
Cooperative Slack Management: Saving Energy of Multicore Processors by
Trading Performance Slack between QoS-Constrained Applications

Downloaded from: https://research.chalmers.se, 2024-07-17 18:36 UTC

Citation for the original published paper (version of record):
Nejat, M., Manivannan, M., Pericas, M. et al (2022). Cooperative Slack Management: Saving Energy
of Multicore Processors by Trading Performance
Slack between QoS-Constrained Applications. Transactions on Architecture and Code Optimization,
19(2). http://dx.doi.org/10.1145/3505559

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

21

Cooperative Slack Management: Saving Energy of Multicore

Processors by Trading Performance Slack Between

QoS-Constrained Applications

MEHRZAD NEJAT, MADHAVAN MANIVANNAN, MIQUEL PERICÀS, and
PER STENSTRÖM, Chalmers University of Technology, Sweden

Processor resources can be adapted at runtime according to the dynamic behavior of applications to reduce

the energy consumption of multicore processors without affecting the Quality-of-Service (QoS). To achieve

this, an online resource management scheme is needed to control processor configurations such as cache

partitioning, dynamic voltage-frequency scaling, and dynamic adaptation of core resources.

Prior State-of-the-art has shown the potential for reducing energy without any performance degradation

by coordinating the control of different resources. However, in this article, we show that by allowing short-

term variations in processing speed (e.g., instructions per second rate), in a controlled fashion, we can enable

substantial improvements in energy savings while maintaining QoS. We keep track of such variations in

the form of performance slack. Slack can be generated, at some energy cost, by processing faster than the

performance target. On the other hand, it can be utilized to save energy by allowing a temporary relaxation

in the performance target. Based on this insight, we present Cooperative Slack Management (CSM). During

runtime, CSM finds opportunities to generate slack at low energy cost by estimating the performance and

energy for different resource configurations using analytical models. This slack is used later when it enables

larger energy savings. CSM performs such trade-offs across multiple applications, which means that the

slack collected for one application can be used to reduce the energy consumption of another. This cooperative

approach significantly increases the opportunities to reduce system energy compared with independent slack

management for each application. For example, we show that CSM can potentially save up to 41% of system

energy (on average, 25%) in a scenario in which both prior art and an extended version with local slack

management for each core are ineffective.

CCS Concepts: • Computer systems organization → Multicore architectures; Reconfigurable com-

puting; • Hardware→ Enterprise level and data centers power issues; Chip-level power issues;

Additional Key Words and Phrases: Multicore processors, QoS, DVFS, cache partitioning, dynamic core

resizing, performance and energy modeling

ACM Reference format:

Mehrzad Nejat, Madhavan Manivannan, Miquel Pericàs, and Per Stenström. 2022. Cooperative Slack Man-

agement: Saving Energy of Multicore Processors by Trading Performance Slack Between QoS-Constrained

Applications. ACM Trans. Arch. Code Optim. 19, 2, Article 21 (January 2022), 27 pages.

https://doi.org/10.1145/3505559

This research has been funded by the European Processor Initiative under the project number 800928.

Authors’ address: M. Nejat, M. Manivannan, M. Pericàs, and P. Stenström, Chalmers University of Technology, De-

partment of Computer Science and Engineering SE-412 96 Göteborg Sweden; emails: {nejatm, madhavan, miquelp,

per.stenstrom}@chalmers.se.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1544-3566/2022/01-ART21 $15.00

https://doi.org/10.1145/3505559

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

https://orcid.org/0000-0003-4559-7165
https://doi.org/10.1145/3505559
mailto:permissions@acm.org
https://doi.org/10.1145/3505559
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3505559&domain=pdf&date_stamp=2022-01-31

21:2 M. Nejat et al.

1 INTRODUCTION

Running applications at maximum processing speed, beyond the applications’ Quality-of-Service
(QoS) requirements, can waste substantial amounts of energy [30, 31]. Instead, by associating a
performance target with each application based on its QoS requirements —expressed in, say, in-
structions per seconds (IPS) —one can build resource management frameworks that dynamically
adapt processor resources to save energy while meeting performance targets.

There are prior resource management frameworks proposed for improving the efficiency of us-
ing hardware resources in multicore platforms while respecting performance constraints. In one
line of research, a mix of latency-critical and best-effort applications is considered in a data-center
workload [10, 28, 35]. Here, a common goal is to improve throughput and resource utilization by re-
claiming the excess resources for best-effort applications after meeting the performance targets of
latency-critical applications. In another line of research [30–33], the goal is to reduce energy/power
consumption while meeting individual performance targets of all applications. One approach [33]
uses core mapping and dynamic voltage-frequency scaling (DVFS) as the control knobs. Another
approach uses coordinated management of the Last Level Cache (LLC) partitioning together with
per-core DVFS [30, 32] extended with dynamic adaptation of the core microarchitecture [31]. In
this work, we assume that every application in the workload is associated with a performance
target according to a baseline allocation of processor resources.

A key insight driving this study is that allowing applications to deviate temporarily from a fixed
performance target can enable additional energy savings while ensuring that the performance tar-
gets are satisfied over a longer time interval, referred to as a QoS window. Within that window,
when the application runs faster compared with the baseline performance target, we say that it
generates slack and when it runs slower, we say that it consumes slack. The goal is to find opportu-
nities to generate slack at a lower energy cost compared with the energy savings achieved by con-
suming it. For example, when the LLC share of a memory-intensive application is increased, it may
enjoy a performance boost that generates slack at no energy cost. This slack can be consumed later,
within the same QoS window, to save energy, for example, by reducing the core voltage-frequency
(VF). It can also be consumed by a redistribution of the allocated LLC share to other applications. In
this way, slack can be transferred from one application to another, which enables more trade-offs
to save processor energy. Meanwhile, by keeping track of the slack balance on each core, the re-
source manager can ensure that the performance of every application continuously remains ahead
of the baseline targets.

This article proposes Cooperative Slack Management (CSM), an online resource management
scheme that leverages the insight regarding slack to improve processor energy efficiency. It contin-
uously monitors dynamic program characteristics such as the cache-miss versus cache-size profile.
Using simple analytical models, it estimates the effect of different resource configurations on per-
formance and energy at runtime. These configurations include different partitionings of the LLC
as well as the size and VF of each core. This way, it attempts to find the right opportunities and
amounts for generating/consuming slack across all applications. It can save substantial energy
by making trade-offs across the processor configuration space at different points in time while
respecting the QoS of all applications.

There are two main challenges in implementing this approach. First, the overheads must be small
enough to enable resource management at regular intervals during runtime. Second, assuming no
prior knowledge about the applications, CSM uses statistics collected from hardware performance
monitoring counters (PMCs) and analytical models to explore the processor configuration space
at each invocation. Therefore, it is prone to modeling error that can affect both the energy sav-
ings and QoS. To address the first challenge, we used simplified models together with a heuristic

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:3

algorithm that reduces the dimensions of the problem at several levels while performing a cost-
benefit analysis on slack across different cores. To address the second challenge, we propose a
dynamic sampling technique that gradually improves the modeling accuracy over runtime. In a
hybrid approach, it can actively enforce interesting configurations to be sampled as soon as possi-
ble as well as passively collect samples based on the decisions of CSM.

The main contributions of this article can be summarized as follows.

(1) We make two important insights that motivate this study: (a) the possibility to generate
short-term performance slack at a lower energy cost compared with the energy-saving en-
abled by consuming it; and (b) by transferring slack from one application to another through
the shared resource, it is possible to further improve energy efficiency.

