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Abstract: Wepresent four infinite families ofmutually commuting difference operators
which include the deformed elliptic Ruijsenaars operators. The trigonometric limit of
this kind of operators was previously introduced by Feigin and Silantyev. They provide
a quantum mechanical description of two kinds of relativistic quantum mechanical par-
ticles which can be identified with particles and anti-particles in an underlying quantum
field theory. We give direct proofs of the commutativity of our operators and of some
other fundamental properties such as kernel function identities. In particular, we give a
rigorous proof of the quantum integrability of the deformed Ruijsenaars model.

1. Introduction

The quantumCalogero–Moser–Sutherland systems form an important class of integrable
systems in quantum mechanics. Chalykh, Feigin and Veselov [6] discovered that cer-
tain deformations of such systems maintain integrability. For instance, the Schrödinger
operator

H = −
m∑

i=1

1

2

∂2

∂x2i
−

r∑

i=1

g

2

∂2

∂y2i

+
∑

1≤i< j≤m

g(g + 1)

(xi − x j )2
+

∑

1≤i< j≤r

1/g + 1

(yi − y j )2
+

m∑

i=1

r∑

j=1

g + 1

(xi − y j )2

is integrable for arbitrary variable numbers m and r and coupling parameter g [6,24],
where r = 0 is the non-deformed case first studied by Calogero [3]. Such deformed
models turned out to be intimately connected to Lie superalgebras and related analogues
of symmetric functions such as super-Jack polynomials [24,25]. From a physics point of
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view, the deformedmodel describes a system of arbitrary numbers of two different kinds
of identical particles. The Schrödinger operator above corresponds to the rational case;
the most general elliptic case is obtained by replacing the interaction potential 1/x2 by
the Weierstrass ℘-function ℘(x |ω1, ω2).

Ruijsenaars [21] introduced relativistic generalizations of quantumCalogero–Moser–
Sutherland systems, defined by difference operators rather than differential operators.
Deformed versions of such systems were first considered by Chalykh [4,5]. In greater
generality, they were introduced and studied by Sergeev and Veselov [25,26] in the
trigonometric case and by Atai together with two of us [1] in the elliptic case. They
describe systems of two kinds of identical particles which can be interpreted as particles
and anti-particles in an underlying relativistic quantum field theory [2]. Feigin and Silan-
tyev [9] constructed higher order operators that commute with the first order operators of
Sergeev and Veselov. They also showed that a sufficiently large subset of these operators
is algebraically independent, concluding that the deformed models remain integrable in
the relativistic setting.

In the present paper, we introduce and study elliptic extensions of the operators of
Feigin and Silantyev. To be more precise, for fixed non-negative integers m and r , we
introduce a family of operators [see (2.7) for the explicit expression]

H (k)
m,r (x1, . . . , xm; y1, . . . , yr ; δ, κ), k ∈ Z≥0. (1.1a)

They are linear combinations of shift operators acting on functions in the x- and y-
variables as

f (x1, . . . , xm; y1, . . . , yr ) �→ f (x1 + μ1δ, . . . , xm + μmδ; y1 − I1κ, · · · , yr − Irκ),

where μ j ∈ Z≥0, I j ∈ {0, 1} and the total degree
∑

j μ j +
∑

j I j is fixed to k. The
Ruijsenaars operators correspond to the casem = 0 and the case r = 0 give the operators
of Noumi and Sano [19].

In the original Ruijsenaars model, the Hamiltonian and momentum operator are (up
to a similary transformation) linear combinations of the operator H (1)

0,r and the same
operator with (δ, κ) replaced by (−δ,−κ). These linear combinations satisfy Poincaré
algebra relations (see (A.1)) and thus describe a system of relativistic quantum particles.
As explained in Appendix A, the Poincaré relations extend to the deformed case. For
this purpose, it is essential to consider commutation relations between H (k)

m,r and modi-
fications of these operators with shifts acting in the opposite direction. It turns out that
there are four mutually commuting infinite families, given by (1.1a) together with

H (k)
r,m(y1, . . . , yr ; x1, . . . , xm;−κ,−δ), k ∈ Z≥0, (1.1b)

H (k)
m,r (x1 − δ, . . . , xm − δ; y1 + κ, . . . , yr + κ;−δ,−κ), k ∈ Z≥0, (1.1c)

H (k)
r,m(y1 + κ, . . . , yr + κ; x1 − δ, . . . , xm − δ; κ, δ), k ∈ Z≥0. (1.1d)

Roughly speaking, in (1.1b) we have interchanged the roles of the two types of particles,
in (1.1c) we have reversed the direction of the shift operators and in (1.1d) we have made
both these changes. The shifts in the x- and y-variables present in (1.1c) and (1.1d) could
be eliminated by an overall translation (see (A.2)), but we avoid that since it would make
most of our formulas slightly more complicated.

The parameters δ and κ are related to the standard parameters of Macdonald poly-
nomial theory by q = e2iπδ , t = e2iπκ . In the trigonometric limit case, the operators
(1.1a) have super-Macdonald polynomials as joint eigenfunctions. The fact that there are
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four types of commuting operators (1.1) is reflected in symmetries of super-Macdonald
polynomials under the transformations (q, t) �→ (t−1, q−1), (q−1, t−1) and (t, q), see
[11, Prop. 3.3]. Very recently, several significant new results on joint eigenfunctions for
the original Ruijsenaars operators have been obtained, including elliptic generalisations
of results on Macdonald polynomials [7,16,18] and new connections to the fusion ring
of conformal field theories [8]; see references therein for earlier important work on the
subject. Generalising any of these results to the deformed operators (1.1a) remains an
intriguing open problem.

The main result of the present paper is that the four infinite families of operators
(1.1) mutually commute. Moreover, we prove that for generic δ and κ , the operators
H (k)
m,r are algebraically independent for 1 ≤ k ≤ m + r . This gives a rigorous proof

that the deformed elliptic Ruijsenaars model is quantum integrable, which has until now
been an unsolved problem. We also prove that the operators (1.1b) are in the algebraic
closure of the operators (1.1a) (and vice versa). This generalizes the result of [19] that
the Noumi–Sano operators are in the algebraic closure of the Ruijsenaars operators.
The other two families are clearly outside this closure, since they act by shifts in the
opposite direction. Finally, we show that our operators satisfy kernel function identities
with respect to the same kernel function that was obtained in [1] in the first order case.

Our proofs are direct and based on non-trivial identities for theta functions that we
refer to as source identities. They are also closely related to transformation formulas for
multiple elliptic hypergeometric series found in [13,15,20].

In the main text, we present and prove the results in an additive notation close to the
one used by Ruijsenaars [21]. For the convenience of the reader, in Appendix B we give
the key formulas in the multiplicative notation generalizing the one used in the theory
of Macdonald polynomials [17].

2. Main Results

We fix a non-zero odd entire function x �→ [x], which satisfies the identity

[x + y][x − y][u + v][u − v] + [x + v][x − v][y + u][y − u] = [x + u][x − u][y + v][y − v]. (2.1)

A generic such function can be written

[x] = Cecx
2
σ(x |ω1, ω2), (2.2)

where σ is theWeierstrass sigma function [29]. For our purposes, the prefactorCecx
2
can

be viewed as a normalization and plays no essential role. Degenerate cases include the
trigonometric solutions [x] = sin(πx/ω), the hyperbolic solutions [x] = sinh(πx/ω)

and the rational solution [x] = x .
Throughout, δ and κ are fixed parameters. For simplicity, we will assume that

[nδ] �= 0, [nκ] �= 0, n ∈ Z>0; (2.3)

see the end of Appendix A for a discussion of this condition.
For k ∈ Z≥0 we will write

[x]k = [x][x + δ] · · · [x + (k − 1)δ] (2.4)
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and, for negative subscripts,

[x]−k = 1

[x − kδ]k = 1

[x − kδ][x − (k − 1)δ] · · · [x − δ] .

Occasionally, we indicate the dependence on δ as [x; δ]k .
We write T δ

x for the difference operator

T δ
x f (x) = f (x + δ)

and, more generally,

T δμ
x f (x1, · · · , xn) = f (x1 + μ1δ, . . . , xn + μnδ),

when x and μ are vectors. We will write 〈n〉 = {1, . . . , n} (the notation [n] is more
common, but we wish to avoid confusion with the function satisfying (2.1)). Subsets
I ⊆ 〈n〉 will be identified with vectors (I1, . . . , In) ∈ {0, 1}n , where I j = 1 for j ∈ I
and I j = 0 otherwise. With this identification, we can write T δ I

x = ∏
j∈I T δ

x j . The
higher order Ruijsenaars operators are defined by

D(k)
n =

∑

I⊆〈n〉, |I |=k

∏

i∈I, j∈I c
[xi − x j + κ]

[xi − x j ] · T δ I
x , (2.5)

where I c denotes the complement of I in 〈n〉. It is a non-trivial fact that these operators
commute for 0 ≤ k ≤ n [21].

Noumi andSano [19] introduced another family of elliptic difference operators,which
we denote

H (k)
n =

∑

μ∈Zn≥0, |μ|=k

∏

1≤i< j≤n

[xi − x j + (μi − μ j )δ]
[xi − x j ]

n∏

i, j=1

[xi − x j + κ]μi

[xi − x j + δ]μi

· T δμ
x .

