Distributed Cluster-
combining for obstacle detection and localization

Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou and
Philippas Tsigas

This Chapter is an adaptation of the article that appeared in the Journal of
Parallel and Distributed Computing (JPDC), Vol. 147, pp. 248-267, Elsevier,
2021.

A preliminary version of this article appeared in:
Euro-Par 2018: Parallel Processing Workshops, Turin, Italy, August 27-28,
2018, Revised Selected Papers, vol. 11339, pp. 312-324. Springer, 2018.

21

Summary

The upcoming digitalization in the context of Cyber-physical Systems (CPS),
enabled through Internet-of-Things (IoT) infrastructures, require efficient meth-
ods for distributed processing of the data, that is generated by multiple sources.
We address the problem of obstacle detection and localization through data
clustering, which is a common component for data processing in the fusion of
multiple point clouds, each obtained by a LIDAR sensor. Such sensors generate
data at high rates and can rapidly exhaust traditional methods that centrally
gather and process the global data. To that end, we propose MAD-C, an
approximate method for distributed data summarization through clustering,
that can orthogonally build on known methods for fine-grained point-cloud clus-
tering, and synthesize a decentralized approach, which exploits the distributed
processing capacity efficiently and prevents saturation of the communication
network. In MAD-C, corresponding to the point-cloud gathered by each LIDAR
sensor, local clusters are first identified, each corresponding to an object in
the sensed environment from the perspective of the respective sensor. After-
wards, the information about each locally detected object is transformed into
a data-summary, computable in a continuous manner, with constant overhead
in time and space. The summaries are then combined, in an order-insensitive,
concurrent fashion, to produce approximate volumetric representations of the
objects in the fused data. We show that the combined summaries, in addition
to localizing objects and approximating their volumetric representations, can
be used to answer relevant queries regarding the relative position of the ob-
jects in environment and a geofence. We evaluate the performance of MAD-C
extensively, both analytically and empirically. The empirical evaluation is
performed on an IoT test-bed as well as in simulation. Our results show that
MAD-C leads to (i) communication savings proportional to the number of
points, (ii) multiplicative decrease in the dominating component of the pro-
cessing complexity and, at the same time, (iii) high accuracy (with RandIndex
> 0.95), in comparison to its baseline counterpart for obstacle detection and
localization, as well as (iv) linear computational complexity in terms of the
number of objects, for the geofence related queries.

22 CHAPTER 2. MAD-C

2.1 Introduction

Context and Motivation of the Problem

In the context of digitalization and Internet-of-Things (IoT) infrastructures,
fog/edge computing platforms are emerging distributed processing infrastruc-
tures that can address scalability issues of the cloud computing paradigm. In
contrast to the latter, which assumes that data is globally gathered and analysis
is performed into the cloud, edge computing refers to having data and analysis
in the edge nodes; fog computing is broader and it refers to having data and
analysis in intermediate processing nodes, i.e. an abstraction between the edge
and the cloud.

Processing sensor data is an important problem that can benefit from such
computing infrastructures. For coping with the rate and volume at which data
is produced by certain types of sensors, efficient approximation approaches that
summarize the data and process the summaries are required, for example in
the spirit of the synopses methods introduced in [17]. The importance of data
summarization and summary processing is more pronounced for processing
data from high-rate sensors, such as LIDAR sensors.

LIDAR (LIght Detection And Ranging) is an accurate sensing method that
gives a 3D scan of the environment in which it operates. LIDAR reads the
distances by reflecting pulsed laser lights and measuring the reflected lights. A
LIDAR sensor typically has a rotating head that emits several layers of laser
beams, resulting in a high resolution 3D scan of the environment, possibly
containing hundreds of thousands of points, by one full rotation of the head.
LIDAR sensors can produce readings with rates of several MBps. A point cloud
refers to the output of a LIDAR sensor [39].

The high resolution, accuracy, and 3D nature of the point clouds produced
by a LIDAR sensor make such a sensor an attractive choice for autonomous de-
tection and localization of objects (e.g., in environments such as industrial areas
or motorways). The ability of detecting and localizing objects autonomously
can be useful in numerous applications and use-cases, e.g. in autonomous
driving vehicles [75].

It is likely that more than one LIDAR sensors are needed in order to scan
and create detailed 3D models of complex and large environments [76]. This
is needed, for instance, when LIDAR laser beams from a single sensor might
not be able to reach some objects because of occlusion. Moreover, even for an
object which is not occluded, the LIDAR reading can be limited due to the
object’s disposition and the LIDAR’s location; i.e., LIDAR beams might not
hit some portions of the object. Engaging several LIDAR sensors for gathering
data from different points of view can help us overcome issues such as occlusion
and partial views of objects. Moreover, it can increase robustness by adding
redundancy to deal with failure cases. This opportunity can enhance resiliency
and availability, e.g. for automated vehicles in production environments, for
checking safety risks such as geofence detection in environments where robots
and humans co-exist, to mention just a couple of possible uses.

In the following, we discuss the challenges that are introduced by a multi-
LIDAR setup, in the problem of detection and localization of objects, utilizing
fog and edge computing in data processing.

2.1. INTRODUCTION 23

Challenges Relative to the State-of-the Art

Detection and localization of objects using data from several LIDAR sensors is
a resource-demanding problem. Given the state-of-the-art, a method that can
be considered as the baseline, is to (i) first gather the point clouds from the
different sources (edge nodes), commonly connected through a shared wireless
channel, to a fog node; (ii) afterwards apply an object detection algorithm,
commonly a clustering algorithm [5, 6], on the union of sources’ point clouds,
labeling each point accordingly. However, this approach is not practical due to
the cumulative data volumes, resulting in: (i) prohibitive processing costs (at
least linear in the point clouds’ size) even for state-of-the-art parallel clustering
approaches [5, 47, 50, 63, 63, 77]; (ii) prohibitive communication bandwidth
requirements; for example, simultaneous transmission of six or more high-
resolution point clouds can take multiple seconds using a shared wireless
communication medium of common rates [55, 56]; (iii) prohibitive latency, as a
combined consequence of the above.

To cope with the aforementioned limitations, continuous data processing at
the edge (i.e. performing distributed detection and localization for each LIDAR
source) can be beneficial to overcome the aforementioned limitations. However,
to that end, new aspects imply challenges in identifying a fast, continuous
and distributed approach: (i) efficient representation of the local results, and
(ii) efficient combination of the local results in order to generate a global result;
furthermore, (iii) the representation of the local results should be accurate
enough to facilitate obtaining high-quality object detection and localization and,
at the same time, should be compact enough to minimize the communication
footprint and the complexity of applications such as geofencing.

Contributions

We propose MAD-C, a multi-stage approximate distributed cluster-combining
method for obstacle detection and localization, using point-clouds from multiple
LIDAR sensors; MAD-C efficiently exploits the available decentralized process-
ing capacity at the edge nodes and prevents saturation of the communication
network. A key component of our algorithm is an efficient summarization
method. First, MAD-C clusters each point cloud at each edge node attached
to a LIDAR sensor, orthogonally building on known methods for fine-grained
point-cloud clustering. Each local cluster corresponds to an object in the sensed
environment from the perspective of the respective sensor (i.e. occlusion can
have significant influences). Then, each edge node computes a local, constant
size geometrical summary of each object and MAD-C lets the processing nodes
combine their findings with those of other nodes, until a complete view is
reached. The following points summarize the findings regarding the properties
of MAD-C.

• We show that the aforementioned summaries are computable in a contin-
uous way, with constant overhead in time and space and can be combined
in an order-insensitive concurrent fashion, in time that depends only on
the number of objects and sensors instead of their point-clouds’ sizes;
thus MAD-C can exploit the data parallelism in the problem. We further
provide a detailed analysis of the asymptotic expected completion time of

24 CHAPTER 2. MAD-C

MAD-C, considering both the communication and processing overhead,
over a binary tree or a flat tree (star) network topologies connecting the
edge devices.

• We provide an extensive experimental study of MAD-C, on an actual
IoT testbed and on simulations, with real-world and synthetic data
and varying number of nodes, to cover a wide spectrum of scenarios,
including very demanding cases. Based on the results, we can conclude
that the common view produced by MAD-C is close in accuracy to that
of the aforementioned baseline. We also observe significant improvements
in processing and communication time, which are the more important
aspects for fog/edge architectures and for the usage of the algorithm in
time-sensitive applications.

• Furthermore, as a usage of MAD-C, we show how to leverage its properties
in order to efficiently answer queries regarding geofences, e.g. to detect
objects inside restricted areas in an environment.

An overview of MAD-C and results from a preliminary experimental study
via simulations were first introduced in [78]. Here we provide a more detailed
description of the algorithm, including procedures to tune key parameters, as
well as the analytical study of its completion time. Furthermore, we provide
a more extensive empirical evaluation of MAD-C with larger data volumes,
over networks of various sizes, enabling to understand the scaling properties of
MAD-C. Moreover, MAD-C is evaluated not only in simulation, but also in an
IoT test-bed, comprising of representative fog/edge type devices. In addition,
in the present work we explain how MAD-C’s summarizations can be used
in other applications. Specifically, we present and analyze an application of
MAD-C for the geofencing problem.

The chapter is organized as follows: We cover preliminaries in § 2.2. We
present MAD-C and its algorithmic implementation aspects in § 2.3. We analyze
MAD-C’s time complexity in § 2.4. We present extensions and examples of
further usages of MAD-C in § 2.5. We provide an empirical evaluation of
MAD-C in § 2.6. We present the related-work and conclusions in § 2.7 and
§ 2.8, respectively.

2.2 Preliminaries

This section describes the system model, the problem description, and the
baseline solution. It also provides some background for self-containment of the
chapter.

2.2.1 System Model and Problem Description

We assume K (≥ 1) asynchronous, interconnected nodes in the system. A
processing unit and a LIDAR sensor at a known location and pose in the
environment are associated with each node. In our model, nodes can be
perceived as fog/edge devices.

Let ptCloudi denote the point cloud (a set of points in the 3D space)
that the LIDAR sensor associated with the i-th node, with a full rotation

2.2. PRELIMINARIES 25

of its spinning head, collects. Also, let Ni be the number of the points in
ptCloudi. The i-th node’s processing unit can process ptCloudi locally as well
as communicate raw and processed data to other nodes.

A (local) view refers to an individual ptCloudi, and the merged point cloud
is the union of all the K point clouds. We consider that the views are collected
at the same time, i.e. that the combined point clouds constitute a consistent
snapshot of the scene. For simplicity and w.l.o.g, we assume views are expressed
in the same coordinate system; otherwise, pre-processing can transform them
into a canonical system: depending on each LIDAR’s disposition, a rotation
matrix and a translation can be applied on its point-cloud.

The latter can be performed in conjunction with reading the points and
filtering away the ground points [79], in constant time per point, as the pre-
processing step. Let us introduce an example scenario in which MAD-C is
deployed.

Example. Figure 2.1(a) shows a scene in which three LIDAR sensors are
installed at N1, N2, and N3. Figure 2.1(b–d) respectively visualizes the view
of each of the 3 LIDAR sensors. Figure 2.1(e) shows the merged point cloud.
Notice that (i) there is at least one object missing in each local view and (ii) the
views are complementary regarding the objects that are not occluded; e.g. they
display almost non-overlapping segments of the car. Therefore, engaging more
nodes to collect point clouds can result in higher accuracy.

We assume the existence of a spanning tree for the nodes to communicate
and aggregate data [80]. Each node knows its children and its parent. Let the
sink node be the root of the connection topology tree, in charge of generating
a global view from data from all the nodes. We mainly consider a shared
communication medium with low-bandwidth capacity (e.g. relying on wireless
communication). We first present our methods under the spanning tree and no-
message-loss assumptions, for ease of the presentation. Later on, we generalize
our approach using known results in distributed systems.

The goal is to generate a continuous stream-compliant solution that utilizes
the distributed network of nodes in the system to generate, at the sink node, a
map that:

• enumerates the objects;

• for each object, provides a representation (e.g. volumetric and/or ex-
pressed as a set of points);

• is based on the information from all the K local point clouds,

• ensures high quality of detection.

Besides detection and localization of objects, this map should be usable in
scenarios that require to check conditions relative to the environment, e.g.
crossing of objects and dynamically defined borders, aka geofences. We elaborate
on the precise definition of the geofence problem in the designated section, for
ease of reference and for facilitating the reading of the chapter.

The properties of interest in a solution to the problem are: (i) low time
and communication complexity and (ii) high accuracy of the map. Regarding
the former, we estimate the number of processing steps and the amount of

26 CHAPTER 2. MAD-C

(a) 3 nodes (b) N1’s view (c) N2’s view (d) N3’s view (e) Merged view

Figure 2.1: A scene with three LIDAR nodes located at N1, N2 and N3 along with the local
views and the merged view.

information that needs to be communicated among the nodes. Regarding the
latter, we use rand Index, commonly used to compare two clusterings (e.g. [51]).
Rand index measures how much two clusterings of a sample set agree, based on
the ratio of the number of pairs of elements that are either clustered together
or separately in both clusterings, to the total number of pairs of elements.

2.2.2 Background and Baseline

Performing cluster analysis on a ptCloud is a helpful technique in order to
group the points in ptCloud based on the scene object that each point belongs
(e.g., as discussed in [75]). To that end, there are several suitable clustering
algorithms that can be applied on point clouds to detect the scene objects,
e.g. [5, 46,47,50].

Euclidean clustering. As a means of detecting scene objects in a given
ptCloud, this algorithm partitions ptCloud into an a priori unknown number
of clusters such that each cluster has at least minPts number of points, and
within each cluster, each point lies in ϵ-radius neighbourhood of at least
another point in the same cluster, where minPts and ϵ are two predefined
values. Non-clustered points are identified as noise [5]. Using a kd-tree [81],
a data structure for efficient indexing and neighbourhood search queries, the
Euclidean clustering algorithm’s expected and worst-case time complexities are
respectively O(N logN) and O(N2), see [5, Ch. 4], on a point cloud with N
points.

Euclidean clustering is an established and widely applied method [6]. More-
over, regarding the problems that concern multiple sources of point clouds, the
common practice in the literature is to perform processing on the merged point
clouds, for example [67]. Simplicity and no data loss (i.e. taking every single
reading into account) are the advantages of processing the merged point cloud.
Given the aforementioned background, we aim for a solid baseline that provides
a reliable ground-truth solution for the problem in § 2.2.1 and is an established
point of reference for comparison with our proposed methods. Therefore, we
consider the following baseline:

Baseline. The i-th node gathers ptCloudi (via its attached LIDAR sensor)
and, at the same time, listens/waits for the incoming data (point clouds) from
its children (if any). It merges (in the sense of set union) ptCloudi with all
the point clouds from its children and transmits the result to its parent. This

2.3. THE MAD-C ALGORITHM 27

procedure continues for all the nodes until the sink node holds the merged point
cloud from all the K nodes. Finally, the sink node performs the Euclidean
clustering algorithm on the merged point cloud.

Observation 2.1. Using a kd-tree for neighbourhood search, the expected and
worst-case computational complexities of the baseline method are respectively
O (N logN) and O

(
N2

)
, where N =

∑K−1
i=0 Ni, i.e., the size of the merged

point cloud.

2.3 The MAD-C algorithm

Here we describe MAD-C and how it meets the challenges and goals explained
in the previous sections.

2.3.1 The Key Idea of MAD-C

In a nutshell, each node i in MAD-C clusters ptCloudi locally and forwards
compact summaries of its local clusters. Those summaries get combined with
the ones of other nodes along a spanning tree, up to the sink node, which then
can deliver the set of global objects. Compared to the baseline presented in
§ 2.2.2, MAD-C drastically reduces the volume of data to be transmitted, while
it pipelines and distributes the analysis.

Questions arising are: how to efficiently (i) generate local maps, i.e. sum-
maries of the local clusters in the local views; and (ii) gradually combine
the maps in a deterministic fashion, despite network asynchrony. Below we
elaborate on these questions and in the following subsections we explain how
we treat them.

Consider two local clusters c1 and c2 from two distinct nodes. According
to the outcome of the baseline, c1 and c2 constitute a bigger cluster if they
overlap (or have points in the ϵ neighbourhood of each other). In that case,
c1 and c2 should be merged. But how can we determine if c1 and c2 meet the
conditions to be merged without calculating pairwise distances among all the
points in c1 and c2 (i.e. the cost of a global solution)? It certainly is highly
desirable if such a decision can be made with O(1) time complexity.

Commonly used tree-based nearest neighbour searches can not provide
a solution with O(1) time complexity to the aforementioned problem, for
instance check [18]. Furthermore, simply considering the distances between
the centroids of c1 and c2 is not enough, because the geometrical volume that
the two clusters take is also important. Therefore, we propose the MAD-C
summarization technique that captures centroid, orientation, and size of each
local cluster.

2.3.2 Generating Local Maps by Efficient Summarization
of Local Clusters

Ideally, the summary of a local cluster c (i) uses small space (not growing with
the number of points in c), (ii) can be built incrementally as new points are
added in c, (iii) can be shared with peers as soon as all c’s points are found, and

28 CHAPTER 2. MAD-C

(a) M1 (b) M2 (c) M3 (d) M1,2 (e) M1,2,3

Figure 2.2: (a),(b), and (c) are local maps. (d) M1,2= combine(M1, M2), (e) M1,2,3=
combine(M1,2, M3)

(iv) expresses the geometrical volume that c occupies, to allow for comparisons
and merging with overlapping or nearby clusters.

We identified that bounding ellipsoids satisfy the aforementioned require-
ments. Therefore, we pursue to fit a bounding ellipsoid for summarizing each
local cluster. But how can we efficiently characterize the bounding ellipsoid
corresponding to a local cluster? The contour surfaces of a three-dimensional
Gaussian distribution are ellipsoids, where a contour surface is the set of all
equi-probable points, and a three-dimensional Gaussian probability distribution
is fully characterized by a mean vector µ ∈ R3 (the centeroid of the distribution)
and a covariance matrix Σ ∈ R3×3 (the spread of the data points) [82].

The family of ellipsoids corresponding to the contour surfaces of a 3-variable
Gaussian distribution are characterized by (x− µ)TΣ−1(x− µ) = α2, where α
is a scaling factor, which we call the confidence step. All the ellipsoids in the
family are centered at µ. With a given α, each of the three eigen-vectors of Σ
defines the direction of a principal axis of the ellipsoid with the length being
equal to the square root of the corresponding eigenvalue multiplied by α. [82]

Observation 2.2. The Gaussian fit through maximum likelihood estimation
[82], allows to calculate a bounding ellipsoid incrementally by calculating |c| (c’s
number of data points), S =

∑|c|
1 pi (cumulative vector sum of c’s data points)

and Σ̃ =
∑|c|

1 pip
T
i (cumulative sum of outer products of c’s data points). As

soon as all the points in c are identified, µ and Σ of the corresponding bounding
ellipsoid E are calculated as S/|c| and Σ̃/|c| − µµT , respectively.

Observation 2.3. The representation of a bounding ellipsoid, in terms of µ
and Σ, summarizing a local cluster c takes constant storage size, independent
of |c|. Furthermore, µ and Σ can be calculated incrementally as points are being
added to c, with constant computational overhead per point.

Example. Figure 2.2a, 2.2b, and 2.2c respectively show the local maps
corresponding to Figure 2.1b, 2.1c, and 2.1d. Note that the ellipses displayed
in Figure 2.2 symbolically illustrate bounding ellipsoids summarizing local
clusters. The delimiting boxes displayed in Figure 2.2 are explained in § 2.3.4.

The following definitions become useful in explaining the next steps and
properties of MAD-C:

Definition 2.1. A map M is a set of objects. An object O is a set of (bounding)
ellipsoids. Two objects are similar, if there exists at least a pair of geometrically
overlapping ellipsoids (one from each object).

2.3. THE MAD-C ALGORITHM 29

Algorithm 2.1
generateLocalMap(node i)
1: let A be the Euclidean clustering algo-

rithm.
2: let α be the confidence step.
3: let Mi be an empty map.
4: while A is being applied on ptCloudi

5: if ∃ p just clustered by A then
6: c = local cluster where p belongs
7: if c is new then
8: |c| = 0, c.S = 0[3×1], c.Σ̃ =

0[3×3]

9: |c| = |c|+ 1; c.S ← c.S + p;

10: c.Σ̃ = c.Σ̃ + p ∗ pT

11: for c ∈ local clusters detected by A do

12: µ = c.S/|c|; Σ = c.Σ̃
|c| − µµT

13: let O be a new object and E be a new
ellipsoid

14: E.µ← µ;E.Σ← α2Σ
15: E.id← (i, c.id)
16: O.ellipsoids.add(E)

17: for d ∈ {x, y, z} do

18: O.bd = [min projdE,max projdE]

19: Mi.addObject(O)

20: return Mi

Algorithm 2.2 unifyAtParent(node i)
1: for all j ∈ children(i) do
2: receive(Mj)
3: Mi ← combine (Mi, Mj)

4: transmit Mi to parent(i) (if exists)

5: combine(Mi, Mj):

6: let Mresult be an empty map.
7: Mresult.objects← Mi.objects ∪Mj .objects
8: for all O ∈ Mi.objects, O′ ∈ Mj .objects do

9: if overlap(O.b,O′.b) then

10: if ∃E ∈ O.ellipsoids ∧∃E′ ∈
O′.ellipsoids|E ∩ E′ then

11: Mresult.mergeObjects(O,O′) with:

12: bd = O.bd ∪O′.bd|d ∈ {x, y, z}
13: return Mresult

Algorithm 2.3 add aura δ to ellipsoid
1: ExpandEllipoid(Σ, δ):

2: Singular Value Decomposition: Σ = V ΛV T

3: Λ←
(
Λ0.5 + δI

)2
// I:identity matrix

4: reconstruct the matrix: Σ = V ΛV T

5: return Σ

Stage one. The i-th MAD-C node applies the Euclidean clustering algorithm
(or alternatively any relevant distance based clustering method) on ptCloudi,
producing local map Mi. This is done distributedly, i.e. concurrently with other
nodes. Procedure generateLocalMap in Alg. 2.1 outlines MAD-C’s first stage
for the i-th node. Lines 4-10 in Alg. 2.1 show how incremental ellipsoid fitting
is pipe-lined into the local clustering, with constant overhead per point (see
Observation 2.3). Moreover, lines 11-20 in Alg. 2.1 show how objects in Mi are
initialized by the ellipsoids whose µ and Σ are computed using Observation 2.2.
We explain how to find the value of the confidence step, α, in § 2.3.4. The
highlighted lines in Alg. 2.1, correspond to algorithmic implementation details
that are discussed in § 2.3.4.

MAD-C’s next stage is explained in the following subsection, where we
study how the maps get combined by merging the similar objects in order to
generate a global map.

2.3.3 Towards a Global Map: Combining Maps

In MAD-C’s second stage, each none-leaf node i receives maps from its children.
It updates Mi by combining it with its children’s maps and, if it is not the sink
node, forwards the result to its parent.

Notice that if the combining was performed over the actual local clusters
rather than their summaries, two local clusters (each one with at least minPts
points) would become one if at least a pair of points (one from each) is found
within distance ϵ. Similarly, objects in Mi and each child map Mj are compared
to detect if they are similar (see Definition 2.1), i.e. if they contain ellipsoids
that geometrically overlap. If so, those pairs of objects are merged ; i.e. the

30 CHAPTER 2. MAD-C

union of their ellipsoids is recognized as one object in the resulting map. In
§ 2.3.4 we explain how (i) to integrate ϵ in an ellipsoid’s representation, and
(ii) to check in constant time if two ellipsoids geometrically intersect.

Notice also that applying the baseline on the merged point cloud (excluding
the local noise points) results in clusters that each contain one or more local
clusters from the local views. The latter holds because the points constituting
a local cluster will still be clustered together (possibly with points from other
local clusters) when the Euclidean clustering algorithm is applied on merged
point cloud. In the same manner, the objects returned by MAD-C’s sink node
are sets of ellipsoids, where each ellipsoid corresponds directly to a local cluster.
In other words, both methods provide a clustering of the local clusters.

Observation 2.4. Let LC be the set of all local clusters (from different
point clouds). Based on the above discussion, both baseline and MAD-C
perform clustering on the elements of LC. In order to measure how much
MAD-C is able to capture the clustering behaviour of the baseline, we apply
a clustering similarity measurement (such as rand index) on the respective
clustering outcomes of MAD-C and the baseline on the elements in LC.

Stage two. The i-th MAD-C node executes procedure unifyAtParent shown
in Alg. 2.2, distributedly and in parallel with other nodes in this stage. Lines
1-4 in Alg. 2.2 show that for every child node j, the i-th node receives the child
map Mj and updates Mi by combining it with Mj . If i-th node is not the sink
node, when all the combine operations are finished, Mi is transmitted to the
i-th node’s parent. Lines 5-13 in Alg. 2.2 show how the combine operation is
performed on Mi and Mj : all pairs of similar objects (one from Mi and one
from Mj) are identified and merged as one object in the resulting map (the
highlighted lines are implementation details covered in § 2.3.4).

Lemma 2.1. Operation combine on maps containing ellipsoids with unique
identities, satisfies the reflexive, symmetric and associative properties.

The above follows from line 10 in Alg. 2.2, ensuring that if Oi and Oj have
intersecting ellipsoids, then Oi and Oj will be merged regardless of the order
of execution.

Example. Figure 2.2d shows the map resulting from combine (M1, M2).
Figure 2.2e shows the combine result of the latter and M3.

2.3.4 Algorithmic Implementation Aspects of MAD-C

In this section, we cover three implementation-related algorithmic aspects of
MAD-C.

Determining if Two Ellipsoids Geometrically Overlap. Given a pair
of ellipsoids Ea,Eb, the method described in [83] determines in constant time
whether they intersect. It first characterizes Ea,Eb respectively as XTAX = 0
and XTBX = 0, where A and B are 4 × 4 matrices that (i) are derived
using their centroids and covariance matrices by extending with a default row
and column; and (ii) can be used to detect if there is at least an admissible

2.3. THE MAD-C ALGORITHM 31

eigenvector (one that does not have a zero in the fourth dimension) of A−1B
that satisfies both equations; in the latter case Ea,Eb overlap.

Aura: Integrating ϵ in Ellipsoids’ Representations. If the minimum
distance of pairs of points from two objects is less than ϵ, then they are grouped
together by the Euclidean clustering algorithm. We target the same behaviour
for the ellipsoidal models, adding an aura δ = ϵ/2 around them. To do so, we
simply increase the lengths of the main axes by this constant. Alg. 2.3 shows
how to update the covariance matrix of an ellipsoid for that purpose.

Determining the Value of α, i.e. the Confidence Step. As discussed
in § 2.3.2, MAD-C summarizes local clusters by bounding ellipsoids. Observa-
tion 2.2 shows how to find the parameters µ and Σ for an ellipsoid characterized
by (x− µ)TΣ−1(x− µ) = α2, where α (the confidence step) is a scaling factor
on the size of the bounding ellipsoids. The appropriate value for α is data-
dependent, hence harder to estimate in a data-agnostic way. For instance,
consider the bounding ellipsoids in the example in Figure 2.2. With a too small
α, the bounding ellipsoids get too small to correctly cover the local clusters.
On the other hand, with a too big α, the bounding ellipsoids erroneously span
over other local clusters as well. Therefore, to find a proper value for α, the
analyst that deploys MAD-C can apply a two-step empirical method. In the
first step, the effectiveness of bounding ellipsoids for summarizing clusters can
be validated for a wide range of α values. Afterwards, the clustering accuracy
of MAD-C can be estimated for the α values that result in the most effective
bounding ellipsoids. Finally, an α value for sample data that correspond to the
deployment environment of the application, that results to the desired accuracy,
can be chosen. In the following, we discuss how the effectiveness of bounding
ellipsoids and the accuracy of MAD-C can be estimated.

• Measuring Effectiveness of Bounding Ellipsoids. For measuring the
effectiveness of bounding ellipsoids, we consider the fact that MAD-C
utilizes bounding ellipsoids as models summarizing clusters. To that end,
recall and precision [84], two well-known model evaluation metrics, can
be leveraged. For any particular local cluster c and its corresponding
bounding ellipsoid e, precision measures the ratio of the number of points
correctly covered by e to the total number of points covered by e. On the
other hand, recall measures the ratio of the number of correctly covered
points by e to the total number of points in c.

• Measuring Accuracy. For estimating the accuracy of MAD-C, we consider
the fact that both MAD-C and the baseline perform clustering on the
set of local clusters (see Observation 2.4). Therefore, to measure the
agreement between the clustering outcome of MAD-C and that of the
baseline, rand index (see § 2.2) can be employed.

The Delimiting Box Heuristic. Checking if two ellipsoids overlap (i.e. are
similar) is not always necessary; such checks can be saved if e.g. they occupy
distant areas of the scene. We propose delimiting boxes of objects to reduce
the number of ellipsoid comparisons in determining if two objects are similar

32 CHAPTER 2. MAD-C

(see Definition 2.1). An object’s delimiting box is an axis-aligned rectangular
shape that encapsulates all the ellipsoids corresponding to that object as shown
in line 12 in Alg. 2.2. Similarly, an ellipsoid’s delimiting box is the smallest
axis-aligned circumscribed rectangle encapsulating that ellipsoid. Therefore,
an ellipsoid’s delimiting box is characterized by one closed interval on each
axis as shown in line 18 in Alg. 2.1. This heuristic does not lead to any false
negatives because if the delimiting boxes corresponding to objects O1 and O2

do not overlap, then the two objects are not similar. On the other hand, O1

and O2 are not necessarily similar if their delimiting their boxes overlap –in
that case a pairwise comparison between the ellipsoids in the two objects has
to be performed to determine if they are similar or not. The exact saving
due to this heuristic is largely data-dependent and hence harder to estimate
asymptotically, in a data-agnostic way. In § 2.6, we will empirically compare
the actual number of comparisons with and without this heuristic. Please note
that applying the delimiting box heuristic does not affect the validity of the
properties discussed in Lemma 2.1.

2.4 MAD-C’s Completion Time Analysis

In this section, we aim to characterize the asymptotic completion time behaviour
of the sink node in MAD-C.

2.4.1 Assumptions, Notations, and Definitions

We assume the existence of a global clock just for the ease of exposition.
Furthermore, we assume, for the local clustering, every MAD-C node leverages
the Euclidean clustering algorithm employing a kd-tree for ϵ-neighbourhood
search (see § 2.2.2). We assume that all MAD-C nodes start working at t = 0.
Let MAD-C nodes be numbered 0, 1, · · · ,K − 1, and let 0 be the index of the
sink node. In a binary tree topology, let (2× i+ 1) and (2× i+ 2) respectively
be the indices of the left and right child of the i-th node (if applicable). For
i = {0, · · · ,K − 1}, let Ni be the number of points in ptCloudi and N∗ be the
maximum value of Nis. Let χi denote the number of nodes in the sub-tree in
which the i-th node is located, including the i-th node itself. For instance, χ0 is
K. Let γ denote the number of actual objects in the environment, as detected
by the baseline introduced in § 2.2.2. Finally, let ∥M∥ denote the number of
ellipsoids in map M. Table 2.1 summarizes the notations that we use.

Assumption 1. For the sake of the analysis, we assume that the asymptotic
number of local clusters in each local view is Θ(γ).

The above is a sensible assumption for common cases because, in each local
view, while some environmental objects might be entirely occluded, others
might split up into smaller ones, thus detecting Θ(γ) number of local clusters
on average. As might be expected, this assumption is data-dependent, and
there can be rare situations where the occlusion due to certain arrangement
of objects in an environment increase or decrease the asymptotic number of
detected local clusters.

2.4. MAD-C’S COMPLETION TIME ANALYSIS 33

Table 2.1: Table of Notation

K ≜ number MAD-C nodes

γ ≜ number of actual objects in the environment (as determined by the
baseline)

α ≜ confidence step

ptCloudi ≜ the i-th node’s local point cloud

Mi ≜ the i-th node’s working map

|Mi| ≜ the number of objects represented in Mi

∥Mi∥ ≜ total number of ellipsoids in Mi

N ≜ number of points in the merged point cloud (ΣK−1
j=0 Nj)

Ni ≜ number of points in ptCloudi

N∗ ≜ maximum number of points in all the point clouds (maxj∈{0,··· ,K−1} Nj)

χi ≜ the number of nodes in the sub-tree in which the i-th node is located

p(i, t) ≜ a path in the topology tree that starts from the t-th node (a leaf node)
and ends at the i-th node

Ti ≜ the completion time of the i-th MAD-C node

lci ≜ the amount of time that the i-th MAD-C node spends on local clustering
and creating ellipsoidal models

coi ≜ the amount of time that the i-th MAD-C node spends on combining its
map with those of its children’s

tri ≜ the amount of time that the i-th MAD-C node spends on transmitting
its map to its parent

wti ≜ the amount of time that the i-th MAD-C node spends on waiting to
receive all the maps from its children

ωc ≜ the execution time of each computation step

ωt ≜ the transmission time of each unit of data

Definition 2.2. Regarding the i-th MAD-C node, let lci be the amount
of time that the node spends on local clustering and creating the ellipsoidal
summarizations. Moreover, let wti be the total amount of time that the node
spends on waiting to receive maps from its children (if applicable). Furthermore,
let coi be total amount of time that the node spends on combining its map with
those of its children’s (if applicable). Finally, let tri be the amount of time
that the node spends on transmitting its map to its parent (if applicable). All
in all, the completion time of the i-th MAD-C node, Ti, is characterized as the
following: Ti = lci + coi + tri + wti.

As the completion time of the i-th MAD-C node has computation-related
and transmission-related factors, let the execution time of each computation
step and the transmission time of each unit of data be denoted by ωc and ωt,
respectively. Note that for the latter to be a constant there is a simplifying
assumption that each node has dedicated bandwidth.

2.4.2 Asymptotic Behaviour of Components of the Com-
pletion Time

In this subsection, we present the asymptotic behaviour of MAD-C’s completion
time components. Using the latter, we will derive asymptotic bounds on the
sink node’s expected completion time.

34 CHAPTER 2. MAD-C

Characterizing the Asymptotic Behaviour of lc

Lemma 2.2. The expected asymptotic behaviour of lci is Θ(ωcNi logNi),
choosing the Euclidean clustering algorithm with the kd-tree for ϵ-neighbourhood
search as the local clustering algorithm and assuming that the resulting kd-tree
is balanced and the value of ϵ is small enough to return constant number of
points per each nearest neighbour search query.

Proof. The expected asymptotic time complexity of the i-th node’s local clus-
tering is Θ(ωcNi logNi) as Θ(Ni) number of nearest neighbour search queries is
performed each with Θ(logNi) complexity. Moreover, based on Observation 2.3,
the asymptotic amount of time that the i-th node spends on fitting bounding
ellipsoids is Θ(ωcNi). Considering the two contributing terms, the argument
in Lemma 2.2 is proven.