(2) We present Cooperative Slack Management (CSM), a low-overhead online resource man-
agement scheme to improve processor energy efficiency without affecting the QoS of any
application in the workload through slack management.

(3) We design a dynamic sampling technique to improve modeling accuracy during runtime
with a hybrid approach that supports passive and active sampling of selected configurations.

(4) We implement a local slack management algorithm that runs independently on each core to
provide a quantitative comparison between cooperative versus local slack management in
different scenarios.

We experimentally evaluate several different scenarios regarding the workloads, modeling as-
sumptions, performance targets, number of cores, and both adaptive and fixed core architectures.
Furthermore, we analyze the sensitivity of CSM energy savings to different parameters. We show
that CSM can save substantially more energy compared with prior state-of-the-art [31] and when
it is extended with local slack management. The most significant improvements are achieved in
scenarios in which the performance target is high, the core architecture is fixed, and when there
is high contention in LLC, that is, all applications are sensitive to their baseline LLC allocation.
For example, we show that CSM can potentially save up to 41% and, on average, 25% energy in
a scenario in which the energy-saving with the prior state-of-the-art and its extended version is
below 4% and, on average, 0.4% and 1.5%, respectively.

The rest of this article is organized as follows. Section 2 explains the background and motivation
for this work. The proposed framework is described in Section 3. Sections 4 and 5 present the
experimental methodology and results, respectively. The related work is discussed in Section 6.
We present our conclusions in Section 7.

2 BACKGROUND AND MOTIVATION

This section establishes basic assumptions and definitions about the resource management frame-
work in this study. It also provides insights that motivate the proposed approach described in
Section 3.

2.1 Baseline System

In this work, we study a hardware resource management scheme in the context of a multicore
processor that consists of N cores with a private L1 and L2 cache attached to each core and a
shared LLC. The LLC ways are dynamically partitioned between cores without overlap, that is,
each way is allocated to only one core. The frequency of each core is controlled independently
using per-core DVFS. We also study a simple adaptive core architecture such that the resource
manager (RM) can select between a few core sizes by deactivating sections of core components,
including issue width, reorder buffer, reservation stations, and load/store queues. More details on
these resources are presented in Section 3.2. In the rest of this article, a resource configuration

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:4 M. Nejat et al.

C for a particular application refers to the combination of LLC allocation together with core size
and VF.

We assume that a multi-programmed workload consisting of N independent applications is
scheduled on the N-core processor without any process migration. We also assume that the base-
line resource configuration (Cbase) satisfies the QoS requirements of all applications. The RM may
change the configurations during runtime as long as the performance delivered to each applica-
tion remains greater than or equal to the performance achievable withCbase . However, short-term
variations in processing speed are acceptable if the performance target is met at user-defined inter-
vals, called QoS windows. More specifically, for each QoS window that includes a certain number
of instructions, the execution time must be less than or equal to that with Cbase . Inside each QoS
window, the RM is invoked regularly after executing a fixed number of instructions, which we
refer to as RM intervals.

2.2 Slack Management Potential

At each RM interval, the RM may find a set of configurations that can improve energy efficiency.
However, it needs a way to keep track of variations in processing speed compared with Cbase .
Therefore, we define a parameter called slack as

s = (TPI (Cbase) −TPI (C)) × ICRM . (1)

TPI (C) refers to the average time per instruction with configuration C and ICRM denotes the
instruction count of the RM interval. For example, 1 ms of slack means that this RM interval is
executed 1 ms faster compared with usingCbase . By calculating s , the RM knows exactly how much
reduction in processing speed is acceptable in a future interval without missing the performance
target. Therefore, we accumulate the slack values (both positive and negative) over the past RM
intervals into a parameter called Slack Deposit (SD). Based on this, the performance target is met
as long as SD remains greater than or equal to zero by the end of the QoS window. This form of
performance target enables new trade-offs to save energy, as explained in the rest of the section.

If sufficient positive SD has been collected over the past RM intervals, the processing speed of
the current interval can be safely reduced below the baseline (Cbase) without affecting QoS. In
other words, the application progress has been so much faster compared with Cbase that there is
enough time to relax the processing speed without lowering the performance below Cbase . How-
ever, generating that slack in the first place can impose a certain energy cost. Therefore, to achieve
a net energy saving, we need to find opportunities in which the cost of generating slack (running
faster) is low and the benefit of consuming slack (relaxing) is high.

To demonstrate the potential of this idea, we analyze an example application. Figure 1(a) shows
the simulation results for a selected region of bzip2 from SPEC CPU2006 benchmarks, executed
for 100-M instructions with a fixed core size and different frequencies and LLC allocations. The
X-axis shows the execution time normalized to that with Cbase , which is a mid-range frequency
level (VF5) and an allocation of 2-MiB of LLC in this example. The Y-axis shows the normalized
energy (to Cbase) that includes the core, the cache hierarchy, and memory accesses. A detailed
description of the experimental methodology is presented in Section 4. Each curve in this figure
represents the DVFS range for a particular LLC allocation.

If the performance constraint is strictly set to Cbase , all configurations with a normalized exe-
cution time greater than one are not allowed. This is the case when there is no sufficient SD and
the processing speed cannot be relaxed below the baseline. Therefore, the minimum energy points
highlighted by red circles can be selected. We observe that some of these points are slightly faster
than Cbase , creating a small amount of slack. This is because of the limited range and granularity
of DVFS. However, it is possible to generate more slack at some energy cost, as depicted by the

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:5

Fig. 1. Normalized energy versus execution time of bzip2 at different resource configurations (a) and mini-
mum energy points as a function of LLC allocation for different slack targets (b).

orange arrows. A key observation is that the energy cost to slack ratio, that is, the slope of the
orange arrows, reduces with a larger LLC. In other words, it becomes cheaper to buy slack given
more cache. On the other hand, given a large enough SD, we can relax the performance constraint
and save more energy. This is depicted by the green arrows. In this case, the energy benefit to slack
ratio, that is, the slope of the green arrows, increases with a smaller LLC. In other words, using
slack is more beneficial at lower cache allocations. This example shows the possibility of achieving
a net energy saving by generating and consuming slack at the right conditions, which is strongly
dependent on the LLC partitioning at hand.

To further elaborate on the relation between LLC partitioning and slack management, we an-
alyze the same example from a different perspective in Figure 1(b). Here, the X-axis represents
the allocation of LLC to this application while the Y-axis is the normalized energy, similar to
Figure 1(a). Again, we start with the initial performance constraint that results in the minimum
energy points discussed earlier (red circles in Figure 1(a)). These points are depicted on the black
curve in Figure 1(b), which shows how the energy changes with the LLC partition size, and the
limited range of acceptable allocations with the performance constraint. To demonstrate the effect
of slack generation or consumption, we simply shift the constraint to shorter or longer execution
times. For example, by shifting the constraint to 90% of Cbase execution time, we can generate at
least 10% slack. The orange curves in Figure 1(b) show how such slack generation targets change
the minimum energy points. On the other hand, we can relax the constraint, for example, to 110%
of Cbase execution time, and allow a negative slack value of −10%. The green curves in the figure
show the effect of such slack consumption scenarios. A key observation in this figure is that we
can find “energy equivalent” points that lie approximately on the same horizontal line. This has
two implications: (1) Given sufficient slack, this application can give up a part of its LLC share to
others at no energy cost. (2) Given a larger LLC share, this application can generate more slack
at no energy cost. These two observations indicate the possibility of transferring slack from one
application to another, enabling more energy-saving opportunities.