Here, |μ| = μ1 + · · ·+μn . They proved that they are related to the Ruijsenaars operators
through the so called Wronski relation

∑

k+l=K

(−1)k[kκ + lδ]D(k)
n H (l)

n = 0, K = 1, 2, 3, . . . . (2.6)

Since D(0)
n = id, this can be used to recursively write H (l)

n as a polynomial in the
operators D(k)

n (and vice versa). As a consequence, all these operators commute.
In the present work we introduce and study a family of difference operators H (k)

m,r in
m + r variables

(x1, . . . , xm, y1, . . . , yr ),

which generalize both D(k)
m and H (k)

r . They are defined by

H (k)
m,r =

∑

μ∈Zm≥0, I⊆〈r〉,
|μ|+|I |=k

Cμ,I (x; y) T δμ
x T−κ I

y , (2.7a)
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where

Cμ,I (x; y) = (−1)|I |
∏

1≤i< j≤m

[xi − x j + (μi − μ j )δ]
[xi − x j ]

∏

i∈I, j∈I c
[yi − y j − δ]

[yi − y j ]

×
m∏

i, j=1

[xi − x j + κ]μi

[xi − x j + δ]μi

m∏

i=1

⎛

⎝
∏

j∈I

[xi − y j − κ]
[xi − y j + μi δ]

∏

j∈I c
[xi − y j − δ]

[xi − y j + (μi − 1)δ]

⎞

⎠ . (2.7b)

Ifm > 0, H (k)
m,r is well-defined only if [ jδ] �= 0 for 1 ≤ j ≤ k, since otherwise the factor

[xi − x j + δ]μi vanishes for j = i and μi = k. This is guaranteed by our assumption
(2.3).

Several special cases of the operators (2.7a) are known in the literature. Clearly, H (k)
m,0

is equal to the Noumi–Sano operator H (k)
m . The operator H (k)

0,r is equal to the Ruijsenaars

operator (−1)k D(k)
r , with δ and −κ interchanged. The operators H (1)

m,r are the deformed
Ruijsenaars operators introduced in [1]. Finally, the trigonometric limit of the general
operators H (k)

m,r were introduced by Sergeev and Veselov [25] for k = 1 and by Feigin
and Silantyev [9] in general; see also [11]. To make the connection to the operators in
[9, Eq. (4.19)] one should rewrite (2.7b) using the elementary identity

∏

1≤i< j≤m

[xi − x j + (μi − μ j )δ]
[xi − x j ]

m∏

i, j=1

1

[xi − x j + δ]μi

= (−1)|μ|
m∏

i, j=1

1

[xi − x j − δμ j ]μi

.

Our first main result is that these operators commute.

Theorem 2.1. The operators (2.7a) satisfy [H (k)
m,r , H

(l)
m,r ] = 0 for all k, l ∈ Z≥0.

Next, we prove that m + r of the operators H (k)
m,r are algebraically independent. We

interpret this as a rigorous formulation of quantum integrability for the deformed elliptic
Ruijsenaars model.

Theorem 2.2. For generic κ and δ, the operators H (k)
m,r , k = 1, . . . ,m + r , are alge-

braically independent.

As mentioned in the introduction, one can construct further commuting operators by
making appropriatemodification toH (k)

m,r .Wewill first consider the family (1.1c).Writing
the coefficients (2.7b) as Cμ,I (x; y; δ, κ), we denote the corresponding operators

Ĥ (k)
m,r =

∑

μ∈Zm≥0, I⊆〈r〉,
|μ|+|I |=k

Cμ,I (x1 − δ, . . . , xm − δ; y1 + κ, . . . , yr + κ;−δ,−κ) T−δμ
x T κ I

y .

(2.8)
Since they are obtained from H (k)

m,r by a change of variables, these operators commute
among themselves. Our second main result states that the two families are mutually
commuting.

Theorem 2.3. We have [H (k)
m,r , Ĥ

(l)
m,r ] = 0 for all k, l ∈ Z≥0.
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In the special casem = 0, Theorem2.3 follows fromTheorem2.1 and the observation
that [21]

Ĥ (k)
0,r = H (r−k)

0,r

(
H (r)
0,r

)−1

(note that H (r)
0,r = (−1)r T−κ

y1 · · · T−κ
yr is invertible). We stress that when m > 0 this

simple argument does not work, and Theorem 2.1 requires a separate proof.
Next, we consider the family (1.1b), which we denote

D(k)
m,r =

∑

μ∈Zr≥0, I⊆〈m〉,
|μ|+|I |=k

Cμ,I (y; x;−κ,−δ) T δ I
x T−κμ

y .

The Ruijsenaars operator (2.5) can be written D(k)
m = (−1)k D(k)

m,0. Our third main result
states that the Wronski relation (2.6) extends to the deformed case r > 0.

Theorem 2.4. The operators D(k)
m,r and H (l)

m,r are related by

∑

k+l=K

[kκ + lδ] D(k)
m,r H

(l)
m,r = 0, K ∈ Z>0. (2.9)

Since D(0)
m,r = id, we can alternatively write

H (K )
m,r = − 1

[K δ]
K∑

k=1

[kκ + (K − k)δ] D(k)
m,r H

(K−k)
m,r . (2.10)

This gives a recursion for computing H (l)
m,r as a polynomial in the operators D(k)

m,r . As a
consequence, we have the following result.

Corollary 2.1. The operator H (l)
m,r is in the algebra generated by D(k)

m,r for 1 ≤ k ≤ l.

In particular, [D(k)
m,r , H

(l)
m,r ] = 0 for k, l ∈ Z≥0.

In [19], the recursion (2.10) for r = 0 is solved explicitly in terms of determinants.
This solution extends immediately to general r .

Corollary 2.2. The operator H (l)
m,r can be expressed in terms of the operators D(k)

m,r as

H (l)
m,r = (−1)l det

1≤i, j≤l

( [(i − j + 1)κ + ( j − 1)δ]
[iδ] D(i− j+1)

m,r

)
,

where matrix elements with i − j + 1 < 0 are interpreted as zero.

Interchanging δ and −κ gives the inverse relation

D(l)
m,r = (−1)l det

1≤i, j≤l

( [(i − j + 1)δ + ( j − 1)κ]
[iκ] H (i− j+1)

m,r

)
.

The identities in [19, Prop. 1.4] also extend immediately to our more general operators;
we will not reproduce them here.
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The fourth family of operators is

D̂(k)
m,r =

∑

μ∈Zr≥0, I⊆〈m〉,
|μ|+|I |=k

Cμ,I (y1 + κ, . . . , yr + κ; x1 − δ, . . . , xm − δ; κ, δ) T−δ I
x T κμ

y .

It follows from Corollary 2.1 that D̂(k)
m,r is a polynomial in Ĥ (l)

m,r for l ≤ k. We can now
conclude that all these operators commute.

Corollary 2.3. For fixed m and r, and arbitrary k j ∈ Z≥0, the operators H
(k1)
m,r , Ĥ

(k2)
m,r ,

D(k3)
m,r and D̂(k4)

m,r commute.

Finally, we consider the so called kernel function. To this end, we fix a meromorphic
solution Gδ to the functional equation

Gδ(x + δ) = [x]Gδ(x). (2.11)

In the generic case, Gδ can be constructed from Ruijsenaars’ elliptic gamma function,
see (B.3) below.

Theorem 2.5. Assuming that

(m − n)κ = (r − s)δ, (2.12)

the function

Φ(m,r,n,s)(x1, . . . , xm; y1, . . . , yr ; X1, . . . , Xn; Y1, . . . ,Ys)
=

∏

1≤i≤m,
1≤ j≤n

Gδ(xi + X j − κ)

Gδ(xi + X j )

∏

1≤i≤r,
1≤ j≤s

G−κ(yi + Y j + δ)

G−κ(yi + Y j )

×
∏

1≤i≤m,
1≤ j≤s

[xi + Y j ]
∏

1≤i≤r,
1≤ j≤n

[yi + X j ] (2.13)

satisfies the kernel function identity

H (k)
m,r (x; y)Φ(m,r,n,s)(x; y; X; Y ) = H (k)

n,s (X; Y )Φ(m,r,n,s)(x; y; X; Y ), (2.14)

where we indicate on which variables the difference operators act.

The so called balancing condition (2.12) stems from the fact that the sum of the zeroes
of an elliptic function (modulo periods) equals the sumof the poles. This condition seems
to be unavoidable in the elliptic case, but in the trigonometric case there is a modified
version of (2.14) without this condition [11].

Clearly, (2.12) holds for generic parameters when m = n and r = s. However, also
exceptional cases when κ/δ ∈ Q may be of interest. In that situation, the undeformed
Ruijsenaars operators (2.5) act on a finite-dimensional space of theta functions spanned
by affine Lie algebra characters [14]. Another type of finite-dimensional reduction was
recently studied in [7,8] and leads to relations to the fusion ring of conformal field theo-
ries. (To be precise, the latter papers assume a relation of the formmκ = rδ+2ω1, where
ω1 is a real quasi-period, such that [x + ω1] = −[x]. It is easy to see that Theorem 2.5
remains valid under this type of shifts.) One could hope that Theorem 2.5 is useful for
studying deformed versions of these two types of finite-dimensional reductions.
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3. Source Identities

Clearly, the commutation relation in Theorem 2.1 can be translated to an identity involv-
ing the coefficients (2.7b). This is also the case for Theorems 2.3, 2.4 and 2.5.We refer to
these scalar equations for the coefficients as source identities for the corresponding facts
about operators. It turns out that the operator identities can be obtained from the same
source identities as in the non-deformed case (r = 0), but with the variables specialized
in a non-obvious way.

Theorems 2.1 and 2.3 will both be derived from the source identity [21, Thm. A.2]

∑

I⊆〈n〉, |I |=k

∏

i∈I, j∈I c
[zi − z j − a][zi − z j − b]
[zi − z j ][zi − z j − a − b]

=
∑

I⊆〈n〉, |I |=n−k

∏

i∈I, j∈I c
[zi − z j − a][zi − z j − b]
[zi − z j ][zi − z j − a − b] . (3.1a)

Ruijsenaars used this identity to prove commutativity of the operators (2.5). In the case
of Theorem 2.3 we need to combine (3.1a) with an argument of analytic continuation.
Incidentally, this leads to a new proof of an elliptic hypergeometric transformation
formula due to Langer et al. [15].