Characterizing the Asymptotic Behaviour of co

In order to analyze the asymptotic behaviour of co, we need to characterize
the execution time of the combine operation first. Note that in our analysis,
we do not consider the effect of the delimiting box heuristic presented in § 2.3.4
because its effect is data-dependent. Nevertheless, in practice, as we will see in
the empirical evaluation section (§ 2.6), the delimiting box heuristic reduces
the number of ellipsoid comparisons performed by the combine operation.

Lemma 2.3. The number of ellipsoid comparisons that are performed by the
combine operation on Mi and Mj is bounded by Ω(γ2) and O(∥Mi∥∥Mj∥) from
below and above respectively.

Proof. combine(Mi, Mj) checks the similarity (see Definition 2.1) of Θ(γ2)
pairs of objects because the asymptotic number of objects in each map is Θ(γ)
based on Assumption 1.

For any given pair of objects, the similarity check immediately returns as
soon it realizes whether the objects are similar or not. Therefore, in the best
case, it returns with O(1) ellipsoid comparisons for every pair of objects. In
the worst-case, however, the similarity check compares every pair of ellipsoids
in O and O′, in every pair of objects in Mi and Mj , giving the following upper
bound on the number of ellipsoid comparisons:∑

O∈Mi

∑
O′∈Mj

O
(
|O||O′|

)
= O

(∑
O∈Mi

|O|
∑

O′∈Mj
|O′|

)
= O (∥Mi∥∥Mj∥)

Corollary 2.1. Ω(ωcγ
2) ≤ execution time(combine(Mi,Mj)) ≤ O(ωc∥Mi∥∥Mj∥).

The above corollary is derived from Lemma 2.3 and noticing that comparing
two ellipsoids requires O(1) computation steps, as discussed in § 2.3.4.

Lemma 2.4. Let M be the combine result of two arbitrary maps Mi and Mj.
The number of ellipsoids in M equals the sum of number of ellipsoids in Mi

and Mj, i.e. ∥M∥ = ∥Mi∥+ ∥Mj∥.

Proof. For any ellipsoid e in either Mi or Mj , there exists an object O in the
resulting map M that e is a member of O. Conversely, the objects in M are
composed of ellipsoids from either Mi or Mj . Therefore, regardless of how

2.4. MAD-C’S COMPLETION TIME ANALYSIS 35

the combine operation merges the similar objects in the two maps, the total
number of ellipsoids in M is always the sum of number of ellipsoids in Mi and
Mj .

The following lemma presents bounds on the asymptotic behaviour of co
for MAD-C nodes with a flat-tree (i.e. star) or binary tree connection topology.

Lemma 2.5. For any leaf node i, coi is zero. Otherwise, assuming a star or
binary tree connection topology, the following bounds hold on coi: Ω(ωcγ

2) ≤
coi ≤ O(ωcχi

2γ2).

Proof. For any leaf node, coi is zero because the leafs do not perform any com-
bine operations. We proceed with the proof in two cases, when the connection
topology is a (i) star, and (ii) a binary tree.

Star Topology. With a star topology, only the combine time corresponding
to the sink node is non-zero. Therefore, let us derive co0. The sink node
sequentially combines M0, its map, with those of its children’s. Suppose,
w.l.o.g., that the sink node performs the combine operations in the following
order: M1, · · · , MK−1. Initially, according to Assumption 1, ∥Mi∥ = Θ(γ)
holds for all nodes. However, as M0 gets updated by each combine operation,
∥M0∥ changes after each update. More specifically, after the j-th combine

operation, ∥M0∥ = Θ(jγ), check Lemma 2.4. Therefore, applying the lower
and upper bounds in Corollary 2.1, the best-case and worst-case execution
time of the j-th combine operation are Ω(ωcγ

2) and O(ωcjγ
2), respectively.

Summing up the lower bounds for different values of j, we get Ω(ωcKγ2) (note
that the latter is a tighter lower bound than the one introduced in Lemma 2.5).
On the other hand, summing up the upper bounds for different values of j,
leads us to claimed upper bound, as follows:

co0 ≤ O(1ωcγ
2)+O(2ωcγ

2)+· · ·+O((K−1)ωcγ
2) = O(ωcK

2γ2) = O(ωcχ0
2γ2)

Binary Tree Topology. Let us start with deriving the lower bound. A non-leaf
MAD-C node performs two combine operations, one on its left child’s map
(M2×i+1) and one on its right child’s map (M2×i+2). Applying the lower bound
in Corollary 2.1, Ω(ωcγ

2) is a lower bound on the execution time of the i-th
node’s combine operations.

Now, let us derive the upper bound. Suppose, w.l.o.g., that the i-th node first
combines Mi with M2×i+1 and then with M2×i+2. The worst-case execution
time of the first combine operation is bounded by O(ωc

χi

2 × γ2) because at the
time of combining ∥Mi∥ is Θ(γ), and ∥M2×i+1∥ is Θ(γ). However, after the first
combine operation, ∥Mi∥ is Θ(χi

2 × γ) (based on Lemma 2.4). Consequently,
applying the upper bound in Corollary 2.1, the worst-case execution time of

the second combine operation is bounded by O(ωc
χi

2

4 × γ2), concluding the
upper bound O(ωcχi

2γ2) on coi.

Corollary 2.2. The following bounds hold on the combine time of the sink
node in MAD-C for a star or binary tree connection topology: Ω(ωcγ

2) ≤ co0 ≤
O(ωcK

2γ2).

36 CHAPTER 2. MAD-C

Characterizing the Asymptotic Behaviour of tr

The following lemma presents the expected transmission time for any MAD-C
node.

Lemma 2.6. tr0 is zero. For i ̸= 0, the asymptotic behaviour of tri is
Θ(ωtγχi).

Proof. The first argument (tr0 = 0) holds because the sink node does not
perform any transmissions. We prove the second argument using induction.

Base case. According to Assumption 1, the asymptotic number of local clusters
in any local view is Θ(γ). Accordingly, the asymptotic number of bounding
ellipsoids that a leaf node transmits to its parent is Θ(γ). According to
Observation 2.3, the representation of each bounding ellipsoid takes constant
size in space. Therefore, the transmission time for a leaf node asymptotically
takes Θ(ωtγ). Considering that χi is 1 for a leaf node, the base case is proven.

Inductive step. Suppose that the argument holds for children of the j-th node,
indexed by j1, j2, · · · , jl. The j-th node initially contains Θ(γ) ellipsoids in
its map. However, after it performs combine operations on the maps from its
children, the asymptotic number of ellipsoids in its map is Θ(γ + γχj1+ · · ·+
γχjl), based on Lemma 2.4. On the other hand, χj is equal to χj1 + · · ·+
χjl+1. Therefore, the expected asymptotic transmission time of the j-th node
is Θ(ωtγχj). By mathematical induction, the argument is proven.

Characterizing the Asymptotic Behaviour of wt

Unlike the other three time components, wti, the i-th node’s waiting time, can
not be analytically characterized on its own because the amount of time that a
node waits is execution dependent. Our next best alternative to an analytical
characterization is deriving upper and lower bounds on wti.

Lemma 2.7. If the i-th node is a leaf node, then wti is zero. In general,

the following bounds hold: 0 ≤ wti ≤ maxp(i,t)

(
lct +

∑
j∈p(i,t) (coj + trj)

)
,

where p(i, t) is a path in the topology tree that starts at the t-th node, which is
a leaf node, and ends at the i-th node.

Proof. The lower bound is an optimistic estimation which holds when all the
i-th node’s children’s maps are available before the i-th node has finished its
local clustering task. On the other hand, the upper bound is a pessimistic
estimation that holds when the i-th node finishes its local clustering task
very early and has to wait until the t-th node finishes its local clustering task.
Additionally, the i-th node has to wait until all the nodes in the path p(i, t) finish
their combine operations and transmit the results until the i-th node receives
the map from its slowest child. Therefore, the path p(i, t) that maximizes(
lct +

∑
j∈p(i,t) (coj + trj)

)
determines an upper bound on wti.

Suppose p∗(i, t) is the path that starts from the leaf node indexed by t∗

and reaches the i-th node and maximizes the upper bound in Lemma 2.7 for
the i-th MAD-C node.

2.4. MAD-C’S COMPLETION TIME ANALYSIS 37

Lemma 2.8. The following bound holds for the i-th MAD-C node:∑
j∈p∗(i,t)

(coj + trj) ≤ O(ωcK
2γ2) +O(ωtKγ)

Proof.∑
j∈p∗(i,t)

(coj + trj) =
∑

j∈p∗(i,t)

coj +
∑

j∈p∗(i,t)

trj

≤
(
O(ωcK

2γ2) +O
(
ωc

K2

2
γ2

)
+O

(
ωc

K2

4
γ2

)
+ · · ·+O

(
ωc

K2

2lgK
γ2

))
+

∑
j∈p∗(i,t)

trj Applying Lemma 2.5

= O(ωcK
2γ2) +

∑
j∈p∗(i,t)

trj Sum of the geometric series

≤ O(ωcK
2γ2) +

(
O(ωtKγ) +O

(
ωt

K

2
γ

)
+ · · ·+O

(
ωt

K

2logK
γ

))
Applying Lemma 2.6

= O(ωcK
2γ2) +O(ωtKγ) Sum of the geometric series

Lemma 2.9. 0 ≤ E[wti] ≤ O(ωcN
∗ logN∗) +O(ωcK

2γ2) +O(ωtKγ).

Proof. The lower bound in Lemma 2.9 is clear, so we prove the upper bound
in Lemma 2.9 as the following:

E[wti] ≤ E [lct∗] + E

 ∑
j∈p∗(i,t)

(coj + trj)


Applying Lemma 2.7 and then linearity of expectation

≤ O(ωcN
∗ logN∗) + E

 ∑
j∈p∗(i,t)

(coj + trj)

 Applying Lemma 2.2

≤ O(ωcN
∗ logN∗) +O(ωcK

2γ2) +O(ωtKγ) Applying Lemma 2.8

2.4.3 Characterizing the Completion Time T0

Definition 2.2 explained that the i-th node’s completion time comprises four
components. Employing the characterizations of the components (covered in
Lemma 2.2, Lemma 2.6, Lemma 2.5, and Lemma 2.9), we aim to derive lower
and upper bounds on the expected completion time of the sink node.

Theorem 2.1. The following bounds hold on the expected completion time
of MAD-C’s sink node with a star or a binary tree connection topology:
Θ(ωcN0 logN0)+Ω(ωcγ

2) ≤ E[T0] ≤ Θ(ωcN
∗ logN∗)+O(ωcK

2γ2)+O(ωtKγ).

38 CHAPTER 2. MAD-C

Proof. Based on Lemma 2.6, tr0 = 0. Therefore, considering Definition 2.2
and the linearity of expectation, E[T0] is equal to E[lc0] + E[co0] + E[wt0].
We first derive the lower bound on E[T0].

E[T0] = E[lc0] + E[co0] + E[wt0]

≥ E[lc0] + E[co0] Applying Lemma 2.9

≥ Θ(ωcN0 logN0) + Ω(ωcγ
2) Applying Lemma 2.2 and Lemma 2.5

In the last statement, the best-case asymptotic behaviour of co0 (see
Lemma 2.5) is used as an asymptotic lower bound on E[co0]. This proves the
lower bound in Theorem 2.1. We now prove the upper bound on E[T0].

E[T0] = E[lc0] + E[co0] + E[wt0]

= Θ(ωcN0 logN0) + E[co0] + E[wt0] Applying Lemma 2.2

≤ Θ(ωcN0 logN0) +O(ωcK
2γ2) + E[wt0] Applying Corollary 2.2

≤ Θ(ωcN0 logN0) +O(ωcK
2γ2) +O(ωcN

∗ logN∗) +O(ωcK
2γ2) +O(ωtKγ)

Applying Lemma 2.9

= Θ(ωcN
∗ logN∗) +O(ωcK

2γ2) +O(ωtKγ)

In practice, we expect that the number of points in each local point cloud
(possibly containing hundreds of thousands of points) to be much larger than
the number of nodes (K) and the number of actual objects (γ). Therefore, with
small enough ωt (i.e. fast enough transmission links), the asymptotic terms
containing N0 and N∗ are the dominating factors in the expected completion
time of MAD-C’s sink node. In other words, we expect that either the local
clustering of the sink node or one of its descendants to be the dominant factor
in MAD-C’s completion time.

Observation 2.5. The longest local clustering dominates MAD-C’s completion
time in practice.

2.5 Extensions and Examples of Further Usages
of MAD-C

In this section, we describe how MAD-C can form the core of a set of approxi-
mations for extended usage. We also explain how MAD-C’s ellipsoidal models
can be further employed for efficiently processing geofence queries regarding
the fusion of multiple point clouds.

2.5.1 Extensions

Versatile Communication Methods for MAD-C Nodes. Lemma 2.1
implies that the maps and the combine operation, satisfy the properties of
conflict-free replicated data types [85]. Consequently, the network topology and
timing asynchrony do not affect the final map at the sink node. Moreover, the

2.5. EXTENSIONS AND EXAMPLES OF FURTHER USAGES OF MAD-C 39

combine operations can be executed using non-atomic multicasting, similar to
gossiping or selective flooding, guaranteeing eventually consistent final outcome
and inherent fault-tolerance properties [80]. Therefore, the spanning tree
assumption in § 2.2.1 can be lifted and besides the sink node, also any other
node can construct the global map.

MAD-C-ext for Delivering Data Point Labels. MAD-C can be extended
into providing a clustering label for each point in the merged point cloud, similar
to what the baseline in § 2.2.2 does. The extension is as follows: Consider a
leaf MAD-C-ext node indexed as i. In addition to Mi, the i-th node transmits
ptCloudi and the corresponding local clustering labels. Its parent node, indexed
as pi, after having performed the regular tasks of a MAD-C node, relabels
the points in the union of point clouds from its own and its children based on
the updated Mpi . It then, in turn, transmits Mpi along with its merged point
cloud and clustering labels to its parent. As the process continues, finally the
sink node holds the final merged point and its corresponding clustering labels.

Observation 2.6. The clustering accuracy of MAD-C-ext compared to the
baseline in § 2.2.2 can be computed by applying a clustering similarity measure-
ment (such as rand index) on the clustering outcomes of MAD-C-ext and the
baseline.

2.5.2 Geofencing with the Fusion of LIDAR Point Clouds

MAD-C’s ellipsoidal models can be leveraged to approximately but efficiently
answer queries regarding the merged point cloud. Queries regarding geofencing
are considered useful, considering that a geofence defines a predetermined
perimeter in an environment marking a hazardous area for instance. We explain
how the summaries produced by MAD-C, without needing to have access to
the original gathered point clouds, make it possible to answer dynamically
changing geofence queries. Let us give the useful definitions before we formally
define the problem.

Definition 2.3 (Plane). A plane in a 3D space is characterized by v1(x −
x0) + v2(y − y0) + v3(z − z0) = 0, where v = [v1, v2, v3] is known as the
plane’s normal vector, and [x0, y0, z0] is an arbitrary point on the plane. Any
point that satisfies the characterization equation is on the plane. The plane’s
positive/negative side contains all the points that make the characterization
equation greater/less than zero.

Definition 2.4 (Geofence). A geofence is the area enclosed by the intersection
of positive sides of a finite number of planes. For a geofence G, let |G| be the
number of enclosing planes.

Note that a geofence can have an arbitrary shape and size, but with a large
enough number of planes any arbitrary shape can be approximated with the
desired accuracy. Also note that Definition 2.4 allows a geofence to be much
more general than just a regular perimeter, e.g., a polyhedron can be a geofence
according to Definition 2.4. We suppose that the intersection of the positive
sides of planes in G is non-empty.

40 CHAPTER 2. MAD-C

Note that, in the literature, most geofencing problems concern positioning
systems such as global navigation satellite system (GNSS) to determine whether
an object has entered/exited boundaries of a geofence, for example [86]. How-
ever, not much work exists on geofencing with LIDAR data. In the following,
we describe the requirements of the problem.

The geofence-crossing Problem with LIDAR Data. Given a geofence G
and a clustering C of N data points, find out the clusters that violate G, i.e. the
clusters that fall inside or cross the geofence at one or more of its boundaries.

We first outline a baseline approach to address the geofencing-crossing
problem, before presenting a solution based on MAD-C’s ellipsoidal models.

A Baseline Solution to the Geofence-crossing Problem with LIDAR
Data. For each cluster c, one can check every point in c to see whether it
falls inside or crosses the geofence G. If at least one such point is found, then
the whole cluster c is identified as falling insider or crossing G. Notice that the
worst-case number of processing steps required by the straightforward solution
to the geofence-crossing problem is O(N × |G|). The latter holds because, in
the worst-case, every point has to be checked against all the |G| number of
planes in G, and it takes constant number of processing steps to determine to
which side of a plane any given point falls.

Geofence-crossing Problem Using MAD-C

We discuss here how MAD-C’s ellipsoidal summaries can be employed to
efficiently find out the objects that are located inside a geofence or cross it at
one or more of its boundaries, i.e. the objects that violate the geofence.

Definition 2.5. An object O violates a geofence G, if at least one ellipsoid in
O violates G. An ellipsoid e violates a geofence G, if, for every plane H in G, e
either falls on the positive side of H or crosses H.

Based on Definition 2.5, we need to be able to determine the relative position
of an ellipsoid with respect to a given plane H which is either of the three
following possibilities: (i) The ellipsoid is on the negative side of H. (ii) The
ellipsoid is on the positive side of H. (iii) The ellipsoid intersects H. In the
following we study how to determine the relative position of an ellipsoid E
with respect to a given plane H.

Definition 2.6. Given a plane H and an ellipsoid E, let points P− and P+

respectively represent the lower and upper bounds of the orthogonal projection
of all E’s points on the normal vector of H.

Lemma 2.10. An ellipsoid E neither crosses nor falls inside the positive side
of H if and only if both P+ and P− are on the negative side of H.

Proof. Consider Figure 2.3, where the relative position of ellipse E and the
thick line that symbolically represents a plane are of interest. The thin line
shows the plane’s normal vector (v) passing through an arbitrary point x0 on
the plane. The point denoted by Pµ shows the orthogonal projection of E’s
centroid on the normal vector. The following three cases determine E’s relative
position with respect to the plane:

2.5. EXTENSIONS AND EXAMPLES OF FURTHER USAGES OF MAD-C 41

E
x0

μ
+ λvx0

P+

P
−

Pμ

Figure 2.3: The relative position of an ellipse and the thick line that symbolically represent
a plane.

• If both P+ and P− are on the positive side of H, then E is also located
on the positive side of H.

• If P+ is on the positive side of H, but P− is on the negative side of H,
then E intersects H.

• If both P+ and P− are on the negative side of H, then E is also located
on the negative side of H.

Lemma 2.11. All the points that fall within/on the boundaries of ellipsoid E
characterized by (x− µ)TΣ−1(x− µ) ≤ 1, are members of the following set and
vice versa (the members of the following set fall within/on the boundaries of
E):

SE = {x|x = µ+Σ(1/2)ω, ∥ω∥ ≤ 1}

Proof. We note that (x−µ)TΣ−1(x−µ) is equal to
(
Σ−

1
2 (x− µ)

)T (
Σ−

1
2 (x− µ)

)
because Σ is a symmetric positive-definite matrix. Accordingly, we can charac-
terize the points that fall within/on the boundaries of E as the following:

SE =

{
x
∣∣ (Σ− 1

2 (x− µ)
)T (

Σ− 1
2 (x− µ)

)
≤ 1

}
=

{
x
∣∣ ∥∥∥(Σ− 1

2 (x− µ)
)∥∥∥ ≤ 1

}
=

{
x
∣∣ x = µ+Σ

1
2ω, ∥ω∥ ≤ 1

}

We now present a theorem that shows how the values of P+ and P− are
calculated.

Lemma 2.12. For a given ellipsoid E characterized by centroid vector µ and
covariance matrix Σ, and a given plane H with normal vector v passing through

x0, P+ and P− are determined as the following: P± = vT (µ−x0)
vT v

±
∣∣∣∣ vTΣ(1/2)

vT v

∣∣∣∣.

42 CHAPTER 2. MAD-C

Proof. The orthogonal projection of any point x on the normal vector is
vT (x−x0)

vT v
. Applying the latter on the representation of E given in Lemma 2.11,

we derive PE , the set of points corresponding to the orthogonal projection of
the points in E on the normal vector passing through x0:

PE =
vT (µ+Σ(1/2)ω − x0)

vT v
=

vT (µ− x0)

vT v
+

vTΣ(1/2)

vT v
ω, ||ω|| ≤ 1

Since ω can arbitrarily be chosen from a ball with radius one, we can derive
the following bounds on PE :

vT (µ− x0)

vT v
−
∣∣∣∣vTΣ(1/2)

vT v

∣∣∣∣ ≤ PE ≤ vT (µ− x0)

vT v
+

∣∣∣∣vTΣ(1/2)

vT v

∣∣∣∣
With reference to the above inequalities, we conclude that P± = vT (µ−x0)

vT v
±∣∣∣∣ vTΣ(1/2)

vT v

∣∣∣∣.
Now that we know how to determine the relative position of an ellipsoid

with respect to any given plane, we proceed with explaining our novel method
for determining the objects that violate a given geofence G.

ellipsoidalGeofencing. Given a map M filled with MAD-C’s objects, we
iterate through each object O, as shown in line 2 in Alg. 2.4, in the map
to determine which ones violate the geofence G. To that end, if at least one
ellipsoid E in O violates G, then O is marked as violating G as shown in lines 3
and 4 in Alg. 2.4.

Algorithm 2.4 Adapting MAD-C as a solution to the geofence-crossing
problem with LIDAR data.
1: ellipsoidalGeofencing(M, G)

2: for ∀ O ∈ M do
3: if ∃ E ∈ O | isViolating(E, G) then
4: mark O as violating geofence G

5: isViolating(E, G)

6: µ := E.µ,Σ := E.Σ
7: for H ∈ G do
8: Let v be the normal vector of H
9: Let x0 be a point on H

10: P+ :=
vT (µ−x0)

vT v
+

∣∣∣∣ vTΣ(1/2)

vT v

∣∣∣∣
11: P− :=

vT (µ−x0)

vT v
−

∣∣∣∣ vTΣ(1/2)

vT v

∣∣∣∣
12: if P+ ≤ 0 ∧ P− ≤ 0 then
13: return false {e neither crosses nor falls inside H}
14: return true {E falls inside or crosses every H in G}

Operation isViolating. In order to find out if an ellipsoid E violates a
geofence G, for evey plane H in G, P+ and P− are calculated using Lemma 2.12
as shown in lines 10 and 11 in Alg. 2.4. If the conditions in Lemma 2.10
(corresponding to line 12 in Alg. 2.4) hold for at least a plane H in G, then
E neither crosses nor falls inside H; therefore, E does not violate G (see

2.6. EMPIRICAL EVALUATION 43

Definition 2.5). On the other hand, corresponding to line 14 in Alg. 2.4, if E
crosses or falls inside every H in G, then E violates G.

Lemma 2.13. In the worst-case, ellipsoidalGeofencing asymptotically
requires O(||M|| |G|) processing steps.

Proof. In the worst-case, operation isViolating has to be called for every
ellipsoid in M –remember from Definition 2.1 that ||M|| denotes the total
number of ellipsoids in M. Each time, the maximum number of times that
the for loop in line 7 in Alg. 2.4 gets executed is |G|. Therefore, considering
that P+ and P− are evaluated in constant number of processing steps, in
the worst-case, ellipsoidalGeofencing asymptotically requires O(||M|| |G|)
number of processing steps.

2.6 Empirical Evaluation

We empirically evaluate MAD-C and MAD-C-ext (introduced in § 2.5.1) from
different perspectives. In order to perform a thorough evaluation, we conduct
experiments using both a proof-of-concept implementation on an IoT test-bed,
as well as a virtual-machine-based simulation. The simulation environment
gives us flexibility in adjusting the parameters of the experiments to study
scalability and aspects related with larger networks and more data, while the
experiments in the IoT test-bed give the actual results that could be expected
in a real-world MAD-C setup.

Concretely, the evaluation provides a study on (i) estimating the value of
the confidence step (α), (ii) the completion time and scalability aspects of
MAD-C and MAD-C-ext compared with the baseline, and (iii) the components
of MAD-C’s completion time. The study concerns the influence of the following
parameters: the number of nodes (K), the number of scene objects (γ), and the
topology of the inter-connected nodes, i.e., a star or a binary tree connection
topology, as motivated in the analysis section.

Regarding (i), we use the procedure explained in § 2.3.4 to determine the
value of α. Regarding (ii), we study the completion time of MAD-C in ac-
cordance with Theorem 2.1. In the same fashion, we present the completion
time of MAD-C-ext, reflecting the overheads that it introduces to MAD-C.
Regarding (iii), considering MAD-C’s time components introduced in Defini-
tion 2.2, we study co (the combine time) in accordance with Lemma 2.5, and
tr (the transmission time) in accordance with Lemma 2.6. We complement
the study of the combine time by evaluating the effect of the delimiting box
heuristic (presented in § 2.3.4) on the number of ellipsoid comparisons. To that
end, we find the average number of ellipsoid comparisons with and without the
delimiting box heuristic.

2.6.1 Evaluation Setup

We implemented MAD-C and MAD-C-ext in C++1 and used the GNU scientific
library [87] for matrix algebra. The functionalities of network communication
are implemented using the Boost.Asio library [88]. For the baseline and local

1https://github.com/amir-keramatian/MAD-C.git

44 CHAPTER 2. MAD-C

clusterings, we employed the Euclidean clustering (cf. § 2.2) algorithm in the
Point Cloud Library [6], with ϵ and minPts respectively set to 0.35 and 10.
With these values, the baseline reasonably detects all objects in the scenes and
provides a reliable ground-truth. For time measurements, we used elapsed real
time.

We indexed the nodes from 0 to K − 1. The node indexed by 0 is the sink
node in both topologies. Furthermore, in a binary tree topology, (2× i+1) and
(2× i+ 2) are respectively the indices of the left and right children of the i-th
node, while height of a node denotes the number of edges on the longest path
from the node to a leaf. In the following, we give the setup details regarding
the execution of MAD-C in the virtual-machine-based simulation and the IoT
test-bed.

Virtual-machine-based Simulated MAD-C. On a 2.1 GHz Intel(R)
Xeon(R) E5-2695 (with 3.3 GHz maximum turbo frequency) server supporting
72 threads (including hyperthreading), we emulated a range of networks sizes,
ranging from 7 to 20 LIDAR sensors (i.e. MAD-C nodes), representing a
reasonably high number of nodes in a realistic MAD-C deployment. Each
emulated node was run inside an Oracle VM VirtualBox machine [89]. As the
operating system, each virtual node ran an Ubuntu 18.04, and it was assigned
2 GB of memory and 7 hyper threads. For networking among the nodes, the
virtual machines operated under the host only adapter option in the VirtualBox.
The networking bandwidth for each simulated MAD-C node was limited to 100
Mbps via the VirtualBox settings.

MAD-C in an IoT Test-bed Consisting of Resource-constrained
Nodes. These experiments, acting as both a proof-of-concept study and a
validation study of the simulated systems, were run on a test-bed consisting
of five ODROID-XU3 devices. Each ODROID-XU3 device is a single-board
computer equipped with a Samsung Exynos 5422 Cortex-A15 2.0 GHz quad
core and Cortex-A7 quad core CPUs with 2 GB of memory. Each ODROID-
XU3 ran an Ubuntu 18.04 as the operating system and was connected to a
switch with 100 Mbps bandwidth per port.

2.6.2 Evaluation Data

We used both real and synthetic LIDAR data sets. We generated synthetic
LIDAR data sets corresponding to several scenarios, each with different char-
acteristics in order to ensure an unbiased evaluation. The scenarios were
generated by the webots simulator [90], which simulates real-world LIDAR
sensors (Velodyne HDL-32E, in our case) and 3D scenes. Our first synthetic
scenario resembles a factory environment with Automated Guided Vehicles,
lifting arm cranes and related objects, where four LIDAR sensors are placed
at the corners of the scene and one in the middle as shown in Figure 2.4a.
Moreover, we generated random scenes filled with a variety of objects, as small
as cubic boxes (with lengths of 80 cm) to objects as big as cars, over an area
of 50× 50m2, where seven LIDAR sensors are placed in different locations as
shown in Figure 2.4b. Each object is randomly rotated around its vertical
axis to vary the angle with which it is exposed to the LIDAR sensors. Under

2.6. EMPIRICAL EVALUATION 45

(a) The factory scene. (b) A random scene. (c) A KITTI scene.

Figure 2.4: Some examples of the data used in the empirical evaluation.

the aforementioned settings, we generated 300 synthetic scenarios with 10
scene objects, 300 synthetic scenarios with 50 scene objects, and 300 synthetic
scenarios with 100 scene objects, respectively denoted by syn-10, syn-50, and
syn-100.

Regarding real-world LIDAR data, we utilized the Ford Multi-AV Seasonal
Data Set [76], gathered by vehicles driving through the greater Detroit area,
including a university campus, the DTW airport, and residential communities.
Four Velodyne HDL-32E LIDAR sensors, mounted on the four corners on top
of each vehicle, gathered the LIDAR data. We randomly chose a subset of the
Ford Multi-AV Seasonal Data Set and split each merged point cloud into 20
overlapping partitions, reminiscent of a twenty-LIDAR sensor setup in which
the sensors perceive the environment in a way that there is both redundancy
and occlusion, and capture overlapping and complementary measurements.
We also utilized the point clouds in the KITTI data set [91], gathered by a
Velodyne HDL-64E LIDAR sensor mounted on a car driving around in urban
and rural areas, see Figure 2.4c for an example. We randomly chose 43 point
clouds from the KITTI data set. Since the LIDAR point clouds in the KITTI
data set were gathered by a single source, we only used them to show the
effectiveness of bounding ellipsoids in modelling the local clusters.

2.6.3 Evaluation Results

We start presenting the results by estimating the value of the confidence step.

Determining the Confidence Step

As outlined in § 2.3.4, to determine the value of α to use, the analyst that
deploys MAD-C, needs to jointly tune, for representative data of the application,
(i) the effectiveness of the bounding ellipsoids in summarizing the local clusters
and (ii) the clustering accuracy of MAD-C, both measured for different values
of α and in conjunction with the aura (c.f. § 2.3.4). To that end, we measured
the effectiveness of the bounding ellipsoids in summarizing the clusters for a
wide range of α values. Afterwards, based on the aforementioned measurements,
we narrowed down the search spectrum for the suitable values of α, that result
in appropriate accuracy, for sample data of each of the study cases.

46 CHAPTER 2. MAD-C

0 1.7 3.5
0

0.5

1

(a) Synthetic scenes, without
aura

0 1.7 3.5
0

0.5

1

(b) KITTI scenes, without aura

0 1.7 3.5
0

0.5

1

(c) Ford Multi-AV Seasonal
scenes, without aura

0 1.7 3.5
0

0.5

1

(d) Synthetic scenes, with aura

0 1.7 3.5
0

0.5

1

(e) KITTI scenes, with aura

0 1.7 3.5
0

0.5

1

(f) Ford Multi-AV Seasonal
scenes, with aura

Figure 2.5: Average recall and precision with one standard deviation (confined within the
zero to one interval) show the effectiveness of bounding ellipsoids in summarizing clusters as
a function of the confidence step in different data sets with and without aura.

0.8 1.4 1.8 2.4
0.7

0.8

0.9

1

(a) Synthetic scenes

 2 3 5 7
0.95

0.96

0.97

0.98

0.99

1

(b) Synthetic scenes

 7 15 20

0.7

0.8

0.9

1

(c) Ford Multi-AV Data Set
scenes

Figure 2.6: Accuracy of MAD-C and MAD-C-ext in rand index. 2.6a shows the clustering
accuracy of MAD-C for the factory scene with different values of the confidence step and
different number of nodes (i.e. K). 2.6b and 2.6c respectively show the clustering accuracy
boxplots of MAD-C for the synthetic scenes and the Ford Multi-AV Seasonal Data Set for
different number of nodes, with confidence step 1.5.

2.6. EMPIRICAL EVALUATION 47

The Effectiveness of Bounding Ellipsoids in Summarizing Local Clus-
ters. Plots in Figure 2.5 show the average recall and precision values with
one standard deviation error bars (contained within the zero to one interval)
for the different data sets, as α varies between 0.1 to 3.5. The first, the second,
and the third columns in Figure 2.5 respectively correspond to the merged
point clouds in the synthetic scenes, the KITTI scenes, and the merged point
clouds in the Ford Multi-AV Seasonal Data Set. The first row in Figure 2.5
(2.5a, 2.5b, and 2.5c) shows the results without the aura, and the second row
(2.5d, 2.5e, and 2.5f) shows the results with the aura, introduced in § 2.3.4.

Based on the results in Figure 2.5, with a too small value for the confidence
step, clusters are partly covered (i.e. low average recall) or not covered at all
(i.e. low average precision). This is expected, because a small confidence step
shrinks the volume of the bounding ellipsoids (remember from § 2.3.2 that
the confidence step is a scaling factor on the size of the bounding ellipsoids).
This problem gets mitigated as the confidence step increases; however, with
a too large value for the confidence step the precision drops again because
the bounding ellipsoids expand so much that they erroneously start to cover
parts of other clusters as well. As the results show, adding the aura results in
achieving higher recall and precision values even with relatively small values of
α. The latter is expected because the aura expands the principal axis of each
bounding ellipsoid by the constant ϵ/2.

Furthermore, the results in Figure 2.5 show that adding the aura generally
improves the effectiveness of bounding ellipsoids in summarizing the clusters
because the recall and precision retain close to 1 values with more choices of α.
Based on the aforementioned observations, we narrowed down the interval for
the α to [0.8, 2.4].

Clustering Accuracy. Figure 2.6a shows the clustering accuracy of MAD-C
and MAD-C-ext on the factory scene when the number of nodes varies from
two to five and the confidence step is 0.8, 1.4, 1.8 and 2.4. We observe that
rand index values are maximized when the confidence step is 1.4 and 1.8.
Figure 2.6b shows the clustering accuracy of MAD-C and MAD-C-ext when
confidence step is 1.5 for the synthetic scenes with two, three, four, and five
nodes, where each boxplot summarizes statistics measured for syn-10, syn-50,
and syn-100 data sets. Figure 2.6c shows the clustering accuracy of MAD-C and
MAD-C-ext for the Ford Multi-AV Seasonal Data Set. Figure 2.6a, Figure 2.6b,
and Figure 2.6c show that with an appropriate value of the confidence step,
the clustering behaviour of MAD-C is similar to that of the baseline (see
Observation 2.4). Figure 2.6a, Figure 2.6b, and Figure 2.6c also show that
MAD-C-ext achieves high clustering accuracy (see Observation 2.6).