To summarize, we make the following important insights. Slack can be generated on each core
when the energy cost is low and consumed later at an opportune time to earn a net energy saving.
The cost and benefit of slack generation and consumption vary depending on dynamic applica-
tion characteristics and resource configurations at different points in time. Furthermore, slack can
be transferred from one application to another to find better opportunities to reduce system en-
ergy. As long as SD on each core remains above a lower bound, the performance targets of all

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:6 M. Nejat et al.

Fig. 2. Overview of the proposed resource management scheme.

applications are satisfied. To exploit these properties of slack for saving processor energy, we
present a CSM scheme in the next section.

3 CSM: COOPERATIVE SLACK MANAGEMENT SCHEME

This section introduces CSM, an online multicore resource management scheme. Its goal is to
improve energy efficiency through making trade-offs between slack generation and consumption
across applications. This section first offers an overview of CSM in Section 3.1 before going through
the design in detail in Sections 3.2 through 3.6. Finally, we discuss overheads and scalability of CSM
in Sections 3.7 and 3.8, respectively.

3.1 System Overview

Figure 2 shows an overview of the proposed scheme and its main components. The RM can be
implemented as a lightweight software handler that is invoked on each core at regular intervals
after executing a fixed number of instructions.1 Its objective is to evaluate a range of possible
configurations for every core and their effect on performance and energy before selecting the
system configuration for the upcoming interval. Figure 2(a) shows the main criteria for performing
this selection in a simplified form for a 2-core system. It first looks for a system configuration that
achieves maximum energy saving by using the available SD on each core. Then, starting from this
point, it attempts to make as much slack (s) as possible with a limited energy cost. While the first
criterion attempts to maximize energy saving during the upcoming interval, the second criterion
deviates from this goal to facilitate larger energy savings in the future intervals. This trade-off can
be controlled by setting an energy budget for slack generation, which is further discussed in the
rest of this section.

This operation requires several components, as illustrated in Figure 2(b). The overall proce-
dure can be summarized as follows. It starts with Step-1, which monitors the application progress
by evaluating the past interval and collecting the required statistics. During Step-2, analytical
models based on sampling are used to estimate performance slack and energy for different re-
source configurations, as explained in Sections 3.5 and 3.6. Using these estimations, the RM prunes
the resource configuration space while performing a cost-benefit analysis (CBA) to decide how
much slack should be generated/consumed for any possible LLC allocation. This step reduces the

1This is a design choice that is conveniently modeled by our simulation framework. However, it is also possible to modify

the design to operate based on fixed time intervals instead.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:7

dimensions of processor resources by producing an energy curve as a function of LLC allocation
for each core, as explained in Section 3.3. Finally, the Global Optimization function in Step-3 finds
an optimum LLC partitioning that minimizes the sum of energy values over all cores, as detailed
in Section 3.4. The selected resource configurations, based on the optimum LLC partitioning, are
applied to the system before returning to the program execution.

3.2 Resource Control Knobs

In this work, we study different configurations of the following processor resources.

DVFS: This is a widely used mechanism for energy/power management in most processors. We
assume per-core DVFS, which is studied and implemented, for example, in [5, 16, 19, 22]. Here, we
consider 10 VF settings that can be independently selected for each core, as detailed in Section 4.2.

Core Scaling: Adaptive core architectures have been studied in previous work [2, 6, 23, 24, 31]
as an effective approach in reducing processor energy consumption. While there are many dif-
ferent adaptive architectures proposed, we consider a simple mechanism with minimal overhead.
In this mechanism, deactivation logic is added to several components: issue width, reorder buffer,
reservation stations, and load/store queues. Therefore, instead of changing the core architecture,
its size is reduced by deactivating a section of these components. To perform this at runtime, the
core resizing logic takes the following steps: (1) It halts the fetch of new instructions. (2) It waits
until the instructions in the pipeline are committed. (3) It deactivates/reactivates a section of the
core components. (4) It restarts the instruction fetch. A similar mechanism has been previously
studied in [31]. In this work, we consider two different core sizes, as detailed in Section 4.2. We
also study the proposed scheme with a fixed core size. The overheads are analyzed in Section 3.7.

LLC Partitioning: Cache partitioning is an effective tool to avoid interference between applica-
tions in the LLC. This is especially important for achieving performance predictability and provid-
ing QoS guarantees. There are different mechanisms proposed for partitioning the cache capacity.
In this work, we use a mechanism that controls the allocation of cache ways to each core, which
is implemented, for example, in Intel [17] and Qualcomm [46] products.

3.3 Cost-Benefit Analysis on Slack

The proposed slack management approach is centered around a heuristic algorithm that decides
how much slack should be generated/consumed on each core under different conditions. As estab-
lished in Section 2, these decisions should be made depending on resource configuration, especially
the partitioning of the shared LLC. The proposed heuristic approach breaks down the problem into
a local and a global component. The objective of the local component is to evaluate the slack trade-
offs for a range of possible LLC allocations (wi) for each core i and prune the local configuration
space before entering the global optimization that explores different distributions of LLC shares.

As depicted in Figure 2(b), the local component for core i , marked as Step-2, starts by updating
the SD value based on the statistics collected during the past interval. Next, it estimates a slack
(s) value for different core configurations, using Equation (1) and the analytical models explained
later. All configurations that violate the following lower-bound on SD are pruned:

SD + s ≥ ϵ (2)

Here, the value of ϵ can be adjusted according to the criticality of the QoS targets. For example,
with ϵ = 0, the value of SD is never allowed to become negative. In other words, the performance
must remain ahead of the baseline target at all points in time. However, in the case of a non-critical

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:8 M. Nejat et al.

ALGORITHM 1: The 2-Level Reduction
Pseudo-Code

Inputs:
P (w) = {(E, s) }: the set of energy-slack points for all core con-
figurations, given LLC allocation w
SD : The current value of slack deposit
ϵ : The lower bound on SD
SDthr : The upper threshold on SD
Ebudдet : The energy budget for slack generation
Output:
E (w): Energy curve as a function of LLC allocation w
- -

1: function Best_Point(P)
2: Pvalid = {(E, s) if (SD + s ≥ ϵ) for (E, s) ∈ P }
3: Find (E∗, s∗) ∈ Pvalid that has min. E
4: if SD > SDthr then
5: Return (E∗, s∗)
6: else
7: Find (E, s) ∈ Pvalid with max s, such that E − E∗ ≤

Ebudдet

8: Return (E, s)
9: end if

10: end function

11: for w ∈Wr anдe do

12: (E, s) = Best_Point(P(w))
13: E(w) = E
14: end for

ALGORITHM 2: Global Optimization
Pseudo-Code

Inputs:
Curves = {Ei (wi), ∀i ∈ [0, N]}: Energy curves as a function
of LLC allocation wi for each core i
Output:
V ∗ = {w∗i , ∀i ∈ [0, N]}: Optimum LLC Allocation
- -

1: function Reduce(Ex (wx),Ey (wy))
2: for each possible allocation wxy = wx +wy do

3: Exy (wxy) = Minimum([Exy = Ex + Ey for different
(wx , wy)])

4: Store the allocation Vxy (wxy) = {wi , ∀i ∈ (x ∪ y) }
5: end for
6: Return Exy (wxy)
7: end function

8: while Length(Curves) > 2 do
9: for each pair (k, k + 1) in Curves do

10: Replace (Ek , Ek+1) with Reduce(Ek , Ek+1)
11: end for
12: end while
13: Ex (wx), Ey (wy): the two remaining curves

14: Find the (w∗x , w∗y) that minimizes Ex +Ey such that w∗x +w∗y
= LLC size

15: Return Optimum allocation V ∗ = Vx (w∗x) ∪Vy (w∗y)

QoS target, setting a small negative value for ϵ can enable additional energy saving with a small
and bounded effect on QoS. This is analyzed quantitatively in Section 5.3.