For the Wronski relation (2.9), the source identity is the same as the one used by
Noumi and Sano [19] in the case r = 0, that is,

∑

I⊆〈n〉
(−1)|I | [|z| − |w| + |I |a]

[|z| − |w|]
∏

i∈I, j∈I c
[zi − z j + a]

[zi − z j ]
∏

i∈I, j∈〈n〉

[zi − w j ]
[zi − w j + a] = 0.

(3.1b)
Here, the notation |z| = ∑

j z j is used also for complex vectors.
Finally, the kernel function identity (2.14) will be obtained from the Kajihara–Noumi

identity [13]

∑

I⊆〈n〉, |I |=k

∏

i∈I, j∈I c
[zi − z j − a]

[zi − z j ]
∏

i∈I, j∈〈n〉

[zi + w j + a]
[zi + w j ]

=
∑

I⊆〈n〉, |I |=k

∏

i∈I, j∈I c
[wi − w j − a]

[wi − w j ]
∏

i∈I, j∈〈n〉

[wi + z j + a]
[wi + z j ] . (3.1c)

The same identity was used by Ruijsenaars [23] to prove the non-deformed case (m =
n = 0) of (2.14). Just as for Theorem 2.3, it must in the general case be combined with
an analytic continuation argument.

Although the three source identities (3.1) may look similar at first glance, none of
them seem to follow easily from the others. Both (3.1b) and (3.1c) can be derived as
consequences of the Frobenius determinant evaluation [10]

det
1≤i, j≤n

( [λ + zi + w j ]
[λ][zi + w j ]

)
= [λ + |z| + |w|]∏1≤i< j≤n[zi − z j ][wi − w j ]

[λ] ∏
1≤i, j≤n[zi + w j ] .

However, we are not aware of an analogous proof of (3.1a).
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4. Commutativity

In this section we prove Theorem 2.1. Consider the product

H (k)
m,r H

(l)
m,r =

∑

μ, ν∈Zm≥0, I, J⊆〈r〉,
|μ|+|I |=k, |ν|+|J |=l

Cμ,I (x; y)Cν,J (x+δμ; y−κ I ) T δ(μ+ν)
x T−κ(I+J )

y . (4.1)

Here, I + J denotes the sum of the corresponding sequences, that is, I + J ∈ {0, 1, 2}r .
It will be convenient to introduce the sets

K = I ∩ J, L = I�J, M = 〈r〉 \ (I ∪ J ), P = I \ J, Q = J \ I,

where � denotes symmetric difference. We then have the disjoint unions

〈r〉 = K � L � M, L = P � Q.

Substituting ν �→ λ − μ, (4.1) takes the form

H (k)
m,r H

(l)
m,r =

∑

λ∈Zm≥0, K , L⊆〈r〉,
K∩L=∅, |λ|+2|K |+|L|=k+l

Sk(x; y) T δλ
x T−κ(2K+L)

y ,

where

Sk(x; y) =
∑

0≤μ j≤λ j , 1≤ j≤m,

P�Q=L , |μ|+|P|=k−|K |

Cμ,K∪P (x; y)Cλ−μ,K∪Q(x + δμ; y − κ(K ∪ P)).

(4.2)
Hence, the commutativity is equivalent to the symmetry

Sk(x; y) = S|λ|+2|K |+|L|−k(x; y), (4.3)

for fixed λ, K and L .
We now insert the expression (2.7b) into (4.2). Consider first the factors involving

only y-variables. They have the form

∏

i∈K�P, j∈M�Q

[yi − y j − δ]
[yi − y j ]

∏

t∈K�Q, u∈M�P

[yt − yu + εt,uκ − δ]
[yt − yu + εt,uκ] ,

where

εt,u = (K � P)u − (K � P)t =

⎧
⎪⎨

⎪⎩

1, t ∈ Q, u ∈ P,

−1, t ∈ K , u ∈ M,

0, else.

The factors with (i, j) ∈ P × Q and (t, u) ∈ Q × P can be combined as

∏

i∈P, j∈Q

[yi − y j − δ][yi − y j − κ + δ]
[yi − y j ][yi − y j − κ] (4.4)
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and the remaining factors can be written

∏

i∈K , j∈M

[yi − y j − δ][yi − y j − κ − δ]
[yi − y j ][yi − y j − κ]

×
∏

i∈L , j∈M

[yi − y j − δ]
[yi − y j ]

∏

i∈K , j∈L

[yi − y j − δ]
[yi − y j ] , (4.5)

For our purpose, the only relevant factors are (4.4), since (4.5) can be cancelled from
(4.3).

The factors in (4.2) involving only x-variables can be expressed as

∏

1≤i< j≤m

[xi − x j + (μi − μ j )δ]
[xi − x j ]

m∏

i, j=1

[xi − x j + κ]μi

[xi − x j + δ]μi

×
∏

1≤i< j≤m

[xi − x j + (λi − λ j )δ]
[xi − x j + (μi − μ j )δ]

m∏

i, j=1

[xi − x j + (μi − μ j )δ + κ]λi−μi

[xi − x j + (μi − μ j + 1)δ]λi−μi

=
∏

1≤i< j≤m

[xi − x j + (λi − λ j )δ]
[xi − x j ]

m∏

i, j=1

[xi − x j + κ]λi
[xi − x j + δ]λi

×
m∏

i, j=1

[xi − x j + δ]μi−μ j [xi − x j + κ]μi [xi − x j − λ jδ]μi

[xi − x j + κ]μi−μ j [xi − x j + δ]μi [xi − x j − (λ j − 1)δ − κ]μi

,

where the first two double products can be cancelled from (4.3).
Finally, the factors that mix x-variables and y-variables are

m∏

i=1

⎛

⎝
∏

j∈K�P

[xi − y j − κ]
[xi − y j + μiδ]

∏

j∈M�Q

[xi − y j − δ]
[xi − y j + (μi − 1)δ]

⎞

⎠

×
m∏

i=1

⎛

⎝
∏

j∈K�Q

[xi − y j + μiδ − Q jκ]
[xi − y j + λiδ + K jκ]

∏

j∈M�P

[xi − y j + (μi − 1)δ + Pjκ]
[xi − y j + (λi − 1)δ + Pjκ]

⎞

⎠ .

Here, all factors with j ∈ K � M can be cancelled from (4.3). The remaining factors
can be written

m∏

i=1

⎛

⎝
∏

j∈P

[xi − y j − κ][xi − y j + (μi − 1)δ + κ]
[xi − y j + μiδ][xi − y j + (λi − 1)δ + κ]

×
∏

j∈Q

[xi − y j − δ][xi − y j + μiδ − κ]
[xi − y j + (μi − 1)δ][xi − y j + λiδ]

⎞

⎠ .

From this expression, we factor out

m∏

i=1

∏

j∈P�Q

[xi − y j − κ]
[xi − y j + λiδ] ,
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which can again be cancelled from (4.3), and are left with

m∏

i=1

⎛

⎝
∏

j∈P

[xi − y j + λiδ][xi − y j + (μi − 1)δ + κ]
[xi − y j + μiδ][xi − y j + (λi − 1)δ + κ]

×
∏

j∈Q

[xi − y j − δ][xi − y j + μiδ − κ]
[xi − y j + (μi − 1)δ][xi − y j − κ]

⎞

⎠ .

To summarize, to prove Theorem 2.1 it is enough to verify that (4.3) holds with

Sk =
∑

0≤μ j≤λ j , 1≤ j≤m,

P�Q=L , |μ|+|P|=k−|K |

∏

i∈P, j∈Q

[yi − y j − δ][yi − y j − κ + δ]
[yi − y j ][yi − y j − κ]

×
m∏

i, j=1

[xi − x j + δ]μi−μ j [xi − x j + κ]μi [xi − x j − λ jδ]μi

[xi − x j + κ]μi−μ j [xi − x j + δ]μi [xi − x j − (λ j − 1)δ − κ]μi

×
m∏

i=1

⎛

⎝
∏

j∈P

[xi − y j + λiδ][xi − y j + (μi − 1)δ + κ]
[xi − y j + μiδ][xi − y j + (λi − 1)δ + κ]

×
∏

j∈Q

[xi − y j − δ][xi − y j + μiδ − κ]
[xi − y j + (μi − 1)δ][xi − y j − κ]

⎞

⎠

(which differs from (4.2) by a factor independent of k). It is enough to do this for L = 〈r〉,
since the general case then follows by changing the variables {y1, . . . , yr } to {y j } j∈L .
We have thus reduced Theorem 2.1 to the following identity.

Proposition 4.1. For λ ∈ Z
m≥0, let

Sk =
∑

0≤μ j≤λ j , 1≤ j≤m
P⊆〈r〉, |μ|+|P|=k

∏

i∈P, j∈Pc

[yi − y j − δ][yi − y j + δ − κ]
[yi − y j ][yi − y j − κ]

×
m∏

i, j=1

( [xi − x j + δ]μi−μ j

[xi − x j + κ]μi−μ j

[xi − x j + κ]μi [xi − x j − λ jδ]μi

[xi − x j + δ]μi [xi − x j − (λ j − 1)δ − κ]μi

)

×
m∏

i=1

⎛

⎝
∏

j∈P

[xi − y j + λiδ][xi − y j + (μi − 1)δ + κ]
[xi − y j + μiδ][xi − y j + (λi − 1)δ + κ]

×
∏

j∈Pc

[xi − y j − δ][xi − y j + μiδ − κ]
[xi − y j − κ][xi − y j + (μi − 1)δ]

⎞

⎠ .

Then, Sk = S|λ|+r−k .