Completion Time of MAD-C, MAD-C-ext, and the Baseline

The boxplots in Figure 2.7 show the completion time (in seconds) of MAD-
C and the baseline for the synthetic scenes with the star and binary tree
connection topologies. The first, second, and the third columns respectively
correspond to results with syn-10, syn-50, and syn-100 data sets. The first
row (2.7a, 2.7b, and 2.7c) shows the results obtained on the IoT test-bed with
five nodes. The second row (2.7d, 2.7e, and 2.7f) shows the results obtained

48 CHAPTER 2. MAD-C

0

1

2

3

4

5

6

7

(a) syn-10, IoT test-bed with 5
nodes

0

5

10

15

20

25

30

35

(b) syn-50, IoT test-bed with 5
nodes

0

20

40

60

80

100

120

(c) syn-100, IoT test-bed with
5 nodes

0

1

2

3

4

5

6

(d) syn-10, simulation with 5
nodes

0

5

10

15

20

(e) syn-50, simulation with 5
nodes

0

10

20

30

40

50

60

(f) syn-100, simulation with 5
nodes

0

1

2

3

4

5

6

7

8

(g) syn-10, simulation with 7
nodes

0

5

10

15

20

25

30

(h) syn-50, simulation with 7
nodes

0

10

20

30

40

50

60

70

80

(i) syn-100, simulation with 7
nodes

Figure 2.7: Completion time of MAD-C and Baseline in different setups for syn-10, syn-50,
and syn-100 data sets. (a-c) The IoT test-bed with five nodes. (d-f) Simulation with five
nodes. (g-i) Simulation with seven nodes. Note that the simulation and the IoT test-bed use
different hardware platforms.

10
-1

10
0

10
1

10
2

(a) Simulation with 7 nodes

10
-1

10
0

10
1

10
2

10
3

(b) Simulation with 15 nodes

10
-1

10
0

10
1

10
2

10
3

(c) Simulation with 20 nodes

Figure 2.8: Completion time of MAD-C and Baseline in different setups for the Ford
Multi-AV Seasonal Data Set. The lower and upper limits as well as the median values are
presented for each boxplot.

2.6. EMPIRICAL EVALUATION 49

10
-1

10
0

10
1

10
2

10
3

(a) Simulation with 7 nodes

10
-1

10
0

10
1

10
2

10
3

(b) Simulation with 15 nodes

10
-1

10
0

10
1

10
2

10
3

(c) Simulation with 20 nodes

Figure 2.9: Completion time of MAD-C-ext and Baseline in different setups for the Ford
Multi-AV Seasonal Data Set. The lower and upper limits as well as the median values are
presented for each boxplot. Note that the baseline is the same as the one in Figure 2.8.

in our simulation with five nodes, and the third row (2.7g, 2.7h, and 2.7i)
shows the simulation results with seven nodes. Remember from § 2.6.1 that the
virtual-machine-based simulation and the IoT test-bed use different hardware
platforms. The latter explains the discrepancies (in absolute times) between
the simulation results with five nodes and the results of the IoT test-bed (with
five nodes). Nonetheless, we observe that the ratio of completion times is
consistent between the two cases. The statistical results show that MAD-C is
2-5 times faster than the baseline in the experiments with the synthetic scenes.

The boxplots in Figure 2.8 show the completion time (in seconds) of sim-
ulated MAD-C and simulated baseline for the Ford Multi-AV Seasonal Data
Set with the star and binary tree connection topologies. 2.8a, 2.8b, and 2.8c
respectively show the simulation results for 7, 15, and 20 nodes. In Figure 2.8,
the lower and upper limits as well as the median values are presented for
each boxplot to enhance readability as the scale on the Y-axis is logarithmic.
The results show that MAD-C is about 5-30 times faster than the baseline,
depending on the number of nodes.

Regarding scalability aspects, the results statistically show that, as the num-
ber of nodes increases, the increase in MAD-C’s completion time is drastically
lower than the increase in the baseline’s completion time, as expected. For
example, regarding the synthetic data set, as the number of nodes increases
from five to seven, MAD-C’s maximum completion time increases about 7% on
syn-100 data set, considering the star connection topology. Under the same
conditions, the maximum completion time of the baseline increases about 38%.
Moreover, the median completion time of MAD-C remains about 0.5 seconds
with 7, 15, and 20 nodes, but the median completion time of the baseline is
approximately 3, 9, and 15 seconds, respectively. Besides, the results show
that the completion time of MAD-C and the baseline increase on data sets
containing higher number of objects, respectively confirming the analysis in
Theorem 2.1 and Observation 2.1 (note that the synthetic point clouds that
contain higher number of scene objects contain more number of points as well).

The growth in baseline’s completion time (with respect to the number of
nodes) is explained by the fact that it gathers and centrally processes all the
point clouds, see Observation 2.1. On the other hand, Observation 2.5 is the
critical key in understanding why MAD-C’s completion time does not increase
as rapidly as the baseline’s does with increasing number of nodes: the length of
the longest local clustering (the dominant factor in the MAD-C’s completion

50 CHAPTER 2. MAD-C

time, as shown in the previous section) does not grow with increasing number
of nodes. As we will see in the following, transmission and combine times are
negligible for MAD-C nodes.

Finally, the boxplots in Figure 2.9 show the completion time of simulated
MAD-C-ext and the simulated baseline for the Ford Multi-AV seasonal Data Set
with the star and binary tree connection topologies. Figure 2.9a, Figure 2.9b,
and Figure 2.9c respectively show the results for 7, 15, and 20 nodes. In Fig-
ure 2.9, the lower and upper limits as well as the median values are presented
for each boxplot to enhance readability as the scale on Y-axis is logarithmic.
The results show that MAD-C-ext is more than three times faster than the
baseline, despite the fact that MAD-C-ext transmits the raw point clouds. The
savings in completion time of MAD-C-ext is due to distributing the workload
among the nodes and not performing the clustering task centrally. Moreover,
as presented in the following, performing combine tasks takes negligible time
compared to the total completion time.

Combine Time of MAD-C Nodes

The boxplots in Figure 2.10 show the combine time of MAD-C nodes (in seconds)
on syn-10, syn-50, and syn-100 data sets for the star and binary tree connection
topologies. For the star topology, the boxplots show the results corresponding
to the root node, which is the only node performing any combine operations.
For the binary tree topology, the boxplots also show the results of nodes at
height one (remember that leaf nodes do not perform any combine operations).
In Figure 2.10, 2.10a, 2.10b, and 2.10c show MAD-C’s combine time for the
IoT test-bed (with five nodes), the virtual-machine-based simulation with five
nodes, and the simulation with seven nodes, respectively.

The boxplots in Figure 2.11 show the combine time of MAD-C nodes (in
seconds) on the Ford Multi-AV Seasonal Data Set for the star and binary tree
connection topologies. Figure 2.11a, Figure 2.11b, and Figure 2.11c respectively
show the results for 7, 15, and 20 virtual-machine-based simulated nodes,
differentiating the nodes based on their height in the respective connection
hierarchy.

The results in Figure 2.10 and Figure 2.11 show that, as expected, the
combine time increases with increasing number of objects (γ) and increasing
number of nodes (K). Moreover, for a constant K, we observe that the
sink node in the star topology has higher combine time than the sink and
intermediate nodes in the binary tree topology. This is expected because in
the star topology, only the sink node performs combine operations; however,
the workload gets distributed among the sink and intermediate nodes in the
binary tree connection topology.

Comparing MAD-C’s completion times in Figure 2.7 and Figure 2.8 with
MAD-C’s combine times in Figure 2.10 and Figure 2.11, we observe that the
amount of time that a MAD-C node spends on combining maps is negligible
compared to MAD-C’s total completion time.

The following discussion examines the effect of the delimiting box heuristic
(see § 2.3.4) on the average number of ellipsoid comparisons made by the
combine operations.

2.6. EMPIRICAL EVALUATION 51

syn-10 syn-50 syn-100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(a) The IoT test-bed (5 nodes)

syn-10 syn-50 syn-100
0

0.005

0.01

0.015

0.02

0.025

0.03

(b) Simulation with 5 nodes

syn-10 syn-50 syn-100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(c) Simulation with 7 nodes

Figure 2.10: MAD-C’s combine time in the IoT test-bed and the virtual-machine-based
simulation for syn-10, syn-50, and syn-100 data sets. Note that the simulation and the IoT
test-bed use different hardware platforms.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

(a) Simulation with 7 nodes

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(b) Simulation with 15 nodes

0

0.01

0.02

0.03

0.04

0.05

(c) Simulation with 20 nodes

Figure 2.11: MAD-C’s combine time for the Ford Multi-AV Seasonal Data Set.

52 CHAPTER 2. MAD-C

Table 2.2: Average number of ellipsoid comparisons made by the combine opera-
tions with/without the delimiting-box heuristic.

K = 2 K = 3 K = 5 K = 7

syn-10 16 168 46 599 92 1827 164 2951

syn-50 72 3610 218 12738 487 38858 804 56477

syn-100 105 12618 390 42481 1094 140380 2049 203423

The Effect of the Delimiting Box Heuristic. Table 2.2 shows the average
number of ellipsoid comparisons made by the combine operations on syn-10,
syn-50, and syn-100 data sets, with various number of nodes. The highlighted
entries show the results when the delimiting box heuristic was employed, and
the non-highlighted entries show the results without the heuristic. These results
show that, with the delimiting box heuristic, the asymptotic number of ellipsoid
comparisons follows a smaller growth function than the worst-case asymptotic
bound presented in Lemma 2.3. Therefore, in practice, the execution time of
the combine operation is lower than the bounds presented in Corollary 2.1.

Transmission Time of MAD-C and Baseline Nodes

The boxplots in Figure 2.12 show the transmission time (in seconds) of MAD-C
and baseline nodes on syn-10, syn-50, and syn-100 data sets for the star and
binary tree connection topologies. For the star topology, the boxplots show
the aggregate results of all the leaf nodes. For the binary tree topology, the
boxplots also show the aggregate results of the intermediate nodes. The first
row in Figure 2.12 (2.12a, 2.12b, and 2.12c) shows MAD-C results respectively
on the IoT test-bed, the virtual-machine-based simulation with five nodes, and
the virtual-machine-based simulation with seven nodes. The second row in
Figure 2.12 (2.12d, 2.12e, and 2.12f) shows the results of the baseline in the
same order. As explained in § 2.6.1, the nodes in the IoT test-bed are connected
to a switch, but the virtual nodes in the simulation use the host machine’s
loopback interface with software limited bandwidth. The latter explains the
discrepancies between the simulation results with five nodes and the results of
the IoT test-bed (with five nodes).

The boxplots in Figure 2.13 show the transmission time (in seconds) of
MAD-C and baseline nodes on the Ford Multi-AV Seasonal Data Set for the
star and binary tree connection topologies, differentiating the nodes based on
their height in the respective connection hierarchy. Figure 2.13a, Figure 2.13b,
and Figure 2.13c respectively correspond to 7, 15, and 20 simulated MAD-C
nodes. Similarly, Figure 2.13d, Figure 2.13e, and Figure 2.13f correspond to 7,
15, and 20 virtual-machine-based simulated baseline nodes, respectively.

The statistical results show MAD-C vastly cuts down on the required
transmission time. For instance, comparing the results of MAD-C and the
baseline on the IoT test-bed, MAD-C nodes are about 40 time faster than
their baseline counterparts. Moreover, MAD-C’s savings in transmission time
becomes more significant with increasing number of nodes. For example, shown
in Figure 2.13f, MAD-C nodes are about two orders of magnitude faster than
the baseline nodes in the virtual-machine-based simulations with 20 nodes.

Based on the results in Figure 2.12, for a MAD-C node, the transmission
time increases almost linearly with the number of objects (γ). Moreover, the

2.6. EMPIRICAL EVALUATION 53

syn-10 syn-50 syn-100

0.005

0.01

0.015

0.02

0.025

(a) MAD-C, IoT test-bed (five
nodes)

syn-10 syn-50 syn-100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

(b) MAD-C, simulation with
five nodes

syn-10 syn-50 syn-100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

(c) MAD-C, simulation with
seven nodes

syn-10 syn-50 syn-100
0

0.2

0.4

0.6

0.8

1

(d) Baseline, IoT test-bed (five
nodes)

syn-10 syn-50 syn-100
0

0.1

0.2

0.3

0.4

0.5

(e) Baseline, simulation with
five nodes

syn-10 syn-50 syn-100
0

0.1

0.2

0.3

0.4

0.5

0.6

(f) Baseline, simulation with
seven nodes

Figure 2.12: Transmission time of MAD-C and baseline nodes in different setups for syn-10,
syn-50, and syn-100 data sets.

54 CHAPTER 2. MAD-C

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(a) MAD-C, simulation with 7
nodes

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(b) MAD-C, simulation with 15
nodes

0

0.005

0.01

0.015

0.02

0.025

0.03

(c) MAD-C, simulation with 20
nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

(d) Baseline, simulation with 7
nodes

0

0.5

1

1.5

(e) Baseline, simulation with 15
nodes

0

0.5

1

1.5

2

2.5

(f) Baseline, simulation with 20
nodes

Figure 2.13: Transmission time of MAD-C and baseline nodes in different setups for the
Ford Multi-AV Seasonal Data Set.

2.7. RELATED WORK 55

results in Figure 2.12 and Figure 2.13 indicate that the transmission time of
a node i increases with χi, which is the number of nodes in the sub-tree of
that given node (note that the number of nodes, the topology of the tree, and
the height of a given node i can determine χi). These observations are in
accordance with the asymptotic behaviour of the transmission time provided
in Lemma 2.6.

Based on the results, we expect that advantages of MAD-C over the baseline
in saving transmission time become even more pronounced in setups where the
communication medium is slow and subject to failures such as collision, i.e.
the issues that take place in wireless communication.

Summary of the Results

In the evaluation of MAD-C, firstly we conducted experiments to empirically
estimate the value of the confidence step. Then, we studied the completion
time of MAD-C and MAD-C-ext and compared the results to that of the
baseline. We observed the scalability of MAD-C and MAD-C-ext for varying
number of nodes using real and synthetic data sets. We notably observed 2
to 30 times faster completion time with MAD-C compared to the baseline,
with differences becoming more pronounced as the network sizes, the data
sizes and the complexity of the sensed environment increase. Furthermore, we
empirically observed that the local clustering is the dominant cost factor in
MAD-C as the transmission and combine times are negligible, confirming our
analytical studies. We conclude that MAD-C’s completion time can be further
improved by employing a faster local clustering algorithm.

2.7 Related Work

Clustering is a commonly used method to detect objects in a point cloud [5,92].
Among the relevant clustering algorithms that can be applied on point clouds
are [5, 47, 50]. As point clouds are typically large in volume, the study of
clustering algorithms that utilize parallelization to tackle the challenges of
clustering a large volume of data is important. For example, the method in [63]
achieves parallelization by using graph algorithmic concepts. Other methods
such as [93] and [94] utilize graphics processing units to achieve parallelization.
As explained in the chapter, MAD-C works on top of the result of a clustering
algorithm. Therefore, in deployment, MAD-C can orthogonally utilize such
commodities if they are available.

Combining readings from multiple sensors is commonly recognized as sensor
fusion. For instance, the authors in [95] propose a method for 3-D model
reconstruction of objects using multiple calibrated camera views.

As mentioned in § 2.1, MAD-C and results from a preliminary experimental
study via simulations were introduced in [78]. The present chapter adds the
analytical study of the completion time behaviour of MAD-C. Furthermore,
it provides a significantly more extensive empirical evaluation of MAD-C
with binary tree and star tree connection topologies. Besides, MAD-C is
evaluated here not only in simulation, but also in an IoT test-bed, comprising
of representative fog/edge type devices. Furthermore, MAD-C is evaluated
here using a more extensive data set. In addition, the present work explains

56 CHAPTER 2. MAD-C

how MAD-C’s summarizations can be used in other applications, having as an
example to efficiently answer geofence queries.

Data summaries offer opportunities to efficiently deal with big volume of
data generated in a streaming fashion, (cf. e.g. [96]). MAD-C is indeed a
distributed algorithm that processes streaming data through data summaries.

Variants of Octrees [59], voxel grids [5], and bounding boxes [97, 98] are
tools used for efficient processing of point clouds. Our work, based on bounding
ellipsoids, offers new advantages because they have a compact representation,
they can be calculated incrementally (as points are being added in the clusters)
and they facilitate efficient operations.

Geometric alignment of two point clouds can be performed by ICP [99]
when the relative location and pose of the sources is not known. In our work,
however, we know the exact location and pose of all LIDAR nodes.

Distributed versions of some center-based clustering algorithms (for instance
K-Means, K-Harmonic-Means, and Expectation-Maximization) are proposed
in [69]. The basic iterative idea is to have the distributed nodes compute
sufficient statistics for their local data and then have the local sufficient statistics
aggregated to attain the global sufficient statistics which gets broadcasted back
to the distributed nodes. Enough iterations of the explained procedure takes
place until some predetermined performance criteria is met.

DBDC [68], density-based distributed clustering, is a client-server approach
to distributed density based clustering. Firstly, each node locally performs DB-
SCAN. Afterwards, a small number of representatives are chosen to summarize
each local cluster. The representatives from each site are then transmitted to a
central coordinator for further processing, where the central coordinator creates
a global clustering based on the representatives using DBSCAN with adjusted
parameters. The global clustering model is subsequently transmitted to the
local sites, where cluster relabeling takes place according to the global clustering
model. Unlike MAD-C, there are no guarantees on the size of summaries in
DBDC, i.e. the number of representatives for each local cluster can become
large. Whereas DBDC only works with a client-server topology, MAD-C oper-
ates with any given connection topology. MAD-C is a distance-based clustering
method, but DBDC is a density-based clustering method; therefore, they are
complementary approaches.

2.8 Conclusions

MAD-C is an approximate method for distributed obstacle detection and
localization in the fusion of several point clouds generated by different nodes,
where each node has a LIDAR sensor and a processing unit. Each MAD-C node,
distributedly and in parallel with other nodes, first applies a distance-based
clustering algorithm on its local point cloud and summarizes each local cluster
into a constant-sized representation. The summarization can be pipe-lined
into the local clustering process with constant computational overhead per
data point. After the summarizations, the nodes share their summaries and
collaboratively combine them in an order-insensitive concurrent fashion, to
generate a global summary corresponding to the fusion of all local point clouds.
Compared to a baseline method that centrally gathers and clusters all the

2.8. CONCLUSIONS 57

point clouds, MAD-C drastically reduces the amount of information that needs
to be shared among nodes. It also distributes the computational complexity
among several nodes. One important usage of MAD-C is to efficiently detect
objects inside a geofence, for instance an enclosed hazardous area specified in
the environment.

As we saw analytically and empirically, MAD-C has smaller completion
time than the baseline: MAD-C drastically cuts down on transmission volume,
and its processing overheads are marginal. Regarding scalabiliy, we saw that
MAD-C’s benefits become more pronounced as the number of nodes and the
complexity of the scenes increases. We also noticed and discussed that the local
clustering is the dominant cost factor in MAD-C’s completion time. Therefore,
we expect that MAD-C can be modified into an even faster method if faster
local clustering techniques (e.g., parallelization using GPUs) are employed.
Moreover, we discussed how to adopt MAD-C’s summaries in order to efficiently
identify objects in certain areas of the environment for geofencing purposes.
Other potential uses of the approach can include synergies of MAD-C with
spatio-temporal monitoring applications that involve distributed clustering and
connectivity, e.g. [100–103] or other methods targeting continuous, efficient,
approximate 2-tier data analysis, e.g. [28].

58 CHAPTER 2. MAD-C

Chapter 3

Parallel Approximate
Clustering and Applications

PARMA-CC: A Family of Parallel Multiphase Approxi-
mate Cluster Combining Algorithms

Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou and
Philippas Tsigas

This Chapter is an adaptation of the article that is under review after minor
revision in the Journal of Parallel and Distributed Computing (JPDC).

A preliminary version of this article appeared in:
The proceedings of the 21st International Conference on Distributed Computing
and Networking (ICDCN), pp. 20:1-20:10. ACM, 2020.

59

Summary

Clustering is a common task in data analysis applications. Despite the extensive
literature, the continuously increasing volumes of data produced by sensors
(e.g., rates of several MB/s by 3D scanners such as LIDAR sensors), and the
time-sensitivity of the applications leveraging the clustering outcomes (e.g.,
detecting critical situations such as detecting boundary crossing from a robot
arm that could injure human beings) demand for efficient data clustering
algorithms that can effectively utilize the increasing computational capacities of
modern hardware. To that end, we leverage approximation and parallelization,
where the former is to scale down the amount of data, and the latter is to
scale up the computation. Regarding parallelization, we explore a design
space for synchronization and workload distribution among the threads. As we
study different parts of the design space, we propose representative Parallel
Multiphase Approximate Cluster Combining, abbreviated as PARMA-CC,
algorithms.

We show that PARMA-CC algorithms yield equivalent clustering outcomes
despite their different approaches. Furthermore, we show that certain PARMA-
CC algorithms can achieve higher efficiency with respect to certain properties
of the data to be clustered. Generally speaking, in PARMA-CC algorithms,
parallel threads compute summaries associated with clusters of data (sub)sets.
As the threads concurrently combine the summaries, they construct a com-
prehensive summary of the sets of clusters. By approximating a cluster with
its respective geometrical summaries, PARMA-CC algorithms scale well with
increased data volumes, and, by computing and efficiently combining the sum-
maries in parallel, they enable latency improvements. PARMA-CC algorithms
utilize special data structures that enable parallelism through in-place data
processing. As we show in our analysis and evaluation, PARMA-CC algorithms
can complement and outperform well-established methods, with significantly
better scalability, while still providing highly accurate results in a variety of
data sets, even with skewed data distributions, which cause the traditional
approaches to exhibit their worst-case behaviour.

60 CHAPTER 3. PARMA-CC

3.1 Introduction

Data clustering, the task of grouping data points into sets of close-by points,
is a research thread active since decades. Among many applications and use-
cases, clustering algorithms are utilized in safety and management applications
that monitor environments to (i) detect areas with high space contention and
support decisions to e.g., minimize hazards, plan road networks or schedule
transport systems, and (ii) identify objects (e.g., a self-driving vehicle) exhibit-
ing dangerous or critical behavior (e.g., crossing a geofence or on a collision
course with an obstacle). Despite the large body of work on data clustering
(e.g., [2, Ch. 11-16] and references therein), deploying such applications, crit-
ical in Internet-of-Things- (IoT-) based systems, remain challenging due to
requirements such as:

• handling large data volumes (for example geolocation data gathered by
numerous GPS (Global Positioning System) devices over a period of time
and/or readings from LIDAR (Light Detection and Ranging) sensors
which scan their surroundings via rotating arrays shooting laser beams,
producing several MB/s of point cloud data),

• time constraints on data processing,

• efficient data processing for a wide range of data properties.

A parallel approach utilizing approximation can open up possibilities to
appropriately address the above issues. Approximation reduces the required
amount of workload at the expense of ideally small, controllable reduction
of accuracy. For example, a recent work proposing MAD-C (Multi-stage
Approximate Distributed Cluster-combining) [104] provides evidence regarding
the advantages of approximation. MAD-C, being a distributed algorithm for
approximating the Euclidean clustering algorithm, multiplicatively reduces
the computational workload through approximation at the cost of marginal
reduction in the clustering accuracy.

MAD-C’s approximation approach aligns with the first part of the ”scale
down, scale up, scale out” message, summarized by Gibbons in [24], and paves
the way to consider the second part, which is about proper utilization of
parallelism, already omnipresent in contemporary computing architectures at
all levels. To tackle this issue, in this work we address questions regarding
the following: Can shared memory boost scalability (i.e. have improved
time efficiency with increased number of threads)? Can work-partitioning,
scalability and high-degree of accuracy co-exist? How can approximation
contribute to super-linear scalability in the number of threads on multi-core
systems and maintain high degree of accuracy? Furthermore, can adjusting
the algorithm according to the data properties improve scalability? Moreover,
as IoT applications leverage numerous types of data with variety of different
properties, can the latter affect how much the available computational capacity
is utilized by an algorithm? These questions are not jointly answered in the
literature (cf. also § 3.10).

To answer the aforementioned questions, we propose a family of Paral-
lel Multiphase Approximate Cluster Combining methods (PARMA-CC). The
PARMA-CC algorithms are designed to achieve high scalability over a spectrum

3.2. PRELIMINARIES 61

of different properties of data. We show how to utilize the shared memory in a
way that supports parallel execution of threads sharing the workload. Further-
more, we show how synchronization among the threads is performed to achieve
high scalability over a spectrum of data properties. Because of our novel data
structures and their algorithmic implementations, several operations require
nearly constant time and enable incremental, in-place processing, gradually con-
structing the final result by connecting pieces of the data structure. We analyse
the properties of the algorithms in the PARMA-CC family, and we show they
all achieve equivalent clustering results. Furthermore, we study the efficiency,
scalability and accuracy of the PARMA-CC algorithms, also complementing
and comparing with well-established methods such as Euclidean clustering
algorithm [5], DBSCAN [47], and PDS-DBSCAN [63]. We supplement the
analysis with a detailed experimental study, using both LIDAR and GPS data
sets. Our results show efficiency in scaling and in preserving accuracy, even
with high numbers of threads and large data sets (that can be challenging for
existing clustering algorithms) and give practical evidence for the results in
the analysis and the benefits of the different approaches for different properties
and correlations of the data features.

The remainder of this chapter is organized as follows. In § 3.2, we discuss
the preliminaries. We outline the design ideas behind PARMA-CC algorithms
in § 3.3. We propose the algorithmic description of the PARMA-CC algorithms
in § 3.4 and § 3.5. In § 3.6, we describe our proposed data structures and
their algorithmic implementations. In § 3.8, we present a discussion regarding
the trade-offs among the PARMA-CC algorithms, further use cases, and some
generalizations. We theoretically analyze the PARMA-CC algorithms in § 3.7.
We present our empirical evaluation in § 3.9. We discuss the related work and
conclusions in § 3.10 and § 3.11, respectively.

3.2 Preliminaries

3.2.1 System Model and Problem Description

We consider a multi-core shared-memory system supporting parallel executions
of K threads, denoted t1, t2, · · · , tK. Threads access data via read, write
and read-modify-write atomic operations. We utilize CAS1 (abbreviating
compare-and-swap) and FAA2 (abbreviating fetch-and-add), two commonly
used read-modify-write atomic operations, supported by all contemporary
general purpose processors.
Input Data: D denotes the input dataset, a set of N points/observations, where
each observation contains one or more real-valued features in a metric space
(i.e., each feature corresponds to a dimension in the input space), over which
distances between points can be calculated. For instance, D can be a point
cloud, i.e., a set of measurements in the 3D space, gathered by one or more
LIDAR sensors, or it can contain geolocation data gathered by several GPS

1CAS(var, oldVal, newVal) atomically changes the value stored at var to newVal if the
value stored at var is oldVal and returns “true” in such a case, else it does not take any
effect and returns “false”.

2FAA(var, delta) atomically adds value delta to the value stored at variable var and
returns the value of the variable.

62 CHAPTER 3. PARMA-CC

trackers over a period of time. It is worth noting that a LIDAR sensor gathers
a point cloud by targeting laser beams and measuring the time for the laser
beams to get reflected back to the sensor. Furthermore, the sensor typically
rotates to give a 360◦ view [105]. Therefore, a point cloud gathered by such a
sensor is angularly sorted in time.

Problem Description: Given an input dataset D, the goal is to partition D into
an unknown number of mutually disjoint sets (a.k.a clusters) where the points
inside each cluster satisfy some predetermined distance-based or density-based
criteria. To that end, we aim for an efficient, scalable parallel approximate
solution to assign a clustering label to each point in D according to the cluster
to which the point belongs. The approximation, used to reduce calculations
regarding the enforcement of the distance or density criteria, must have high
accuracy. As an end result, each cluster should be characterized by its point set
(i.e., the cluster members) and also a volumetric representation of the cluster.

Objectives: To solve the aforementioned problem, we aim for a set of highly
parallel, time-efficient, and scalable algorithms tailored for different data prop-
erties in order to properly utilize the available computational power. Regarding
guarantees in presence of concurrency, a common consistency goal is that for
every parallel execution, there exists a sequential execution that produces an
equivalent result. Furthermore, the algorithms must be able to combine effi-
ciency and accuracy benefits. Regarding efficiency, the evaluation metrics are
completion time and scalability, where the scalability of a concurrent algorithm
can be measured as the ratio of its completion time when running with one
thread, over its completion time when running with K threads. The accuracy
is measured with respect to the results of an exact baseline method using
rand index [51, 106], a commonly used measure of clustering similarity. Given
two clusterings of the same set, rand index measures the ratio of the number
of pairs of elements that are either clustered together or separately in both
clusterings, to the total number of pairs of elements.

3.2.2 Background

For several of the technical parts of the algorithm descriptions, the following
algorithmic and concurrency-related terms are useful to introduce here: A con-
current algorithm is wait-free if all the threads can make progress independently
of each other. A concurrent implementation of a data object is linearizable if the
effects of concurrent operations appear instantaneously and are consistent with
the sequential specification of the object [107]. An operation implementation
is in-place if it directly modifies parts of a data structure without making new
copies of the latter.

We consider distance-based and density-based clustering. The points in a
distance-based cluster satisfy some minimum distance criteria, and the points
in density-based clusters form contiguous region of high-density, separated by
contiguous low-density ones. We review PCL-EC (the Point-Cloud-Library’s
Euclidean clustering algorithm) [5] as a representative of a distance-based clus-
tering. Representing density-based clustering, we cover DBSCAN [47] (Density-
Based Spatial Clustering of Applications with Noise) and an established parallel
variant, PDSDBSCAN [63]. We refer to PCL-EC and to DBSCAN as exact
sequential distance-based and density-based baselines, respectively.

3.3. THE PARMA-CC FAMILY OF ALGORITHMS 63

PCL-EC partitions a data set into an a priori unknown number of clusters,
so that each cluster has at least minPts points, and within each cluster, each
point lies in ϵ-radius neighbourhood of at least another point in the same cluster,
for parameters minPts, ϵ. Non-clustered points are identified as noise. Using
kd-trees for efficient neighbourhood search, PCL-EC’s expected and worst-case
time complexities are respectively O(N log N) and O(N2), see [5, Ch. 4].

DBSCAN partitions a data set into an a priori unknown number of clusters
such that a cluster consists of at least one core point and all the points that are
density-reachable from it. Point p is a core point if it has at least minPts points
in its ϵ-radius neighbourhood. Point q is directly reachable from p if q lies in
the ϵ-radius neighbourhood of p. Point q is density-reachable from p, if q is
directly reachable either from p or another core point that is density-reachable
from p. Non-core points that are not density-reachable from any core-points
are outliers [66]. The expected and worst-case time complexities of DBSCAN
are respectively O(N log N) and O(N2) [20].

PDSDBSCAN [63] is a parallel version of DBSCAN. It parallelizes the
work through partitioning the points and merging partial clusters consisting of
points, maintained via a disjoint-set data structure, that facilitates maintaining
a collection of disjoint sets supporting in-place union and find operations [108,
Ch. 21.1]

3.3 The PARMA-CC Family of Algorithms

Clustering is a global aggregate function, and as such it is far from being an
embarrassingly-parallel application; hence, concurrency (parallel tasks working
on subsets of data) and synchronization (putting together the results of the
data subsets) imply natural trade-offs. We propose the PARMA-CC algorithms,
abbreviating Parallel Multiphase Approximate Cluster Combining, to explore
the design space for parallelism, in conjunction with appropriately designed
data structures, to provide alternative options for different scenarios.

For the exposition of the algorithms, we consider LIDAR data as example,
as it enables more intuitive descriptions. Nonetheless, the algorithms can
process various types of data, and we evaluate them with LIDAR and GPS
data.

3.3.1 High-level View

On one side of the design space, the algorithms in the family target a coarse-
grained synchronization approach through which operations on disjoint elements
are performed in a data parallel fashion, but operations on the shared elements
are performed in a mutually exclusive manner. On the other side of the design
space, the algorithms target a fine-grained synchronization approach through
which operations are performed in a fully concurrent fashion in a wait-free
manner. The coarse-grained synchronization approach utilizes a scheme for data
access control that can take advantage of a work-saving mechanism while the
fine-grained synchronization approach eliminates the inherent waiting that is
present in the more coarse-grained synchronization one. Furthermore, based on
an orthogonal aspect, the algorithms in the family leverage either coarse-grained

64 CHAPTER 3. PARMA-CC

coarse-grained
synchronization

fine-grained
synchronization

co
ar

se
-g

ra
in

ed
w

or
kl

oa
d

di
st

rib
ut

io
n

fin
e-

gr
ai

ne
d

w
or

kl
oa

d
di

st
rib

ut
io

n

Figure 3.1: The design space of PARMA-CC algorithms.

or fine-grained workload distribution. Figure 3.1 visualizes the aforementioned
aspects of the design space.

For i ∈ {1, · · · , S}, ptCloudis denote mutually disjoint subsets of D, where
each ptCloudi is a split of D, and S is the number of splits. Each ptCloudi can
be, e.g., the i-th chunk of N/S consecutive points in D. Figure 3.2a shows a
hypothetical dataset D being split into four splits. In a PARMA-CC algorithm,
K threads in parallel cluster the splits and summarize the locally detected
clusters. Afterwards, the threads combine the local summaries to create a
holistic summary. Lastly, according to the combined summary, points in D

are relabeled. Alg. 3.1 shows the high-level description of a PARMA-CC
algorithm. We will see how each PARMA-CC algorithm is designed based on
its position in the design space in Figure 3.1. Furthermore, we will see that all
the PARMA-CC algorithms yield equivalent clustering results.

Algorithm 3.1 Outline of the three phases of a PARMA-CC algorithm

1: let K be the number of CPU threads
2: let ptCloud1, · · · , ptCloudS be splits of D
3: let F be an appropriately designed shared data structure
4: for all K threads in parallel do
5: phase I:

6: while ∃ ptCloudi to be clustered do
7: cluster ptCloudi and summarize its local clusters in F
8: index the summaries in split-summary φi

9: announce the creation of φi

10: phase II:

11: create objects by detecting and grouping matching summaries in F
12: phase III (starts when all threads have reached here):

13: while ∃ ptCloudi to be relabeled do
14: relabel the points in ptCloudi according to the combined results

3.3. THE PARMA-CC FAMILY OF ALGORITHMS 65

Challenges

The high-level design in Alg. 3.1 implies challenges regarding data structures,
workload distribution, and synchronization, outlined in the following:
Data Structures: The design and algorithmic implementation of the shared
data structure in Alg. 3.1 (denoted by F) must be carried out with regard to
concurrent updates by several threads as well as in-place operations to further
facilitate scaling-up through shared memory parallelism.
Workload Distribution: The workload distribution and work-partitioning mecha-
nism among the threads in a PARMA-CC algorithm must facilitate effective
collaboration with minimal synchronization and contention overheads.
Synchronization: The synchronization and communication among the threads
in all PARMA-CC algorithms must ensure consistency (in the final outcome)
despite the diverse algorithmic choices suggested in the design space in Fig-
ure 3.1.

3.3.2 Rudiments and Definitions

Here we provide general details relevant to all PARMA-CC algorithms. For
better intuition, we use a summarization technique utilizing bounding ellipsoids
for the exposition of the methods. However, we will see in § 3.8 that the choice
of the summarization technique is orthogonal to the behaviour of PARMA-CC
algorithms.