After the first level of reduction based on the SD constraint, an energy value is estimated for
each remaining configuration using the analytical models. This forms a set of energy-slack pairs
{(E, s)}. During the second level of reduction, one member of this set is selected as the best con-
figuration as follows. First, the minimum energy point (E∗, s∗) is found. If the current SD value is
already above a predefined upper threshold (SD > SDthr), the minimum energy point is selected.
Otherwise, it considers buying additional slack at some energy cost compared with E∗. We set a
predefined energy budget, for example, 6% of the baseline system energy, for buying slack. These
threshold values can be used to adjust and adapt the behavior of CSM. For example, using a larger
value for SDthr or energy budget can raise the available SD at future intervals to potentially ex-
ploit larger energy-saving opportunities. However, it increases the energy costs to generate slack
at each interval. In this study, we set the values for these thresholds empirically based on experi-
mental observations. This is further discussed in Section 5.3. CSM can be extended to adjust these
values at runtime according to the workload characteristics. We leave this extension for future
work.

The pseudo-code of this process is presented in Algorithm 1. The first level of reduction, based
on Equation (2), is performed at line 2; lines 3 to 9 represent the second level of reduction. Con-
sequently, this process creates a one-dimensional energy curve as a function of LLC allocation
(Ei (wi)) for each core i , as presented in lines 11 to 14.

The explained process implicitly sets the amount of slack to be generated/consumed in advance
for all possible LLC allocations to each core before exploring different partitionings of the LLC. It
potentially buys more slack for larger allocations and consumes more slack for smaller allocations.
As shown in Section 2, the energy curves for different slack targets converge toward larger LLC
allocations (see Figure 1(b)). Therefore, given a certain energy budget, a larger amount of slack
can potentially be generated as the allocation increases.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:9

3.4 Global Optimization

Once the energy curves {Ei (wi)} are available for all cores, the last part of the heuristic (Step-3

in Figure 2(b)) is an optimization algorithm that finds an allocation V = {wi } of LLC partitions
that minimizes the sum of energy values over all cores. For this purpose, we use the approach
presented in Algorithm 2. The “Reduce” function at lines 1 to 7 reduces a pair of energy curves
(x and y) into one (xy) by finding the minimum total energy (Exy) for different allocations to that
pair (wxy). It also stores the corresponding allocation vector (Vxy) as a function ofwxy , for all cores
that belong to the pair. This function is used recursively at lines 8 to 12 until two curves are left
(line 13). The optimum LLC allocationV ∗ is found at lines 14 to 15 that minimizes the sum of two
remaining energy values such that the total allocation equals the LLC size. This process requires
N − 1 reductions for an N core system. A similar optimization approach has been previously used
in [14, 30–32].

3.5 Analytical Modeling

The proposed RM algorithm requires an estimation of performance and energy for a range of
resource configurations. We assume several hardware PMCs that provide online measurement
results for different performance and power components, which are explained in more detail in the
rest of this section. Thus, accurate measurements are available for the past RM intervals. However,
the RM needs a prediction for the upcoming interval for several configurations that may not have
been used before.

Based on a simplified assumption that the program behavior does not change in the upcoming
interval, analytical models are used to estimate the performance and energy difference between
two resource configurations: (1) a target configurationCt = (mt , ft ,wt), where m, f, and w refer to
the core size, frequency, and LLC allocation, respectively; and (2) the configuration used during an
earlier interval, which we call a sampled configuration Cs = (ms , fs ,ws) for which measurement
results are available. Hence, the execution time (T) of the upcoming interval usingCt is calculated
as:

T (Ct) =

(
T0,s ×

D (ms)

D (mt)
+TBP,s +TCache,s

)
× fs

ft
+
M (wt)

M (ws)
×Tmem,s (3)

T0,s = Ts −TBP,s −Tcache,s −Tmem,s (4)

Here, the execution time is broken down into three main components. First, T0,s corresponds
to the cycles spent on processing instructions during the sampled interval with Cs . It is calcu-
lated by subtracting the stall time due to branch prediction (TBP,s), cache accesses (Tcache,s), and
memory accesses (Tmem,s) from the total execution time of the sampled interval (Ts), as shown in
Equation (4). This component is scaled with the inverse ratio of the instruction dispatch width,
denoted by D (m). With a fixed core size, and when the sizes are the same, this ratio turns into one.
The second component is the sum of TBP,s and Tcache,s , which is affected by the core frequency
similar to T0,s . Hence, these components are scaled with the inverse ratio of the core frequency.
The last component is the memory access time (Tmem,s). We simply scale this component with the
number of LLC load misses, denoted by M (w) for LLC allocation w . In order to estimate M (w) for
any w , we assume an Auxiliary Tag Directory (ATD), proposed by Qureshi and Patt [38], for each
core in the system. The ATD emulates the operation of the main tag directory to detect whether
each memory request hits in any recency position, given the full cache size. It includes a hit counter
for each recency position as well as a miss counter. The number of misses with w cache ways is
calculated as the total number of hits in recency positions greater than w , plus the number of
ATD misses. In addition to the ATD, PMCs are needed that count the number of cycles spent on
computation, as well as the stall cycles due to branch prediction, cache, and memory accesses.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:10 M. Nejat et al.

After estimating the performance for the target configurationCt , an energy value can be calcu-
lated as follows:

E (Ct) =

[
PCor eStatic (mt , ft) + PCor eDyn,s ×

V (ft)2

V (fs)2

]
×T (Ct) + (MAs + DM (wt ,ws)) × emem

(5)

This estimation is focused on the energy components that are affected when changing the re-
sources considered in this study. The first component is the static core power (PCor eStatic), which
can be measured offline for different core sizes and VFs. The second component is calculated by
scaling the dynamic core power during the sampled interval (PCor eDyn,s), with the square of volt-
age ratio corresponding to core frequencies in Ct and Cs . We assume the availability of measure-
ment tools that provide an online estimation of the total core power. PCor eDyn,s is derived by
subtracting the static power (PCor eStatic (ms , fs)) from this value. It should be noted that this part
of the formula is simplified by neglecting the effect of core resizing on PCor eDyn,s , which can be
a source of modeling error. We explain later how we mitigate this problem. The total core power
is then multiplied by the execution time derived from Equation (3) to estimate the core energy.
Finally, the energy of memory accesses is added to the result. In this last component, MAs is the
total number of memory accesses during the sampled interval,DM (wt ,ws) is the difference in LLC
misses betweenwt andws , derived from the ATD, and emem is the average energy of a single mem-
ory access. Hence, in addition to the previous PMCs, we assume a counter for the total number of
memory accesses.

These performance and energy models are based on simplifying assumptions that can lead to
modeling errors that affect both QoS and energy savings. However, as they are designed to capture
the difference between two configurations,Ct andCs , the error reduces if these configurations are
closer. For example, if the core sizes in both configurations are the same or the difference between
LLC allocations is small, the accuracy of the models improves. Based on this fact, we have designed
a dynamic sampling technique to mitigate the problem of modeling errors, which is presented in
Section 3.6.