As we explain in § 6, Proposition 4.1 is closely related to an elliptic hypergeometric
transformation formula due to Langer, Schlosser and Warnaar [15].
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Proof. Consider (3.1a) with a = δ, b = κ − δ and

(z1, . . . , zn) = (
x1, x1 + δ, . . . , x1 + (λ1 − 1)δ, . . . ,

xm, xm + δ, . . . , xm + (λm − 1)δ, y1, . . . , yr
)
, (4.6)

where n = |λ| + r . As usual, we identify sets I ⊆ 〈n〉 with sequences in {0, 1}n . We
claim that, to give a non-zero contribution to the sums in (3.1a), I has to be of the form

I = (1, . . . , 1︸ ︷︷ ︸
μ1

, 0, . . . , 0︸ ︷︷ ︸
λ1−μ1

, . . . , 1, . . . , 1︸ ︷︷ ︸
μm

, 0, . . . , 0︸ ︷︷ ︸
λm−μm

, P),

where 0 ≤ μk ≤ λk for each k and P ⊆ 〈r〉. Otherwise, there is an index k such that
zk+1 = zk + δ, k /∈ I and k + 1 ∈ I . Then, the corresponding term in (3.1a) contains the
factor [zk+1 − zk − δ] = 0.

The general term in (3.1a) can be written F(δ)/F(κ), where

F(c) =
∏

i∈I, j∈I c
[zi − z j − c]

[zi − z j − c + δ] .

Specializing z as in (4.6), F(c) splits naturally into four parts, depending on whether zi
and z j are specialized to shifted x-variables or to y-variables. The first part is

F1(c) =
m∏

i, j=1

∏

1≤k≤μi ,
μ j+1≤l≤λ j

[xi − x j + (k − l)δ − c]
[xi − x j + (k − l + 1)δ − c]

=
m∏

i, j=1

μi∏

k=1

[xi − x j + (k − λ j )δ − c]
[xi − x j + (k − μ j )δ − c] =

m∏

i, j=1

[xi − x j + (1 − λ j )δ − c]μi

[xi − x j + (1 − μ j )δ − c]μi

,

where we used that the product in l telescopes. Using that

[xi − x j + (1 − μ j )δ − c]μi = (−1)μi
[x j − xi + c]μ j

[x j − xi + c]μ j−μi

,

we obtain

F1(c) = (−1)m|μ|
m∏

i, j=1

[xi − x j + c]μi−μ j [xi − x j + (1 − λ j )δ − c]μi

[xi − x j + c]μi

. (4.7a)

The second part of the product, when zi is specialized to a shifted x-variable and z j
to a y-variable, can be written

F2(c) =
m∏

i=1

∏

j∈Pc

μi∏

k=1

[xi + (k − 1)δ − y j − c]
[xi + kδ − y j − c] =

m∏

i=1

∏

j∈Pc

[xi − y j − c]
[xi − y j + μiδ − c]

(4.7b)
and similarly the third part is

F3(c) =
m∏

i=1

∏

j∈P

λi∏

k=μi+1

[xi + (k − 1)δ − y j + c]
[xi + (k − 2)δ − y j + c] =

m∏

i=1

∏

j∈P

[xi − y j + (λi − 1)δ + c]
[xi − y j + (μi − 1)δ + c] .

(4.7c)
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Finally, the last part is simply

F4(c) =
∏

i∈P, j∈Pc

[yi − y j − c]
[yi − y j + δ − c] . (4.7d)

The general term of the sums in (3.1a) is

F1(δ)F2(δ)F3(δ)F4(δ)

F1(κ)F2(κ)F3(κ)F4(κ)
.

Inserting the explicit expressions (4.7) yields the desired result. ��

5. Algebraic Independence

We will now prove Theorem 2.2. We will first give a proof of algebraic independence in
the special case κ = δ, and then deduce the general case.

Lemma 5.1. For κ = δ, the operators H (k)
m,r , k = 1, . . . ,m + r , are algebraically inde-

pendent.

Proof. It is easy to check that

Cμ,I (x; y)
∣∣∣
κ=δ

= (−1)|I |F(x; y)−1T δμ
x T−δ I

y F(x; y),

where

F(x; y) =
∏

1≤i< j≤m[xi − x j ] ∏
1≤i< j≤r [yi − y j ]∏

1≤i≤m, 1≤ j≤r [xi − y j − δ] .

It follows that

H (k)
m,r (x; y)

∣∣∣
κ=δ

= F(x; y)−1
∑

μ∈Zm≥0, I⊆〈r〉,
|μ|+|I |=k

(−1)|I |T δμ
x T−δ I

y F(x; y).

Thus, it is enough to prove algebraic independence of the operators
∑

μ∈Zm≥0, I⊆〈r〉,
|μ|+|I |=k

(−1)|I |T δμ
x T−δ I

y =
∑

i≥0, 0≤ j≤r,
i+ j=k

(−1) j hi (T
δ
x )e j (T

−δ
y ), 1 ≤ k ≤ m + r,

where hi and e j denote complete homogeneous and elementary symmetric polynomials,
respectively. This is in turn equivalent to algebraic independence of the polynomials

h(k)
m,r (ξ ; η) =

∑

i≥0, 0≤ j≤r,
i+ j=k

(−1) j hi (ξ)e j (η), 1 ≤ k ≤ m + r,

which are invariant under the natural action of the product Sm ×Sr of symmetric groups.
We note that

C[ξ1, . . . , ξm, η1, . . . , ηr ]Sm×Sr = C[e1(ξ), . . . , em(ξ), e1(η), . . . , er (η)]
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and introduce the total order on the monomials

er (η)lr · · · e1(η)l1em(ξ)km · · · e1(ξ)k1

corresponding to lexicographic order of the multi-indices (lr , . . . , l1, km, . . . , k1).
It is well-known that

hi (ξ) = (−1)i−1ei (ξ) + lower order terms, 1 ≤ i ≤ m.

Hence, for 1 ≤ k ≤ r we have

h(k)
m,r (ξ ; η) = (−1)kek(η) + lower order terms,

whereas for r + 1 ≤ k ≤ m + r ,

h(k)
m,r (ξ ; η) = (−1)r hk−r (ξ)er (η) + lower order terms

= (−1)k+1ek−r (ξ)er (η) + lower order terms.

It follows that the polynomial

h(1)
m,r (ξ ; η)λ1 · · · h(m+r)

m,r (ξ ; η)λm+r , λ1, . . . , λm+r ∈ Z≥0 (5.1)

has leading term

e1(η)λ1 · · · er−1(η)λr−1er (η)λr+λr+1+···+λm+r e1(ξ)λr+1 · · · em(ξ)λm+r ,

up to an irrelevant sign factor. Since these terms are all distinct, the polynomials (5.1) are
linearly independent. Equivalently, h(k)

m,r are algebraically independent for 1 ≤ k ≤ m+r .
��

We will now prove Theorem 2.2. Algebraic independence is equivalent to linear
independence of the operators

Hλ
m,r = (H (1)

m,r )
λ1 · · · (H (m+r)

m,r )λm+r , λ ∈ Z
m+r≥0 . (5.2)

These operators have the form

Hλ
m,r =

∑

|μ|+|ν|=‖λ‖
Cλ

μ,ν(x; y)T δμ
x T−κν

y ,

where the coefficients Cλ
μ,ν are meromorphic and

‖λ‖ = λ1 + 2λ2 + · · · + (m + r)λm+r .

A linear relation ∑

λ

cλH
λ
m,r = 0

between the operators (5.2) is equivalent to the corresponding relations
∑

‖λ‖=|μ|+|ν|
cλC

λ
μ,ν(x; y) = 0, μ ∈ Z

m≥0, ν ∈ Z
r≥0

between the coefficients. In particular, the operators are linearly independent if and only
if the matrices

(Cλ
μ,ν(x; y))|μ|+|ν|=N , ‖λ‖=N

of meromorphic functions have maximal rank for each N ∈ Z≥0. Since we know from
Lemma 5.1 that this is the case when κ = δ, it must be true for generic values of κ and
δ.
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6. Second Commutation Relation

The proof of Theorem 2.3 is similar to that of Theorem 2.1. We write (2.8) as

Ĥ (k)
m,r =

∑

μ∈Zm≥0, I⊆〈r〉,
|μ|+|I |=k

Dμ,I (x; y) T−δμ
x T κ I

y ,

where

Dμ,I (x; y)

= (−1)|I |
∏

1≤i< j≤m

[xi − x j − (μi − μ j )δ]
[xi − x j ]

m∏

i, j=1

[x j − xi + κ]μi

[x j − xi + δ]μi

∏

i∈I, j∈I c
[yi − y j + δ]

[yi − y j ]

×
m∏

i=1

⎛

⎝
∏

j∈I

[xi − y j − δ]
[xi − y j − (μi + 1)δ − κ]

∏

j∈I c
[xi − y j − κ]

[xi − y j − μi δ − κ]

⎞

⎠ . (6.1)

This gives

H (k)
m,r Ĥ

(l)
m,r

=
∑

λ∈Zm , K∈{−1,0,1}r ,
|λ|+|K |=k−l

∑

μ∈Zm≥0, I⊆〈r〉,
|μ|+|I |=k

Cμ,I (x; y)Dμ−λ,I−K (x + δμ; y − κ I ) T δλ
x T−κK

y .