Definition 3.1. [Objects, Split-summaries, Maps]

• A local cluster is a cluster of points identified by a clustering algorithm
(e.g., DBSCAN or PCL-EC) performed on a split of the input data. A
bounding ellipsoid is a volumetric summary of a local cluster.

• A pair of ellipsoids ⟨e1, e2⟩ can overlap directly or indirectly; e1and e2
directly overlap if e1 and e2 geometrically overlap; e1 and e2 indirectly
overlap if there is an ellipsoid e′ such that both pairs ⟨e1, e′⟩ and ⟨e2, e′⟩
overlap, either directly or indirectly.

• A split-summary φi is a set of ellipsoids corresponding to the detected clus-
ters in the i-th split. Figure 3.2b shows the split-summaries corresponding
to the data splits in Figure 3.2a.

• An object consists of a set of mutually overlapping ellipsoids. Given an
ellipsoid e, let Oe denote the object in which e belongs.

• Two objects overlap if there is at least a pair of overlapping ellipsoids
(one in each object). Two overlapping objects can get merged, forming a
bigger object containing all the ellipsoids in the original objects.

• A map is a set of objects. Figure 3.3 shows several maps.

At the heart of each PARMA-CC algorithm lies a shared data structure
called the ellipsoid forest, denoted by F in Alg. 3.1. An ellipsoid forest enables
multi-threaded in-place processing and access to ellipsoids, supporting efficient
indexing and retrieval of objects in maps and ellipsoids in objects and split-
summaries. At the end of phase I, each ellipsoid, summarizing a local cluster,

66 CHAPTER 3. PARMA-CC

becomes a singleton in the ellipsoid forest upon creation. As the forest evolves
in phase II, overlapping ellipsoids get grouped together, i.e., by forming objects.

Definition 3.2. [Ellipsoid Forest - Extended Disjoint Set Data Structure]
We propose to implement the ellipsoid forest as an extended disjoint-set data
structure [108, Ch. 21], i.e., a data structure that can store disjoint sets
of ellipsoids, representing growing objects. Here, in a disjoint-set, a tree
represents an object, and the root of a given tree is called the representative
of the associated object. Similar to a disjoint-set, an ellipsoid forest supports
the following operations: (i) findRoot returns the representative of the object
containing a given ellipsoid, and (ii) merge replaces two given objects with their
union.
We propose two extensions of the disjoint-set data structure, resulting in two
variants of an ellipsoid forest data structure, in particular through the following:

• operation mapCombining, which, given maps Mi and Mj, for each O in
Mi and O′ in Mj , merges O and O′ if they overlap, and it returns a new
map that indexes the resulting objects (merged and not merged objects of
Mi and Mj). The operation is to be invoked in a synchronized, hierarchical
order, to produce a final map by combining evolving partial maps, and
hence we name the extended data structure hierarchical ellipsoid forest;
or

• operation ellipsoidLinking, which, given split-summaries φi and φj,
for each pair of ellipsoids eand e′ in φi and φj, if they overlap, merges
the objects they are part of, i.e., Oe and Oe′ . The operation does not
return any index, it only updates internal links in the composite data
structure. It can be invoked concurrently in an asynchronous fashion, to
perform linking between all pairs of split-summaries, and hence we name
the extended data structure flat ellipsoid forest.

Table 3.1 summarizes the ellipsoid forests’ extended API.

(a) (b) (c) (d)

Figure 3.2: (a) Dataset split into four splits. (b) Split summaries of local clusters.
(c) Hierarchy H of mapCombining operations in a hierarchical PARMA-CC algorithm.
(d) ellipsoidLinking operations in a flat PARMA-CC algorithm.

The Three Phases of a PARMA-CC Algorithm

Having introduced the concept of the ellipsoid forest, we give a refined outline
of a PARMA-CC-family algorithm.

3.3. THE PARMA-CC FAMILY OF ALGORITHMS 67

(a) (b) (c)

Figure 3.3: Maps in a hierarchical PARMA-CC algorithm. Delimiting boxes indicate
detected objects in each map. (a) Initial contents of the maps. (b) Maps M1 and M3

after operations M1:=mapCombining(M1,M2) and M3:=mapCombining(M3,M4), respectively.
(c) M1 after operation M1:=mapCombining(M1,M3).

Phase I: The goal here is to efficiently organize volumetric summaries of local
clusters in the shared memory, facilitating efficient operations in phase II. To
that end, the threads collaboratively cluster the data splits and create the
split-summaries φis. The aforementioned steps are outlined in Alg. 3.1 l.6-9.

Phase II: The objective in this phase, outlined in Alg. 3.1 l. 11, is to concurrently
detect and group overlapping ellipsoids in the ellipsoid forest in a scalable
manner.

Phase III: This phase’s objective is to assign clustering labels to points in D such
that all points that relate to the same object are given the same label, different
from labels of points that belong to other objects. Therefore, to relabel the
points associated with the ellipsoids in a certain object, we use the identity of
the root of the associated object in the ellipsoid forest, retrieved by findRoot.
To make sure that the objects in the ellipsoid forest do not change any more
when this phase is executed, a thread should start its phase III only after all
threads have finished their phase II. The aforementioned steps are outlined
in Alg. 3.1 l.13-14.

The algorithmic details of phases I-III are determined based on the choices
in the design space of PARMA-CC algorithms. Particularly, the algorithmic
details of phases I and III are determined based on the workload distribution
aspect of the design space, and the algorithmic details of phase II are determined
based on the synchronization aspect of the design space. We elaborate on the
two aspects of the design space in the following subsection.

3.3.3 The Design Space of PARMA-CC Algorithms

We explained in § 3.3.1 that PARMA-CC algorithms cover a design space
concerning two orthogonal aspects: (i) synchronization, and (ii) workload
distribution.

68 CHAPTER 3. PARMA-CC

Synchronization via Hierarchical Ellipsoid Forest vs Synchronization
via Flat Ellipsoid Forest

The synchronization aspect of the design space mainly concerns the manner in
which overlapping ellipsoids are detected and grouped together. As ellipsoids
are stored in the ellipsoid forest, the key element regarding this aspect is the
ellipsoid forest. As noted in Definition 3.2, there are two forest types, named
hierarchical and flat. From now on, a hierarchical PARMA-CC algorithm is
one that utilizes the hierarchical forest, and a flat PARMA-CC algorithm is
one that utilizes the flat forest.

Table 3.1: Ellipsoid Forest’s Extended API (the algorithmic implementations are presented
in § 3.6)

operation forest type description

mapCombining(Mi, Mj) hierarchical
for each O in Mi and each O′ in Mj , merges

O and O′ if O and O′ overlap,
returns the combined map.

ellipsoidLinking(φi, φj) flat
for each e in φi and each e′ in φj, merges
objects Oe and Oe′ if Oe and Oe′ overlap.

In a hierarchical PARMA-CC algorithm, the order of performing operations
is synchronized via a tree H, spanning over nodes that represent maps in the
process of constructing the overall outcome (cf. Definition 3.1). Particularly,
every node in H instructs performing mapCombining on two maps. Operations
in disjoint branches of H can be performed concurrently, but in the same
branch, the order of performing the operations must follow the hierarchy,
starting from the leaves and continuing upwards. Figure 3.2c shows a hierarchy
applicable on the maps in Figure 3.3a, i.e., the maps initiated by the split-
summaries in Figure 3.2b. Accordingly, Figure 3.3b shows the contents of
maps M1 and M3 after operations M1:= mapCombining(M1,M2) and M3:=
mapCombining(M3,M4), respectively. Finally, Figure 3.3c shows the content of
M1 after operation M1:= mapCombining(M1,M3). In Figure 3.3, the objects
in each map are distinguished by delimiting boxes.

In a flat PARMA-CC algorithm, there is no need to synchronize the order
of performing operations because ellipsoidLinking utilizes asynchronous
concurrent linearizable operations (similar to [109]) which makes it possible
to perform consistently the ellipsoidLinking operations (which are commu-
tative and associative, as we show in the more detailed description sections)
in a fully concurrent fashion on all pairs of split-summaries. Figure 3.2d out-
lines the ellipsoidLinking operations corresponding to the split-summaries
in Figure 3.2b. Note that performing the ellipsoidLinking operations in
Figure 3.2d will result in detecting the same objects shown in Figure 3.3c.

Basic Workload Distribution vs Flexible Workload Distribution

Another key aspect of the design space (as we outlined in the beginning of
the section and in Figure 3.1), is the distribution of the local clustering and
local relabeling tasks (i.e., phase I and phase III workload) among the threads.
To that end, PARMA-CC algorithms are categorized into two groups. In the
first group, which we refer to as basic, the workload in phase I and phase III
are distributed among the threads in a work-sharing [110] style by statically

3.4. BASIC MEMBERS OF THE PARMA-CC FAMILY 69

assigning each task to a processor. In the second group, which we refer to as
flexible, the workload is partitioned into a large number of tasks (larger than
the number of threads in the system) available as a shared pool, from which the
threads compete to take tasks in a work-stealing [110] fashion. From now on, a
basic PARMA-CC algorithm is one that utilizes the basic workload distribution
approach, and a flexi PARMA-CC is one that utilizes the flexible workload
distribution approach.
Basic Workload Distribution: The basic workload distribution assumes a one-to-
one relation between the number of threads (K) and the number of splits (S).
Concretely, for each i ∈ {1, · · · , K}, the local clustering and relabeling tasks
associated with ptCloudi are performed statically assigned to thread ti. We
cover the basic PARMA-CC algorithms in § 3.4.
Flexible Workload Distribution: Notice that in a basic workload distribution,
the duration of performing the local clustering tasks can vary between splits
even when they contain the same number of points and the threads are equally
fast. The latter is due to the fact that the local clustering algorithm employs
a spatial data structure for indexing the points. Consequently, with different
distributions of points in each split, the associated cost of using the data
structure varies. Hence, the threads that finish their local clustering task
earlier will have to wait in subsequent phases of the algorithm. To alleviate the
aforementioned problem, a flexi PARMA-CC algorithm breaks down the local
clustering and local relabeling tasks into fine-grained chunks by allowing S to
be larger than K. A flexi PARMA-CC algorithm accommodates a shared pool
of local clustering and relabeling tasks which can be booked by each thread in
a wait-free manner. We cover the flexi PARMA-CC algorithms in § 3.5.

Observation 3.1. In the special case where S is equal to one, PARMA-
CC algorithms and the exact sequential baseline (see § 3.2.2) are identical.
Therefore, the scalability of a PARMA-CC algorithm (measured as the ratio of
its completion times with one thread and with K threads) equals the ratio of the
completion time of the exact sequential baseline to the completion time of the
PARMA-CC algorithm.

3.4 Basic Members of the PARMA-CC Family

Hierarchical Parallel Multiphase Approximate Cluster Combining, abbreviated
as PARMAH, and Flat Parallel Multiphase Approximate Cluster Combining,
abbreviated as PARMAF, are the two basic members of the PARMA-CC family.
We introduce PARMAH in § 3.4.1 and PARMAF in § 3.4.2. In § 3.5, we discuss how
PARMAH and PARMAF serve as a basis for the flexi members of the family3.

3.4.1 PARMAH

PARMAH is a basic PARMA-CC algorithm that utilizes the hierarchical ellipsoid
forest (see § 3.3.3). In PARMAH, each mapCombining in hierarchy H is uniquely
associated with a thread which is responsible for performing the associated

3The gray lines in the pseudocodes indicate parts that have been described in previous
sections and are marked in this way to facilitate the focus of the different parts of each
algorithm.

70 CHAPTER 3. PARMA-CC

Algorithm 3.2 PARMAH algorithm
1: let H be a combine hierarchy
2: let each mapCombining in H be uniquely associated with a thread
3: let S:=K

4: for all thread ti | i ∈ {1, · · · , K} in parallel do
5: phase I:

6: cluster ptCloudi & summarize its local clusters
7: index the summaries in φi

8: Mi:= φi

9: signal the responsible thread on the first level of H that Mi is ready

10: phase II:

11: if ti is responsible for mapCombining(Mm,Mn) then
12: wait to receive signals that Mm and Mn are ready
13: Mm:= mapCombining(Mm, Mn)
14: signal the responsible thread in the next level of H (if any) that Mm is ready

15: phase III (starts when all threads have reached here):

16: relabel the points in ptCloudi based on their objects

mapCombining. To make sure that the content of the maps are finalized before a
thread performs its mapCombining, it must wait until it receives signals that the
associated maps are ready. Alg. 3.2 gives a high-level view of PARMAH. We study
phase I and phase II of PARMAH in the following. We avoid repeating phase III
of PARMAH because it is identical to the provided details of the corresponding
phase in § 3.3.2.
Phase I: After having created the split-summary φi, thread ti initializes map
Mi by the content of φi, as indicated in Alg. 3.2 l.8. Afterwards, ti signals the
responsible thread on the first level of H that Mi is ready.
Phase II: Assuming ti is responsible for mapCombining(Mm, Mn), after having
recieved the signals that Mm and Mn are ready, ti performs the associated
mapCombining and updates Mm, as indicated in Alg. 3.2 l.13. Then, ti signals
the responsible thread in the next level of H (if any) that Mm is ready, as
shown in Alg. 3.2 l.14.

3.4.2 PARMAF

PARMAF is a basic PARMA-CC algorithm that utilizes the flat ellipsoid forest
(see § 3.3.3). In PARMAF the elements in the ellipsoid forest are accessed and
modified in a fully concurrent manner, i.e. no ordering is required. The latter
holds because PARMAF utilizes the ellipsoidLinking operations to detect and
group the overlapping ellipsoids. We will cover the algorithmic implementation
of the data structure associated with ellipsoidLinking and their consistency
guarantees in the presence of concurrent operations in § 3.6.3.

In PARMAF, the ellipsoidLinking tasks are distributed among the threads
based on the availability of tasks and the availability of unoccupied threads.
To that end, each thread, after having performed the local clustering task and
having created the associated split-summary, should reveal the availability of
the new split-summary and the associated ellipsoidLinking tasks to the rest
of the threads, so the unoccupied threads can perform the associated tasks. We
propose to utilize an array V, for storing the status of the ellipsoidLinking
tasks:

3.5. FLEXI MEMBERS OF THE PARMA-CC FAMILY 71

Algorithm 3.3 PARMAF algorithm
1: let V be {vm,n|m,n ∈ {1, 2, · · · , S},m < n} (see Definition 3.3)
2: let S:=K

3: for all thread ti | i ∈ {1, · · · , K} do
4: phase I:

5: cluster ptCloudi & summarize its local clusters
6: index the summaries in φi

7: for all v ∈ V|v = vi,x or v = vx,i do
8: atomically increment v //e.g., using FAA

9: phase II:

10: while ∃(m,n) | corresponding task to vm,n not booked do
11: if corresponding task to vm,n is booked // (e.g. using CAS(vm,n, 2, 3)) then
12: ellipsoidLinking(φm,φn)

13: phase III (starts when all threads have reached here):

14: relabel the points in ptCloudi based on their objects

Definition 3.3. Let V be a set of status values, each one associated with an
ellipsoidLinking task on a certain pair of maps. As ellipsoidLinking

is symmetric, V is defined as {vm,n|m,n ∈ {1, 2, · · · , S},m < n}, where
vi,j indicates the status of ellipsoidLinking(φm, φn) and can have any
of the following values: 0: when neither φm nor φn is created (initial value);
1: when one of φm or φn is ready; 2: when both φm and φn are ready, but
ellipsoidLinking(φm, φn) is not yet booked, 3: when ellipsoidLinking(φm,
φn) is booked (to be performed by the thread that booked it).

To make sure concurrent updates on V are performed correctly, the threads
use atomic synchronization primitives to update the status values.

Alg. 3.3 outlines PARMAF. We study phase I and phase II of PARMAF in the
following. We avoid repeating phase III of PARMAF because it is identical to the
provided details of the corresponding phase in § 3.3.2.

Phase I: In this phase, after having created split-summary φi, thread ti updates
the status values of the affected ellipsoidLinking tasks. To that end, it
atomically increments the status values of each affected task (e.g., by performing
FAA), as shown in Alg. 3.3 l.7-8.

Phase II: A thread in this phase keeps iterating through the status values in
V. As the thread finds a task which is not booked yet, it tries to atomically
book the task (e.g., via CAS operation to change the its status from two to
three). Upon successful booking, the thread performs the respective task. The
aforementioned steps are shown in Alg. 3.3 l.10-l.12.

3.5 Flexi Members of the PARMA-CC Family

A flexi PARMA-CC targets flexible workload distribution among the threads,
in particular dividing the local clustering and local relabeling tasks into fine-
grained chunks, through allowing S to be larger than K. Following the discussion
in § 3.3.3, the flexible workload distribution decreases the potential amount of
the threads’ waiting time; therefore, it increases the utilization of resources.
We introduce FLEXI-PARMAH, and FLEXI-PARMAF, flexi versions of PARMAH and
PARMAF, respectively.

72 CHAPTER 3. PARMA-CC

3.5.1 Flexi Shared Phases

As there is not a one-to-one correspondence between the data splits and the
threads, we design a wait-free booking mechanism for performing the local
clustering and local relabeling tasks, which we explain in the following.

Phase I: The goal here is to perform parallel local clustering of S splits with K

threads. Let LCT, abbreviating Local Clustering Tasks, be a boolean array of
size S, where each index shows if the associated local clustering task has been
performed. The booking mechanism is similar to the one introduced in § 3.4.2.
Phase I is shown in Alg. 3.5 and Alg. 3.4 for the flexi PARMA-CC algorithms.
The lines marked by ⋆ indicate the preparation step for phase II.

Phase III: The goal here is to perform parallel local relabeling of S splits with
K threads. To that end, we utilize a boolean array of size S named LRT,
abbreviating Local Relabeling Tasks, in the same fashion as explained for
LCT. Phase III in Alg. 3.5 and Alg. 3.4 outline the relabeling steps in flexi
PARMA-CC algorithms.

3.5.2 Flexi PARMA-CC Algorithms

We review the uncovered details of Flexi PARMA-CC algorithms in the follow-
ing.

Algorithm 3.4 FLEXI-PARMAH algorithm
1: let LCT and LRT be shared arrays of size S initialized to 0
2: let Q be a multithreaded queue
3: let totalNumberOfCombines be initialized to 0
4: for all K threads in parallel do
5: phase I:

6: for splitID ∈ {1, · · · , S} do
7: if CAS(LCT[splitID], 0, 1) then
8: cluster ptCloudsplitID & summarize its local clusters
9: index the summaries in φsplitID

10: MsplitID:= φsplitID

11: Q.push(splitID)(⋆)

12: phase II:

13: while totalNumberOfCombines < S− 1 do
14: if Q.tryPop(i, j) == success then
15: Mi:= mapCombining(Mi, Mj)
16: FAA (totalNumberOfCombines, 1)
17: Q.push(i)

18: phase III (starts when all threads have reached here):

19: for splitID ∈ {1, · · · , S}
20: if CAS(LRT[splitID], 0, 1) then

21: relabel the points in ptCloudsplitID based on their objects

FLEXI-PARMAH: The goal of this algorithm is to reduce the amount of time that
a thread waits for its descendants’ maps. To that end, this algorithm utilizes an
agile mechanism to generate the combine hierarchy H on the fly. Notably, H is
determined based on the order in which the maps become available. The latter
is achieved by utilizing a multithreaded queue Q, which holds the indices of the
ready maps. As the preparation step (⋆), for each local clustering task that a
thread performs, it inserts the index of the associated map in Q. In phase II, a

3.6. ELLIPSOID FOREST DATA STRUCTURES AND ALGORITHMIC IMPLEMENTATION 73

thread tries to pop two indices from Q. If two indices are popped successfully,
then it performs mapCombining on associated maps, and it will insert the index
of the resulting map in Q. This process continues until (S -1) mapCombining
operations are performed. To that end, the total number of performed tasks is
kept as a global variable that gets incremented atomically. When (S -1) tasks
are performed, there is only one map index in Q, which indexes all the objects
in the forest. Alg. 3.4 outlines FLEXI-PARMAH.
FLEXI-PARMAF: This is a flexi version of PARMAF. As the preparation step (⋆),
for each local clustering task that a thread performs, the thread updates the
status values of the affected ellipsoidLinking tasks, using the technique
explained in § 3.4.2. Alg. 3.5 outlines FLEXI-PARMAF.

Algorithm 3.5 FLEXI-PARMAF algorithm
1: let LCT and LRT be shared arrays of size S initialized with 0
2: let V be {vi,j |i, j ∈ {1, 2, · · · , S}, i < j} (see Definition 3.3)
3: for all K threads in parallel do
4: phase I:

5: for splitID ∈ {1, · · · , S} do
6: if CAS(LCT[splitID], 0, 1) then
7: cluster ptCloudsplitID & summarize its local clusters
8: index the summaries in φsplitID

9: for all v ∈ V|v = vsplitID,x or v = vx,splitID do
10: FAA(v, 1)(⋆)

11: phase II:

12: while ∃(i, j) | vi,j ̸= 3 do
13: if CAS(vi,j, 2, 3) then
14: ellipsoidLinking(φi,φj)

15: phase III (starts when all threads have reached here):

16: for splitID ∈ {1, · · · , S}
17: if CAS(LRT[splitID], 0, 1) then

18: relabel the points in ptCloudsplitID based on their objects

3.6 Ellipsoid Forest Data Structures and Algo-
rithmic Implementation

In this section, we introduce the algorithmic implementation of the ellipsoid
forest data structure. We start by introducing the bounding ellipsoid data struc-
ture. Afterwards, we study the algorithmic implementation of the hierarchical
and flat forests in § 3.6.2 and § 3.6.3, respectively.

3.6.1 The Bounding Ellipsoid Data Structure

In our design, each (bounding) ellipsoid is instantiated in the shared memory
and automatically becomes an element in the forest upon creation. The data
structure supporting an ellipsoid contains µ and Σ used to represent the
ellipsoid’s centroid vector and covariance matrix, respectively (see § 3.2.2).
Furthermore, it also contains certain fields that are required to maintain the
membership of an ellipsoid in the forest. To that end, a unique ID is required
to identify the ellipsoid in the forest. Furthermore, a parent pointer, initialized

74 CHAPTER 3. PARMA-CC

to null, is utilized to support the structure of the trees in the forest. Moreover,
an ellipsoid requires a next pointer and a rank value. As we explain in § 3.6.2,
the next pointers facilitate efficient enumeration of ellipsoids in objects, and
the rank values regulate the heights of the trees resulting from a mapCombining

operation.

For a given cluster c, µ and Σ of the associated bounding ellipsoid are
respectively the sample mean and sample covariance of the points in c, which
can be calculated with O(1) time complexity. Similarly, the other fields of the
bounding ellipsoid data structure can be initialized with O(1) time complexity.
Furthermore, given two ellipsoids, we can determine if they geometrically
overlap, using the method described in [83] with O(1) time complexity.

3.6.2 Hierarchical Ellipsoid Forest

As noted in § 3.3.3, in a hierarchical forest, mapCombining operations are
performed according to a combine hierarchy H, which regulates the concurrent
accesses and operations in the forest. Furthermore, the objects are represented
by enhanced trees in a hierarchical forest. An enhanced tree facilitates iterating
through the ellipsoids in the associated object with constant time per ellipsoid.
The latter is achieved by making the ellipsoids in an enhanced tree form a
circular linked-list via the next pointers (see § 3.6.1).

Compound Operation

Operation mapCombining: Given maps Mi and Mj , for each pair of objects
⟨O,O′⟩, where O ∈ Mi and O′ ∈ Mj , mapCombining merges O and O′ if they
overlap. Afterwards, the objects in Mj get linked to Mi. Finally, potential
duplicate objects in Mi are removed. To that end, an unset flag is associated
with the root of every object in Mi. Then, every pointer in Mi’s linked-list
is iterated: the flag of the associated object’s root gets marked if it is not
already marked. Otherwise, the corresponding pointer gets removed from Mi’s
linked-list because another pointer in Mi already points to the same object.
Alg. 3.6 outlines the algorithmic implementation of mapCombining.

Algorithm 3.6 Operation mapCombining in a hierarchical ellipsoid forest

1: procedure mapCombining(Mi, Mj)

2: for O ∈ Mi.list & O′ ∈ Mj .list do
3: if overlap(O,O′) then
4: mergeH(O,O′)

5: Mi.list.pushAll(Mj .list)
6: unmark all objects in M.list
7: for O ∈ M.list do
8: if findRootH(O).marked then
9: M.list.remove(O)

10: else
11: findRootH(O).marked:= 1

12: return Mi

3.6. ELLIPSOID FOREST DATA STRUCTURES AND ALGORITHMIC IMPLEMENTATION 75

Enhancements (i) For improved amortized time complexity, we adopt the
path-compression and union-by-rank heuristics [108]; the former flattens the
trees, and the latter controls the growth of depth of the trees. To that end,
the rank value (see § 3.6.1), initially zero, is assigned to each ellipsoid.
(ii) Note that mapCombining(Mi, Mj) checks all pairs of objects in Mi and
Mj to merge the overlapping ones. Suppose object O in Mi and object O′ in
Mj do not overlap. To determine this, mapCombining has to check all pairs
of ellipsoids in O and O′. To avoid this worst-case behaviour, we propose a
work-saving test that utilizes delimiting boxes.

Definition 3.4. An object’s delimiting box is the smallest axis-aligned cuboid
encapsulating the ellipsoids in the object.

The delimiting-box test: If the delimiting boxes of objects O and O′ do not
geometrically overlap, then O and O′ do not overlap, hence effectively saving
pairwise checks of the ellipsoids in O and O′.

Algorithm 3.7 Auxiliary operations in a hierarchical ellipsoid forest

1: procedure overlap(O, O′)

2: if ¬overlap(O.dBox, O′.dBox)
then

3: return false
4: for e ∈ O & e′ ∈ O′ do
5: if e and e′ overlap then
6: return true
7: return false

8: procedure mergeH(O, O′)

9: e :=findRootH(O)
10: e′ :=findRootH(O′)
11: linkH(e, e′)
12: swap(e.next, e′.next)
13: findRootH(e).dBox = union(e.dBox,

e′.dBox)

14: procedure findRootH(e)

15: if e.parent == ∅ then
16: return e

17: else
18: e.parent:=findRootH(e.parent)
19: return e.parent

20: procedure linkH(e, e′)

21: if e.rank > e′.rank then
22: e′.parent := e

23: else
24: e.parent := e′

25: if e.rank == e′.rank then
26: e′.rank := e′.rank + 1

Auxiliary Operations

In the hierarchical forest, any ellipsoid in an object can be used to represent the
object because all the ellipsoids in the object can be accessed via the circular
linked-list. Furthermore, the representative (i.e., the root) of the object can be
accessed by following the parent pointers. With this note in mind, we introduce
the basic operations.

Operation overlap: Given objects O1 and O2, this operation determines if
O1 and O2 overlap. Alg. 3.7 shows the algorithmic implementation of overlap
with the delimiting box test. Note that Alg. 3.7 l.4 utilizes the circular linked-
lists of the enhanced trees to iterate over each ellipsoid in constant time.

Operation mergeH: Given objects O1 and O2, this operation unifies the
enhanced trees corresponding to O1 and O2 into a single enhanced tree in the
hierarchical forest. First of all, the roots/representatives of the two objects are
retrieved using the findRoot operation. Second, the aforementioned roots are
linked via a call to the linkH operation. Third, to make the ellipsoids in the
new enhanced tree form a circular linked-list, the circular linked-lists associated
with O1 and O2 are unified by swapping the next pointers of the roots. Finally,

76 CHAPTER 3. PARMA-CC

the delimiting box of the new object is adjusted so that it encompasses the
delimiting boxes of O1 and O2.The operation is conducted in-place, avoiding
unnecessary data copying or moving

Operation findRootH: Given an ellipsoid e, findRootH traverses the chain
of parent pointers until it reaches the root of the object in which e is a
member. A recursive implementation of the findRootH operation with the
path-compression heuristic is provided in Alg. 3.7, where, as the recursion
unwinds on a path to a root, the parent pointers start pointing to the root.
Furthermore, given an ellipsoid in an object O, findRootH returns the root
ellipsoid in O.

Operation linkH: This operation links two ellipsoids e and e′, as the roots
of two distinct objects, using the union-by-rank heuristic. To that end, linkH
sets the parent pointer of the one with the lower rank to the other one (i.e.,
attaching the shorter tree to the taller tree). If e and e′ have the same rank,
then one of them is chosen to be the new root, and its rank gets incremented.
Alg. 3.7 outlines the linkH operation.

3.6.3 Flat Ellipsoid Forest

As we explained in Definition 3.2, the flat forest extends the disjoint set
data structure by the ellipsoidLinking operation. The flat forest allows
concurrent wait-free execution of ellipsoidLinking operations in any order
by utilizing fine-grained synchronization primitives as proposed in [109].

Compound Operation

Operation ellipsoidLinking: Given split-summaries φi and φj, this operation
checks whether each ellipsoid pair ⟨e, e′⟩, where e belongs to φi and e′ belongs
to φj, overlaps. In that case, it merges the objects associated with e and e′.
Alg. 3.8 outlines the algorithmic implementation of ellipsoidLinking.

Algorithm 3.8 Operation ellipsoidLinking in a flat ellipsoid forest

1: procedure ellipsoidLinking(φi,φj)

2: for e ∈ φi.list & e′ ∈ φj.list do
3: if e and e′ overlap then
4: mergeF(e, e

′)

Auxiliary Operations

Operation findRootF: Given an ellipsoid e, this operation follows the parent
pointers from e until it reaches the root of the object in which e belongs.

Operation mergeF: Given two ellipsoids e and e′, this operation merges the
trees in the forest that are associated with e and e′. First of all, utilizing the
findRootF operation, the representatives of the objects associated with e and e′

are found. Afterwards, the parent pointer of the object representative with the
lower ID value gets linked to the object representative with the higher ID value.
As there are concurrent accesses to the elements in the forest, there might be
other threads that link the aforementioned parent pointer to another ellipsoid.
Therefore, the implementation shown in Alg. 3.9 utilizes CAS to atomically

3.7. ANALYSIS 77

update the parent pointers. If the CAS operation fails when changing a parent
pointer, it means that the parent pointer was already changed by some other
thread (executing an overlapping ellipsoidLinking operation involving some
ellipsoid(s) belonging to the same object(s)) in the meantime. Therefore, the
roots of the associated objects are recalculated, and then the same mechanism
tries to link them. The aforementioned steps continue in the retry loop (shown
in Alg. 3.9 l.6-l.16) until the roots of the associated objects get linked (by any
of the threads). The operation is conducted in-place, avoiding unnecessary
data copying or moving.

Algorithm 3.9 Auxiliary operations in a flat ellipsoid forest. The last executed
step marked by an asterisk gives the linearization point. Adapted from [109].

1: procedure findRootF(e)

2: while e.parent ̸= ∅∗ do
3: e:=e.parent

4: return e

5: procedure mergeF(e, e′)

6: while true do
7: e := findRootF(e)
8: e′ := findRootF(e′)

9: if e.ID < e′.ID then
10: if CAS(e.parent, ∅, e′)∗ then
11: return
12: else if (e.ID == e′.ID)∗ then
13: return
14: else if e.ID > e′.ID then
15: if CAS(e′.parent, ∅, e)∗ then
16: return

3.6.4 Discussion on System Aspects

The proposed algorithmic descriptions of PARMA-CC algorithms incorporate
a simple scheduler [110] for parallel execution of tasks. Such a choice allows
us to uncover the algorithmic properties of the design space and as well
as the behaviour of the ellipsoid forests. In general, parallel execution of
tasks in PARMA-CC algorithms can be scheduled using any off-the-shelf
parallelization library, such as OpenMP [111], TBB [112], and Cilk [113].
Using such parallelization libraries is orthogonal to the scope of this work
as it introduces new aspects and trade-offs to the study. Nevertheless, using
such libraries can facilitate scheduling and executing finer parallel tasks. For
instance, each invocation of ellipsoidLinking operation can be decomposed
into several parallelization tasks. As shown in Alg. 3.8, there is no dependency
between the iterations of the for loop in ellipsoidLinking; therefore, each
iteration of the aforementioned for loop can be performed in parallel.

3.7 Analysis

We provide an analytical study of the PARMA-CC algorithms. Notation: Let γ
be an upper bound on the number of locally detected clusters in a split of data.
For an object O, let |O|, i.e., size of O, be the total number of ellipsoids in O.
Considering a hierarchical PARMA-CC algorithm, for a map M, let ∥M∥ the
number of all the ellipsoids in M. Table 3.2 summarizes the notations in this
section.

78 CHAPTER 3. PARMA-CC

Table 3.2: Table of Notation

N ≜ number of points in the
input dataset

K ≜ number of threads

S ≜ number of data splits

γ ≜ number of local clusters
in a data split

|O| ≜ number of ellipsoids in
object O

∥M∥ ≜ sum of number of ellip-
soids in objects in M

α(.) ≜ inverse Ackermann
function

3.7.1 Ellipsoid Forest Analysis

Hierarchical Ellipsoid Forest

Lemma 3.1. [Adapted from Lemma 21.13 in [108]] The worst-case and amor-
tized time complexity of each findRootH operation is respectively O(log(γS))
and O(α(γS)), where α(.) is the inverse Ackermann function.

Note that α(.) is a very slowly growing function where α(x) < 5 for x < 1080.

Lemma 3.2. The worst-case time complexity of each overlap operation on
objects O1 and O2 is O(|O1||O2|).

Lemma 3.3. The worst-case and amortized time complexity of each mergeH
operation is respectively O(log(γS)) and O(α(γS)).

Proof. A mergeH calls (i) three findRootH operations, (ii) one linkH operation,
and (iii) swapping the values of two pointers. According to Lemma 3.1, the
worst-case and amortized time complexity of (i) is respectively O(log(γS)) and
O(α(γS)). (ii) and (iii) are performed with O(1) time complexity.

Lemma 3.4. The worst-case time and amortized time complexities of each
mapCombining on Mi and Mj are bounded from above by O (log(γS).||Mi||.||Mj ||)
and O (α(γS).||Mi||.||Mj ||), respectively.

The above follows from deriving an upper bound on the summation of
time complexities of operations overlap and mergeH as performed by the
mapCombining operation. Note that the bound for the amortized complexity is
loose for two reasons: (i) As soon as O and O′ are found to have overlapping
ellipsoids, overlap returns true without further investigation of the remaining
cases, see Alg. 3.7 l.5-6. (ii) When objects O and O′ do not overlap, with high
probability, the delimiting boxes of O and O′ do not overlap either; therefore,
saving the comparisons of ellipsoids in O and O′.

Flat Ellipsoid Forest

Lemma 3.5. [adapted from Theorem 1 in [109]] Any concurrent execution
order of findRootF and mergeF is linearizable and wait-free.

Lemma 3.6. [adapted from Theorem 2 in [109]] The probability that each
findRootF and each mergeF perform O (log (γS)) steps is at least 1− 1

γS .

Lemma 3.7. The expected asymptotic time complexity of each findRootF and
each mergeF is O (log (γS)).