3.6 Phase Detection and Sampling

As explained in Section 3.5, modeling accuracy can be improved by reducing the difference be-
tween the target and the sampled configurations. This can be done by keeping a record of the
measurement results over the past RM intervals as a sample set and finding the sample with the
closest configuration for each modeling target. This way, modeling accuracy improves dynamically
as the application progresses and more samples are collected.

However, the program behavior during an earlier interval can be substantially different from
the current interval, which must be accounted for when implementing this sampling approach.
The entire execution of each program can be clustered into different program phases, which is the
topic of many previous studies. Sherwood et al. [43] present a low overhead mechanism to capture,
classify, and predict phase-based program behavior during runtime. It analyzes the program basic
block information captured by the program-counter value of each branch instruction along with
the number of instructions executed since the last branch, which indicates the weight of that basic
block. Using a hash function, different blocks (branches) are mapped into a limited number of
buckets. During an execution interval, the accumulated weight of all buckets is counted, which
together form a vector called a footprint. At each interval, the calculated footprint is compared
with the past footprints stored in a table. If the Manhattan distance between two footprints is
smaller than a threshold, it is classified as the same program phase. Otherwise, a new phase ID is

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:11

created for this interval. We adopt this phase detection mechanism as depicted in Figure 2(b) at
the beginning of Step-1.

After detecting the program phase during the past interval, the sampling mechanism can store
the measurement results in the “Sampling Table” (see Figure 2(b)). This table has an entry for every
combination of program phase (Ph), core size (m), and LLC allocation (w). There is no need for sam-
pling different core frequencies, as it can be modeled with sufficient accuracy. During Check/Update

Sampling Table, if the past interval does not already have a corresponding entry in the table, a new
entry is added. Each entry contains the core VF during sampling as well as a set of statistics re-
quired for modeling,T0,s , (TBP,s+Tcache,s), andTmem,s for performance modeling (see Equation (3))
plus PCor eDyn,s and MAs for energy modeling (see Equation (5)).

Once the sampling table is updated based on the measurements during the past interval, the an-
alytical models can be used with the available statistics in this table. For any target configuration
Ct , the sampling table is explored for an entry with the same program phase as the past interval
and the closest core size and LLC allocation. It should be noted that the RM simply predicts that
the same program phase will continue in the upcoming interval. At the end of the first RM interval,
the table includes only one entry that contains the measurement results for the first interval with
the default baseline configuration. However, as the program execution progresses, more entries
are collected in the table whenever the RM selects a new core size or LLC allocation or the pro-
gram enters a new phase. This way, the modeling accuracy gradually improves across the resource
configuration space. We refer to this sampling mode as Passive since it does not interfere with the
normal operation of the RM, explained in Sections 3.3 and 3.4.

However, the proposed sampling technique supports another operating mode called Active sam-
pling. In this mode, a specific configuration can be requested from the RM for a particular core
whenever a new program phase is detected. The RM then forces that configuration for the upcom-
ing interval and excludes that core from the second and third steps, that is, slack management and
global optimization. This way, we can ensure that the RM finds a matching entry in the sampling
table as soon as possible for that configuration. This provides a means to selectively improve the
modeling accuracy for specific configurations. For example, the baseline configuration (Cbase) is
especially important since it is used as the performance target. Therefore, it must be modeled with
higher accuracy to reduce the effect of modeling errors on QoS. As depicted in Figure 2(b),Cbase is
modeled early during Step-1 because it is needed for estimating performance slack with different
configurations during Step-2. In this study, we used only active sampling for the baseline configu-
ration to minimize interference with the normal operation of the RM. We leave the evaluation of
active sampling for other configurations for future work.

3.7 Hardware Support and Overheads

The proposed scheme imposes instruction count (IC) overheads for executing the RM algorithms
and analytical modeling at each invocation. Additionally, it requires hardware support that im-
poses area, energy, and runtime overheads as well as memory requirements. In the rest of this
section, we discuss each component in detail.

DVFS: Changing the core VF is a source of runtime overhead because of the large electrical
capacitance of the supply voltage network of a processor core. Here, we assume 15 μs and 3 μJ
DVFS overheads based on the pessimistic estimations reported in [34]. The simulation framework
discussed in Section 4 accounts for these overheads at each DVFS decision on each core.

Core Scaling: The adaptive core architecture explained in Section 3.2 requires additional logic
in each core to dynamically activate/deactivate sections of different components. Such reconfig-
uration can be implemented with low overhead according to previous studies on this topic. For

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:12 M. Nejat et al.

example, an implementation of adaptive issue queue was proposed in [6], with less than 3% gate
count overhead. A similar estimation was reported in [24], with a 32-nm technology node. A core
scaling operation can take up to hundreds of cycles. This is a negligible value compared with an
RM interval of 100-M instructions, which is assumed in our experimental methodology.

LLC Partitioning: In order to change the partitioning of cache ways, we need to update a bit-mask
per core that is N ×W bits in total, where N is the number of cores andW is the number of ways in
the LLC. Changing the partition sizes can lead to overheads associated with invalidation and write-
backs of many cache lines. We reduce this overhead by delegating the enforcement of partition
sizes to the replacement policy, thereby resulting in a gradual change over a relatively long interval
(in this case, 100-M instructions). Furthermore, memory-intensive applications that benefit from
such additional cache capacity allocation typically have a high MPKI value. Invalidations and write-
backs impose little additional overheads on such applications.

Phase Detection: The phase detection mechanism explained in Section 3.6 requires additional
hardware for each core. Based on the details provided in [43], we estimate that 32 counters with
28-bit size are needed as well as 10 registers with 24-B size for storing the footprint of each phase.
This leads to a 352-B overhead plus the required logic. The runtime overhead includes a hash
function and updating a counter at each branch instruction as well as about 640 operations at each
RM interval. This is negligible compared with an interval size with 100-M instructions.

Performance Monitoring Counters (PMCs): As explained in Section 3.5, several PMCs are needed
for the analytical models. That includes the total execution time, the stall time due to branch
prediction, cache accesses, and memory accesses, as well as the total number of memory accesses.
A mechanism is also needed for online measurement of total core power. Furthermore, it requires
an ATD per core that operates in parallel to the main LLC. The area overhead is estimated to be
less than 0.2% for a baseline 1-MiB cache in [38]. As these counters are read once at the end of
each RM interval, the runtime and energy overheads are negligible.

Sampling Table: Each entry of the proposed sampling table in this work stores 5 statistics (see
Section 3.6), one VF level, and a three-element key. This requires less than 10 B of memory per
entry. Assuming up to 10 phases, 2 core sizes, and 32 possible LLC allocations, this table requires
less than 6.25 KiB of memory per core.

Algorithm: The proposed scheme requires the execution of additional instructions to run the
mentioned algorithms and analytical models. This IC overhead is added for each invocation at
the end of the RM intervals. To estimate this overhead, we implemented the algorithm in C and
compiled different versions for a range of core counts and when considering both fixed and adap-
tive core architectures. We used the Linux perf tool for this measurement. In addition to CSM, we
have implemented the algorithm proposed in the previous work [31], which we refer to as C3P.
We also extended C3P with a simple local slack management (LSM) algorithm for each core. These
schemes will be discussed in detail in Section 4.5. Here, we provide the overhead estimations as a
percentage of 100-M instruction intervals in Figure 3. This figure shows that the overheads remain
below 1% and 0.5% up to 32 cores, assuming an adaptive and a fixed core architecture, respectively.
It also shows that the overhead increment compared with the previous scheme is marginal. These
overhead values are accounted for in the simulation results for every invocation of RM.