Here, we should interpret Dμ−λ,I−K as zero unless μ j ≥ λ j and I j − K j ∈ {0, 1} for
all j . In the notation

Ki = { j ∈ 〈r〉; K j = i}, i = −1, 0, 1,

the latter condition is equivalent to K 1 ⊆ I ⊆ K 0 ∪ K 1. Then, the vector difference
I − K coincides with K−1 ∪ (I ∩ K 0). Writing Ĥ (l)

m,r H
(k)
m,r in the same way we find that

Theorem 2.3 is equivalent to the scalar equations

∑

μ j≥max(0,λ j ), 1≤ j≤m,

K 1⊆I⊆K 0∪K 1,
|μ|+|I |=k

Cμ,I (x; y)Dμ−λ,I−K (x + δμ; y − κ I )

=
∑

μ j≥max(0,λ j ), 1≤ j≤m,

K 1⊆I⊆K 0∪K 1,
|μ|+|I |=k

Cμ,I (x − δ(μ − λ); y + κ(I − K ))Dμ−λ,I−K (x; y). (6.2)

We want to factor

Cμ,I (x; y)Dμ−λ,I−K (x + δμ; y − κ I ) = F(x; y)G(x; y),
where F is independent of μ and I , and G is normalized to take the value 1 if μ = 0
and I = K 1. Inserting the explicit expressions (2.7b) and (6.1), we find after a tedious



M. Hallnäs, E. Langmann, M. Noumi, H. Rosengren

computation that

F(x; y) = (−1)|K | ∏

1≤i< j≤m

[xi − x j + (λi − λ j )δ]
[xi − x j ]

∏

i∈K 0, j∈K−1

[yi − y j − δ]
[yi − y j ]

×
∏

i∈K 1, j∈K 0

[yi − y j − δ]
[yi − y j ]

∏

i∈K 1, j∈K−1

[yi − y j − δ][yi − y j − δ − κ]
[yi − y j ][yi − y j − κ]

×
m∏

i=1

⎛

⎝
∏

j∈K−1

[xi − y j − δ]
[xi − y j + (λi − 1)δ − κ]

∏

j∈K 0

[xi − y j − κ]
[xi − y j + λiδ − κ]

×
∏

j∈K 1

[xi − y j − κ]
[xi − y j + λiδ]

⎞

⎠ ,

G(x; y) =
∏

i∈(K 0∩I ), j∈(K 0\I )

[yi − y j − δ][yi − y j + δ − κ]
[yi − y j ][yi − y j − κ]

×
m∏

i, j=1

( [xi − x j + δ]μi−μ j

[xi − x j + κ]μi−μ j

[xi − x j + κ]μi [xi − x j + κ]μi−λ j

[xi − x j + δ]μi [xi − x j + δ]μi−λ j

)

×
m∏

i=1

⎛

⎝
∏

j∈K 0∩I

[xi − y j + λiδ − κ][xi − y j + (μi − 1)δ + κ]
[xi − y j + (λi − 1)δ][xi − y j + μiδ]

×
∏

j∈K 0\I

[xi − y j − δ][xi − y j + μiδ − κ]
[xi − y j − κ][xi − y j + (μi − 1)δ]

⎞

⎠ .

In the same way, one gets

Cμ,I (x − δ(μ − λ); y + κ(I − K ))Dμ−λ,I−K (x; y)

=
m∏

i, j=1

[xi − x j + κ]λi−λ j

[xi − x j + δ]λi−λ j

F(x; y)G(x̂; ŷ),

where we have introduced the variables

x̂ j = −x j − λ jδ + κ, ŷ j = −y j − δ. (6.3)

We now observe that the variables y j with j ∈ K−1∪K 1 only appear in the prefactor
F that can be cancelled from (6.2). Thus, it suffices to prove the case K 0 = 〈r〉, that is,
the identity

∑

μ j≥max(0,λ j ), 1≤ j≤m,

I⊆〈r〉, |μ|+|I |=k

G(x; y)

=
m∏

i, j=1

[xi − x j + κ]λi−λ j

[xi − x j + δ]λi−λ j

∑

μ j≥max(0,λ j ), 1≤ j≤m,

I⊆〈r〉, |μ|+|I |=k

G(x̂; ŷ). (6.4)
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We will identify (6.4) with a version of Proposition 4.1 where the conditions 0 ≤
μ j ≤ λ j are replaced by μ j ≥ max(0, λ j ). To this end, we first rewrite the identity
Sk = S|λ|+r−k . On the left-hand side, we note that the factor [xi − x j − λ jδ]μi vanishes
if j = i and μi > λi . Hence, we may ignore the restrictions μi ≤ λi on the summation
indices. It will be convenient to introduce the variables z j = −x j − λ jδ. We can then
write

Sk = Tk(x; y;−x − δλ),

where

Tk(x1, . . . , xm; y1, . . . , yr ; z1, . . . , zm)

=
∑

μ∈Zm≥0, P⊆〈r〉,
|μ|+|P|=k

∏

i∈P, j∈Pc

[yi − y j − δ][yi − y j + δ − κ]
[yi − y j ][yi − y j − κ]

×
m∏

i, j=1

( [xi − x j + δ]μi−μ j

[xi − x j + κ]μi−μ j

[xi − x j + κ]μi [xi + z j ]μi

[xi − x j + δ]μi [xi + z j + δ − κ]μi

)

×
m∏

i=1

⎛

⎝
∏

j∈P

[zi + y j ][xi − y j + (μi − 1)δ + κ]
[zi + y j + δ − κ][xi − y j + μiδ]

×
∏

j∈Pc

[xi − y j − δ][xi − y j + μiδ − κ]
[xi − y j − κ][xi − y j + (μi − 1)δ]

⎞

⎠ .

In the sum S|λ|+r−k , we replace μi �→ λi − μi for all i and P �→ Pc. By a straight-
forward computation, we obtain

S|λ|+r−k = Tk(−x − δλ; ŷ; x),
where ŷ is as in (6.3). Thus, Proposition 4.1 can be formulated as

Tk(x; y; z) = Tk(z; ŷ; x), (6.5)

where
x j + z j = −λ jδ, λ j ∈ Z≥0, j = 1, . . . ,m. (6.6)

Proposition 6.1. The identity (6.5) holds also without the condition (6.6).

Proof. We apply a standard analytic continuation argument, see e.g. [28]. It is straight-
forward to check that each term in (6.5) has the form

C
N∏

j=1

[x1 + a j ]
[x1 + b j ] ,

where C is independent of x1 and

N∑

j=1

(a j − b j ) = k(κ − δ).
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Assume that we are in a generic situation, when [x] is given by (2.2). Then, all these
terms have the same quasi-periodicity with respect to the lattice Γ = Zω1 + Zω2. It
follows that (6.5) holds if

x1 ∈ −z1 − Z≥0δ + Γ.

By our assumption (2.3), these values are all distinct mod Γ , so by analytic continuation
(6.5) holds for generic x1. By symmetry, the same argument applies to the other variables
x j . ��

In the special case r = 0, Proposition 6.1 reduces to the elliptic hypergeometric
transformation formula

∑

μ∈Zm≥0, |μ|=k

m∏

i, j=1

( [xi − x j + δ]μi−μ j

[xi − x j + κ]μi−μ j

[xi − x j + κ]μi [xi + z j ]μi

[xi − x j + δ]μi [xi + z j + δ − κ]μi

)

=
∑

μ∈Zm≥0, |μ|=k

m∏

i, j=1

( [zi − z j + δ]μi−μ j

[zi − z j + κ]μi−μ j

[zi − z j + κ]μi [zi + x j ]μi

[zi − z j + δ]μi [zi + x j + δ − κ]μi

)
.

(6.7)

Replacingm bym+1 and eliminating the summation indexμm+1, it is straight-forward to
check that this is equivalent to [15, Cor. 4.3]. Conversely, one can recover Proposition 6.1
from (6.7) by replacing m by m + r and then specializing x j + z j = −δ for m + 1 ≤
j ≤ m + r . The proof of (6.7) given here is very similar to that in [15]. However, the
observation that (6.7) can be derived from Ruijsenaars’ identity (3.1a) is new. In [15], it
is derived from a more complicated source identity.

We will now consider (6.5) when z j = x̂ j is given by (6.3). More precisely, to avoid
division by zero we first multiply both sides with

n∏

i, j=1

[xi + z j + δ − κ]λ j

[xi + z j ]λ j

and then use that

lim
z j→−x j−λ j δ+κ

[xi + z j + δ − κ]λ j [xi + z j ]μi

[xi + z j ]λ j [xi + z j + δ − κ]μi

= [xi − x j + κ]μi−λ j

[xi − x j + δ]μi−λ j

,

which by definition vanishes if j = i and μi < λi . On the right-hand side, we use

lim
x j→−z j−λ j δ+κ

[zi + x j + δ − κ]λi [zi + x j ]μi

[zi + x j ]λi [zi + x j + δ − κ]μi

= [x j − xi + κ]λ j−λi [zi − z j + κ]μi−λ j

[x j − xi + δ]λ j−λi [zi − z j + δ]μi−λ j

.

It is now clear that the resulting limit case of (6.5) is (6.4) (with I=P). This completes
the proof of Theorem 2.3.
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7. Wronski Relations

We now turn to the proof of Theorem 2.4. Indicating the parameter-dependence in (2.7b)
as Cμ,I (x; y; δ, κ), the left-hand side of (2.9) may be expressed as

∑

μ∈Zr≥0, I⊆〈m〉,
|ν|∈Zm≥0, J⊆〈r〉,

|μ|+|I |+|ν|+|J |=K

[(|μ| + |I |)κ + (|ν| + |J |)δ]

× Cμ,I (y; x;−κ,−δ)Cν,J (x + δ I ; y − κμ; δ, κ) T δ(ν+I )
x T−κ(J+μ)

y .

We make the change of variables ν �→ ν − I and μ �→ μ − J . We then have ν j ≥ I j
and μ j ≥ J j for all j , that is,

I ⊆ supp(ν) = { j ∈ 〈m〉; ν j > 0}

and J ⊆ supp(μ). This gives the expression

∑

μ∈Zr≥0, ν∈Zm≥0,|μ|+|ν|=K

( ∑

I⊆supp(ν),
J⊆supp(μ)

[(|μ| + |I | − |J |)κ + (|ν| + |J | − |I |)δ]

× Cμ−J,I (y; x;−κ,−δ)Cν−I,J (x + δ I ; y + κ(J − μ); δ, κ)

)
T δν
x T−κμ

y .