3.7. ANALYSIS 79

Proof. Based on Lemma 3.6, the probability that each findRootF and each
mergeF perform Θ(γS) steps (the maximum possible height of a tree in the
ellipsoid forest) is at most 1

γS . Therefore, the expected time complexity of each

findRootF and mergeF is less than or equal to (1− 1
γS)×O (log (γS))+ 1

γS××(γS),

yielding bound O (log (γS)).

Lemma 3.8. The expected asymptotic time complexity of each ellipsoidLinking

operation is O
(
γ2 log (γS)

)
.

Proof. Consider ellipsoidLinking on two given maps. Due to the linearity of
expectation, the expected time complexity of ellipsoidLinking is the sum of
expected time complexities of the mergeF operations that it performs. Consider
two given maps. The maximum number of times that ellipsoidLinking can
perform the mergeF on the two maps is at most O(γ2) times (the number of
pairs of ellipsoids in the two maps), where each mergeF has expected time
complexity of O (log (γS)) according to Lemma 3.7.

3.7.2 Safety and Completeness Properties

Lemma 3.9. Operations and mapCombining and ellipsoidLinking satisfy
the commutative and associative properties.

The above follows from the descriptions and the algorithmic implementations
introduced in § 3.6.2 and § 3.6.3.

Lemma 3.10. For any concurrent execution of a PARMA-CC algorithm, there
exists a sequential execution that produces an equivalent result.

Proof. We argue how to build an equivalent sequential execution corresponding
to a concurrent execution of a PARMA-CC algorithm. Similar to the concurrent
execution, the equivalent sequential algorithm splits the input dataset into S

splits and operates in three matching phases, except for the synchronization
details, which are not needed in the equivalent sequential execution. Regarding
phase I, the signaling mechanism in PARMAH (shown in Alg. 3.2 l.9), updating the
status values in PARMAF (shown in Alg. 3.3 l.7-8), insertions in Q in FLEXI-PARMAH
(shown in Alg. 3.4 l.11), and updating the status values in FLEXI-PARMAF
(shown in Alg. 3.5 l.9-10) are not needed in the equivalent sequential algorithm.
Note that besides the aforementioned synchronization details, the rest of the
operations in phase I of a PARMA-CC execution are performed in a data
parallel fashion. Therefore, in phase I, the equivalent sequential algorithm
can perform the local clustering tasks and create the split-summaries in any
arbitrary order. The same argument also holds regarding phase III of the
equivalent sequential algorithm. We explain how to construct the rest of the
equivalent sequential execution (i.e., phase II) for the hierarchical and flat
PARMA-CC algorithms in the following:

Hierarchical: A hierarchical PARMA-CC algorithm performs mapCombining
(see Alg. 3.6) operations in the hierarchical forest according to hierarchy H,
where H can either be predetermined as in PARMAH or be dynamically determined
as in FLEXI-PARMAH. In either case, mapCombining operations are performed
with respect to the following rules: (P1) mapCombining operations correspond-
ing to disjoint subtrees in H can be performed in parallel. (P2) mapCombining

80 CHAPTER 3. PARMA-CC

operations which have an ancestor-descendant relation in H never modify the
same sets in the forest simultaneously. (P3) Each ellipsoid belongs to only
one object both before and after a mapCombining operation. (P4) All pairs of
objects that have overlapping ellipsoids are merged in the final map. There-
fore, in phase II, the equivalent sequential algorithm can sequentially perform
mapCombining operations following any arbitrary hierarchy H and get the same
set of objects because operation mapCombining satisfies the commutative and
associative properties (see Lemma 3.9).

Flat: The threads in a flat PARMA-CC algorithm perform ellipsoidLinking

(see Alg. 3.8) operations on all pairs of split-summaries (i.e., elements of V as
defined in Definition 3.3). We show in the following that any arbitrary (due
to concurrency) inter-leaving of ellipsoidLinking operations, results in the
same set of objects.

[A] Each ellipsoidLinking operation in V is performed exactly once. The
latter holds because each thread tries to atomically book available an
ellipsoidLinking operation via performing CAS on the correspond-
ing status value (see Definition 3.3), as long as there are available
ellipsoidLinking operations left.

[B] As the threads perform ellipsoidLinking operations, concurrent exe-
cutions of operation mergeF might be performed.

[C] As any concurrent execution of mergeF is linearizable (see Lemma 3.5),
and operation ellipsoidLinking satisfies the commutative and associa-
tive properties (see Lemma 3.9), the same set of objects get formed in
the ellipsoid forest regardless of linearization of the mergeF operations.

Based on the sequence of arguments in (1), (2), and (3), any concurrent exe-
cution of ellipsoidLinking operations on all pairs of split-summaries results
in the same set of objects. Therefore, in phase II, the equivalent sequential
algorithm can sequentially perform ellipsoidLinking in any arbitrary order
and get the same set of objects.

Definition 3.5 (The Completeness Property). An ellipsoid forest satisfies
the completeness property when the following condition holds for each pair
of ellipsoids ⟨ei, ej⟩ in the forest: The pair ⟨ei, ej⟩ is directly or indirectly
overlapping (see Definition 3.1) if and only if there exists an object O such that
ei ∈ O and ej ∈ O.

Lemma 3.11 (Completeness in PARMAH). By the end of phase II in PARMAH,
the completeness property holds in the associated hierarchical ellipsoid forest.

Proof. We first prove the statement in the following direction: If the pair
⟨ei, ej⟩ is directly or indirectly overlapping, then, by the end of phase II, there
exists an object O such that ei ∈ O and ej ∈ O. To that end, consider phase I,
when ei is a member of Oi′ in map Mi, and ej is a member of Oj′ in map
Mj . If the pair ⟨ei, ej⟩ is directly overlapping, then Oi′ and Oj′ are merged
when mapCombining operation is performed on the maps containing ei and
ej (such a mapCombining operation is guaranteed to exist as H is a spanning
tree, see § 3.3.3). On the other hand, suppose the pair ⟨ei, ej⟩ is indirectly
overlapping via ellipsoid ek (i.e., ellipsoids in each of the pairs ⟨ei, ek⟩ and

3.7. ANALYSIS 81

⟨ej, ek⟩ are directly overlapping), where ek belongs to object Ok′ , at the end
of phase I, in Mk. After mapCombining operations are performed on Mi, Mj ,
and Mk in the order specified by H, there will be an object containing ei, ej,
and ek. The latter holds regardless of the hierarchy specified by H because the
mapCombining operation satisfies the commutative property (see Lemma 3.9).
This argument can be extended inductively to cover all the cases in which ei
and ej are indirectly overlapping.

Now we prove the statement in the opposite direction: If there exists an
object O such that ei ∈ O and ej ∈ O, then the pair ⟨ei, ej⟩ is directly or
indirectly overlapping. Towards a contradiction, suppose the pair ⟨ei, ej⟩ is
neither directly nor indirectly overlapping, but ei ∈ O and ej ∈ O. The latter
implies that, at some point in phase II, the mapCombining operation combined
non-overlapping objects, a contradiction.

Lemma 3.12 (Completeness in PARMAF). By the end of phase II in PARMAF,
the completeness property holds in the associated flat ellipsoid forest.

Proof. We first prove the statement in the following direction: If the pair
⟨ei, ej⟩ is directly or indirectly overlapping, then there exists an object O such
that ei ∈ O and ej ∈ O. To that end suppose ei ∈ φi and ej ∈ φj. If the pair
⟨ei, ej⟩ is directly overlapping, then, through the call to ellipsoidLinking(φi,
φj), ei and ej will become members of the same object. On the other hand,
if the pair ⟨ei, ej⟩ is indirectly overlapping with just an ellipsoid ek ∈ φk in
between (i.e., ellipsoids in each of the pairs ⟨ei, ek⟩ and ⟨ej, ek⟩ are directly
overlapping), then there will be an object containing ei and ej (as well as
ek) after ellipsoidLinking(φi, φk) and ellipsoidLinking(φj, φk) are com-
pleted. This argument can be inductively extended to cover all the cases in
which ei and ej are indirectly overlapping.

The proof in the opposite direction is made with contradiction, similar to the
one provided in the proof of Lemma 3.11.

Lemma 3.13 (Completeness in Flexi PARMA-CC Algorithms). At the end of
phase II, the ellipsoid forest in a flexi PARMA-CC satisfies the completeness
property.

Proof. For a given hierarchical/flat flexi PARMA-CC algorithm operating on
S splits, consider a hierarchical/flat basic PARMA-CC algorithm that operates
with K=S threads. The two algorithms produce equivalent ellipsoid forests
because both mapCombining and ellipsoidLinking satisfy the commutative
property. Therefore, the ellipsoid forest at the end of phase II of the flexi
PARMA-CC algorithm satisfies the completeness property similar to the basic
PARMA-CC algorithm (based on Lemma 3.11 and Lemma 3.12).

Corollary 3.1. With fixed minPts, ϵ, and S, PARMA-CC algorithms yield
the same clustering for the same input dataset.

3.7.3 Completion Time of PARMA-CC Algorithms

Here we analyze the completion time behaviour of the algorithms in the
PARMA-CC family.

82 CHAPTER 3. PARMA-CC

Assumptions:

• As D can contain several hundreds of thousands of points, but the number
of splits is limited to a few hundreds, we assume N ≫ S ≥ K. Furthermore,
we assume N ≫ γ because a local cluster can typically contain a large
number of points.

• The local clustering algorithm (for instance PCL-EC or DBSCAN) uses
a kd-tree to perform ϵ-neighbourhood queries.

• The total number of ellipsoids in a an ellipsoid forest (γS) is smaller
than 1080 for all the possible use-cases. Therefore, all occurrences of the
inverse Ackermann function are substituted with O(1).

Lemma 3.14. The following statements hold regarding the completion time of
different phases of a PARMA-CC algorithm:

• The expected completion time of phase I is O(N
K
log (N

S
)).

• The expected completion time of phase II of a hierarchical PARMA-CC
algorithm is O(γ2S2).

• The expected completion time of phase II of a flat PARMA-CC algorithm

is O
(

γ2S2

K
log (γS)

)
.

• The expected completion time of phase III in a hierarchical PARMA-CC
algorithm is O(N

K
).

• The expected completion time of phase III in a flat PARMA-CC algorithm
is O

(
N
K
log (γS)

)
.

Proof. We prove each statement in the following:

• We prove the statement for basic and flat PARMA-CC algorithms:

– In case of a basic PARMA-CC algorithm (S = K): As the workload
is distributed evenly among the K threads, the expected completion
time of a data split clustering is O(N

K
log (N

K
)).

– In case of a flexi PARMA-CC algorithm (S ¿ K): There are S

local clustering tasks to be shared by K threads, and as each
split contains N/S points, the expected completion time of a data
split clustering is O(N

S
log (N

S
)). Therefore, the expected comple-

tion time of K threads concurrently performing local clustering is
O
(
S
K
N
S
log (N

S
)
)
= O(N

K
log (N

S
)).

Other computational steps in phase I of a PARMA-CC (i.e., fitting bound-
ing ellipsoids, applying synchronization primitives, pushing elements into
a queue) are asymptotically dominated by O(N

K
log (N

S
)).

• Summing up the amortized time complexities of all mapCombining op-
erations (see Lemma 3.4), the expected total time complexity of all
mapCombining operations is bounded from above by O(γ2S2), which is a
loose bound based on the proof of Lemma 3.4.

3.7. ANALYSIS 83

• In phase II of a flat PARMA-CC algorithm, O(S2) ellipsoidLinking
tasks are performed. The aforementioned tasks are shared by K threads
running in parallel. Considering the fine granularity of the tasks, each
thread performs O(S2/K) ellipsoidLinking operations. The result
follows from applying the linearity of expectation over the expected time
complexity of each ellipsoidLinking operation (given in Lemma 3.8).

• We prove the statement for basic and flat PARMA-CC algorithms:

– In case of a basic PARMA-CC algorithm (S = K): As the workload
is distributed evenly among the K threads, each thread relabels O(N

K
)

points.

– In case of a flexi PARMA-CC algorithm (S ¿ K): There are S local
relabeling tasks to be shared by K threads, and as each split contains
N/S points, each thread relabels O

(
S
K
N
S

)
= O(N

K
) points.

The amortized time complexity of relabeling each point is O(1) be-
cause finding the root of the associated tree, via performing findRootH
(Lemma 3.1), and then retrieving the root’s ID are the only required
steps for each point. The expected completion time can be driven by
taking a summation over the amortized time complexities of relabeling
each point.

• This statement is proven similar to the previous one. Due to the lin-
earity of expectation, summing the expected completion times of O(N

K
)

findRootF operations (given in Lemma 3.7) yields the result.

Observation 3.2. Lemma 3.14 indicates the following trade-off between the
expected completion time of phase I and the expected completion time of phase II:
the dominating factor in the completion time of a PARMA-CC algorithm, i.e.,
the local clustering in phase I, can be reduced by increasing K and/or S. However,
too large values for K and/or S increase the expected completion time of phase II.

Theorem 3.1. The expected completion time of a PARMA-CC algorithm
under the given assumptions is O(N

K
log (N

S
)).

Proof. The theorem follows from taking the dominating asymptotic term in
Lemma 3.14.

3.7.4 On Shared Memory Accesses and Contention

As discussed in § 3.6.1, the operations on the data structure are in-place, avoid-
ing unnecessary copies and moves of data. Regarding contention on the shared
memory in different PARMA-CC algorithms, note that there is none in PARMAH
because the computations that each thread performs follow a predetermined
partial order that ensures that concurrent operations touch disjoint data only.
The number of occasions in which shared memory contention can take place in
FLEXI-PARMAH is proportionate to S, i.e., the number of shared tasks. On the
other hand, the number of shared tasks in flat PARMA-CC algorithms is pro-
portionate to S2, determined by the number of ellipsoidLinking operations.

84 CHAPTER 3. PARMA-CC

Note that this shared memory contention discussion is complementary to the
expected completion time analysis in Lemma 3.14, which, among other factors,
takes into account the expected number of retries that have to be performed
because of memory contention, where necessary.

Note when X threads concurrently perform a CAS operation on a memory
location, only one of them succeeds and X− 1 threads fail. Therefore, to measure
memory contention, we consider the average ratio of failed CAS operations to
the total number of invoked CAS operations. Exact measurements for the ratio
of failed CAS operations to the total number of invoked CAS operation is data-
dependent and execution-dependent. In the worst-case, the aforementioned
ratio can be as large as 1 − 1

K
, indicating one successful CAS against K− 1

unsuccessful CAS for all the invocations. In the algorithmic implementation
of PARMA-CC, some invocations of CAS operations can be avoided; e.g., a
thread does not need to invoke a CAS to book a local clustering task which is
already booked or completed (see Alg. 3.4 l.7 and Alg. 3.5 l.6). The same also
applies for booking local clustering tasks and ellipsoidLinking operations.
We empirically measure the aforementioned ratio in § 3.9.5.

3.8 Discussion on the Utilization and Building
Components

3.8.1 On which PARMA-CC Algorithm to Choose

Let inter-split overlap refer to the amount of overlap between local clusters
in different splits. With high inter-split overlap, utilizing the hierarchical
forest can give higher scalability compared to utilizing the flat forest. First
of all, as the inter-split overlap increases, the average number of ellipsoids in
different objects increases. Consecutively, the computational savings of the
delimiting-box test increase as a result of skipping the comparison of ellipsoids
in non-overlapping objects. On the other hand, the amount of concurrent
updates on overlapping elements in a flat forest is directly proportional to the
inter-split overlap. Therefore, threads performing ellipsoidLinking in a flat
forest have to retry (see Alg. 3.9 l.6) for more number of times for successful
linking as the inter-split overlap increases.

Observation 3.3. With the splitting mechanism outlined in § 3.3.2 and input
data having a spatio-temporal locality (e.g., an angularly sorted LIDAR point
cloud), the inter-split overlap is low. Therefore, we expect the flat PARMA-CC
algorithms to scale better under the aforementioned conditions. On the contrary,
we expect the hierarchical PARMA-CC algorithms to scale better on arbitrarily
ordered datasets that exhibit high inter-split overlap. Table 3.3 summarises the
PARMA-CC algorithms.

3.8.2 Use Cases Implying Extensions

PARMA-CC’s summaries can be used to efficiently answer a range of queries.
We demonstrate the latter by studying two common queries, for which we
study and compare how PARMA-CC and a classical approach can be used.

3.8. DISCUSSION ON THE UTILIZATION AND BUILDING COMPONENTS 85

Table 3.3: Algorithms in the PARMA-CC family (SP stands for synchronization primitives)

Synchronization

Algorithm
Ellipsoid Forest/
Combine Order

Basic/
Flexi

Phase I Phase II Phase III
Preferred Data

Properties

PARMAH
Hierarchical/
predetermined

Basic - SP - arbitrarily ordered

PARMAF
Flat/

dynamic
Basic - SP -

spatio-temporal
(e.g. LIDAR)

FLEXI-PARMAF
Flat/

dynamic
Flexi SP SP SP

spatio-temporal
(e.g. LIDAR)

FLEXI-PARMAH
Hierarchical/

dynamic
Flexi Queue+SP SP SP arbitrarily ordered

Algorithm 3.10 Answering queries using
PARMA-CC’s summaries
1: procedure predictLabel(q)

2: for i ∈ {1, · · · , S} do
3: for e ∈ φi.list do
4: if q falls within e then
5: return findRoot(e).ID

6: return noise

7: procedure distanceToObject(O, q)

8: return min
e∈O

{distance between q and e} Figure 3.4: Polyhedron fitting

Predicting the clustering label of a new point q based on the existing clusters: The
latter can be useful in evolving sets. A classical approach might decide about q’s
clustering label by considering the clustering labels of of q’s nearest neighbours
in D. Using a kd-tree, nearest neighbour queries have expected and worst-case
time complexities of O(log N) and O(N2), respectively. On the other hand, the
approach leveraging the summaries of a PARMA-CC algorithm can assign q

the unique ID of Oq’s root, where Oq is the object in which q geometrically
falls. The latter is shown as operation predictLabel in Alg. 3.10 l.1-6. As the
total number of ellipsoids is γS, predictLabel’s worst-case time complexity is
O(γS). Note that, in general, γS is much smaller than N.

Approximating the distance of a given point q to the nearest point in cluster c:
With time complexity O(|c|), a classical approach calculates the distance of
each point in c to q and returns the smallest one. On the other hand, the
approach levering PARMA-CC’s summaries computes the distance of q to each
ellipsoid in Oc, where Oc is a PARMA-CC object corresponding to cluster
c. The latter is shown as operation distanceToObject in Alg. 3.10. The
distance between a point and an ellipsoid is determined in O(1) using the
method in [114]. Therefore, distanceToObject’s time complexity is O(|O|).

3.8.3 On Volumetric Summarization Methods

Besides the bounding ellipsoid summarization method, PARMA-CC algorithms
can utilize other geometric summarization methods such as axis-aligned bound-
ing boxes (AABBs) [115] or oriented bounding boxes (OBBs) [116]. More

86 CHAPTER 3. PARMA-CC

generally, we consider bounding polyhedrons. Figure 3.4, shows an example
cluster of points (represented by green circles) and a corresponding bounding
polyhedron. We characterize a bounding polyhedron by a set of normal vectors
ui for i ∈ {1, · · · , F}, where each ui is a normal vector to two parallel faces in
the bounding polyhedron.
Fitting a bounding polyhedron around a local cluster c: The minimum and
maximum values of the orthogonal projections of points in c onto vector ui
determine respectively the left and right faces associated with normal vector ui.
Note that the orthogonal projection of a point onto a vector is simply calculated
by their dot product. The example in Figure 3.4 utilizes three normal vectors
u1, u2, and u3. Note that the left and right faces associated with each normal
vector are shown in the same color as the normal vector.
Determining the normal vectors: The normal vectors uis can either be chosen
randomly or in a systematic way to uniformly sample the unit sphere in the
space. The number of vectors, F, determines the granularity of the volumetric
approximation, i.e., increasing F increases the approximation accuracy but
increases the cost of computing the bounding polyhedron. However, with fixed
F, the cost of fitting a bounding polyhedron is constant per point in c.
Determining whether two bounding polyhedra geomterically overlap: Two poly-
hedra P1 and P2 are geometrically overlapping if and only if, for all uis, the
intervals containing the left and right faces in P1 and P2 overlap.

3.9 Evaluation

We here empirically evaluate PARMA-CC algorithms. The parameters of the
study are the following: the number of threads (K), the number of splits (S), the
size of the input data (N), the number of objects in the input data, the degree
of inter-split overlap in the input data, and the local clustering algorithm.

3.9.1 Experiment Setup

We study the completion time of PARMA-CC algorithms in accordance with
the expected completion time analysis given in Theorem 3.1, and we study
the scalability of PARMA-CC algorithms in conjunction with Observation 3.1.
We complement the completion time study of PARMA-CC algorithms by
empirically observing the expectations raised in Observation 3.3 regarding
the behaviour of the algorithms with different degrees of inter-split overlap.
Furthermore, we study the ratio of the local clustering time to the completion
time of the algorithms in accordance with the analytical results in Lemma 3.14
to gain insight on how the different phases contribute to the total completion
time. Moreover, we measure the accuracy of the algorithms using rand index 4.
Finally, we complement the shared memory access and contention analysis
in § 3.7.4 by empirically measuring the average ratio of failed CAS operations
to the total number of invoked CAS operations.

We provide the evaluation results corresponding to PARMA-CC algorithms
that utilize PCL-EC (see § 3.2) as the local clustering algorithm. Moreover,
in order to evaluate PARMA-CC algorithms utilizing a density-based local

4https://github.com/bjoern-andres/partition-comparison

3.9. EVALUATION 87

Table 3.4: Summary of the bench-marked datasets, showing the characteristics and the
chosen clustering parameters for each dataset.

dataset KITTI FORD
GEOLIFE,

shuffled GEOLIFE
MOPSI,

shuffled MOPSI

N 40,000 150,000-300,000 1.4 million 1.2 million
inter-split
overlap

low low medium, high medium, high

(ϵ, minPts) (0.7, 10) (0.5, 100)
(0.001, 500),
(0.001, 500/S)

(0.1, 500),
(0.1, 500/S)

S
{2, 3, 4, 5, 10, 15, 20, 30,
36, 40, 50, 60, 70, 140}

{2, 3, 4, 5, 10, 15, 20, 30,
36, 40, 50, 60, 70, 100, 200, 400, 600},

{2, 3, 4, 5, 10, 15, 20, 30, 36, 40, 50, 60, 70}

K {2, 3, 4, 5, 10, 15, 20, 30, 36, 40, 50, 60, 70}

clustering algorithm, we study scalability and accuracy of basic PARMA-CC
algorithms utilizing DBSCAN as the local clustering algorithm. Accordingly,
we compare the scalability of the aforementioned algorithms with the scalability
of PDSDBSCAN (see § 3.2). By default, the presented results and discussions
refer to PARMA-CC algorithms that utilize PCL-EC as the local clustering
algorithm, unless otherwise stated.

Evaluation data: We use both LIDAR and GPS datasets. Regarding LIDAR
data, we study a random subset of the point clouds in the KITTI dataset [91],
collected by a Velodyne laser scanner in urban driving. We also study a random
subset of the Ford Multi-AV Seasonal dataset [76] which is collected by a fleet
of vehicles in a variety of conditions. Regarding GPS data, we choose a random
subset of points in the Mopsi route dataset [8], which contains GPS readings (in
terms of latitude and longitude) gathered by various users doing a wide range
of activities (e.g., walking, cycling, skiing, taking a boat) mostly in Finland.
We also study a random subset of the GeoLife GPS Trajectories dataset [117],
containing densely recorded GPS readings by several users mostly in Beijing
city. Furthermore, we study randomly shuffled versions of the GeoLife and
Mopsi datasets, exhibiting high inter-split overlap. Table 3.4 gives an overview
of each bench-marked dataset along with its inter-split overlap characterization.

Preprocessing: By imposing a simple threshold, we filter the ground (floor)
points in the point clouds (otherwise scene objects are connected via the
ground). Each filtered point cloud in the KITTI dataset contains about 40,000
points, and each filtered point cloud in our subset of the Ford Multi-AV dataset
contains between 150,000 and 300,000 points. Regarding the GPS datasets,
we filter sequential duplicate points (the points that correspond to when GPS
readings were logged while the user was stationary). Our filtered subset of the
GeoLife and Mopsi datasets contain more than 1.4 million and 1.2 million points,
respectively. The size of the bench-marked datasets are shown in Table 3.4.

Parameters: Our purpose of clustering LIDAR datasets is to detect scene objects,
and our purpose of clustering GPS datasets is to detect areas attracting a lot
of users. To that end, we choose ϵ and minPts to attain valid ground truth by
the baselines. We identified that the baseline achieves reasonable clustering of
scene objects with ϵ=0.7 and minPts=10 for the KITTI dataset, and so it does
with ϵ=0.5 and minPts=100 for the Ford Multi-AV dataset. Furthermore,

88 CHAPTER 3. PARMA-CC

Table 3.5: Highlights of average elapsed completion time (in seconds) for different methods
and datasets with a variety of parameters.

dataset KITTI FORD GeoLife Mopsi

PCL 0.3598 1.8459 950 9829
K
=
2
0

PARMAH 0.0756 0.2304 21.6 91.7
PARMAF 0.0762 0.2063 22.5 100.1

FLEXI-PARMAH 0.0259 0.1074

S
=
1
4
0 1.3 3.24

S
=
6
0
0

FLEXI-PARMAF 0.0224 0.1016 1.5 3.5

K
=
4
0

PARMAH 0.0429 0.1363 13.7 35.2
PARMAF 0.0418 0.1387 14.5 38.3

FLEXI-PARMAH 0.0241 0.0800

S
=
1
4
0 0.94 2.06

S
=
6
0
0

FLEXI-PARMAF 0.0178 0.0803 0.97 2.16

K
=
7
0

PARMAH 0.0335 0.1038 4.9 19.9
PARMAF 0.0601 0.1096 6.7 25.3

FLEXI-PARMAH 0.0411 0.0827

S
=
1
4
0 0.8 1.54

S
=
6
0
0

FLEXI-PARMAF 0.0295 0.0756 0.85 1.58

the baseline achieves reasonable clustering of GPS readings with ϵ=0.1 and
minPts=500 for the Mopsi dataset. On the other hand, as the GeoLife dataset
contains much denser recordings, the baseline achieves reasonable clustering
with parameters ϵ=0.001 and minPts=500 for this dataset. For the LIDAR
datasets, we execute flexi PARMA-CC algorithms choosing 20, 40, 70, and
140 for S. For the GPS datasets, as they contain much more points than the
LIDAR datasets, we choose S among 100, 200, 400, and 600. We perform
the experiments with up to 70 threads, except for the experiments in which
S is less than 70, where we choose up to S threads. As the distribution of
the points in randomly shuffled datasets becomes uniform among the splits,
we adjust minPts with respect to S by using minPts/S. The aforementioned
adjustment is a common practice, e.g., [64]. The chosen clustering parameters
are summarized in Table 3.4 for each dataset.
Evaluation setup: We implemented PARMA-CC algorithms5 in C++ and used
GNU scientific library for matrix algebra. We used POSIX threads for multi-
threaded programming. We used PCL’s implementation of PCL-EC [6]. We
employed elapsed real time to measure completion times. Experiments were
run on a 2.10 GHz Intel(R) Xeon(R) E5-2695 system with 36 cores on two
sockets (18 cores per socket, each core supporting two hyper-threads) and 64
GB memory in total, running Ubuntu 16.04. We only used hyper threading
when there were more threads than the actual number of cores.

3.9.2 Completion Time and Scalability

Detailed scalability plots in the left Y-axes of Figure 3.5 show the scalability
of PARMA-CC algorithms for different datasets with varying choices of K and
S for the basic and flexi PARMA-CC algorithms. Besides, some highlights

5https://github.com/dcs-chalmers/PARMA-CC

3.9. EVALUATION 89

2 20 36 50 70

2

4

6

8

10

0
0

.5
1

(a) KITTI, S=number
of threads

2 20 36 50 70

5

10

15

20

0
0

.5
1

(b) FORD, S=number
of threads

2 20 36 50 70
0

50

100

150

200

0
0

.5
1

(c) GeoLife,
S=number of threads

2 20 36 50 70
0

200

400

600

0
0

.5
1

(d) Mopsi, S=number
of threads

2 20

2

3

4

5
0

0
.5

1

(e) KITTI, S=20

2 20

2

4

6

8

10

0
0

.5
1

(f) FORD, S=20

2 20 36 50 70

50

100

150

200

250

0
0

.5
1

(g) GeoLife, S=100

2 20 36 50 70

200

400

600

0
0

.5
1

(h) Mopsi, S=100

2 20 36 50 70
2

4

6

8

10

0
0
.5

1

(i) KITTI, S=40

2 20 36

5

10

15

0
0

.5
1

(j) FORD, S=40

2 20 36 50 70
0

100

200

300

400

0
0

.5
1

(k) GeoLife, S=200

2 20 36 50 70

500

1000

1500

2000

0
0

.5
1

(l) Mopsi, S=200

2 20 36 50 70

5

10

15

0
0

.5
1

(m) KITTI, S=70

2 20 36 50 70
0

5

10

15

20

0
0

.5
1

(n) FORD, S=70

2 20 36 50 70

200

400

600

800

0
0

.5
1

(o) GeoLife, S=400

2 20 36 50 70

1000

2000

3000

4000

0
0

.5
1

(p) Mopsi, S=400

2 20 36 50 70

5

10

15

20

0
0

.5
1

(q) KITTI, S=140

2 20 36 50 70

5

10

15

20

25

0
0

.5
1

(r) FORD, S=140

2 20 36 50 70

200

400

600

800

1000

1200

0
0

.5
1

(s) GeoLife, S=600

2 20 36 50 70

2000

4000

6000

0
0

.5
1

(t) Mopsi, S=600

Figure 3.5: Scalability and accuracy of PARMA-CC algorithms. PARMA-CC algorithms
achieve the same clustering accuracy with a fixed S.

of the completion times are presented in Table 3.5 using varying number of
threads and splits. Furthermore, the results of PCL-EC, as an exact sequential
baseline, are included for the reference.

The results show that, with appropriate choices of S and large enough
number of threads, PARMA-CC algorithms can be several orders of magnitude
faster than the exact sequential baseline. Furthermore, the scalability of
PARMA-CC algorithms demonstrates a super-linear behaviour with respect
to K or S for the GeoLife and Mopsi datasets. As both GeoLife and Mopsi
datasets have highly skewed distributions, the complexity of the exact sequential
baseline is O(N2). The latter holds because the spatial data structure used
to find ϵ-neighbourhoods is not able to operate efficiently with skewed data
distributions. On the other hand, the PARMA-CC algorithms reduce the

90 CHAPTER 3. PARMA-CC

2 20 36 50 70
0

500

1000

1500

0
0
.5

1

(a) shuffled GeoLife

2 20 36 50 70
0

1000

2000

3000

0
0

.5
1

(b) shuffled Mopsi

36 50 70

900

1000

1100

1200

0
0

.5
1

(c) GeoLife, S=600

36 50 70
4000

4500

5000

5500

6000

6500

0
0

.5
1

(d) Mopsi, S=600

Figure 3.6: Scalability and accuracy of basic PARMA-CC algorithms on the shuffled GeoLife
and Mopsi datasets in (a) and (b). Zoomed scalability and accuracy of flexi PARMA-CC
algorithms on GeoLife and Mopsi datasets in (c) and (d).

2 20 36 50 70

2

4

6

8

10

0
0

.5
1

(a) KITTI

2 20 36 50 70
0

10

20

0
0

.5
1

(b) FORD

2 20 36 50 70
0

50

100

150

200

0
0

.5
1

(c) GeoLife

2 20 36 50 70
0

200

400

600

800

0
0

.5
1

(d) Mopsi

Figure 3.7: Scalability and accuracy of PDSDBSCAN and basic PARMA-CC algorithms
utilizing DBSCAN as the local clustering algorithm. In (c), PDSDBSCAN does not produce
a proper DBSCAN clustering. In (d), PDSDBSCAN crashes as it runs out of memory. The
right Y-axes show the clustering accuracy of basic PARMA-CC algorithms.

completion time of the local clustering quadratically in K or S, by splitting the
data and by approximation. With this observation in place, we discuss further
the scalability behaviour of PARMA-CC algorithms in the following.

We notice that with a large enough choice of S, a flexi PARMA-CC algorithm
achieves higher scalability than its basic counterpart. For example, with S being
600, the scalability of a flexi PARMA-CC algorithm is about 6 times that of a
basic PARMA-CC algorithm, as shown in Figure 3.5c and Figure 3.5s. Moreover,
for each dataset, we observe that the scalability of the flexi PARMA-CC
algorithms tends to increase with greater S values. The latter is in accordance
with Observation 3.2, stating the effect of increasing S on decreasing the
completion time of local clustering. Furthermore, similar to the basic PARMA-
CC algorithms, we observe the super-linear scalability of flexi PARMA-CC
algorithms on the GeoLife and Mopsi datasets. With smaller sets of data we
also see that, beyond some point, increasing the number of threads does not
decrease further the execution time, as there is less work to be done and the
benefit from distributing is opposed by the cost of coordination (Figure 3.5m,
Figure 3.5q, Figure 3.5n, Figure 3.5r).

The Spatio-Temporal Properties and the Scalability of PARMA-CC
Algorithms

On the KITTI and FORD datasets (with low inter-split overlap), FLEXI-PARMAF
has the highest scalability. The latter is shown in the left Y-axes in Fig. 3.5q-3.5r,
and it is in accordance with Observation 3.3. On the other hand, FLEXI-PARMAH
achieves the highest scalability on the GeoLife and Mopsi datasets, see the
zoomed graphs Figure 3.6c and Figure 3.6d, respectively.

The left Y-axes in Figure 3.6a and Figure 3.6b respectively show the

3.9. EVALUATION 91

scalability of the basic PARMA-CC algorithms on the randomly shuffled
GeoLife and Mopsi, datasets exhibiting high inter-split overlap. The results
show PARMAH typically has higher scalability than FLEXI-PARMAF on the randomly
shuffled datasets. The latter is in accordance with Observation 3.3. Another
important observation is that PARMA-CC algorithms typically has higher
scalability on the randomly shuffled datasets. The latter holds because the splits
of a randomly shuffled dataset contain approximately similar distributions,
alleviating the worst-case behaviour of spatial data structures such as kd-tree.

Approximate DBSCAN Clustering and the Scalability of PARMA-
CC Algorithms

The left axes in Fig 3.7a-3.7d show the average scalability of PDSDBSCAN
(see § 3.2) and basic PARMA-CC algorithms that utilize DBSCAN as the local
clustering algorithm on the KITTI, FORD, GeoLife, and Mopsi datasets. As
the results show, even the basic PARMA-CC algorithms achieve significantly
higher scalability than PDSDBSCAN. Note that PDSDBSCAN fails to produce
a proper clustering in Figure 3.7c and crashes as it runs out of memory
in Figure 3.7d.