3.8 Scalability

Most of the software and hardware components described in this section — such as Algorithm 1,
resource control knobs, and the analytical modeling framework — are associated with each core

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:13

Fig. 3. IC overheads of RM schemes for different
core counts.

Fig. 4. Overview of the RM simulator [30, 31].

independently. Therefore, the per-core overhead does not increase for these components with a
larger core count. The only component that extends to all cores is the global optimization described
in Section 3.4. This component also scales linearly with the number of cores. This is evident in the
overhead estimations reported in Figure 3 for up to 32 cores.

There are implementation details that must be adapted to systems with a large number of cores.
For example, partitioning of cache ways will not provide sufficient granularity for such systems.
In that case, other techniques, such as cache coloring [27] or Vantage [39], would be more suitable.
Consequently, the analytical modeling framework must be adapted accordingly.

4 EXPERIMENTAL METHODOLOGY

In this section, we first describe the simulation framework used in this study. Next, the details of
the base architecture model are presented, followed by the benchmarks and workloads. Finally, the
evaluation metrics are introduced as well as the RM schemes we quantitatively compare against.

4.1 Simulation Framework

We need a simulation framework that captures the effect of the proposed RM scheme on the run-
time behavior of multiple benchmarks in a multicore system. Particularly, it must be able to sim-
ulate the program phase changes on different cores when running the benchmarks to completion.
Therefore, we use an in-house simulator that comprises three steps.

First, SimPoint [42] analysis is performed on benchmarks. It breaks down the full execution into
consecutive intervals with a fixed instruction count, which corresponds to the RM intervals. In this
study, we have selected intervals with 100-M instructions that strikes a balanced trade-off between
resource management overhead and opportunities to track dynamic program behavior and phase
changes. SimPoint clusters all intervals into a number of phases with similar characteristics, in this
case, up to 10. Finally, it selects a representative interval from each phase for detailed simulation.
It also generates a trace, called a phase trace, that lists the phase numbers corresponding to each
interval in program order.

Next, the representative intervals of the phases for each application are simulated for the entire
range of resource configurations. Each simulation consists of a 100-M instruction warm-up period
followed by a 100-M instruction period of detailed simulation, using Sniper 7.2 [8] with McPAT [26].
The results of these simulations are collected in a database that is needed for the next step.

Finally, an in-house RM simulator uses the phase trace from the first step together with the
simulation results database from the second step to create a proxy of a full benchmark execution
when using a particular RM. The RM is invoked on each core whenever it completes one interval.
To elaborate on this, we use a simplified example in Figure 4. There are two applications in this
example that start from interval I1, with the baseline resource configuration. The RM simulator

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:14 M. Nejat et al.

Table 1. Base Architecture Model

DVFS Core Global
Frequency 1–3.25 GHz (10

Steps)
2 GHz

Voltage 0.8–1.25 V (10
Steps)

1 V

Core out-of-order, branch predictor: Pentium
M type

L M
Issue Width 8 4

Reorder Buffer 256 128
Reservation Station 128 64
Load Store Queue 64 32

Cache 64 B blocks, LRU replacement
Private Shared

Level L1-I/L1-D/L2 L3
Size 32/32/256 KiB 2 MiB × cores

Associativity 4/4/8 8 × cores
DVFS domain core global

Partition Range
(4-core)

NA 2 way–32 way (256
KiB–8 MiB)

DRAM 100 ns base latency, contention queue
model, 5 GB/s bandwidth per core

Table 2. Application Categories

Cache Sensitive (CS) Cache Insensitive (CI)
astar, bzip2, gcc, mcf, omnetpp,

soplex, sphinx3, xalancbmk
GemsFDTD, cactusADM,

dealII, gamess, gobmk,
gromacs, h264ref, hmmer, lbm,

leslie3d, libquantum, milc,
namd, perlbench, povray,

tonto, wrf, zeusmp

uses the database to calculate the first event (t1), that is, the earliest time to the end of one interval
in any application. After updating the runtime statistics, it invokes the RM to decide the new
system configuration. The same process is repeated for the following events (t2, t3, . . .). The RM
overheads are also added to the simulation statistics at each invocation.

4.2 Base Architecture Model

Table 1 summarizes the base architecture model used in this study. We have considered two core
sizes: medium (M) and large (L). The L3 cache configuration in this table is reported per each core.
Furthermore, we assume a fixed DRAM bandwidth that is equally partitioned among the cores.

4.3 Workloads

We use SPEC CPU2006 benchmarks in this study. These benchmarks are divided into two cate-
gories based on cache sensitivity as follows. An application is counted as cache sensitive (CS) if
both of the following conditions are true: (1) The average MPKI on the baseline LLC size (2 MiB)
is greater than one. (2) When changing the LLC size around the baseline (In this case: 1-MiB →
3-MiB), the average MPKI changes by more than 20% relative to the baseline MPKI. Table 2 lists the
benchmarks that belong to each category. This table does not include a few benchmarks (bwaves,
calculix, and sjeng) because of unresolved errors during Sniper+McPAT simulations for some of
the program phases.

We consider two workload scenarios. As we are mostly interested in the CS applications, in
Scenario-1, different N-core workloads are generated by randomly selecting from the CS applica-
tions. This leads to high contention in LLC. The Python function random.choice is used for this
purpose. However, for a more comprehensive evaluation, in Scenario-2, all applications in Table 2
from both categories are used to create the random workloads. We have studied 2-, 4-, 8-, and
16-core workloads to evaluate the scalability of the proposed scheme. However, due to space limi-
tations, we do not present the results for 2-core workloads. The workloads are listed in Tables 3–5.
Due to the longer simulation time, the number of workloads is reduced for systems with a larger
core count.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:15

Table 3. 4-Core Workloads

Scenario 1
Wrk1 Wrk2 Wrk3 Wrk4 Wrk5 Wrk6 Wrk7 Wrk8 Wrk9 Wrk10
mcf,

sphinx3,
astar,

omnetpp

mcf, mcf,
sphinx3,

astar

soplex, mcf,
mcf, mcf

sphinx3,
soplex,

omnetpp,
bzip2

gcc,
sphinx3,

xalancbmk,
sphinx3

omnetpp,
astar,

sphinx3,
sphinx3

soplex,
xalancbmk,

sphinx3,
mcf

bzip2, gcc,
gcc, mcf

gcc, astar,
sphinx3,
sphinx3

omnetpp,
astar,

xalancbmk,
soplex

Scenario 2
Wrk11 Wrk12 Wrk13 Wrk14 Wrk15 Wrk16 Wrk17 Wrk18 Wrk19 Wrk20
dealII,
astar,