We introduce the notation M = supp(ν) and N = supp(μ), and normalize the inner
sum so that the term with I = ∅ and J = N is 1. That is, we define

Dμ,ν(x; y) =
∑

I⊆M, J⊆N

[(μ + |I | − |J |)κ + (|ν| + |J | − |I |)δ]
[(|μ| − |N |)κ + (|ν| + |N |)δ]

× Cμ−J,I (y; x;−κ,−δ)Cν−I,J (x + δ I ; y + κ(J − μ); δ, κ)

Cμ−N ,∅(y; x;−κ,−δ)Cν,N (x; y + κ(N − μ); δ, κ)
. (7.1)

Then, Theorem 2.6 is equivalent to the identity

Dμ,ν(x; y) = 0, |μ| + |ν| > 0. (7.2)

We now insert (2.7b) into (7.1). To distinguish the shifted factorials (2.4) with base
δ from shifted factorials with base −κ , we use the notation

[x;−κ]k = [x][x − κ] · · · [x − (k − 1)κ].
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By a straight-forward computation, the factors involving only y-variables can be sim-
plified to

∏

1≤i< j≤r

[yi − y j + (μ j − J j − μi + Ji )κ]
[yi − y j + (μ j − N j − μi + Ni )κ]

×
r∏

i, j=1

[yi − y j − δ;−κ]μi−Ji [yi − y j − κ;−κ]μi−Ni

[yi − y j − κ;−κ]μi−Ji [yi − y j − δ;−κ]μi−Ni

×
∏

i∈J, j∈〈r〉\J

[yi − y j + (μ j − μi + 1)κ − δ]
[yi − y j + (μ j − μi + 1)κ]

×
∏

i∈N , j∈〈r〉\N

[yi − y j + (μ j − μi + 1)κ]
[yi − y j + (μ j − μi + 1)κ − δ]

=
∏

i∈N\J

⎛

⎝
∏

j∈J

[yi − y j + (μ j − μi − 1)κ + δ]
[yi − y j + (μ j − μi )κ]

∏

j∈N

[yi − y j − (μi − 1)κ − δ]
[yi − y j − μiκ]

⎞

⎠ .

The factors involving both x- and y-variables are

r∏

i=1

⎛

⎝
∏

j∈I

[yi − x j + δ]
[yi − x j − (μi − Ji )κ]

∏

j∈〈m〉\I

[yi − x j + κ]
[yi − x j − (μi − Ji − 1)κ]

×
m∏

j=1

[yi − x j − (μi − Ni − 1)κ]
[yi − x j + κ]

⎞

⎠

×
m∏

i=1

⎛

⎝
∏

j∈J

[xi − y j + Iiδ + (μ j − 2)κ]
[xi − y j + νiδ + (μ j − 1)κ]

∏

j∈〈r〉\J

[xi − y j + (Ii − 1)δ + μ jκ]
[xi − y j + (νi − 1)δ + μ jκ]

×
∏

j∈N

[xi − y j + νiδ + (μ j − 1)κ]
[xi − y j + (μ j − 2)κ]

∏

j∈〈r〉\N

[xi − y j + (νi − 1)δ]
[xi − y j − δ]

⎞

⎠

=
∏

i∈I

⎛

⎝
∏

j∈J

[xi − y j + δ + (μ j − 2)κ]
[xi − y j + (μ j − 1)κ]

∏

j∈N

[xi − y j − δ]
[xi − y j − κ]

⎞

⎠

×
∏

i∈N\J

⎛

⎝
∏

j∈M\I

[yi − x j + δ − μiκ]
[yi − x j − (μi − 1)κ]

∏

j∈M

[yi − x j − ν jδ − (μi − 1)κ]
[yi − x j − (ν j − 1)δ − μiκ]

⎞

⎠ .



Higher Order Deformed Elliptic Ruijsenaars Operators

Finally, the factors involving only x-variables are

∏

i∈I, j∈〈m〉\I

[xi − x j + κ]
[xi − x j ]

∏

1≤i< j≤m

[xi − x j ]
[xi − x j + (Ii − I j )δ]

×
m∏

i, j=1

[xi − x j + δ; δ]νi [xi − x j + (Ii − I j )δ + κ; δ]νi−Ii

[xi − x j + κ; δ]νi [xi − x j + (Ii − I j + 1)δ; δ]νi−Ii

=
∏

i∈I

⎛

⎝
∏

j∈M\I

[xi − x j + δ − κ]
[xi − x j ]

∏

j∈M

[xi − x j − ν jδ]
[xi − x j − (ν j − 1)δ − κ]

⎞

⎠ .

We conclude that

Dμ,ν(x; y) =
∑

I⊆M, J⊆N

(−1)[I |+|J |+|N | [(μ + |I | − |J |)κ + (|ν| + |J | − |I |)δ]
[(|μ| − |N |)κ + (|ν| + |N |)δ]

×
∏

i∈I

⎛

⎝
∏

j∈M\I

[xi − x j + δ − κ]
[xi − x j ]

∏

j∈J

[xi − y j + δ + (μ j − 2)κ]
[xi − y j + (μ j − 1)κ]

×
∏

j∈M

[xi − x j − ν j δ]
[xi − x j − (ν j − 1)δ − κ]

∏

j∈N

[xi − y j − δ]
[xi − y j − κ]

⎞

⎠

×
∏

i∈N\J

⎛

⎝
∏

j∈M\I

[yi − x j + δ − μiκ]
[yi − x j − (μi − 1)κ]

∏

j∈J

[yi − y j + (μ j − μi − 1)κ + δ]
[yi − y j + (μ j − μi )κ]

×
∏

j∈M

[yi − x j − ν j δ − (μi − 1)κ]
[yi − x j − (ν j − 1)δ − μiκ]

∏

j∈N

[yi − y j − (μi − 1)κ − δ]
[yi − y j − μiκ]

⎞

⎠ . (7.3)

We now explain how to identify (7.2) with a special case of the source identity (3.1b).
As a first step, we write the index set in (3.1b) as a disjoint union 〈n〉 = M �N . Wemake
a corresponding change of variables zi �→ xi for i ∈ M , zi �→ yi for i ∈ N , wi �→ ui
for i ∈ M and wi �→ vi for i ∈ N . Finally, we make the substitutions I ∩ M �→ I ,
I c ∩ N �→ J . The left-hand side of (3.1b) then takes the form

∑

I⊆M, J⊆N

(−1)|I |+|J |+|N | [|x | + |y| − |u| − |v| + (|I | + |N | − |J |)a]
[|x | + |y| − |u| − |v|]

×
∏

i∈I

⎛

⎝
∏

j∈M\I

[xi − x j + a]
[xi − x j ]

∏

j∈J

[xi − y j + a]
[xi − y j ]

∏

j∈M

[xi − u j ]
[xi − u j + a]

∏

j∈N

[xi − v j ]
[xi − v j + a]

⎞

⎠

×
∏

i∈N\J

⎛

⎝
∏

j∈M\I

[yi − x j + a]
[yi − x j ]

∏

j∈J

[yi − y j + a]
[yi − y j ]

×
∏

j∈M

[yi − u j ]
[yi − u j + a]

∏

j∈N

[yi − v j ]
[yi − v j + a]

⎞

⎠ .

Substituting a �→ δ − κ and, for all i , xi �→ xi , yi �→ yi − (μi − 1)κ , ui �→ xi + νiδ,
vi �→ yi + δ in this expression gives (7.3). This completes the proof of Theorem 2.4.
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8. Kernel Function Identities

To prove Theorem 2.5 we will be need the following elliptic hypergeometric transfor-
mation formula.

Proposition 8.1. Assume that the parameters x1, . . . , xm, y1, . . . , yr , X1, . . . , Xn,
Y1, . . . ,Ys and a1, . . . , am+n satisfy the balancing condition

|x | + |a| + sδ = |X | + rδ. (8.1)

Then,

∑

μ∈Zm≥0, I⊆〈r〉,
|μ|+|I |=k

(−1)|I |
∏

1≤i< j≤m

[xi − x j + (μi − μ j )δ]
[xi − x j ]

×
∏

i∈I, j∈I c
[yi − y j − δ]

[yi − y j ]
∏

1≤i≤m, j∈I c
[xi − y j − δ]

[xi − y j + (μi − 1)δ]

×
m∏

i=1

⎛

⎝
∏m+n

j=1 [xi + a j ]μi∏m
j=1[xi − x j + δ]μi

∏n
j=1[xi + X j ]μi

s∏

j=1

[xi + Y j + μiδ]
[xi + Y j ]

⎞

⎠

×
∏

i∈I

⎛

⎝
∏m+n

j=1 [yi + a j ]∏m
j=1[yi − x j − μ jδ] ∏n

j=1[yi + X j ]
s∏

j=1

[yi + Y j + δ]
[yi + Y j ]

⎞

⎠

=
∑

μ∈Zn≥0, I⊆〈s〉,
|μ|+|I |=k

(−1)|I |
∏

1≤i< j≤n

[Xi − X j + (μi − μ j )δ]
[xi − x j ]

×
∏

i∈I, j∈I c
[Yi − Y j − δ]

[Yi − Y j ]
∏

1≤i≤n, j∈I c
[Xi − Y j − δ]

[Xi − Y j + (μi − 1)δ]

×
n∏

i=1

⎛

⎝
∏m+n

j=1 [Xi − a j ]μi∏n
j=1[Xi − X j + δ]μi

∏m
j=1[Xi + x j ]μi

r∏

j=1

[Xi + y j + μiδ]
[Xi + y j ]

⎞

⎠

×
∏

i∈I

⎛

⎝
∏m+n

j=1 [Yi − a j ]∏n
j=1[Yi − X j − μ jδ] ∏m

j=1[Yi + x j ]
r∏

j=1

[Yi + y j + δ]
[Yi + y j ]

⎞

⎠ . (8.2)

Proposition 8.1 is a slight variation of a transformation formula found by Kajihara
[12] in the trigonometric case and, in general, in [13] and [20]. To be precise, that
transformation appears as the special case r = s = 0. On the other hand, given that
special case, the general case follows by substituting x �→ (x, y), X �→ (X,Y ) and

(a1, . . . , am+n) �→ (a1, . . . , am+n,−y1 − δ, . . . ,−yr − δ,Y1 + δ, . . . ,Ys + δ).