(a) KITTI,
FLEXI-PARMAH

2 3 4 5 10 15 20 30 36 40 50 60 70

number of threads (K)

140

70

40

20

n
u
m

b
e
r

o
f
s
p
lit

s
 (

S
)

5

10

15

20

NaN

(b) FORD,
FLEXI-PARMAH

2 3 4 5 10 15 20 30 36 40 50 60 70

number of threads (K)

600

400

200

100

n
u
m

b
e
r

o
f
s
p
lit

s
 (

S
)

200

400

600

800

1000

(c) GeoLife,
FLEXI-PARMAH

2 3 4 5 10 15 20 30 36 40 50 60 70

number of threads (K)

600

400

200

100
n
u
m

b
e
r

o
f
s
p
lit

s
 (

S
)

1000

2000

3000

4000

5000

6000

(d) Mopsi,
FLEXI-PARMAH

2 3 4 5 10 15 20 30 36 40 50 60 70

number of threads (K)

140

70

40

20

n
u
m

b
e
r

o
f
s
p
lit

s
 (

S
)

5

10

15

20

NaN

(e) KITTI,
FLEXI-PARMAF

2 3 4 5 10 15 20 30 36 40 50 60 70

number of threads (K)

140

70

40

20

n
u
m

b
e
r

o
f
s
p
lit

s
 (

S
)

5

10

15

20

NaN

(f) FORD,
FLEXI-PARMAF

2 3 4 5 10 15 20 30 36 40 50 60 70

number of threads (K)

600

400

200

100

n
u
m

b
e
r

o
f
s
p
lit

s
 (

S
)

200

400

600

800

1000

(g) GeoLife,
FLEXI-PARMAF

2 3 4 5 10 15 20 30 36 40 50 60 70

number of threads (K)

600

400

200

100

n
u
m

b
e
r

o
f
s
p
lit

s
 (

S
)

1000

2000

3000

4000

5000

6000

(h) Mopsi,
FLEXI-PARMAF

Figure 3.8: Scalability of FLEXI-PARMAH and FLEXI-PARMAF as a function of K and S (for
K ≤ S) demonstrated by heat maps for different datasets. Moving between the columns of
each heat-map indicates the effect of parallelization, and moving between the rows of each
heat-map indicates the effect of approximation.

The Effects of Parallelization and Approximation on the Scalability
of PARMA-CC Algorithms

We have seen so far how PARMA-CC algorithms utilize approximation and
parallelization to gain scalability. We here aim to gain insight into the effects of
approximation and parallelization on the scalability. To that end, the heat maps
in Figure 3.8 summarize the scalability of FLEXI-PARMAH and FLEXI-PARMAF for
KITTI, FORD, GeoLife, and Mopsi datasets as a function of the number of
threads and the number of splits via heat-maps (brighter colours indicate higher
scalabilities, and the green parts correspond to the cases in which K is larger

92 CHAPTER 3. PARMA-CC

than S). Note that PARMA-CC algorithms yield equivalent clustering results
with a fixed value of S (see Corollary 3.1). Therefore, moving between the
columns of each heat-map indicates the effect of parallelization (i.e., number of
threads), and moving between the rows of each heat-map indicates the effect
of approximation.

 2 5 10 20 40 70

0.4

0.6

0.8

1

(a) KITTI

 2 5 10 20 40 70

0.7

0.8

0.9

1

(b) FORD

 2 5 10 20 40 70

0.99

0.995

1

(c) GeoLife

 2 5 10 20 40 70

0.997

0.998

0.999

1

(d) Mopsi

 2 5 10 20

0.94

0.96

0.98

1

(e) KITTI, S=20

 2 5 10 20

0.98

0.99

1

(f) FORD, S=20

 2 5 10 20 40 70

0.985

0.99

0.995

(g) GeoLife, S=100

 2 5 10 20 40 70

0.9985

0.999

0.9995

(h) Mopsi, S=100

 2 5 10 20 40

0.8

0.9

1

(i) KITTI, S=40

 2 5 10 20 40

0.9

0.95

1

(j) FORD, S=40

 2 5 10 20 40 70

0.975

0.98

0.985

0.99

0.995

(k) GeoLife, S=200

 2 5 10 20 40 70

0.994

0.996

0.998

1

(l) Mopsi, S=200

 2 5 10 20 40 70

0.6

0.8

1

(m) KITTI, S=70

 2 5 10 20 40 70

0.7

0.8

0.9

1

(n) FORD, S=70

 2 5 10 20 40 70

0.97

0.98

0.99

(o) GeoLife, S=400

 2 5 10 20 40 70

0.98

0.985

0.99

0.995

1

(p) Mopsi, S=400

 2 5 10 20 40 70

0.2

0.4

0.6

0.8

1

(q) KITTI, S=140

 2 5 10 20 40 70

0.8

0.9

1

(r) FORD, S=140

 2 5 10 20 40 70

0.94

0.96

0.98

1

(s) GeoLife, S=600

 2 5 10 20 40 70
0.98

0.985

0.99

0.995

1

(t) Mopsi, S=600

Figure 3.9: Ratio of the duration of longest phase I to the completion time in PARMA-CC
algorithms

3.9.3 Relative Ratio of Local Clustering to the Comple-
tion Time

Figure 3.9 shows the ratio of the duration of longest phase I to the completion
time in PARMA-CC algorithms. In all cases, with small values for K and S,
ratio is very close to one because the local clustering phase constitutes the
most significant duration in a PARMA-CC algorithm. Generally, for each
dataset, as K or S increases, the aforementioned ratio decreases accordingly.

3.9. EVALUATION 93

The latter indicates the presence of two opposing phenomena. Firstly, the local
clustering tasks get distributed more evenly among the workers, resulting in
higher scalability. On the other hand, as indicated in Observation 3.2, too large
values for K and/or S can increase the expected completion time of phase II,
resulting in lower scalability. In § 3.9.2, we empirically studied the joint effects
of the aforementioned opposing phenomena on the overall completion time and
scalability of PARMA-CC algorithms.

3.9.4 Clustering Accuracy

The right Y-axes in Figure 3.5a and Figure 3.5b show the average accuracy of
basic on the KITTI and FORD datasets, respectively. Furthtermore, Figure 3.5c
and Figure 3.5d show the accuracy of basic PARMA-CC algorithms on the
GeoLife and Mopsi datasets, respectively.

Similarly, the right Y-axes in Fig. 3.5e-3.5t show the clustering accuracy of
the flexi PARMA-CC algorithms for varying choices of S for each dataset. Note
that, in each case, with a fixed value of S, PARMA-CC algorithms achieve the
same clustering accuracy, as noted in Corollary 3.1.

The right Y-axes in Figure 3.6a and Figure 3.6b show the accuracy of
basic PARMA-CC algorithms on the shuffled GeoLife and shuffled Mopsi,
respectively.

The right Y-axes in Figure 3.7a, Figure 3.7b, Figure 3.7c, and Figure 3.7d
shows the accuracy of basic PARMA-CC algorithms utilizing DBSCAN as the
local clustering algorithm on the KITTI, FORD, GeoLife, and Mopsi datasets,
respectively.

The results show that, although as S increases, the clustering accuracy of
PARMA-CC algorithms gradually decreases, in most cases it stays high and this
is due to the summarization properties of the bounding ellipsoids. Furthermore,
PARMA-CC algorithms that utilize the Euclidean clustering algorithm are
able to better keep up the accuracy compared to the PARMA-CC algorithms
that utilize DBSCAN.

3.9.5 Shared Memory Contention

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

(a) KITTI

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

(b) FORD

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

(c) GeoLife

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

(d) Mopsi

Figure 3.10: The average ratio of failed CAS operations to the total number of invoked CAS

operations in flat PARMA-CC algorithms (for K ≤ S).

As mentioned in § 3.7.4, there is no shared memory contention in PARMAH,
and the number of occasions in which shared memory contention can take place

94 CHAPTER 3. PARMA-CC

in FLEXI-PARMAH is significantly smaller than that of flat PARMA-CC algo-
rithms. Therefore, we focus on shared memory contention in flat PARMA-CC
algorithms. Figure 3.10 shows shared memory contention in those algorithms,
as the average ratio of failed CAS operations to the total number of invoked CAS

operations for K ≤ S. Specifically, Figure 3.10a, Figure 3.10b, Figure 3.10c, and
Figure 3.10d show the shared memory contention in PARMAF and FLEXI-PARMAF
on the KITTI, FORD, GeoLife, and Mopsi datasets, respectively. The re-
sults show that shared memory contention in PARMAF is higher than that of
FLEXI-PARMAF, with a few exceptions. Furthermore, the results suggest that
contention in FLEXI-PARMAF gets lower by choosing larger values of S, as it
increases the number of shared tasks. However, the contention increases again
if the chosen number of splits is too large for the amount of data, indicating
that too large S values should be avoided for proper use of the algorithms.

3.9.6 Summary of the Empirical Evaluation

We studied the performance and behaviour of PARMA-CC algorithms in a
variety of situations. We saw PARMA-CC algorithms achieve significantly
higher scalability than the available sequential and parallel algorithms. Notably,
we saw super-linear scalability of PARMA-CC algorithms when the dataset
is skewed. We also saw that the local clustering is the dominant factor in
the execution of a PARMA-CC algorithm. To that end, we noted that the
flexi PARMA-CC algorithms improve scalability by increasing S (the number
of data splits), up to a point justified by the volume of the data (the splits
should not become too small, else the benefits of work-partitioning gets counter-
balanced by the overhead to coordinate the latter). Furthermore, with lower
inter-split overlap, we observed that the flat PARMA-CC algorithms achieve
higher scalability than the hierarchical PARMA-CC algorithms, and we noticed
that the hierarchical PARMA-CC algorithms achieve higher scalability when
the inter-split overlap is high. We also showd in practice the trade-off between
S and the scalability when data is not too big, as well as the clustering accuracy
of the algorithms, showing the advantage of suitable choice of S for utilizng
the good properties of the PARMA-CC algorithms.

3.10 Related Work

PARMAH, the first parallel multiphase approximate clustering combining algo-
rithm, was introduced and explored in [118]. The present chapter extends
the study of PARMA-CC algorithms by considering a design space along two
orthogonal aspects. The first aspect considers how the threads synchronize and
collaborate, and the second aspect considers how the workload gets distributed
among the threads. As a result, the present chapter introduces optimized
algorithms targeting different places in the design space. As suggested by the
extensive empirical evaluation, different PARMA-CC algorithms can be utilized
according to certain properties of the data to be clustered.

In the following, we present three categories of clustering algorithms relevant
to PARMA-CC algorithms.
CAT1 The methods in this category can directly be embedded in PARMA-CC
algorithms as a local clustering algorithm to gain the scalability benefits of

3.10. RELATED WORK 95

PARMA-CC algorithms. For example, instead of DBSCAN, DENCLUE [48],
STING [49], or OPTICS [50], and their approximate variants (see CAT3)
can be employed. The algorithms in this category can utilize spatial data
structures such as kd-trees [58], Octrees [119], R-trees [120], M-trees [121], and
navigating nets [122]. Similarly, PARMA-CC algorithms can also incorporate
the utilization of such spatial data structures in the local clustering phase.
Moreover, with appropriately formed input, one can also employ Lisco [46],
which is a single-pass continuous version of PCL-EC with faster ϵ-neighbourhood
radius search via exploiting the angularly sorted readings of a LIDAR sensor.

CAT2 These methods boost the performance of classical clustering algo-
rithms such as DBSCAN through parallelization. For instance, Highly Parallel
DBSCAN [64], HPDBSCAN, is an OpenMP/MPI hybrid algorithm that re-
distributes the points to distinct computational units that perform the local
clustering tasks. Then, the local clusters that need to get merged are identified,
and thus appropriate cluster relabeling rules get generated, broadcasted, and
applied locally. HPDBSCAN offers good scalability; however, when the data is
skewed, its performance degrades severely. On the other hand, PARMA-CC
algorithms can better tolerate skewed data as shown in the empirical evaluation.
Moreover, PARMA-CC algorithms’ approach to utilize the shared memory
via in-place operations is more efficient that OpenMP’s relaxed consistency
memory model in which multiple copies of the same data might exist [111].
G-DBSCAN [123] is a parallel version of DBSCAN using GPU that employs
a graph structure for indexing data. Other efforts on parallelizing DBSCAN
employ a master-slave architecture, e.g., [124]. Nevertheless, PARMA-CC
algorithms follow the orthogonal approach of scaling up before scaling out.

CAT3 Methods in this category sacrifice clustering accuracy to gain per-
formance. For example, ρ-approximate DBSCAN [20], and STING (also in
CAT1) which are both grid-based methods. The former gives a result that
is sandwiched between those of DBSCAN with parameters (ϵ, minPts) and
(ϵ(1+ ρ), minPts), for an arbitrary small ρ. With a constant input dimensional-
ity d, ρ-approximate DBSCAN has an expected O(N) complexity. [66]. However,
the number of neighbouring cells, O(1 + (1/ρ)d−1), grows exponentially with
the number of dimensions [20]. STING builds a hierarchical grid structure that
divides the spatial area into rectangular cells, at a different resolution per level.
Each cell summarizes the points it contains, thus approximating the clustering
result of DBSCAN. With a smaller granularity step, the approximation gets
better, but the number of bottom layer cells increases. Moreover, same as other
grid-based methods, the number of grid cells increase exponentially with the
number of input dimensions. Other methods integrate approximate nearest
neighbour search techniques (e.g., those based on locality sensitive hashing) into
DBSCAN, e.g., [20]. Another approximation approach is to cluster sampled
data. To that end, for example, the dynamic (biased) sampling method in [72]
can be utilized. The aforementioned techniques can as well be embedded in
PARMA-CC algorithms.

96 CHAPTER 3. PARMA-CC

3.11 Conclusions

To address the problem of parallel approximate distance- and density-based
clustering, we explored a design space for synchronization and workload dis-
tribution among the threads. To cover different parts of the design space, we
proposed representative PARMA-CC algorithms. We analytically and empir-
ically provided evidence regarding capabilities of PARMA-CC algorithms to
balance scaling and accuracy as well as to tolerate skewed data distributions.
Furthermore, our studies show that certain properties in the input dataset can
determine which PARMA-CC algorithm to choose for the best performance.
Moreover, we showed that all PARMA-CC algorithms yield equivalent clus-
tering results. We saw, furthermore, that the approximation technique can
result in super-linear scalability in the number of threads, with only marginal
loss in accuracy. In general our results show that high-quality approximate
clustering can be several orders of magnitude faster than exact clustering.
Based on the results of our extensive study of PARMA-CC algorithms, we
provide some general guidelines related to parallel approximate data processing
in the following:

• Regarding parallelization: In addition to the nature of the data process-
ing task, some intrinsic properties of data also influence the required
amount of synchronization among the threads. Fine-grained synchroniza-
tion techniques are beneficial until certain threshold, but when heavy
synchronization is needed, lock-based data parallel approaches can be
more efficient. For example, several threads in a flat PARMA-CC algo-
rithm can concurrently merge overlapping ellipsoids in split-summaries.
Nonetheless, if the number of overlapping ellipsoids is large (which is a
factor determined by the input data), then a large portion of fine-grained
synchronization primitives will fail due to contention; consequently, the
corresponding threads will need to retry. On the other hand, a thread
in a hierarchical PARMA-CC algorithm can merge as many overlapping
objects as required without any interruption, while other threads can in
parallel merge the ellipsoids in mutually disjoint sets of objects.

• Regarding data structures: The choice of the data structures (and the
computational complexity of the required functionalities) should be in
accordance with the data processing task. For example, PARMA-CC
algorithms utilize a union-set data structure supporting efficient union
and find operations, which is in accordance with the agglomerative [125]
nature of PARMA-CC algorithms. On the other hand, for a divisive [126]
data clustering approach, the union-set data structure is probably not
a good choice as it does not support efficient separation of sets. From
an algorithmic implementation point of view, it is beneficial if the data
structures support in-place operations utilizing pointer manipulation
techniques.

• Regarding skewed data distributions: Classical data indexing methods
used for data clustering can result in quadratic complexity in terms
of the size of data under skewed data distributions. Our results show
approximation can be a key idea for alleviating the challenges imposed by

3.11. CONCLUSIONS 97

high skewness. Furthermore, our study shows splitting a highly skewed
data into a number of portions with similar distributions, and performing
the required computation on the portions separately and then aggregating
the results can reduce the required workload. Despite its approximate
nature, our results show such an approach can attain high clustering
accuracy.

We expect that PARMA-CC algorithms can facilitate pipeline processing
of point clouds, especially combined with stream-processing oriented data
structures as proposed in [102, 127] and given the discussion about possible
use-cases and associated queries in the respective section. Considering the
observed scalability results of PARMA-CC algorithms, a possible future venue
of studies and experiments is to adapt PARMA-CC algorithms to GPU enabled
systems.

98 CHAPTER 3. PARMA-CC

Chapter 4

Parallel Approximate
Clustering for High
Dimensional Data

IP.LSH.DBSCAN: Integrated Parallel Density-Based Cluster-
ing through Locality-Sensitive Hashing

Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou and
Philippas Tsigas

This Chapter is an adaptation of the article that is submitted for publication.

99

Summary

Locality-sensitive hashing (LSH) is an established method for fast data indexing
and approximate similarity search, with useful parallelism properties. Although
indexes and similarity measures are key for data clustering, little has been
investigated on the benefits of LSH in the problem. Our proposition is that LSH
can be extremely beneficial for parallelizing high-dimensional density-based
clustering e.g., DBSCAN, a versatile method able to detect clusters of different
shapes and sizes.

We contribute to fill the gap between the advancements in LSH and density-
based clustering. In particular, we show how approximate DBSCAN clustering
can be fused into the process of creating an LSH index structure, and, through
data parallelization and fine-grained synchronization, also utilize efficiently
available computing capacity as needed for massive data-sets. The resulting
method, IP.LSH.DBSCAN, can effectively support a wide range of applications
with diverse distance functions, as well as data distributions and dimension-
ality. Furthermore, IP.LSH.DBSCAN facilitates adjustable accuracy through
LSH parameters. We analyse its properties and also evaluate our prototype
implementation on a 36-core machine with 2-way hyper threading on mas-
sive data-sets with various numbers of dimensions. Our results show that
IP.LSH.DBSCAN effectively complements established state-of-the-art methods by
up to several orders of magnitude of speed-up on higher dimensional datasets,
with tunable high clustering accuracy.

100 CHAPTER 4. IP.LSH.DBSCAN

4.1 Introduction

Digitalized applications’ datasets are getting larger in size and number of
features (i.e., dimensions), posing new challenges to established data mining
methods such as data clustering, an unsupervised mining tool based on sim-
ilarity measures. Density-based spatial clustering of applications with noise
(DBSCAN) [47] is a prominent method to cluster (possibly) noisy data into
arbitrary shapes and sizes, without prior knowledge on the number of clusters,
and using user-defined similarity metrics (i.e., not limited to the Euclidean
one). DBSCAN is used in many applications, including LiDAR [6], object
detection [128], and GPS route analysis [7]. DBSCAN and some of its variants
have been also used to cluster high dimensional data, e.g., medical images [11],
text [12], and audio [13].

The computational complexity of traditional DBSCAN is in the worst-case
quadratic in the input size [20], expensive considering attributes of today’s
datasets. Nonetheless, indexing and spatial data structures facilitating prox-
imity searches can ease DBSCAN’s computational complexity, as shown with
KD-trees [58], R-trees [120], M-trees [121], and cover trees [129]. Using such
structures is suboptimal in at least three cases, though: (i) skewed data distri-
butions negatively affect their performance [128], (ii) the dimensionality curse
results in exact spatial data structures based on deterministic space partitioning
being slower than linear scan [130], and (iii) such structures only work for a
particular metric (e.g. Euclidean distance). In the literature, the major means
for enhancing time-efficiency are those of parallelization [7, 63, 64, 123, 124]
and approximation [65], studied alone or jointly [7, 128]. However, state-of-
the-art methods target Euclidean distance only and suffer from skewed data
distributions and the dimensionality curse.

Locality-sensitive hashing (LSH) is an established approach for approximate
similarity search. Based on the idea that if two data points are close using
a custom similarity measure, then an appropriate hash function can map
them to equal values with high probability [19, 29, 52], LSH can support
applications that tolerate approximate answers, close to the accurate ones with
high probability . LSH-based indexing has been successful (and shown to be the
best known method [19]) for finding similar items in large high-dimensional
data-sets. With our contribution, the IP.LSH.DBSCAN algorithm, we show how
the processes of approximate density-based clustering and of creating an LSH
indexing structure can be fused to boost parallel data analysis. Our novel fused
approach can efficiently cope with high dimensional data, skewed distributions,
large number of points, and a wide range of distance functions. We evaluate
the algorithms analytically and empirically, showing they complement the
landscape of established state-of-the-art methods, by offering up to several
orders of magnitude speed-up on higher dimensional datasets, with tunable
high clustering accuracy.

Organization: § 4.2 reviews the preliminaries. § 4.3 and § 4.4 describe and
analyse the proposed IP.LSH.DBSCAN. § 4.5 covers the empirical evaluation.
Related work and conclusions are presented in § 4.6 and § 4.7, respectively.

4.2. PRELIMINARIES 101

4.2 Preliminaries

4.2.1 System Model and Problem Description

Let D denote an input set of N points, each a multi-dimensional vector from a
domain D, and having a unique ID. Distance is a distance function applicable
on D’s elements. The goal is to partition D into an a priori unknown number
of disjoint clusters, based on Distance and parameters minPts and ϵ: minPts
specifies a lower threshold for the number of neighbors, within radius ϵ, for
points to be clustered together.

We aim for an efficient, scalable parallel solution, trading approximations
in the clustering with reduced calculations regarding the density criteria, while
targeting high accuracy. Our evaluation metric for efficiency is completion
time. Accuracy is measured with respect to an exact baseline using rand
index [51]: given two clusterings of the same dataset, the rand index is the
ratio of the number of pairs of elements that are either clustered together
or separately in both clusterings, to the total number of pairs of elements.
Regarding concurrency guarantees, a common consistency goal is that for every
parallel execution, there exists a sequential one producing an equivalent result.

We consider multi-core shared-memory systems executing K threads, sup-
porting read, write and read-modify-write atomic operations, e.g. CAS

(Compare-And-Swap), commonly available in contemporary general purpose
processors.

4.2.2 Locality Sensitive Hashing (LSH)

LSH is an indexing technique to facilitate finding similar data points in given
a dataset. As mentioned in the introduction, LSH is based on the idea that
the hash values (i.e., indexes) of two nearby data points are equal with a high
probability given an appropriate choice of locality-sensitive hash functions. The
following defines the sensitivity of a family of LSH functions [18,19], i.e., the
property that, with high probability, similar points hash to the same value,
and dissimilar ones hash to different ones.

distance(x,y)

p[
h(

x)
=h

(y
)]

dist(x,y)<
🠞P[h(x)=h(y)]>

dist(x,y)>
🠞P[h(x)=h(y)]<

Figure 4.1: Visual illustration of (d1, d2, p1, p2)-sensitivity for a family of hash functions.

102 CHAPTER 4. IP.LSH.DBSCAN

Definition 4.1. A family of functions H = {h : S → U} is (d1, d2, p1, p2)-
sensitive for distance function Distance if for any p and q in S the following
conditions hold: (i) if Distance(p, q) ≤ d1, then PrH[h(p) = h(q)] ≥ p1 (ii) if
Distance(p, q) ≥ d2, then PrH[h(p) = h(q)] ≤ p2. The probabilities are over
the random choices in H.

A family H is useful when p1 > p2 and d1 < d2. Figure 4.1 visualizes the
(d1, d2, p1, p2)-sensitivity for a family of hash functions. LSH functions can be
combined, into more effective (in terms of sensitivity) ones, as follows [18]:

Definition 4.2. (i) AND-construction: Given a (d1, d2, p1, p2)-sensitive family
H and an integer M, we can create a new LSH family G = {g : S → UM}
by aggregating/concatenating M LSH functions from H, where g(p) and g(q)
are equal iff hj(p) and hj(q) are equal for all j ∈ {1, · · · , M}, implying G is
(d1, d2, p1

M, p2
M)-sensitive; (ii) OR-construction: Given an LSH family G and

an integer L, we can create a new LSH family F where each f ∈ F consists of
L gis chosen independently and uniformly at random from G, where f(p) and
f(q) are equal iff gj(p) and gj(q) are equal for at least one j ∈ {1, · · · , L}. F
is (d1, d2, 1− (1−p1

M)L, 1− (1−p2
M)L)-sensitive assuming G is (d1, d2, p1

M, p2
M)-

sensitive.

LSH structure: An instance of family F is implemented as L hash tables; the i-th
table is constructed by hashing each point in D using gi [19, 29]. The resulting
data structure associates each bucket with the values for the keys mapping to
its index. LSH families can associate with various distance functions [18], e.g.:
LSH for Euclidean distance: Let u be a randomly chosen unit vector in D. A hash
function hu(x) in such a family is defined as ⌊ x·uϵ ⌋, being · the inner product
and ϵ a constant. The family is applicable for any number of dimensions. In a
2-dimensional domain, it is (ϵ/2, 2ϵ, 1/2, 1/3)-sensitive.
LSH for angular distance: Let u be a randomly chosen vector in D. A hash
function hu(x) in such a family is defined as sgn(x ·u). The family is (θ1, θ2, 1−
θ1
π , 1− θ2

π)-sensitive, where θ1 and θ2 are any two angles (in radians) such that
θ1 < θ2.

4.2.3 Related Terms and Algorithms

DBSCAN: partitions D into an a priori unknown number of clusters, each
consisting of at least one core point (i.e., one with at least minPts points in
its ϵ-radius neighbourhood) and the points that are density-reachable from it.
Point q is density-reachable from p, if q is directly reachable from p (i.e., in its
ϵ-radius neighbourhood) or from another core point that is density-reachable
from p. Non-core points that are density-reachable from some core-point are
called border points, while others are noise [20]. DBSCAN can utilize any
distance function e.g., Euclidean, Jaccard, Hamming, angular [18]. Its worst-
case time complexity is O(N2), but in certain cases (e.g. for Euclidean distance
and low-dimensional datasets) its expected complexity lowers to O(N log N),
through indexing structures facilitating range queries to find ϵ neighbours [20].
HP-DBSCAN [64]: Highly Parallel DBSCAN is an OpenMP/MPI algorithm,
super-imposing a hyper-grid over the input set. It distributes the points to
computing units that do local clusterings. Then, the local clusters that need

4.3. THE PROPOSED IP.LSH.DBSCAN METHOD 103

merging are identified and cluster relabeling rules get broadcasted and applied
locally.
PDS-DBSCAN [63]: An exact parallel version of Euclidean DBSCAN that
uses a spatial indexing structure for efficient query ranges. It parallelizes the
work by partitioning the points and merging partial clusters, maintained via a
disjoint-set data structure, also known as union-find (a collection of disjoint
sets, with the elements in each set connected as a directed tree). Such a data
structure facilitates in-place find and merge operations [109] avoiding data
copying. Given an element p, find retrieves the root (i.e., the representative)
of the tree in which p resides, while merge merges the sets containing two given
elements.
Theoretically-Efficient and Practical Parallel DBSCAN [7]: Via a grid-based
approach, this algorithm identifies core-cells and utilizes a union-find data
structure to merge the neighbouring cells having points within ϵ-radius. It uses
spatial indexes to facilitate finding neighbourhood cells and answering range
queries.
LSH as index for DBSCAN: LSH’s potential led other works (e.g., [70,71]) to
consider it as a plain means for neighbourhood queries. We refer to them as
VLSHDBSCAN.

4.3 The Proposed IP.LSH.DBSCAN Method

IP.LSH.DBSCAN utilizes the LSH properties, for parallel density-clustering,
through efficient fusion of the indexing and clustering formation.

At a high level, IP.LSH.DBSCAN hashes each point in D, into multiple hash-
tables, in such a way that with a high probability, points within ϵ-distance get
hashed to the same bucket at least once across all the tables. E.g., Figure 4.2a
shows how most nearby points in a subset of D get hashed to the same buckets,
in two hash tables. Subsequently, the buckets containing at least mintPts

elements are examined, to find a set of candidate core-points which later will
be filtered to identify the real core-points, in terms of DBSCAN’s definition.
In Figure 4.2a, the core-points are shown as bold points with a dot inside. The
buckets containing core points are characterized as core buckets. Afterwards,
with the help of the hash tables, core-points within each others’ ϵ-neighbourhood
get merged. E.g., the core-bucket in the rightmost hash table in Figure 4.2a
contains two core-points, indicating the possibility that they are within each
other’s ϵ-neighbourhood, in which case they get merged. The merging is done
using a forest of union-find data structures, consisting of such core-points, that
essentially represent core buckets. As we see later, multiple threads can work
in parallel in these steps.

4.3.1 Key Elements and Phases

Similar to an LSH structure (cf. § 4.2.2), we utilize L hash tables (hashTable[1],
· · · , hashTable[L]), each constructed using M hash functions, chosen according
to distance metric Distance and threshold ϵ (see § 4.2.2, § 4.4).

Definition 4.3. A bucket in any of the hash tables is called a candidate core-
bucket if it contains at least minPts elements. A candidate core-point c in a

104 CHAPTER 4. IP.LSH.DBSCAN

buckets in
[]

 radius

buckets in
[]

 radius

(a)

N ≜ number of points in the input
dataset

d ≜ number of data point dimensions

K ≜ number of threads

L ≜ number of hash tables

M ≜ number of hash functions per table

C ≜ number of core-points identified by
LSHDBSCAN

(b) Table of Notation

Figure 4.2: 4.2a shows nearby points get hashed to the same bucket at least once across
hash tables, whp. Core-points are the bold ones with a dot inside.

candidate core-bucket ccb is defined to be the closest (using function Distance)
point in ccb to the centroid of all the points in ccb; we also say that c represents
ccb. A candidate core bucket ccb, whose candidate core-point c has at least
minPts points within its ϵ-radius in ccb, is called a core-bucket. Core-forest
is a concurrent union-find structure containing core-points representing core
buckets.

Lemma 4.1. A candidate core-point, having in its bucket at least minPts

points within its ϵ-radius, is a core-point according to the DBSCAN definition
(§ 4.2.3).

The above follows from Definition 4.3. Next we present IP.LSH.DBSCAN’s
basic phases, followed by detailed description of parallelization and pseudo-code.

In phase I (hashing and bucketing), for each i, each point p in D is hashed
using the LSH function gi and inserted in hashTable[i]. Furthermore, the
algorithm keeps track of the buckets containing at least minPts, as candidate
core buckets. In phase II (core-point identification), for each candidate core-
bucket, the algorithm identifies a candidate core-point. If at least minPts points
in a candidate core-bucket fall within the ϵ-neighbourhood of the identified
candidate core-point, the latter is identified as a true core-point and inserted
into the core-forest as a singleton. In phase III (merge-task identification
and processing), the algorithm inspects each core-bucket and creates and
performs a merge task for each pair of core-points that are within each others’
ϵ-neighbourhood. Hence, the elements in the core-forest start forming sets
according to the merge tasks. In phase IV (data labeling), the algorithm labels
the points: a core point gets assigned the same clustering label as all the other
core points with which it forms a set in the core-forest. A border point (i.e., a
non-core point located in the ϵ-radius of a core-point) is labeled the same as a
corresponding core-point, and all the other points are considered noise.

4.3.2 Parallelism and Algorithmic Implementation

We here present the parallelization in IP.LSH.DBSCAN (see Alg. 4.1), targeting
speed-up by distributing the workload among K threads. We also aim at in-place
operations on data points and buckets (i.e., without creating additional copies),

4.3. THE PROPOSED IP.LSH.DBSCAN METHOD 105

hence work with pointers to the relevant data points and buckets in the data
structures.

Algorithm 4.1 Outline of IP.LSH.DBSCAN
1: Input: dataset D, threshold minPts, radius ϵ, nr. of hash tables L, nr. of hash functions per

table M, metric Distance, nr of threads K; Output: a clustering label for each point in D
2: let D be logically partitioned into S mutually disjoint batches
3: hashTable[1],· · · ,hashTable[L] are hash tables supporting concurrent insertions and traversals
4: candidateCoreBuckets and coreBuckets are empty sets supporting concurrent operations
5: let hashTasks be a S× L boolean array initialized to false, indicating the status of hash tasks

corresponding to the Cartesian product of S batches and L hash tables
6: let G = {g : S → UM} be an LSH family suitable for metric Distance, and let g1, · · · , gL be

hash functions chosen independently and uniformly at random from G (Definition 4.2)
7: for all threads in parallel do
8: phase I: hashing and bucketing

9: while the running thread can book a task from hashTasks do
10: for each point p in task.batch do
11: let i be index of the hashTable associated with task
12: hashTable[i].insert(key = gi(p), value = ptr(p))
13: bucket=hashTable[i].getBucket(key = gi(p))
14: if bucket.size() ≥ minPts then candidateCoreBuckets.insert(ptr(bucket))

15: phase II: core-point identification (starts when all threads reach here)

16: for each ccb in candidateCoreBuckets do
17: let c be the closest point in ccb to ccb points’ centroid
18: if |{q ∈ ccb such that Distance(c, q)}| ≥ minPts then
19: c→ corePoint := TRUE and insert c into the core-forest
20: coreBuckets.insert(ccb)

21: phase III: merge-task identification and processing (starts when all threads reach here)

22: while cb := coreBuckets.pop() do
23: let core be the core-point associated with cb
24: for core-point c ∈ cb such that Distance(core, c) ≤ ϵ do merge(core, c)

25: phase IV: data labeling (starts when a thread reaches here)

26: for each core bucket cb do
27: let core be the core-point associated with cb
28: for each non-labeled point p in cb do
29: if p→ corePoint then p.idx = findRoot(p).ID
30: else p.idx = findRoot(core).ID

Phase I (hashing and bucketing): The first step is to parallelize the hashing of the
input dataset D into L hash tables. We (logically) partition D into S mutually
disjoint batches. Consecutively, we have S × L hash tasks, corresponding to
the Cartesian product of the hash tables and the data batches. We utilize a
mechanism through which the threads can book a hash task and thus share
the workload. To that end, hashTasks is a boolean S× L array containing a
status for each task, initially false. A thread in phase I scans the elements
of hashTasks, and if it finds an non-booked task, then it tries to atomically
book the task (e.g. via a CAS operation to change the status from false to
true). The thread that successfully books a hash task htb,t hashes each data
point p in batch b into hashTable[t] using hash function gt. Particularly,
for each point p, a key-value pair consisting of the hashed value of p and
a pointer to p is inserted in hashTable[t]. As entries get inserted into the
hash tables, pointers to buckets with at least minPts points are stored in the
set candidateCoreBuckets. Since threads concurrently operate on the same
tables, we use hash tables supporting concurrent insertions and traversals [112].
Alg. 4.1 l.8-l.14 summarizes Phase I.

Phase II (core-point identification): Here the threads identify core-buckets and
core-points. Each thread atomically pops a candidate core bucket ccb from
candidateCoreBuckets. Afterwards, it identifies the closest point to the

106 CHAPTER 4. IP.LSH.DBSCAN

centroid of the points in ccb, considering it as a candidate core-point, ccp. If
there are at least minPts points in ccb within ϵ-radius of ccp, then ccp and ccb

are identified as core-point and core-bucket, respectively, and ccp is inserted
in the core-forest and the ccb in the coreBucekts set. This phase, shown
in Alg. 4.1 l.15-l.20, is finished when candidateCoreBuckets becomes empty.