xalancbmk,
gobmk

gromacs,
tonto,

gromacs,
xalancbmk

zeusmp,
xalancbmk,
milc, cactu-

sADM

perlbench,
wrf, tonto,
perlbench

bzip2,
GemsFDTD,

libquan-
tum,
milc

sphinx3,
hmmer,

xalancbmk,
gcc

h264ref,
bzip2,

soplex, mcf

sphinx3,
gamess,

perlbench,
omnetpp

gobmk,
hmmer,

wrf, povray

leslie3d,
namd, lbm,

mcf

Table 4. 8-Core Workloads

Scenario 1
Wrk1 Wrk2 Wrk3 Wrk4 Wrk5

xalancbmk, astar, soplex,
xalancbmk, mcf,

xalancbmk, soplex, astar

sphinx3, bzip2, gcc, astar,
gcc, astar, gcc, astar

omnetpp, sphinx3,
xalancbmk, astar,

omnetpp, soplex, soplex,
bzip2

omnetpp, astar, mcf,
bzip2, soplex, omnetpp,

omnetpp, sphinx3

mcf, mcf, gcc, gcc, bzip2,
omnetpp, gcc, gcc

Scenario 2
Wrk6 Wrk7 Wrk8 Wrk9 Wrk10

omnetpp, mcf,
xalancbmk, lbm, bzip2,

soplex, leslie3d,
libquantum

cactusADM, namd,
cactusADM, sphinx3,

cactusADM, milc,
zeusmp, lbm

GemsFDTD, soplex, wrf,
leslie3d, gcc, astar, bzip2,

wrf

zeusmp, omnetpp, dealII,
gromacs, hmmer, h264ref,

gobmk, GemsFDTD

gamess, libquantum,
povray, gromacs,

perlbench, sphinx3,
tonto, sphinx3

Table 5. 16-Core Workloads

Scenario 1
Wrk1 Wrk2 Wrk3 Wrk4

xalancbmk, soplex, bzip2,
sphinx3, astar, astar, astar, gcc,

xalancbmk, sphinx3, xalancbmk,
mcf, mcf, astar, gcc, mcf

bzip2, sphinx3, xalancbmk,
omnetpp, bzip2, gcc, soplex,

bzip2, bzip2, soplex, xalancbmk,
bzip2, omnetpp, bzip2, mcf, mcf

omnetpp, mcf, omnetpp,
xalancbmk, mcf, mcf, mcf,

soplex, bzip2, bzip2, mcf, astar,
soplex, astar, astar, omnetpp

mcf, bzip2, sphinx3, astar, gcc,
soplex, astar, omnetpp, mcf, gcc,
soplex, astar, astar, gcc, mcf, mcf

Scenario 2
Wrk5 Wrk6 Wrk7 Wrk8

hmmer, dealII, gromacs, astar,
libquantum, dealII, zeusmp,

libquantum, perlbench,
xalancbmk, cactusADM,

perlbench, cactusADM, bzip2,
xalancbmk, omnetpp

omnetpp, tonto, tonto, milc,
gromacs, bzip2, cactusADM,

gobmk, lbm, xalancbmk, hmmer,
namd, gobmk, bzip2, gamess,

gobmk

sphinx3, milc, namd, astar,
GemsFDTD, soplex, soplex,

gobmk, cactusADM, h264ref,
tonto, xalancbmk, libquantum,

perlbench, gcc, cactusADM

cactusADM, tonto, gcc,
xalancbmk, hmmer, soplex,

gromacs, gcc, zeusmp,
perlbench, h264ref, perlbench,

wrf, hmmer, lbm, h264ref

4.4 Evaluation Metrics

In our experiments, we assume a fixed workload with no process migration or interrupt. Applica-
tions are restarted every time they finish one round of execution until the longest running appli-
cation finishes its execution.

4.4.1 QoS. We assume that a QoS window is equivalent to one round of execution for each
benchmark. Hence, the QoS window sizes may vary considerably from one application to another
in each workload. To evaluate the QoS for a particular application, the execution time of each
round is compared with the baseline execution time.

4.4.2 Energy Saving. We consider two types of energy components: (1) the energy consumption
of one application, including the total core energy (with its private L1 and L2 cache) plus the dy-
namic energy of LLC, network-on-chip (NoC), and memory accesses, measured for the execution

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:16 M. Nejat et al.

of that application; and (2) the static energy of uncore components, LLC and NoC, which is appli-
cation independent. In order to give equal weight to all applications, the first energy component
is measured during the execution of a certain number of instructions on every core. This number
is set at the beginning of the simulation according to the longest application in the workload. The
second component is measured for the entire simulation. The sum of these values constitutes the
total energy consumption of the system. The energy-saving is calculated by comparing this value
with that of the baseline simulation, which keeps the baseline configuration the entire time.

4.5 Evaluated RM Algorithms

We have simulated and analyzed several RM approaches with different assumptions and settings.
In Section 5, we compare the results for the following RM schemes:

• C3P: We use the RM presented in the state-of-the-art [31] for comparison. We refer to this
scheme as “Coordinated Core Configuration and Cache Partitioning” (C3P). Given a perfor-
mance constraint in terms of average time per instruction (TPI) with the baseline configura-
tion for each core, it attempts to minimize energy by finding the best system configuration at
each RM interval. Hence, C3P lacks any form of slack management. It uses the same resource
control knobs as described in Section 3.2.
• C3P+LSM: We extend C3P with a simple form of slack management that runs independently

on each core. This means that it does not affect the cache partitioning decisions made at a
global level. Hence, it is called Local Slack Management (LSM), which operates as follows.
After C3P decides a new system configuration for the upcoming interval, the LSM algorithm
for each core re-evaluates the decision on core settings (VF and size) before applying the
new system configuration. If sufficient performance slack is accumulated during previous
intervals, it is consumed by reducing the core size/VF to save more energy.
• CSM: The proposed Cooperative Slack Management approach.

In the case of slack management (CSM & C3P+LSM), we use a lower bound on slack deposit
equivalent to –0.1% of the current time at each invocation of RM compared with the beginning
of the QoS window, that is, one round of benchmark execution. This creates a safe leeway for
slack management to avoid considerable QoS violations at any point in time (for more details, see
Section 3.3).

For a fair comparison, all RM algorithms provided earlier use the same analytical models and
sampling framework presented in Sections 3.5 and 3.6. However, we also evaluate the potential
of these RM schemes in an ideal scenario with no modeling errors or overheads. Therefore, the
experiments are conducted with two sets of assumptions:

• Idealistic: Using perfect models that predict performance and energy of the upcoming in-
terval for any configuration with no error, and assuming zero overheads.
• Realistic: Using the modeling framework explained in Sections 3.5 and 3.6, and counting

the overheads.

5 EXPERIMENTAL RESULTS

This section evaluates the energy savings obtained by CSM in comparison with other RM schemes
listed in the previous section. We start by evaluating the RM schemes with different levels of
performance targets as well as a system with a fixed core architecture in Section 5.1. Next, the
scalability to larger core counts is evaluated in Section 5.2. Finally, the sensitivity of CSM to differ-
ent parameters, including the upper and lower bound on slack deposit and the energy budget (see
Algorithm 1) is analyzed in Section 5.3.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:17

Fig. 5. Energy savings with the high-performance target for different 4-core workload scenarios and model-
ing assumptions.

5.1 Different Baseline Configurations

To evaluate the energy savings with different levels of performance targets, we have studied two
baseline core configurations in addition to a system with a fixed core architecture, as follows:

• High-Performance: The baseline configuration comprises a large core size and the highest
frequency level (VF10) on each core, while both core sizes are supported (see Table 1).
• Mid-range: The baseline configuration comprises a medium core size and a mid-range fre-

quency level (VF5), while both core sizes are supported.
• Fixed-Core Architecture: The system supports only the large core size while the highest

VF level (VF10) is used as the baseline target.

Here, we present the experimental results for 4-core workloads with the two scenarios described
in the previous section. Scenario-1 includes only cache-sensitive (CS) applications to model high
contention in LLC. Scenario-2, on the other hand, considers all applications for a more compre-
hensive evaluation. As discussed earlier, the experiments are conducted with both Idealistic and
Realistic assumptions. The former simulates perfect models with no error and ignores the over-
heads, while the latter uses the proposed modeling framework and accounts for the overheads.
However, based on the analysis in Section 3.7, the effect of overheads is negligible, meaning that a
comparison of the two establishes the potential gains from further improvements of the modeling
accuracy.