Alternatively, one can follow the approach of [13] and derive Proposition 8.1 from
the source identity (3.1c).We find it instructive to sketch this proof.We start from (3.1c),
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with a = δ and n replaced by N . We first specialize the z-variables as in (4.6) and make
a similar specialization

(w1, . . . , wN )

= (
X1, X1 + δ, . . . , X1 + (ν1 − 1)δ, . . . , Xn, Xn + δ, . . . , Xn + (νn − 1)δ, Y1, . . . , Ys

)
.

Here, we must have

N = |λ| + r = |ν| + s. (8.3)

Just as in the proof of Proposition 4.1, the left-hand side of (3.1c) reduces to a sum
over (μ1, . . . , μm, P), where 0 ≤ μ j ≤ λ j for each j , P ⊆ 〈r〉 and |μ| + |P| = k. The
resulting expression contains the product

F(δ) =
∏

i∈I, j∈I c
[zi − z j − δ]

[zi − z j ] ,

which is computed in (4.7). The remaining factors are easily computed in a similar way.
Apart from a sign factor (−1)k , the left-hand side of (3.1c) takes the form

∑

μ∈Zm≥0, P⊆〈r〉,
0≤μ j≤λ j , 1≤ j≤m,

|μ|+|P|=k

(−1)|P| ∏

1≤i< j≤m

[xi − x j + (μi − μ j )δ]
[xi − x j ]

m∏

i, j=1

[xi − x j − λ jδ]μi

[xi − x j + δ]μi

×
m∏

i=1

⎛

⎝
∏

j∈P

[xi − y j + λiδ]
[xi − y j + μiδ]

∏

j∈Pc

[xi − y j − δ]
[xi − y j + (μi − 1)δ]

⎞

⎠
∏

i∈P, j∈Pc

[yi − y j − δ]
[yi − y j ]

×
∏

1≤i≤m,
1≤ j≤n

[xi + X j + ν jδ]μi

[xi + X j ]μi

∏

1≤i≤m,
1≤ j≤s

[xi + Y j + μiδ]
[xi + Y j ]

×
∏

i∈P, 1≤ j≤n

[yi + X j + ν jδ]
[yi + X j ]

∏

i∈P, 1≤ j≤s

[yi + Y j + δ]
[yi + Y j ] .

Here, the restrictionsμ j ≤ λ j may be ignored, since [xi − x j −λ jδ]μi vanishes if i = j
and μ j > λ j . We then obtain the left-hand side of (8.2), in the special case when

(a1, . . . , am+n) = (−x1 − λ1δ, . . . ,−xm − λmδ, X1 + ν1δ, . . . , Xn + νnδ). (8.4)

By (8.3), this is consistent with the balancing condition (8.1). It is clear from symmetry
considerations that the right-hand side of (3.1c) reduces to the corresponding right-hand
side of (8.2).We conclude that (8.2) holds in the infinitely many special cases (8.4), with
λ j and ν j non-negative integers subject to (8.3). Finally, by the same type of analytic
continuation argument that was used in the proof of Proposition 6.1, (8.2) holds for
general values of a j , as long as (8.1) is satisfied. This proves Proposition 8.1.
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We now turn to the proof of Theorem 2.5. We write the kernel function identity as

∑

μ∈Zm≥0, I⊆〈r〉,
|μ|+|I |=k

Cμ,I (x; y)Φ(x + δμ; y − κ I ; X; Y )

Φ(x; y; X; Y )

=
∑

μ∈Zn≥0, I⊆〈s〉,
|μ|+|I |=k

Cμ,I (X; Y )
Φ(x; y; X + δμ; Y − κ I )

Φ(x; y; X; Y )
. (8.5)

It is straight-forward to compute

Φ(x + δμ; y − κ I ; X; Y )

Φ(x; y; X; Y )
=

m∏

i=1

⎛

⎝
n∏

j=1

[xi + X j − κ]μi

[xi + X j ]μi

s∏

j=1

[xi + Y j + δμi ]
[xi + Y j ]

⎞

⎠

×
∏

i∈I

⎛

⎝
n∏

j=1

[yi + X j − κ]
[yi + X j ]

s∏

j=1

[yi + Y j + δ]
[yi + Y j ]

⎞

⎠ .

Inserting (2.7b), the left-hand side of (8.5) is

∑

μ∈Zm≥0, I⊆〈r〉,
|μ|+|I |=k

(−1)|I |
∏

1≤i< j≤m

[xi − x j + (μi − μ j )δ]
[xi − x j ]

∏

i∈I, j∈I c
[yi − y j − δ]

[yi − y j ]

×
m∏

i, j=1

[xi − x j + κ]μi

[xi − x j + δ]μi

m∏

i=1

⎛

⎝
∏

j∈I

[xi − y j − κ]
[xi − y j + μiδ]

∏

j∈I c
[xi − y j − δ]

[xi − y j + (μi − 1)δ]

⎞

⎠

×
m∏

i=1

⎛

⎝
n∏

j=1

[xi + X j − κ]μi

[xi + X j ]μi

s∏

j=1

[xi + Y j + δμi ]
[xi + Y j ]

⎞

⎠

×
∏

i∈I

⎛

⎝
n∏

j=1

[yi + X j − κ]
[yi + X j ]

s∏

j=1

[yi + Y j + δ]
[yi + Y j ]

⎞

⎠ .

This agrees with the left-hand side of (8.2), under the specialization

(a1, . . . , am+n) = (κ − x1, . . . , κ − xm, X1 − κ, . . . , Xm − κ).

Note that the balancing condition (8.1) reduces to (2.12) in this case. By symmetry,
the right-hand side of (8.5) reduces to the corresponding right-hand side of (8.2). This
proves Theorem 2.5.
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A Relation to deformed Ruijsenaars model

The conventions used in this paper differ from the ones that are more common in the
physics literature, going back to the work of Ruijsenaars [21]. For the convenience of
the reader, we explain the relation between these conventions. In particular, we give
the precise relation between the operators H (1)

m,r and the deformed Ruijsenaars model
introduced in [1].

The Ruijsenaars systems are defined by two difference operators, S+ and S−, such
that the Hamiltonian H = S+ + S−, the momentum operator P = S+ − S− and a boost
operator B represent the Poincaré algebra in 1 + 1 spacetime dimensions. That is, the
commutation relations

[H, P] = 0, [H, B] = iP, [P, B] = iH. (A.1)

are satisfied [21]. In particular, for the deformed elliptic Ruijsenaars model, the corre-
sponding operators are given by (we rename (β, βg) in [1, Eq. (16)] to (iδ, iκ) and drop
an irrelevant overall constant)

S± =
m∑

i=1

[κ]
[δ] A

∓
i e

±δ ∂
∂xi A±

i −
r∑

i=1

B∓
i e

∓κ ∂
∂yi B±

i ,

where

A±
i =

∏

1≤ j≤m
j �=i

( [xi − x j ∓ κ]
[xi − x j ]

)1/2 r∏

j=1

( [xi − y j ∓ κ/2 ± δ/2]
[xi − y j ∓ κ/2 ∓ δ/2]

)1/2

,

B±
i =

∏

1≤ j≤r
j �=i

( [yi − y j ± δ]
[yi − y j ]

)1/2 m∏

j=1

( [yi − x j ± δ/2 ∓ κ/2]
[yi − x j ± δ/2 ± κ/2]

)1/2

.

One can check that H = S+ + S−, P = S+ − S− and

B = i

δ

m∑

i=1

xi − i

κ

r∑

i=1

yi ,

http://creativecommons.org/licenses/by/4.0/


M. Hallnäs, E. Langmann, M. Noumi, H. Rosengren

indeed satisfy (A.1).
We will now show that, up to a similarity transformation and shifts of the variables,

the operators S+ and S− are equal to, respectively, our operators H (1)
m,r and Ĥ (1)

m,r . To this
end, we introduce the function

Δ =
∏

1≤i, j≤m
i �= j

Gδ(xi − x j + κ)

Gδ(xi − x j )

∏

1≤i, j≤r
i �= j

G−κ(yi − y j − δ)

G−κ(yi − y j )

×
m∏

i=1

r∏

j=1

1

[xi − y j + κ/2 − δ/2][yi − xi + κ/2 − δ/2] .

A straight-forward computation gives

Δ−1/2S±Δ1/2 = [κ]
[δ]

m∑

i=1

∏

1≤ j≤m
j �=i

[xi − x j ± κ]
[xi − x j ]

r∏

j=1

[xi − y j ± κ/2 ∓ δ/2]
[xi − y j ± κ/2 ± δ/2]e

±δ ∂
∂xi

−
r∑

i=1

∏

1≤ j≤r
j �=i

[yi − y j ∓ δ]
[yi − y j ]

m∏

j=1

[yi − x j ∓ δ/2 ± κ/2]
[yi − x j ∓ δ/2 ∓ κ/2]e

∓κ ∂
∂yi .

Moreover, the case k = 1 of (2.7) and (2.8) can be written

H (1)
m,r = [κ]

[δ]
m∑

i=1

∏

1≤ j≤m
j �=i

[xi − x j + κ]
[xi − x j ]

r∏

j=1

[xi − y j − δ]
[xi − y j ] e

δ ∂
∂xi

−
r∑

i=1

∏

1≤ j≤r
j �=i

[yi − y j − δ]
[yi − y j ]

m∏

j=1

[yi − x j + κ]
[yi − x j ] e

−κ ∂
∂yi ,

Ĥ (1)
m,r = [κ]

[δ]
m∑

i=1

∏

1≤ j≤m
j �=i

[xi − x j − κ]
[xi − x j ]

r∏

j=1

[xi − y j − κ]
[xi − y j − δ − κ]e

−δ ∂
∂xi

−
r∑

i=1

∏

1≤ j≤r
j �=i

[yi − y j + δ]
[yi − y j ]

m∏

j=1

[yi − x j + δ]
[yi − x j + κ + δ]e

κ ∂
∂yi .