Phase III (merge-task identification and processing): The threads here identify
and perform merge tasks. For each core-bucket cb that a thread successfully
books from the set coreBuckets, the thread merges the sets corresponding
to the associated core-point with cb and any other core-point in cb within ϵ
distance. For merging, the algorithm uses an established concurrent imple-
mentation for disjoint-sets, with linearizable and wait-free (i.e., the effects
of concurrent operations appear instantaneously and are consistent with the
sequential specification, while the threads can make progress independently
of each other [107]) find and merge, proposed in [107]. The phase is finished
when coreBucekts becomes empty. Its steps are shown in Alg. 4.1 l.21-l.24.

Phase IV (data labeling): Each non-labeled core-point in a core-bucket gets
assigned its root ID in the core-forest as the clustering label. The clustering label
assigned to all other non-labeled points in a core-bucket is the root ID of the
associated core-point. The aforementioned process, shown in Alg. 4.1 l.25-l.30,
can be performed concurrently for all the core-buckets.

4.4 Analysis

We study the consistency, time and memory properties of IP.LSH.DBSCAN.
Figure 4.2b summarizes the notations.

At the end of phase IV, each set in the core-forest contains a subset of
density-reachable core-points (as defined in § 4.2). Two disjoint-set structures
ds1, ds2 are equivalent if there is a one-to-one correspondence between ds1’s and
ds2’s sets. The following lemma implies that the outcomes of single-threaded
and concurrent executions of IP.LSH.DBSCAN are equivalent.

Lemma 4.2. Any pair of concurrent executions of IP.LSH.DBSCAN that use the
same hash functions, result to equivalent core-forests at the end of phase IV.

Proof sketch. Considering a fixed instance of the problem, any concurrent
execution of IP.LSH.DBSCAN identifies the same set of core-points and core-
buckets with the same hash functions, hence performing the same set of merge
operations. As the concurrent executions of merge operations are linearizable
(see § 4.3) and merge operation satisfies the associative and commutative
properties, the resulting sets in the core-forest are identical for any concurrent
execution.

It is worth noting that border points (i.e., non-core points within the vicinity
of multiple core-points) can be assigned to any of the neighbouring clusters.
The original DBSCAN [47] exhibits the same behaviour as well. Let C be the
size of the core-forest, i.e., number of identified core-points by IP.LSH.DBSCAN.

Lemma 4.3. [adapted from Theorem 2 in [109]] The probability that each
findRoot and each merge perform O(log C) steps is at least 1− 1

C
.

4.4. ANALYSIS 107

Corollary 4.1. The expected asymptotic time complexity of each findRoot

and each merge is O (log C).

Lemma 4.4. The expected completion time of phase I is O(LMNd
K

); phase II

and phase III is bounded by O(LN log C
K

); phase IV is O(N log C
K

).

Proof sketch. In the following, we argue about each of the listed items. We take
into consideration that each insertion into a hash table or a set, as associative
containers, takes constant time with respect to L, M, and d.

• Phase I. The dominant workload in this phase is to hash N d-dimensional
data points into L hash tables using M functions.

• Phase II. To identify the candidate core points, all the N points are
iterated in each table in the worst-case. Similar is the worst case for
identifying the merge tasks. For most instances of the problem, the
expected completion time of phase II and III can be significantly smaller
than the worst-case bound.

• Phase III. A merge operation (whose expected time complexity is given
in Corollary 4.1) is performed for each identified merge task, the latter
being in the worst case linear in the number of buckets. This upper
bound is loose for most data distributions as in the previous case.

• Phase IV. In this phase, a maximum of N findRoot operations, each with
expected time complexity of O (log C) (Corollary 4.1), are performed.

The partitioning into S batches and the fine-grained work-sharing schemes as
described in the previous section make it possible for the work-load to get
evenly distributed among the K threads in each of the above cases.

Theorem 4.1. The expected completion time of IP.LSH.DBSCAN is O(LMNd+LN log C
K

).

Theorem 4.1 is derived according to the asymptotically dominant terms
in Lemma 4.4. Theorem 4.1 shows IP.LSH.DBSCAN’s expected completion time is
inversely proportional to K and grows linearly in N, d, L, and M. In common cases
where C is much smaller than N, the expected completion time of IP.LSH.DBSCAN
is O(LMNd

K
). In the worst-case, where C is O (N), the expected completion time

is O(LMNd+LN log N
K

). For this to happen, for instance, ϵ and minPts need to
be extremely small and L be extremely large. As the density parameters of
DBSCAN are chosen to detect meaningful clusters, such choices for ϵ and
minPts are in practice avoided.

On the memory use of IP.LSH.DBSCAN: The memory footprint of IP.LSH.DBSCAN
is proportional to (LN+ Nd), as it simply needs only one copy of each data
point and pointers in the hash tables and this dominates the overhead of all
other utilized data structures. Further, in-place operations ensure that data is
not copied and transferred unnecessarily, which is a significant factor regarding
efficiency. In § 4.5, the effect of these properties is discussed.

Choice of L and M: For an LSH structure, a plot representing the probability of
points hashing into the same bucket as a function of their distance resembles
an inverse s-curve (x- and y-axis being the distance, and the probability of

108 CHAPTER 4. IP.LSH.DBSCAN

0 /2
0

0.5

1

0 /2
0

0.5

1

Figure 4.3: The probability of two given points p and q being hashed to the same bucket as
a function of their angular distance using a variety of cascading, where the AND construction
is applied first, and then cascaded with an OR construction.

hashing to the same bucket, resp.), starting at 1 for the points with distance
0, declining with a significant slope around some threshold, and approaching
0 for far apart points. For example, Figure 4.3 shows the inverse s-curves
corresponding to different choices of L and M for the angular distance. As
shown in Figure 4.3, the choice of L and M directly influence the shape of the
associated curve, particularly the location of the threshold and the sharpness of
the decline [18]. It is worth noting that steeper declines generally result in more
accurate LSH structures at the expense of larger L and M values. Consequently,
in IP.LSH.DBSCAN, L and M must be determined to (i) set the location of the
threshold at ϵ, and (ii) balance the trade-off between the steepness of the
decline and the completion time. In § 4.5, we study a range of L and M values
and their implications on the trade-off between IP.LSH.DBSCAN’s accuracy and
completion time.

4.5 Evaluation

We conduct an extensive evaluation of IP.LSH.DBSCAN, comparing it with
the established state-of-the-art algorithms. Our implementation is publicly
available [131]. Complementing Theorem 4.1, we measure the execution latency
with varying number of threads (K), data points (N), dimensions (d), hash
tables (L), and hash functions per table (M). We use varying ϵ values, as well
as Euclidean and angular distances. We measure IP.LSH.DBSCAN’s accuracy
against the exact DBSCAN (hence also the baseline state-of-the-art algorithms)
using rand index.
Setup: We implemented IP.LSH.DBSCAN in C++, using POSIX threads and the
concurrent hash table of Intel’s threading building blocks [112] library (TBB).
We used a c5.18xlarg AWS machine, with 144 GB of memory and two Intel
Xeon Platinum 8124M CPUs, with 36 two-way hyper-threaded cores [7] in
total.
Tested Methods: In addition to IP.LSH.DBSCAN, we perform experiments with
PDSDBSCAN [63], HPDBSCAN [64], and the exact algorithm in [7], for which
we use the label TEDBSCAN (Theoretically-Efficient and Practical Parallel

4.5. EVALUATION 109

DBSCAN). As the approximate algorithms in [7] are generally not faster than
their exact counterpart (see Fig. 9 and discussion on p. 13 in [7]), we consider
their efficiency represented by the exact TEDBSCAN. We also implemented
and tested VLSHDBSCAN, our version of a single-thread DBSCAN that uses LSH
indexing, as we did not find open implementations for [70, 71]. Benchmarking
VLSHDBSCAN allows a comparison regarding the approximation degree, as well
the efficiency induced by the “fused” approach IP.LSH.DBSCAN that leads to
the efficient combination of searching and combining through the same hash
table. The aforementioned algorithms are reviewed in § 4.2.3.

4.5.1 Evaluation Data & Parameters

Following common practices [7, 64, 132], we use datasets with different charac-
teristics. We use varying ϵ but fixed minPts, as the sensitivity on the latter is
significantly smaller [132]. We also follow earlier works’ common practice to
abort any execution that exceeds a certain bound, here 9X105 seconds (more
than 24 hours). We introduce the datasets and the chosen values for ϵ and
minPts as well as the choices for L and M, based on the corresponding discussion
in § 4.4 and also the literature guidelines (e.g., [18] and the reference therein).
The default ϵ values are shown in italics.

TeraClickLog [7]: Each point in this dataset corresponds a display ad served by
Criteo and contains 13 integer and 26 categorical features. We choose a subset
containing over 67 million points, free from missing features. Similar to [7], we
consider the 13 integer features, and we choose ϵ from {1500, 3000, 6000, 12000}
and minPts 100. Figure 4.4a visualizes the rand index accuracy of IP.LSH.DBSCAN
on our subset of the TeraClickLog dataset as a function of L and M via a heat-
map for ϵ = 1500. We choose {L=5, M=5}, {L=10, M=5}, and {L=20, M=5}
giving 0.98, 0.99, and 1 rand index accuracy, respectively.

Household [65]: This is an electricity consumption dataset with over two million
points, each being seven-dimensional after removing the date and time features
(as suggested in [65]). Following the practice in [7, 65], we scale each feature
to [0,10000] interval and choose ϵ from {1500, 2000, 2500, 3000} and minPts

100. Figure 4.4b visualizes the rand index accuracy of IP.LSH.DBSCAN on the
Household dataset as a function of L and M via a heat-map for ϵ = 2000. We
choose {L=5, M=5}, {L=10, M=5}, and {L=20, M=5} giving 0.92, 0.94, and 0.95
rand index accuracy, respectively.

GeoLife [133]: This is a GPS trajectory dataset. We used approximately 1.45
million points as selected in [128], containing latitude and longitude with a highly
skewed distribution. Similar to [128], we choose ϵ from {0.001, 0.002, 0.004, 0.008}
and minPts 500. Figure 4.4c visualizes the rand index accuracy of IP.LSH.DBSCAN
on our subset of the GeoLife dataset as a function of L and M via a heat-map
for ϵ = 0.001. We choose {L=5, M=2}, {L=10, M=2}, and {L=20, M=2} giving
0.8, 0.85, and 0.89 rand index accuracy, respectively.

MNIST: The set contains 70000 records, each of them a 28X28-pixel hand-
written digit 0-9, where the actual labels are available [40]. We treat each
record as a 784-dimensional data point, and normalized each data point to have
a unit length (similar to [31]). We utilize the angular distance. Following [134],
we choose ϵ from {0.18π, 0.19π, 0.20π, 0.21π} and minPts 100. Figure 4.4d
visualizes the rand index accuracy of IP.LSH.DBSCAN on the MNIST dataset

110 CHAPTER 4. IP.LSH.DBSCAN

1 2 3 5 7 9 11 13 15

number of hash functions per table (M)

1

6

11

16

21

n
u

m
b

e
r

o
f

ta
b

le
s
 (

L
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) TeraClickLog
ϵ=1500, minPts=100

1 2 3 5 7 9 11 13 15

number of hash functions per table (M)

1

11

21

31

41

n
u

m
b
e

r
o
f

ta
b
le

s
 (

L
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Household
ϵ=2000, minPts=100

1 2 3 5 7 9 11 13 15

number of hash functions per table (M)

1

11

21

31

41

n
u

m
b

e
r

o
f

ta
b

le
s
 (

L
)

0.4

0.5

0.6

0.7

0.8

0.9

(c) GeoLife
ϵ=0.001, minPts=500

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

number of hash functions per table (M)

1

11

21

31

41

51

61

71

81

91

101

111

n
u

m
b

e
r

o
f

ta
b

le
s
 (

L
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) MNIST
ϵ = 0.2π, minPts=100

Figure 4.4: Heat-maps visualizing the rand index accuracy of IP.LSH.DBSCAN as a
function of L and M

1 10 20 30 36

10
2

10
3

10
4

(a) TeraClickLog
ϵ:1500, minPts:100
∥VLSHDBSCAN: 5, 5, -∥ > 9X105

1 10 20 30 36

10
0

10
1

10
2

10
3

(b) Household
ϵ:2000, minPts:100
∥VLSHDBSCAN: 5, 5, 0.99∥=1666

1 10 20 30 36

10
0

10
1

10
2

10
3

(c) Geolife
ϵ:0.001, minPts:500
∥VLSHDBSCAN: 5, 2, 0.99∥=1671

Figure 4.5: Completion time with varying K. The comma-separated values corre-
sponding to IP.LSH.DBSCAN and VLSHDBSCAN show L, M, and the rand index accuracy,
respectively. PDSDBSCAN crashes by running out of memory in 4.5a for all K and
for K≥ 4 in 4.5c. In 4.5a no HPDBSCAN executions terminate within the 9X105-sec
threshold.

as a function of L and M with respect to the actual labels via a heat-map for
ϵ = 0.2π. We choose {L=58, M=9}, {L=116, M=9}, and {L=230, M=9} giving
0.77, 0.85, and 0.89 rand index, respectively.

4.5.2 Experiments for the Euclidean Distance

Completion time with varying K: Figure 4.5a, Figure 4.5b, and Figure 4.5c
show the completion time of IP.LSH.DBSCAN and other tested methods with
varying K on TeraClickLog, Household, and GeoLife datasets, respectively.
PDSDBSCAN crashes by running out of memory on TeraClickLog for all K and
on GeoLife for K≥ 4, and none of HPDBSCAN’s executions terminate within
the 9X105 sec threshold. For the reference, in Figure 4.5, the completion time
of single-thread VLSHDBSCAN is provided as a caption for each dataset, except
for TeraClickLog, for the above reason. The results indicate the benefits of
parallelization for work-load distribution in IP.LSH.DBSCAN, also validating that
IP.LSH.DBSCAN’s completion time exhibits a linear behaviour with respect to L,
as shown in Theorem 4.1. In cases where dimensionality is higher, challenging

4.5. EVALUATION 111

1500 3000 6000 12000

10
2

10
3

0

0.5

1

(a) TeraClickLog
minPts:100, L:20, M:5

1500 2000 2500 3000
10

0

10
1

10
2

0

0.5

1

(b) Household
minPts:100, L:20, M:5

0.001 0.002 0.004 0.008

10
0

10
1

10
2

0

0.5

1

(c) Geolife
minPts:500, L:20, M:2

Figure 4.6: Completion time using varying ϵ with 36 cores. PDSDBSCAN crashes by
running out of memory in 4.6a and 4.6c for all ϵ. None of HPDBSCAN’s executions
terminate within the 9X105 sec threshold in 4.6a. Right Y-axes show IP.LSH.DBSCAN’s
rand index.

0.1 4 8 12 16

10
0

10
2

10
4

0

0.5

1

(a) TeraClickLog
ϵ:1500, minPts:100, L:20, M:5

0.5 1 1.5 2

10
0

10
1

10
2

0

0.5

1

(b) Household
ϵ:2000, minPts:100, L:20, M:5

0.1 0.5 1 1.4

10
-2

10
-1

10
0

10
1

0

0.5

1

(c) Geolife
ϵ:0.001, minPts:500, L:20, M:2

Figure 4.7: Completion time with varying N using 36 cores. PDSDBSCAN runs out
of memory in 4.7a with N>0.1 million points and with N>1 million points in 4.7c.
IP.LSH.DBSCAN and TEDBSCAN coincide in 4.7c. Right Y-axes show IP.LSH.DBSCAN’s
rand index.

0.1 4 8 12 16
0

2

4

6

8

10

12

14

16

0

0.5

1

(a) TeraClickLog
L:20, M:5

0.5 1 1.5 2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0

0.5

1

(b) Household
L:20, M:5

0.1 0.5 1 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.5

1

(c) Geolife
L:20, M:2

Figure 4.8: 4.8a, 4.8b, and 4.8c show in linear Y-axes the completion time measure-
ments of IP.LSH.DBSCAN shown in 4.7a, 4.7b, and 4.7c, respectively. The results show
completion time of IP.LSH.DBSCAN linearly grows with respect to N.

112 CHAPTER 4. IP.LSH.DBSCAN

1 10 20 30 36

10
1

10
2

(a) ϵ : 0.2π, minPts:100
∥VLSHDBSCAN: 58,9,0.55∥=6316

0.18 0.19 0.20 0.21

10
1

10
2

10
3

10
4

0

0.5

1

(b) minPts:100, L:230, M:9

10 40 70

2

4

6

8

0

0.5

1

(c) ϵ : 0.2π, minPts:100, L:230,
M:9

Figure 4.9: MNIST results with the angular distance (only IP.LSH.DBSCAN,
VLSHDBSCAN, DBSCAN support the angular distance). 4.9a shows IP.LSH.DBSCAN’s
completion time with varying K. The left Y-axes in 4.9b and 4.9c respectively show
IP.LSH.DBSCAN’s completion time with varying ϵ and N, using 36 cores. The right
Y-axes in 4.9b and 4.9c show the associated accuracy, computed with respect to the
actual labels.

the state-of-the-art algorithms, IP.LSH.DBSCAN’s completion time is several
orders of magnitude faster.

Completion time with varying ϵ: The left Y-axes in Figure 4.6a, Figure 4.6b,
and Figure 4.6c show the completion time of IP.LSH.DBSCAN and other tested
methods using 36 cores with varying ϵ values on TeraClickLog, Household, and
GeoLife datasets, respectively. PDSDBSCAN crashes by running out of memory
on TeraClickLog and GeoLife for all ϵ, and none of HPDBSCAN’s executions
terminate within the 9X105 sec threshold. The right Y-axes in Figure 4.6a,
Figure 4.6b, and Figure 4.6c show the corresponding rand index accuracy
of IP.LSH.DBSCAN. The results show that in general the completion time of
IP.LSH.DBSCAN decreases by increasing ϵ. Intuitively, hashing points into larger
buckets results in lower merge workload. Similar benefits, although with higher
completion times, are seen for TEDBSCAN. On the other hand, as the results
show, completion time of many classical methods (such as HPDBSCAN and
PDSDBSCAN) increases with increasing ϵ.

Completion time with varying N: The left Y-axes in Figure 4.7a, Figure 4.7b, and
Figure 4.7c show the completion time of the bench-marked methods using 36
cores on varying size subsets of TeraClickLog, Household, and GeoLife datasets,
respectively. PDSDBSCAN runs out of memory on TeraClickLog subsets with
N>0.1 million points and GeoLife subsets with N>1 million points. For better
visibility, the left Y-axes in Figure 4.8a, Figure 4.8b, and Figure 4.8c show only
the completion time of IP.LSH.DBSCAN using 36 cores on varying size subsets of
TeraClickLog, Household, and GeoLife datasets with linear scale, respectively.
The results empirically validate that completion time of IP.LSH.DBSCAN exhibits
a linear growth in the number of data points, complementing Theorem 4.1
(complementing figures in provided in [131]). The right Y-axes in Figure 4.7a,
Figure 4.7b, and Figure 4.7c show the corresponding rand index accuracy of
IP.LSH.DBSCAN.

4.6. OTHER RELATED WORK 113

4.5.3 Experiments for the Angular Distance

For data with significantly high number of dimensions, as a side-effect of
dimensionality curse, the Euclidean distance among all pairs of points are
almost equal [18]. To overcome this issue, we use the angular distance. We only
study the behaviour of IP.LSH.DBSCAN, VLSHDBSCAN, and DBSCAN as the other
bench-marked methods do not support the angular distance. Here accuracy
is calculated against the actual labels. Figure 4.9a shows IP.LSH.DBSCAN’s
completion time with varying K. The left Y-axes in Figure 4.9b and Figure 4.9c
respectively show IP.LSH.DBSCAN’s completion time with varying ϵ and N, using
36 cores. The right Y-axes in Figure 4.9b and Figure 4.9c show the associated
accuracies. The results show IP.LSH.DBSCAN’s completion time is more than
4 orders of magnitude faster than a sequential DBSCAN and more than 3
orders of magnitude faster than VLSHDBSCAN. Here, too the results align and
complement Theorem 4.1’s analysis.

4.5.4 Highlights of the Results

IP.LSH.DBSCAN targets high dimensional clustering, in a memory-efficient way,
and it supports various distance measures. IP.LSH.DBSCAN’s completion time
for high-dimensional datasets is several orders of magnitude faster than state-
of-the-art counterparts, while ensuring approximation with tunable accuracy
and showing efficiency also with lower dimension data as well. In practice,
IP.LSH.DBSCAN’s completion time exhibits a linear behaviour with respect to
the number of points, even for skewed data distributions and varying density
parameters. The benefits of IP.LSH.DBSCAN with respect to other algorithms
increase with increasing data dimensionality. IP.LSH.DBSCAN scales both with
the size of the input and its dimensionality.

4.6 Other Related Work

Density clustering is discussed in many related works. In § 4.5, we compared
IP.LSH.DBSCAN with representative state-of-the-art related algorithms. We focus
here on the related work considering approximation.

Gan et al. and Wang et al. in [7, 65] proposed approximate DBSCAN
grid-based algorithms, targeting only low-dimensional Euclidean distance, but
its expected complexity is O(N2) if 2d > N [135]. Quoting from [20] about
grid-based methods: “Similar to R*-trees and most index structures, grid-based
approaches tend to not scale well with increasing number of dimensions, due to
the curse of dimensionality [citations]: the number of possible grid cells grows
exponentially with the dimensionality”. Intuitively, if the number of dimensions
is considered a constant, the corresponding part of the induced overhead
does not show in the asymptotic complexity. PARMA-CC [128] is another
approximate concurrent clustering algorithm suitable only for low-dimensional
data.

VLSHDBSCAN [70, 71] uses LSH for neighbourhood queries. On the other
hand, in IP.LSH.DBSCAN, creating the LSH index is embedded into the dynamics
of the formation of the clusters. The IP.LSH.DBSCAN iterates over buckets, and it
apply merges on core points that represent bigger entities, drastically reducing

114 CHAPTER 4. IP.LSH.DBSCAN

the search complexity. Furthermore, IP.LSH.DBSCAN is a concurrent algorithm
as opposed to VLSHDBSCAN which is a single-thread algorithm. Esfandiari et
al. [13] propose an almost linear approximate DBSCAN that identifies core-
points by mapping points into hyper-cubes and counting the points in each
hyper-cube. It uses LSH to find and merge nearby core-points. IP.LSH.DBSCAN
integrates core-point identification and merging in one structure altogether,
leading to better efficiency and flexibility in leveraging the desired distance
function.

4.7 Conclusions

In the landscape of algorithmic implementations of DBSCAN, IP.LSH.DBSCAN
proposes a simple and efficient method combining insights on DBSCAN with
features of LSH. It offers approximation with tunable accuracy and high
parallelism, avoiding the exponential growth of the search effort with the
number of data dimensions, thus scaling both with the size of the input and
its dimensionality, and dealing with high skewness in a memory-efficient way.
We expect that the method will help a variety of applications in the evolving
landscape of cyberphysical system problems, that require to extract information
from very large, high-dimensional, highly-skewed data sets. We also expect
that this methodology can be used for partitioning data for other types of
graph processing and as such this direction is worth investigating as extension
of IP.LSH.DBSCAN.

Bibliography

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.aaa8415

[2] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Elsevier
Science, 2008. [Online]. Available: https://books.google.se/books?id=
QgD-3Tcj8DkC

[3] D. Z. Chen, M. H. M. Smid, and B. Xu, “Geometric algorithms
for density-based data clustering,” Int. J. Comput. Geom. Appl.,
vol. 15, no. 3, pp. 239–260, 2005. [Online]. Available: https:
//doi.org/10.1142/S0218195905001683

[4] J. Wu, H. Xu, J. Zheng, and J. Zhao, “Automatic vehicle detection
with roadside lidar data under rainy and snowy conditions,” IEEE Intell.
Transp. Syst. Mag., vol. 13, no. 1, pp. 197–209, 2021. [Online]. Available:
https://doi.org/10.1109/MITS.2019.2926362

[5] R. B. Rusu, “Semantic 3d object maps for everyday manipulation
in human living environments,” KI - Künstliche Intelligenz, vol. 24,
no. 4, pp. 345–348, Nov 2010. [Online]. Available: https:
//doi.org/10.1007/s13218-010-0059-6

[6] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (PCL),”
in IEEE International Conference on Robotics and Automation, ICRA
2011, Shanghai, China, 9-13 May 2011. IEEE, 2011. [Online]. Available:
https://doi.org/10.1109/ICRA.2011.5980567

[7] Y. Wang, Y. Gu, and J. Shun, “Theoretically-efficient and
practical parallel DBSCAN,” in 2020 SIGMOD Int. Conf. on
Management of Data. ACM, 2020, pp. 2555–2571. [Online]. Available:
https://doi.org/10.1145/3318464.3380582

[8] R. Mariescu-Istodor and P. Fränti, “Grid-based method for GPS route
analysis for retrieval,” ACM Trans. Spatial Algorithms Syst., vol. 3, no. 3,
pp. 8:1–8:28, 2017. [Online]. Available: https://doi.org/10.1145/3125634

[9] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding
mobility based on gps data,” in Proceedings of the 10th International
Conference on Ubiquitous Computing, ser. UbiComp ’08. New
York, NY, USA: ACM, 2008, pp. 312–321. [Online]. Available:
http://doi.acm.org/10.1145/1409635.1409677

115

https://www.science.org/doi/abs/10.1126/science.aaa8415
https://books.google.se/books?id=QgD-3Tcj8DkC
https://books.google.se/books?id=QgD-3Tcj8DkC
https://doi.org/10.1142/S0218195905001683
https://doi.org/10.1142/S0218195905001683
https://doi.org/10.1109/MITS.2019.2926362
https://doi.org/10.1007/s13218-010-0059-6
https://doi.org/10.1007/s13218-010-0059-6
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1145/3318464.3380582
https://doi.org/10.1145/3125634
http://doi.acm.org/10.1145/1409635.1409677

116 BIBLIOGRAPHY

[10] J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao, “Real-time
superpixel segmentation by DBSCAN clustering algorithm,” IEEE Trans.
Image Process., vol. 25, no. 12, pp. 5933–5942, 2016. [Online]. Available:
https://doi.org/10.1109/TIP.2016.2616302

[11] F. Baselice, L. Coppolino, S. D’Antonio, G. Ferraioli, and L. Sgaglione,
“A DBSCAN based approach for jointly segment and classify brain MR
images,” in 37th Annual Int. Conf. of the IEEE Engineering in Medicine
and Biology Society, EMBC 2015. IEEE, 2015, pp. 2993–2996. [Online].
Available: https://doi.org/10.1109/EMBC.2015.7319021

[12] X. Wang, L. Zhang, X. Zhang, and K. Xie, “Application of improved
DBSCAN clustering algorithm on industrial fault text data,” in 18th
IEEE Int. Conf. on Industrial Inf., INDIN. IEEE, 2020, pp. 461–468.
[Online]. Available: https://doi.org/10.1109/INDIN45582.2020.9442093

[13] H. Esfandiari, V. S. Mirrokni, and P. Zhong, “Almost linear time density
level set estimation via DBSCAN,” in Thirty-Fifth AAAI Conf. on
Artificial Intelligence, AAAI 2021. AAAI Press, 2021, pp. 7349–7357.
[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/
16902

[14] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
854–864, Dec. 2016.

[15] V. Kartashevskiy and M. Buranova, “Analysis of packet jitter in multi-
service network,” in 2018 International Scientific-Practical Conference
Problems of Infocommunications. Science and Technology (PIC S T),
2018, pp. 797–802.

[16] P. X. Liu, M. Q. Meng, and S. X. Yang, “Data communications for
internet robots,” Auton. Robots, vol. 15, no. 3, pp. 213–223, 2003.
[Online]. Available: https://doi.org/10.1023/A:1026160302776

[17] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses
for massive data: Samples, histograms, wavelets, sketches,” Found.
Trends Databases, vol. 4, no. 1-3, pp. 1–294, 2012. [Online]. Available:
https://doi.org/10.1561/1900000004

[18] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive
Datasets, 2nd Ed. Cambridge University Press, 2014. [Online]. Available:
http://www.mmds.org/

[19] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. of the 30th Annual ACM
Symp. on the Theory of Comp.,. ACM, 1998, pp. 604–613. [Online].
Available: https://doi.org/10.1145/276698.276876

[20] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan
revisited, revisited: Why and how you should (still) use dbscan,” ACM
Trans. Database Syst., vol. 42, no. 3, pp. 19:1–19:21, Jul. 2017. [Online].
Available: http://doi.acm.org/10.1145/3068335

https://doi.org/10.1109/TIP.2016.2616302
https://doi.org/10.1109/EMBC.2015.7319021
https://doi.org/10.1109/INDIN45582.2020.9442093
https://ojs.aaai.org/index.php/AAAI/article/view/16902
https://ojs.aaai.org/index.php/AAAI/article/view/16902
https://doi.org/10.1023/A:1026160302776
https://doi.org/10.1561/1900000004
http://www.mmds.org/
https://doi.org/10.1145/276698.276876
http://doi.acm.org/10.1145/3068335

BIBLIOGRAPHY 117

[21] C. H. Goh, A. Lim, B. C. Ooi, and K. Tan, “Efficient indexing
of high-dimensional data through dimensionality reduction,” Data
Knowl. Eng., vol. 32, no. 2, pp. 115–130, 2000. [Online]. Available:
https://doi.org/10.1016/S0169-023X(99)00031-2

[22] H. Lin, “High index compression without the dependencies of
data orders and data skewness for spatial databases,” J. Inf.
Sci. Eng., vol. 27, no. 2, pp. 561–576, 2011. [Online]. Available:
http://www.iis.sinica.edu.tw/page/jise/2011/201103 11.html

[23] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan, “MR-DBSCAN: a
scalable mapreduce-based DBSCAN algorithm for heavily skewed data,”
Frontiers Comput. Sci., vol. 8, no. 1, pp. 83–99, 2014. [Online]. Available:
https://doi.org/10.1007/s11704-013-3158-3

[24] P. B. Gibbons, “Big data: Scale down, scale up, scale out,” in 2015 IEEE
International Parallel and Distributed Processing Symposium, IPDPS
2015, Hyderabad, India, May 25-29, 2015. IEEE Computer Society,
2015, p. 3. [Online]. Available: https://doi.org/10.1109/IPDPS.2015.123

[25] M. H. ur Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah,
and S. U. Khan, “Big data reduction methods: A survey,” Data Science
and Engineering, vol. 1, no. 4, pp. 265–284, Dec 2016. [Online]. Available:
https://doi.org/10.1007/s41019-016-0022-0

[26] M. M. Gaber, A. B. Zaslavsky, and S. Krishnaswamy, “Mining data
streams: a review,” SIGMOD Record, vol. 34, no. 2, pp. 18–26, 2005.
[Online]. Available: https://doi.org/10.1145/1083784.1083789

[27] C. O. S. Sorzano, J. Vargas, and A. D. Pascual-Montano, “A survey of
dimensionality reduction techniques,” CoRR, vol. abs/1403.2877, 2014.
[Online]. Available: http://arxiv.org/abs/1403.2877

[28] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, A. C. Koppisetty,
and M. Papatriantafilou, “DRIVEN: a framework for efficient data
retrieval and clustering in vehicular networks,” in 35th IEEE
International Conference on Data Engineering, ICDE 2019, Macao,
China, April 8-11, 2019. IEEE, 2019, pp. 1850–1861. [Online]. Available:
https://doi.org/10.1109/ICDE.2019.00201

[29] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. of the 20th
Symp. on Comp. Geometry, ser. SCG ’04. ACM, 2004, pp. 253–262.
[Online]. Available: http://doi.acm.org/10.1145/997817.997857

[30] P. Kumar, A. Gangal, S. Kumari, and S. Tiwari, “Recombinant
sort: N-dimensional cartesian spaced algorithm designed from
synergetic combination of hashing, bucket, counting and radix
sort,” CoRR, vol. abs/2107.01391, 2021. [Online]. Available: https:
//arxiv.org/abs/2107.01391

[31] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk,
S. Madden, and P. Dubey, “Streaming similarity search over one

https://doi.org/10.1016/S0169-023X(99)00031-2
http://www.iis.sinica.edu.tw/page/jise/2011/201103_11.html
https://doi.org/10.1007/s11704-013-3158-3
https://doi.org/10.1109/IPDPS.2015.123
https://doi.org/10.1007/s41019-016-0022-0
https://doi.org/10.1145/1083784.1083789
http://arxiv.org/abs/1403.2877
https://doi.org/10.1109/ICDE.2019.00201
http://doi.acm.org/10.1145/997817.997857
https://arxiv.org/abs/2107.01391
https://arxiv.org/abs/2107.01391

118 BIBLIOGRAPHY

billion tweets using parallel locality-sensitive hashing,” Proc. VLDB
Endow., vol. 6, no. 14, pp. 1930–1941, 2013. [Online]. Available:
http://www.vldb.org/pvldb/vol6/p1930-sundaram.pdf

[32] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. Liu, “Knights landing: Second-generation
intel xeon phi product,” IEEE Micro, vol. 36, no. 2, pp. 34–46, 2016.
[Online]. Available: https://doi.org/10.1109/MM.2016.25

[33] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in American Federation of
Information Processing Societies: Proceedings of the AFIPS ’67 Spring
Joint Computer Conference, April 18-20, 1967, Atlantic City, New
Jersey, USA, ser. AFIPS Conference Proceedings, vol. 30. AFIPS /
ACM / Thomson Book Company, Washington D.C., 1967, pp. 483–485.
[Online]. Available: https://doi.org/10.1145/1465482.1465560

[34] N. J. Gunther, “A general theory of computational scalability based on
rational functions,” CoRR, vol. abs/0808.1431, 2008. [Online]. Available:
http://arxiv.org/abs/0808.1431

[35] B. Schwarz, “Practical scalability analysis with the universal scalability
law,” 2015.