This makes manifest that, after shifting the variables in Δ−1/2S±Δ1/2 as

xi → xi ± δ/2, y j → y j ∓ κ/2, i = 1, . . . ,m, j = 1, . . . , r, (A.2)

one obtains the operators H (1)
m,r and Ĥ (1)

m,r , respectively.
It is interesting to note that Δ is the weight function in a natural scalar product on

the space of common eigenfunctions of the operators S± proposed recently in [2].
Finally, we comment on the role of the condition (2.3). In the elliptic case, we can

normalize the function [x] so that its zero set isZ+τZ for some τ in the upper half-plane.
Then, (2.3) means that

δ, κ /∈ Q + τQ.
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The physically most natural case is when τ ∈ iR>0 and the parameters β = iδ and
g = κ/δ are real. This gives the conditions

β, gβ /∈ iτQ.

We need these conditions to make the operators H (k)
m,r and D(k)

m,r well-defined for all k.
If they are violated, the operators still make sense for a finite range of k, which could
conceivably be extended by appropriate renormalization.

B Multiplicative notation

We have considered our operators as acting by additive shifts. In the trigonometric and
elliptic cases, they can also be realized by multiplicative shifts. We will restate our main
results in this form, as it is very common in the literature.

Excluding the rational case, the function x �→ [x] can be chosen as periodic. After
rescaling the variable, we can assume that the primitive period is 2. We then normalize
the function as

[x] = e−iπxθ(e2iπx ; p), (B.1)

where

θ(z; p) =
∞∏

j=0

(1 − p j z)

(
1 − p j+1

z

)

and the elliptic nome p satisfies |p| < 1. The trigonometric case is included as

[x]p=0 = e−iπx (1 − e2iπx ) = −2i sin(πx).

If z = e2iπx , the additive shifts x �→ x + δ and x �→ x − κ correspond to z �→ qz,
z �→ t−1z, where

q = e2iπδ, t = e2iπκ .

The assumption (2.3) means that q, t /∈ eiπQ pQ.
Consider the operators H (k)

m,r as acting on functions that are 1-periodic in the variables
x j and y j , and hence can be expressed in terms of z j = e2iπx j and w j = e2iπy j . We
will normalize the resulting multiplicative difference operator as

H(k)
m,r = H(k)

m,r (z1, . . . , zm;w1, . . . , wr ; q, t) = eiπk((r−1)δ−mκ)H (k)
m,r . (B.2a)

We also introduce the modified operators

D(k)
m,r = H(k)

r,m(w1, . . . , wr ; z1, . . . , zm; t−1, q−1), (B.2b)

Ĥ(k)
m,r = H(k)

m,r (q
−1z1, . . . , q

−1zm; tw1, . . . , twr ; q−1, t−1), (B.2c)

D̂(k)
m,r = H(k)

r,m(tw1, . . . , twr ; q−1z1, . . . , q
−1zm; t, q), (B.2d)

which are related to the additive operators used in the main text by

D(k)
m,r = eiπk(rδ−(m−1)κ)D(k)

m,r ,

Ĥ(k)
m,r = eiπk(mκ−(r−1)δ) Ĥ (k)

m,r ,

D̂(k)
m,r = eiπk((m−1)κ−rδ) D̂(k)

m,r .
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It is straight-forward to verify that, in the notation

(a; q, p)k = θ(a; p)θ(aq; p) · · · θ(aqk−1; p),
Tμ
q,z f (z1, . . . , zm) = f (qμ1 z1, . . . , q

μm zm),

we have

H(k)
m,r =

∑

μ∈Zm≥0, I⊆〈r〉,
|μ|+|I |=k

Cμ,I (z;w) Tμ
q,zT

I
t−1,w

,

where

Cμ,I (z;w) = (−1)|I |(t−mqr )|μ|q

( |I |
2

)

∏

i∈I, j∈I c
θ(qw j/wi ; p)
θ(w j/wi ; p)

m∏

i, j=1

(t zi/z j ; q, p)μi

(qzi/z j ; q, p)μi

×
∏

1≤i< j≤m

qμ j θ(qμi−μ j zi/z j ; p)
θ(zi/z j ; p)

×
m∏

i=1

⎛

⎝
∏

j∈I

θ(zi/tw j ; p)
θ(qμi zi/w j ; p)

∏

j∈I c
θ(zi/qw j ; p)

θ(qμi−1zi/w j ; p)

⎞

⎠ .

In multiplicative notation, Theorems 2.2, 2.4, Corollaries 2.1, 2.2 and 2.3 can be
summarized as follows.

Theorem B.1. For fixed m and r, the four infinite families of operators (B.2) mutually
commute. If q and t are generic, the operators (B.2a) are algebraically independent for
1 ≤ k ≤ m + r . The operators (B.2a) and (B.2b) are related by

∑

k+l=N

tkθ(qktl)H(k)
m,rD

(l)
m,r = 0, N ≥ 1,

and by

H(l)
m,r = (−t)−l det

1≤i, j≤l

(
θ(t i− j+1q j−1)

θ(qi )
D(i− j+1)
m,r

)
,

where one should interpret matrix elements with i − j + 1 < 0 as zero.

To write Theorem 2.5 in multiplicative notation takes some more work. We will
express the kernel function in terms of the elliptic gamma function [22]

Γ (z; p, q) =
∞∏

j,k=0

1 − p j+1qk+1/z

1 − p jqkz
, |p|, |q| < 1,

which satisfies the q-difference equation

Γ (qz; p, q)

Γ (z; p, q)
= θ(z; p).
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Equivalently, the function

Gδ(x) = e
iπx(δ−x)

2δ Γ (e2iπx ; p, q) (B.3a)

satisfies (2.11). This solution is valid for |q| < 1, that is, Im(δ) > 0. If Im(δ) < 0, one
can instead take

Gδ(x) = e
iπx(δ−x)

2δ

Γ (q−1e2iπx ; p, q−1)
. (B.3b)

In either case, the general solution of (2.11) is Gδ times an arbitrary δ-periodic mero-
morphic function. The construction of solutions to (2.11) with real δ (that is, |q| = 1)
is more complicated [27], so we will assume for simplicity that |q|, |t | �= 1. In the case
|q| < 1 < |t |, we introduce the multiplicative kernel function

�(m,r,n,s)(z1, . . . , zm;w1, . . . , wr ; Z1, . . . , Zn;W1, . . . ,Ws)

=
∏

1≤i≤m,
1≤ j≤n

Γ (t−1zi Z j ; p, q)

Γ (zi Z j ; p, q)

∏

1≤i≤r,
1≤ j≤s

Γ (qwiW j ; p, t−1)

Γ (wiW j ; p, t−1)

×
∏

1≤i≤m,
1≤ j≤s

θ(ziW j ; p)
∏

1≤i≤r,
1≤ j≤n

θ(wi Z j ; p). (B.4)

If one or both the parameters |q| and |t−1| is larger than 1, we define� by the expression
obtained from (B.4) after making the formal replacement

Γ (x; p, s) �→ 1

Γ (sx; p, 1/s) , |s| > 1.

Theorem B.2. Assuming tm−n = qr−s , the kernel function identity

H(k)
m,r (z;w)�(m,r,n,s)(z;w; Z;W ) = H(k)

n,s(Z;W )�(m,r,n,s)(z;w; Z;W ) (B.5)

holds.

In particular, (B.5) holds if m = n and r = s.
To prove Theorem B.2, we insert (B.1) and (B.3) into (2.13). In terms of the mul-

tiplicative variables z j = e2iπx j , w j = e2iπy j , Z j = e2iπX j and Wj = e2iπY j , the
additive and multiplicative kernel functions are related by

Φ(m,r,n,s)(x; y; X; Y )

�(m,r,n,s)(z;w; Z;W )

=
∏

1≤i≤m,
1≤ j≤n

eiπ(xi+X j−κ)(δ−xi−X j+κ)/2δ

eiπ(xi+X j )(δ−xi−X j )/2δ

∏

1≤i≤r,
1≤ j≤s

e−iπ(yi+Y j+δ)(−κ−yi−Y j−δ)/2κ

e−iπ(yi+Y j )(−κ−xi−X j )/2κ

×
∏

1≤i≤m,
1≤ j≤s

e−iπ(xi+Y j )
∏

1≤i≤r,
1≤ j≤n

e−iπ(yi+X j ) = Ceiπ(A(x;y)+B(X;Y )),
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where C is an irrelevant constant and

A(x; y) = κ

δ
n|x | + δ

κ
s|y| − s|x | − n|y|,

B(X; Y ) = κ

δ
m|X | + δ

κ
r |Y | − r |X | − m|Y |.

We can now write the kernel function identity (2.14) as

e−iπ A(x;y)H (k)
m,r (x; y)eiπ A(x;y)�m,r,n,s(z;w; Z;W )

= e−iπB(X;Y )H (k)
n,s (X; Y )eiπB(X;Y )�(m,r,n,s)(z;w; Z;W ). (B.6)

The operator on the left is a sum of terms of the form

e−iπ A(x;y)T δμ
x T−κ I

y eiπ A(x;y) = eiπ(A(x+δμ;y−κ I )−A(x;y))T δμ
x T−κ I

y = eiπk(nκ−sδ)T δμ
x T−κ I

y .

Hence,

e−iπ A(x;y)H (k)
m,r e

iπ A(x;y) = eiπk(nκ−sδ)H (k)
m,r = eiπk((m+n)κ−(r+s−1)δ)H(k)

m,r .

On the right-hand side of (B.6), the same exponential prefactor appears and can be
canceled. This proves Theorem B.2.
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