[36] N. Khan, A. Naim, M. R. Hussain, N. N. Quadri, N. Ahmad, and
S. Qamar, “The 51 v’s of big data: Survey, technologies, characteristics,
opportunities, issues and challenges,” in Proceedings of the International
Conference on Omni-Layer Intelligent Systems, COINS 2019, Crete,
Greece, May 5-7, 2019. ACM, 2019, pp. 19–24. [Online]. Available:
https://doi.org/10.1145/3312614.3312623

[37] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. I. T.
Rowstron, “Scale-up vs scale-out for hadoop: time to rethink?” in ACM
Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA, USA,
October 1-3, 2013. ACM, 2013, pp. 20:1–20:13. [Online]. Available:
https://doi.org/10.1145/2523616.2523629

[38] G. Atanacio-Jimenez, J.-J. Gonzalez-Barbosa, J. B. Hurtado-Ramos,
F. J. Ornelas-Rodriguez, H. Jimenez-Hernandez, T. Garcia-Ramirez, and
R. Gonzalez-Barbosa, “Lidar velodyne hdl-64e calibration using pattern
planes,” International Journal of Advanced Robotic Systems, vol. 8, no. 5,
p. 59, 2011. [Online]. Available: https://doi.org/10.5772/50900

[39] B. Schwarz, “Lidar: Mapping the world in 3d,” Nature Photonics, vol. 4,
no. 7, p. 429, 2010.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp.
2278–2324, 1998. [Online]. Available: https://doi.org/10.1109/5.726791

[41] S. Chen, B. Ma, and K. Zhang, “On the similarity metric and the
distance metric,” Theor. Comput. Sci., vol. 410, no. 24-25, pp. 2365–2376,
2009. [Online]. Available: https://doi.org/10.1016/j.tcs.2009.02.023

http://www.vldb.org/pvldb/vol6/p1930-sundaram.pdf
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1145/1465482.1465560
http://arxiv.org/abs/0808.1431
https://doi.org/10.1145/3312614.3312623
https://doi.org/10.1145/2523616.2523629
https://doi.org/10.5772/50900
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.tcs.2009.02.023

BIBLIOGRAPHY 119

[42] H. Kriegel, M. Schubert, and A. Zimek, “Angle-based outlier detection
in high-dimensional data,” in Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Las
Vegas, Nevada, USA, August 24-27, 2008. ACM, 2008, pp. 444–452.
[Online]. Available: https://doi.org/10.1145/1401890.1401946

[43] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, vol. 1, no. 14. Oakland, CA,
USA, 1967, pp. 281–297.

[44] U. von Luxburg, “A tutorial on spectral clustering,” Stat. Comput.,
vol. 17, no. 4, pp. 395–416, 2007. [Online]. Available: https:
//doi.org/10.1007/s11222-007-9033-z

[45] D. Yan, L. Huang, and M. I. Jordan, “Fast approximate spectral
clustering,” in Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, France,
June 28 - July 1, 2009. ACM, 2009, pp. 907–916. [Online]. Available:
https://doi.org/10.1145/1557019.1557118

[46] H. Najdataei, Y. Nikolakopoulos, V. Gulisano, and M. Papatriantafilou,
“Continuous and parallel lidar point-cloud clustering,” in 38th IEEE
International Conference on Distributed Computing Systems, ICDCS
2018, Vienna, Austria, July 2-6, 2018. IEEE Computer Society, 2018, pp.
671–684. [Online]. Available: https://doi.org/10.1109/ICDCS.2018.00071

[47] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in 2nd Conf. on Knowledge Discovery and Data Mining
(KDD-96). AAAI Press, 1996, pp. 226–231. [Online]. Available:
http://www.aaai.org/Library/KDD/1996/kdd96-037.php

[48] A. Hinneburg and D. A. Keim, “An efficient approach to clustering
in large multimedia databases with noise,” in Proceedings of the
Fourth International Conference on Knowledge Discovery and Data
Mining (KDD-98), New York City, New York, USA, August
27-31, 1998. AAAI Press, 1998, pp. 58–65. [Online]. Available:
http://www.aaai.org/Library/KDD/1998/kdd98-009.php

[49] W. Wang, J. Yang, and R. R. Muntz, “Sting: A statistical information
grid approach to spatial data mining,” in Proceedings of the 23rd
International Conference on Very Large Data Bases, ser. VLDB
’97. Morgan Kaufmann Publishers Inc., 1997, pp. 186–195. [Online].
Available: http://dl.acm.org/citation.cfm?id=645923.758369

[50] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” in Proceedings of
the 1999 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’99. New York, NY, USA: ACM, 1999, pp. 49–60.
[Online]. Available: http://doi.acm.org/10.1145/304182.304187

https://doi.org/10.1145/1401890.1401946
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1145/1557019.1557118
https://doi.org/10.1109/ICDCS.2018.00071
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://www.aaai.org/Library/KDD/1998/kdd98-009.php
http://dl.acm.org/citation.cfm?id=645923.758369
http://doi.acm.org/10.1145/304182.304187

120 BIBLIOGRAPHY

[51] S. Wagner and D. Wagner, “Comparing clusterings - an overview,” Uni-
versität Karlsruhe (TH), Tech. Rep. 4, 2007.

[52] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Commun.
ACM, vol. 51, no. 1, pp. 117–122, 2008. [Online]. Available:
https://doi.org/10.1145/1327452.1327494

[53] M. Charikar, “Similarity estimation techniques from rounding algorithms,”
in 34th ACM Symp. on Theory of Comp. ACM, 2002, pp. 380–388.
[Online]. Available: https://doi.org/10.1145/509907.509965

[54] N. Elmqvist and P. Tsigas, “A taxonomy of 3d occlusion management
for visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 5, pp. 1095–1109, Sep. 2008. [Online]. Available:
https://doi.org/10.1109/TVCG.2008.59

[55] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. G.
Steinbach, “Real-time compression of point cloud streams,” in IEEE
International Conference on Robotics and Automation, ICRA 2012,
14-18 May, 2012, St. Paul, Minnesota, USA. IEEE, 2012, pp. 778–785.
[Online]. Available: https://doi.org/10.1109/ICRA.2012.6224647

[56] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, 2016.
[Online]. Available: https://doi.org/10.1109/JIOT.2016.2584538

[57] O. Akribopoulos, I. Chatzigiannakis, C. Tselios, and A. Antoniou,
“On the deployment of healthcare applications over fog computing
infrastructure,” in 41st IEEE Annual Computer Software and Applications
Conference, COMPSAC 2017, Turin, Italy, July 4-8, 2017. Volume
2. IEEE Computer Society, 2017, pp. 288–293. [Online]. Available:
https://doi.org/10.1109/COMPSAC.2017.178

[58] J. L. Bentley, “K-d trees for semidynamic point sets,” in 6th Symp.
on Comp. Geometry. ACM, 1990, pp. 187–197. [Online]. Available:
https://doi.org/10.1145/98524.98564

[59] J. Elseberg, D. Borrmann, and A. Nüchter, “One billion points
in the cloud – an octree for efficient processing of 3d laser
scans,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 76, pp. 76–88, 2013, terrestrial 3D modelling. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0924271612001888

[60] W. Wang, J. Yang, and R. Muntz, PK-Tree: A Spatial Index Structure for
High Dimensional Point Data. Boston, MA: Springer US, 2000, pp. 281–
293. [Online]. Available: https://doi.org/10.1007/978-1-4615-1379-7 20

[61] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional spaces,” in Database
Theory - ICDT 2001, 8th International Conference, London, UK,
January 4-6, 2001, Proceedings, ser. Lecture Notes in Computer
Science, vol. 1973. Springer, 2001, pp. 420–434. [Online]. Available:
https://doi.org/10.1007/3-540-44503-X 27

https://doi.org/10.1145/1327452.1327494
https://doi.org/10.1145/509907.509965
https://doi.org/10.1109/TVCG.2008.59
https://doi.org/10.1109/ICRA.2012.6224647
https://doi.org/10.1109/JIOT.2016.2584538
https://doi.org/10.1109/COMPSAC.2017.178
https://doi.org/10.1145/98524.98564
https://www.sciencedirect.com/science/article/pii/S0924271612001888
https://doi.org/10.1007/978-1-4615-1379-7_20
https://doi.org/10.1007/3-540-44503-X_27

BIBLIOGRAPHY 121

[62] A. Flexer and D. Schnitzer, “Choosing lp norms in high-dimensional
spaces based on hub analysis,” Neurocomputing, vol. 169, pp. 281–287,
2015. [Online]. Available: https://doi.org/10.1016/j.neucom.2014.11.084

[63] M. M. A. Patwary, D. Palsetia, A. Agrawal, W. Liao, F. Manne, and
A. N. Choudhary, “A new scalable parallel DBSCAN algorithm using
the disjoint-set data structure,” in SC Conf. on High Perf. Comp.
Networking, Storage and Analysis, SC ’12. IEEE/ACM, 2012, p. 62.
[Online]. Available: https://doi.org/10.1109/SC.2012.9

[64] M. Götz, C. Bodenstein, and M. Riedel, “HPDBSCAN: highly parallel
DBSCAN,” in Workshop on Machine Learning in High-Perf. Comp.
Environments, MLHPC 2015. ACM, 2015, pp. 2:1–2:10. [Online].
Available: https://doi.org/10.1145/2834892.2834894

[65] J. Gan and Y. Tao, “On the hardness and approximation of euclidean
DBSCAN,” ACM Trans. Database Syst., vol. 42, no. 3, pp. 14:1–14:45,
2017. [Online]. Available: https://doi.org/10.1145/3083897

[66] ——, “DBSCAN revisited: Mis-claim, un-fixability, and approximation,”
in Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31
- June 4, 2015. ACM, 2015, pp. 519–530. [Online]. Available:
https://doi.org/10.1145/2723372.2737792

[67] M. Sualeh and G. Kim, “Dynamic multi-lidar based multiple object
detection and tracking,” Sensors, vol. 19, no. 6, p. 1474, 2019. [Online].
Available: https://doi.org/10.3390/s19061474

[68] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, “Towards effective and efficient
distributed clustering,” in In Workshop on Clustering Large Data Sets
(ICDM), 2003, pp. 49–58.

[69] G. Forman and B. Zhang, “Distributed data clustering can be efficient
and exact,” SIGKDD Explorations, vol. 2, no. 2, pp. 34–38, 2000.
[Online]. Available: https://doi.org/10.1145/380995.381010

[70] Y.-P. Wu, J.-J. Guo, and X.-J. Zhang, “A linear dbscan algorithm based
on lsh,” in Int. Conf. on ML and Cybernetics, vol. 5, 2007, pp. 2608–2614.

[71] Y. Shiqiu and Z. Qingsheng, “Dbscan clustering algorithm based on
locality sensitive hashing,” Journal of Physics: Conf. Series, vol. 1314, p.
012177, 10 2019.

[72] G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold, “Efficient
biased sampling for approximate clustering and outlier detection
in large data sets,” IEEE Trans. on Knowl. and Data Eng.,
vol. 15, no. 5, pp. 1170–1187, Sep. 2003. [Online]. Available:
https://doi.org/10.1109/TKDE.2003.1232271

[73] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li,
“Multi-probe LSH: efficient indexing for high-dimensional similarity
search,” in Proceedings of the 33rd International Conference on

https://doi.org/10.1016/j.neucom.2014.11.084
https://doi.org/10.1109/SC.2012.9
https://doi.org/10.1145/2834892.2834894
https://doi.org/10.1145/3083897
https://doi.org/10.1145/2723372.2737792
https://doi.org/10.3390/s19061474
https://doi.org/10.1145/380995.381010
https://doi.org/10.1109/TKDE.2003.1232271

122 BIBLIOGRAPHY

Very Large Data Bases, University of Vienna, Austria, September
23-27, 2007. ACM, 2007, pp. 950–961. [Online]. Available: http:
//www.vldb.org/conf/2007/papers/research/p950-lv.pdf

[74] ——, “Intelligent probing for locality sensitive hashing: Multi-probe LSH
and beyond,” Proc. VLDB Endow., vol. 10, no. 12, pp. 2021–2024, 2017.
[Online]. Available: http://www.vldb.org/pvldb/vol10/p2021-lv.pdf

[75] D. Göhring, M. Wang, M. Schnürmacher, and T. Ganjineh, “Radar/lidar
sensor fusion for car-following on highways,” in 5th International
Conference on Automation, Robotics and Applications, ICARA 2011,
Wellington, New Zealand, December 6-8, 2011. IEEE, 2011, pp. 407–412.
[Online]. Available: https://doi.org/10.1109/ICARA.2011.6144918

[76] S. Agarwal, A. Vora, G. Pandey, W. Williams, H. Kourous, and J. R.
McBride, “Ford Multi-AV Seasonal Dataset,” CoRR, vol. abs/2003.07969,
2020. [Online]. Available: https://arxiv.org/abs/2003.07969

[77] S. Kumari, P. Goyal, A. Sood, D. Kumar, S. Balasubramaniam,
and N. Goyal, “Exact, fast and scalable parallel dbscan for
commodity platforms,” in 18th Conf. on Distributed Comp. and
Networking, ser. ICDCN ’17, 2017, pp. 14:1–14:10. [Online]. Available:
http://doi.acm.org/10.1145/3007748.3007773

[78] A. Keramatian, V. Gulisano, M. Papatriantafilou, P. Tsigas, and
Y. Nikolakopoulos, “MAD-C: multi-stage approximate distributed cluster-
combining for obstacle detection and localization,” in Euro-Par 2018:
Parallel Processing Workshops - Euro-Par 2018 International Workshops,
Turin, Italy, August 27-28, 2018, Revised Selected Papers, ser. Lecture
Notes in Computer Science, vol. 11339. Springer, 2018, pp. 312–324.
[Online]. Available: https://doi.org/10.1007/978-3-030-10549-5 25

[79] M. Himmelsbach, F. von Hundelshausen, and H. Wünsche, “Fast
segmentation of 3d point clouds for ground vehicles,” in IEEE
Intelligent Vehicles Symposium (IV), 2010, La Jolla, CA, USA,
June 21-24, 2010. IEEE, 2010, pp. 560–565. [Online]. Available:
https://doi.org/10.1109/IVS.2010.5548059

[80] A. S. Tanenbaum and M. van Steen, Distributed systems - principles and
paradigms, 2nd Edition. Pearson Education, 2007.

[81] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.
[Online]. Available: http://doi.acm.org/10.1145/361002.361007

[82] N. Hansen, “The CMA evolution strategy: A tutorial,” CoRR, vol.
abs/1604.00772, 2016. [Online]. Available: http://arxiv.org/abs/1604.
00772

[83] S. Alfano and M. Greer, “Determining if two solid ellipsoids intersect,”
Journal of Guidance Control and Dynamics - J GUID CONTROL DY-
NAM, vol. 26, pp. 106–110, 01 2003.

http://www.vldb.org/conf/2007/papers/research/p950-lv.pdf
http://www.vldb.org/conf/2007/papers/research/p950-lv.pdf
http://www.vldb.org/pvldb/vol10/p2021-lv.pdf
https://doi.org/10.1109/ICARA.2011.6144918
https://arxiv.org/abs/2003.07969
http://doi.acm.org/10.1145/3007748.3007773
https://doi.org/10.1007/978-3-030-10549-5_25
https://doi.org/10.1109/IVS.2010.5548059
http://doi.acm.org/10.1145/361002.361007
http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772

BIBLIOGRAPHY 123

[84] D. M. W. Powers, “Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation,” CoRR, vol. abs/2010.16061,
2020. [Online]. Available: https://arxiv.org/abs/2010.16061

[85] N. M. Preguiça, J. M. Marquès, M. Shapiro, and M. Letia, “A
commutative replicated data type for cooperative editing,” in 29th
IEEE International Conference on Distributed Computing Systems
(ICDCS 2009), 22-26 June 2009, Montreal, Québec, Canada.
IEEE Computer Society, 2009, pp. 395–403. [Online]. Available:
https://doi.org/10.1109/ICDCS.2009.20

[86] E. G. Zimbelman, R. F. Keefe, E. K. Strand, C. A. Kolden, and A. M.
Wempe, “Hazards in motion: Development of mobile geofences for use in
logging safety,” Sensors, vol. 17, no. 4, p. 822, 2017. [Online]. Available:
https://doi.org/10.3390/s17040822

[87] M. Galassi, J. Davies, J. Theiler, B. Gough, and G. Jungman,
GNU Scientific Library - Reference Manual, Third Edition, for
GSL Version 1.12. Network Theory Ltd, 2009. [Online]. Available:
http://www.network-theory.co.uk/gsl/manual/

[88] C. Kohlhoff. (2019) Boost.Asio. [Online]. Available: https://www.boost.
org/doc/libs/1 66 0/doc/html/boost asio.html

[89] V. Oracle. (2019) Virtualbox. [Online]. Available: https://www.
virtualbox.org/

[90] O. Michel, “Webots: Professional mobile robot simulation,” CoRR,
vol. abs/cs/0412052, 2004. [Online]. Available: http://arxiv.org/abs/cs/
0412052

[91] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” I. J. Robotics Res., vol. 32, no. 11, pp. 1231–1237,
2013. [Online]. Available: https://doi.org/10.1177/0278364913491297

[92] A. Nguyen and B. Le, “3d point cloud segmentation: A survey,” in IEEE
6th International Conference on Robotics, Automation and Mechatronics,
RAM 2013, Manila, Philippines, November 12-15, 2013, 2013, pp. 225–
230. [Online]. Available: https://doi.org/10.1109/RAM.2013.6758588

[93] J. M. Cebrian, B. Imbernón, J. A. Soto, J. M. Garćıa, and J. M. Cecilia,
“High-throughput fuzzy clustering on heterogeneous architectures,” Future
Gener. Comput. Syst., vol. 106, pp. 401–411, 2020. [Online]. Available:
https://doi.org/10.1016/j.future.2020.01.022

[94] Y. Djenouri, D. Djenouri, A. Belhadi, and A. Cano, “Exploiting
GPU and cluster parallelism in single scan frequent itemset
mining,” Inf. Sci., vol. 496, pp. 363–377, 2019. [Online]. Available:
https://doi.org/10.1016/j.ins.2018.07.020

[95] P. Eisert, E. G. Steinbach, and B. Girod, “Multi-hypothesis, volumetric
reconstruction of 3-d objects from multiple calibrated camera views,” in
Proceedings of the 1999 IEEE International Conference on Acoustics,

https://arxiv.org/abs/2010.16061
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.3390/s17040822
http://www.network-theory.co.uk/gsl/manual/
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio.html
https://www.virtualbox.org/
https://www.virtualbox.org/
http://arxiv.org/abs/cs/0412052
http://arxiv.org/abs/cs/0412052
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1109/RAM.2013.6758588
https://doi.org/10.1016/j.future.2020.01.022
https://doi.org/10.1016/j.ins.2018.07.020

124 BIBLIOGRAPHY

Speech, and Signal Processing, ICASSP ’99, Phoenix, Arizona, USA,
March 15-19, 1999. IEEE Computer Society, 1999, pp. 3509–3512.
[Online]. Available: https://doi.org/10.1109/ICASSP.1999.757599

[96] M. N. Garofalakis, J. Gehrke, and R. Rastogi, Eds., Data Stream
Management - Processing High-Speed Data Streams, ser. Data-Centric
Systems and Applications. Springer, 2016. [Online]. Available:
https://doi.org/10.1007/978-3-540-28608-0

[97] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition, Providence, RI, USA, June
16-21, 2012. IEEE Computer Society, 2012, pp. 3354–3361. [Online].
Available: https://doi.org/10.1109/CVPR.2012.6248074

[98] K. Huebner, S. Ruthotto, and D. Kragic, “Minimum volume bounding
box decomposition for shape approximation in robot grasping,” in 2008
IEEE International Conference on Robotics and Automation, ICRA 2008,
May 19-23, 2008, Pasadena, California, USA, 2008, pp. 1628–1633.
[Online]. Available: https://doi.org/10.1109/ROBOT.2008.4543434

[99] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP
algorithm,” in 3rd International Conference on 3D Digital Imaging
and Modeling (3DIM 2001), 28 May - 1 June 2001, Quebec City,
Canada. IEEE Computer Society, 2001, pp. 145–152. [Online]. Available:
https://doi.org/10.1109/IM.2001.924423

[100] M. Y. Ansari, A. Ahmad, S. S. Khan, G. Bhushan, and
Mainuddin, “Spatiotemporal clustering: a review,” Artif. Intell.
Rev., vol. 53, no. 4, pp. 2381–2423, 2020. [Online]. Available:
https://doi.org/10.1007/s10462-019-09736-1

[101] Z. Fu, M. Almgren, O. Landsiedel, and M. Papatriantafilou, “Online
temporal-spatial analysis for detection of critical events in cyber-physical
systems,” in 2014 IEEE International Conference on Big Data
(IEEE BigData 2014), Washington, DC, USA, October 27-30, 2014.
IEEE Computer Society, 2014, pp. 129–134. [Online]. Available:
https://doi.org/10.1109/BigData.2014.7004221

[102] V. Gulisano, Y. Nikolakopoulos, I. Walulya, M. Papatriantafilou, and
P. Tsigas, “Deterministic real-time analytics of geospatial data streams
through scalegate objects,” in Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems, ser. DEBS ’15. New
York, NY, USA: Association for Computing Machinery, 2015, p. 316–317.
[Online]. Available: https://doi.org/10.1145/2675743.2776758

[103] N. Richerzhagen, R. Kluge, B. Richerzhagen, P. Lieser, B. Koldehofe,
I. Stavrakakis, and R. Steinmetz, “Better together: Collaborative
monitoring for location-based services,” in 19th IEEE International
Symposium on ”A World of Wireless, Mobile and Multimedia
Networks”, WoWMoM 2018, Chania, Greece, June 12-15, 2018.
IEEE Computer Society, 2018, pp. 14–22. [Online]. Available:
https://doi.org/10.1109/WoWMoM.2018.8449798

https://doi.org/10.1109/ICASSP.1999.757599
https://doi.org/10.1007/978-3-540-28608-0
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/ROBOT.2008.4543434
https://doi.org/10.1109/IM.2001.924423
https://doi.org/10.1007/s10462-019-09736-1
https://doi.org/10.1109/BigData.2014.7004221
https://doi.org/10.1145/2675743.2776758
https://doi.org/10.1109/WoWMoM.2018.8449798

BIBLIOGRAPHY 125

[104] A. Keramatian, V. Gulisano, M. Papatriantafilou, and P. Tsigas,
“MAD-C: multi-stage approximate distributed cluster-combining for
obstacle detection and localization,” J. Parallel Distributed Comput., vol.
147, pp. 248–267, 2021. [Online]. Available: https://doi.org/10.1016/j.
jpdc.2020.08.013

[105] C. L. Glennie and D. D. Lichti, “Static calibration and analysis
of the velodyne HDL-64E S2 for high accuracy mobile scanning,”
Remote. Sens., vol. 2, no. 6, pp. 1610–1624, 2010. [Online]. Available:
https://doi.org/10.3390/rs2061610

[106] M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox, and B. Andres,
“Efficient decomposition of image and mesh graphs by lifted multicuts,”
in 2015 IEEE International Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015. IEEE Computer Society, 2015, pp.
1751–1759. [Online]. Available: https://doi.org/10.1109/ICCV.2015.204

[107] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 1, p. 124–149, Jan. 1991. [Online]. Available:
https://doi.org/10.1145/114005.102808

[108] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. [Online]. Available:
http://mitpress.mit.edu/books/introduction-algorithms

[109] S. V. Jayanti and R. E. Tarjan, “A randomized concurrent
algorithm for disjoint set union,” in 2016 ACM Symp. on
Principles of Distributed Comp. ACM, 2016. [Online]. Available:
https://doi.org/10.1145/2933057.2933108

[110] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748,
1999. [Online]. Available: https://doi.org/10.1145/324133.324234

[111] J. P. Hoeflinger and B. R. de Supinski, “The openmp memory model,”
in OpenMP Shared Memory Parallel Programming - International
Workshops, IWOMP 2005 and IWOMP 2006, Eugene, OR, USA, June
1-4, 2005, Reims, France, June 12-15, 2006. Proceedings, ser. Lecture
Notes in Computer Science, vol. 4315. Springer, 2005, pp. 167–177.
[Online]. Available: https://doi.org/10.1007/978-3-540-68555-5 14

[112] T. Willhalm and N. Popovici, “Putting intel threading building
blocks to work,” in 1st Int. Workshop on Multicore Software
Eng., ser. IWMSE ’08. ACM, 2008, p. 3–4. [Online]. Available:
https://doi.org/10.1145/1370082.1370085

[113] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
J. Parallel Distributed Comput., vol. 37, no. 1, pp. 55–69, 1996. [Online].
Available: https://doi.org/10.1006/jpdc.1996.0107

[114] S. B. Pope, “Algorithms for ellipsoids,” Cornell Univ., Rep. No. FDA,
2008.

https://doi.org/10.1016/j.jpdc.2020.08.013
https://doi.org/10.1016/j.jpdc.2020.08.013
https://doi.org/10.3390/rs2061610
https://doi.org/10.1109/ICCV.2015.204
https://doi.org/10.1145/114005.102808
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/2933057.2933108
https://doi.org/10.1145/324133.324234
https://doi.org/10.1007/978-3-540-68555-5_14
https://doi.org/10.1145/1370082.1370085
https://doi.org/10.1006/jpdc.1996.0107

126 BIBLIOGRAPHY

[115] G. van den Bergen, “Efficient collision detection of complex
deformable models using AABB trees,” J. Graphics, GPU, &
Game Tools, vol. 2, no. 4, pp. 1–13, 1997. [Online]. Available:
https://doi.org/10.1080/10867651.1997.10487480

[116] S. Gottschalk, M. C. Lin, and D. Manocha, “Obbtree: A hierarchical
structure for rapid interference detection,” in Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1996, New Orleans, LA, USA, August 4-9, 1996. ACM, 1996,
pp. 171–180. [Online]. Available: https://doi.org/10.1145/237170.237244

[117] Y. Zheng, L. Zhang, X. Xie, and W. Ma, “Mining interesting locations
and travel sequences from GPS trajectories,” in Proceedings of the 18th
International Conference on World Wide Web, WWW 2009, Madrid,
Spain, April 20-24, 2009. ACM, 2009, pp. 791–800. [Online]. Available:
https://doi.org/10.1145/1526709.1526816

[118] A. Keramatian, V. Gulisano, M. Papatriantafilou, and P. Tsigas,
“PARMA-CC: Parallel multiphase approximate cluster combining,”
in Proceedings of the 21st International Conference on Distributed
Computing and Networking, ser. ICDCN 2020. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3369740.3369785

[119] D. Meagher, “Geometric modeling using octree encoding,” Comput.
Graph. Image Process., vol. 19, no. 1, p. 85, 1982. [Online]. Available:
https://doi.org/10.1016/0146-664X(82)90128-9

[120] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in 1984 SIGMOD Int. Conf. on Management of Data. ACM Press, 1984,
pp. 47–57. [Online]. Available: https://doi.org/10.1145/602259.602266

[121] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access
method for similarity search in metric spaces,” in VLDB’97, 23rd Int.
Conf. on Very Large Data Bases. M. Kaufmann, 1997, pp. 426–435.
[Online]. Available: http://www.vldb.org/conf/1997/P426.PDF

[122] R. Krauthgamer and J. R. Lee, “Navigating nets: simple algorithms
for proximity search,” in Proc. of the Fifteenth Annual ACM-SIAM
Symp. on Discrete Algorithms, SODA 2004. SIAM, 2004, pp. 798–807.
[Online]. Available: http://dl.acm.org/citation.cfm?id=982792.982913

[123] G. Andrade, G. S. Ramos, D. Madeira, R. S. Oliveira, R. Ferreira, and
L. Rocha, “G-DBSCAN: A GPU accelerated algorithm for density-based
clustering,” in Int. Conf. on Computational Science, ICCS 2013, ser.
Procedia Computer Science, vol. 18. Elsevier, 2013, pp. 369–378.
[Online]. Available: https://doi.org/10.1016/j.procs.2013.05.200

[124] D. Arlia and M. Coppola, “Experiments in parallel clustering
with DBSCAN,” in 7th Int. Euro-Par Conf., ser. LNCS, vol.
2150. Springer, 2001, pp. 326–331. [Online]. Available: https:
//doi.org/10.1007/3-540-44681-8 46

https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/1526709.1526816
https://doi.org/10.1145/3369740.3369785
https://doi.org/10.1016/0146-664X(82)90128-9
https://doi.org/10.1145/602259.602266
http://www.vldb.org/conf/1997/P426.PDF
http://dl.acm.org/citation.cfm?id=982792.982913
https://doi.org/10.1016/j.procs.2013.05.200
https://doi.org/10.1007/3-540-44681-8_46
https://doi.org/10.1007/3-540-44681-8_46

BIBLIOGRAPHY 127

[125] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,”
CoRR, vol. abs/1109.2378, 2011. [Online]. Available: http://arxiv.org/
abs/1109.2378

[126] S. M. Savaresi, D. L. Boley, S. Bittanti, and G. Gazzaniga, “Cluster
selection in divisive clustering algorithms,” in Proceedings of the Second
SIAM International Conference on Data Mining, Arlington, VA, USA,
April 11-13, 2002. SIAM, 2002, pp. 299–314. [Online]. Available:
https://doi.org/10.1137/1.9781611972726.18

[127] I. Walulya, D. Palyvos-Giannas, Y. Nikolakopoulos, V. Gulisano,
M. Papatriantafilou, and P. Tsigas, “Viper: A module for communication-
layer determinism and scaling in low-latency stream processing,” Future
Gener. Comput. Syst., vol. 88, pp. 297–308, 2018. [Online]. Available:
https://doi.org/10.1016/j.future.2018.05.067

[128] A. Keramatian, V. Gulisano, M. Papatriantafilou, and P. Tsigas,
“PARMA-CC: parallel multiphase approximate cluster combining,”
in ICDCN 2020: 21st Int. Conf. on Distributed Comp. and
Networking. ACM, 2020, pp. 20:1–20:10. [Online]. Available:
https://doi.org/10.1145/3369740.3369785

[129] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees
for nearest neighbor,” in 23rd Conf. on Machine Learning,
ser. ICML ’06. ACM, 2006, p. 97–104. [Online]. Available:
https://doi.org/10.1145/1143844.1143857

[130] R. Weber, H. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in VLDB’98, 24rd Int. Conf. on Very Large Data
Bases. M. Kaufmann, 1998, pp. 194–205. [Online]. Available:
http://www.vldb.org/conf/1998/p194.pdf

[131] A. Keramatian, “,” https://github.com/amir-keramatian/IP.LSH.
DBSCAN, 2022.

[132] H. Song and J. Lee, “RP-DBSCAN: A superfast parallel DBSCAN
algorithm based on random partitioning,” in 2018 SIGMOD Int. Conf.
on Management of Data. ACM, 2018, pp. 1173–1187. [Online]. Available:
https://doi.org/10.1145/3183713.3196887

[133] Y. Zheng, X. Xie, and W. Ma, “Geolife: A collaborative social
networking service among user, location and trajectory,” IEEE Data
Eng. Bull., vol. 33, no. 2, pp. 32–39, 2010. [Online]. Available:
http://sites.computer.org/debull/A10june/geolife.pdf

[134] A. Starczewski, P. Goetzen, and M. J. Er, “A new method for
automatic determining DBSCAN parameters,” J. Artif. Intell. Soft
Comput. Res., vol. 10, no. 3, pp. 209–221, 2020. [Online]. Available:
https://doi.org/10.2478/jaiscr-2020-0014

[135] Y. Chen, S. Tang, N. Bouguila, C. Wang, J. Du, and H. Li,
“A fast clustering algorithm based on pruning unnecessary distance

http://arxiv.org/abs/1109.2378
http://arxiv.org/abs/1109.2378
https://doi.org/10.1137/1.9781611972726.18
https://doi.org/10.1016/j.future.2018.05.067
https://doi.org/10.1145/3369740.3369785
https://doi.org/10.1145/1143844.1143857
http://www.vldb.org/conf/1998/p194.pdf
https://github.com/amir-keramatian/IP.LSH.DBSCAN
https://github.com/amir-keramatian/IP.LSH.DBSCAN
https://doi.org/10.1145/3183713.3196887
http://sites.computer.org/debull/A10june/geolife.pdf
https://doi.org/10.2478/jaiscr-2020-0014

128 BIBLIOGRAPHY

computations in DBSCAN for high-dimensional data,” Pattern
Recognit., vol. 83, pp. 375–387, 2018. [Online]. Available: https:
//doi.org/10.1016/j.patcog.2018.05.030

https://doi.org/10.1016/j.patcog.2018.05.030
https://doi.org/10.1016/j.patcog.2018.05.030

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Overview
	Introduction
	The Scope of the Thesis
	Challenging Aspects of Data
	Methods for Big Data Processing and the Associated Challenges

	Preliminaries
	Examples of Data in IoT Applications
	Distance Measures
	Cluster Analysis
	Locality-Sensitive Hashing (LSH)

	Research Challenges
	Distributed Data Clustering with Fog/Edge Devices
	Parallel Data Clustering on Shared Memory Multi-Core Systems

	Contributions
	Approximate Distributed Clustering
	Parallel Approximate Clustering
	Parallel Approximate Clustering for High Dimensional Data

	Advances Relative to the State of the Art
	Distributed Clustering
	Parallel Clustering

	Conclusions and Future Work

	Distributed Approximate Clustering and Applications
	Introduction
	Preliminaries
	System Model and Problem Description
	Background and Baseline

	The MAD-C algorithm
	The Key Idea of MAD-C
	Generating Local Maps by Efficient Summarization of Local Clusters
	Towards a Global Map: Combining Maps
	Algorithmic Implementation Aspects of MAD-C

	MAD-C's Completion Time Analysis
	Assumptions, Notations, and Definitions
	Asymptotic Behaviour of Components of the Completion Time
	Characterizing the Completion Time T0

	Extensions and Examples of Further Usages of MAD-C
	Extensions
	Geofencing with the Fusion of LIDAR Point Clouds

	Empirical Evaluation
	Evaluation Setup
	Evaluation Data
	Evaluation Results

	Related Work
	Conclusions

	Parallel Approximate Clustering and Applications
	Introduction
	Preliminaries
	System Model and Problem Description
	Background

	The PARMA-CC Family of Algorithms
	High-level View
	Rudiments and Definitions
	The Design Space of PARMA-CC Algorithms

	Basic Members of the PARMA-CC Family
	PARMAH
	PARMAF

	Flexi Members of the PARMA-CC Family
	Flexi Shared Phases
	Flexi PARMA-CC Algorithms

	Ellipsoid Forest Data Structures and Algorithmic Implementation
	The Bounding Ellipsoid Data Structure
	Hierarchical Ellipsoid Forest
	Flat Ellipsoid Forest
	Discussion on System Aspects

	Analysis
	Ellipsoid Forest Analysis
	Safety and Completeness Properties
	Completion Time of PARMA-CC Algorithms
	On Shared Memory Accesses and Contention

	Discussion on the Utilization and Building Components
	On which PARMA-CC Algorithm to Choose
	Use Cases Implying Extensions
	On Volumetric Summarization Methods

	Evaluation
	Experiment Setup
	Completion Time and Scalability
	Relative Ratio of Local Clustering to the Completion Time
	Clustering Accuracy
	Shared Memory Contention
	Summary of the Empirical Evaluation

	Related Work
	Conclusions

	Parallel Approximate Clustering for High Dimensional Data
	Introduction
	Preliminaries
	System Model and Problem Description
	Locality Sensitive Hashing (LSH)
	Related Terms and Algorithms

	The Proposed IP.LSH.DBSCAN Method
	Key Elements and Phases
	Parallelism and Algorithmic Implementation

	Analysis
	Evaluation
	Evaluation Data & Parameters
	Experiments for the Euclidean Distance
	Experiments for the Angular Distance
	Highlights of the Results

	Other Related Work
	Conclusions

	Bibliography