5.1.1 High Performance Target. Figure 5 shows the energy-saving results with the high-
performance target for different 4-core workload scenarios and modeling assumptions. The X-axis
lists the workloads according to Table 3, while the Y-axis shows the energy savings. The three sets
of bars from left to right represent C3P (green), C3P+LSM (blue), and CSM (purple) RM schemes.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:18 M. Nejat et al.

The percentage of energy-saving is also presented on top of each bar in black. As explained in
Section 4.4, the QoS of each application is evaluated based on the execution time ratio compared
with the baseline. If, in any case, this ratio is greater than 101%, that is, more than 1% violation
of the target, the maximum percentage of violation in the workload is shown on top of the corre-
sponding bar in parentheses with a red color.

We now analyze the results in Figure 5. First, in workload Scenario-1, C3P does not provide a con-
siderable improvement compared with the baseline. This is because when every application in the
system is CS, the baseline LLC partitioning cannot be changed without causing any performance
degradation, which is not allowed in C3P. Hence, the RM has no choice but to keep the baseline
system configuration in this scenario. However, there are rare occasions during runtime when a
CS application enters a short cache insensitive (CI) phase, which allows a temporary improvement
in LLC partitioning and small energy savings. On the other hand, in Scenario-2, CI applications
exist that can give up their baseline share to enable more energy-efficient configurations. We can
see these cases in Wrk13, Wrk15, Wrk18, Wrk19, and Wrk20 in Figure 5(b), which results in an
average 6.6% and up to 21.6% potential energy saving. With the realistic models, these numbers
reduce to 4.8% and 14.9%, respectively, in Figure 5(d). Furthermore, modeling error leads to small
QoS violations with a maximum of 2.6%, in Wrk19.

As for C3P+LSM, it provides a small improvement on top of C3P. Since C3P is limited to config-
urations with performance greater than or equal to the baseline target, it usually creates a small
performance slack as a by-product, due to the limited range and granularity of resources. This slack
can be accumulated over several intervals and consumed by LSM to save more energy. While the
energy savings are still negligible for Scenario-1, C3P+LSM can potentially save up to 24.6% and
on average 8% energy, in Figure 5(b). Using the realistic models, these values reduce to 17.5% and
6.4% respectively, in Figure 5(d). In this case, the modeling error can cause a maximum of 2.8% QoS
violation in Wrk19.

CSM achieves significantly larger energy savings compared with both C3P and C3P+LSM. Even
in Scenario-1, CSM can potentially improve the system configuration without any QoS violation.
Unlike the other schemes, CSM takes advantage of small opportunities to generate more slack. As
soon as sufficient slack is available for one application, it can afford to give up some of its LLC
share to other CS applications. This creates more opportunities to generate slack, at a relatively
low energy cost, on the applications with an increased LLC share. This creates a positive feed-
back loop that turns small opportunities into significant improvements over the long run. CSM
can potentially save up to 36.7% (Wrk5) and, on average, 22.4% (Scenario-1) and 16.8% (Scenario-2)
energy. The modeling error can reduce these values to 34.9% (Wrk5), 16.5% (Scenario-1), and 10.1%
(Scenario-2), respectively. Furthermore, it can lead to a maximum QoS violation of 3.1% in Wrk16.
In a couple of cases (Wrk1 and Wrk7), the modeling error entirely cancels the energy savings with
CSM. When these errors cause a reduction of SD below the acceptable lower bound (Equation (2)),
if CSM cannot achieve sufficient performance boost to recover, it preserves the baseline configu-
ration to avoid considerable QoS violations.

There are a few anomalies in which modeling error leads to an improvement in energy saving.
This includes Wrk2 and Wrk13 with C3P+LSM, as well as Wrk3 and Wrk9 with CSM. Due to
modeling error, the RM may select a configuration that violates the performance constraint but
saves more energy. However, the resulting QoS violations in these cases are negligible (less than
1%). This shows the potential for a trade-off between additional energy savings and a controlled
relaxation of the performance constraints.

Modeling error does not impact all RM schemes similarly. We can see that the resulting degra-
dation in energy savings can be larger for CSM compared with the other two schemes. This is be-
cause CSM speculatively attempts to generate slack at some energy cost to enable potential energy

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:19

Fig. 6. Energy savings with the mid-range performance target for different 4-core workload scenarios and
modeling assumptions.

savings in the future. Hence, a wrong decision due to modeling error can lead to a large energy
cost. However, this can be controlled by adjusting the energy budget as explained in Section 3.3.

5.1.2 Mid-range Performance Target. Figure 6 shows the energy-saving results with a mid-
range performance target. With this baseline, the large core size and higher VF levels are available
to increase performance beyond the baseline target. This is similar to the baseline assumptions in
[31].

We now analyze the results in Figure 6. First, energy savings with the three RM algorithms
are comparable, on average. Unlike the high-performance target, in this case, C3P can potentially
save up to 25% and, on average, 19.7% in Scenario-1. The reason for such an improvement is the
availability of a larger core size and higher core frequency levels compared with the mid-range
baseline. Instead of relying on slack, these configurations can be used to provide the required
performance boost to relax the constraints on LLC partitioning. Slack management, with both
C3P+LSM and CSM, can improve energy savings with a maximum of 33.7% and 35.5% and, on
average, 21.1% and 23%, respectively. We see a similar trend in Scenario-2. The average energy
savings for C3P, C3P+LSM, and CSM are 16.1%, 17.7%, and 18.2%, respectively.

The effect of modeling error reduces the average energy savings by a few percentage points for
each RM. With the realistic models, C3P, C3P+LSM, and CSM save, on average, 17.3%, 19.8%, and
20.1% in Scenario-1 and 13.2%, 13.7%, and 12.5% in Scenario-2, respectively. However, the energy
savings with CSM can be more sensitive to modeling error because of the energy costs of specula-
tive slack generation. In Wrk14 and Wrk19, this effect causes a 0.2% and 2.8% increase in system
energy with CSM. This can be controlled by adjusting the energy budget in the CSM algorithm.
However, in the case of Wrk19, even C3P+LSM that does not speculatively generate slack increases
system energy by 1%. In these cases, for one benchmark (wrf), the modeling error has led to a false

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:20 M. Nejat et al.

Fig. 7. Energy savings with the high-performance target and a fixed-core architecture for different 4-core
workload scenarios and modeling assumptions.

negative for meeting the lower bound on SD (Equation (2)). Therefore, a faster configuration with
higher energy is selected.

There are some QoS violations due to limited modeling accuracy. Compared with the high-
performance target, the maximum violation has increased to 12.3% in Wrk20 with C3P, for lbm.
The next largest violations are 8.5% in Wrk7 and 7.4% in Wrk4 using C3P+LSM. Both occurred for
sphinx3. The main reason for such violations is an overestimation of the performance improvement
by increasing the core size. To alleviate this issue, the modeling accuracy can be further improved
by increasing the configurations that are sampled with the active mode of the proposed hybrid
sampling technique (for more details, see Section 3.6).

There is an anomaly in Wrk13 in Figure 6(b) that shows a small degradation in energy savings
with slack management (C3P+LSM and CSM) compared with C3P while using perfect models. This
is because changing the resource configurations affects the progress of applications with respect
to each other. This can change the order of program phases that appear on different cores at the
same time. If this shift causes additional overlap of two cache-sensitive phases, it creates more
contention in LLC and reduces the improvements with LLC partitioning.

5.1.3 Fixed-Core Architecture. As the proposed slack management framework is not fundamen-
tally dependent on an adaptive core architecture, we decided to perform a similar evaluation with
a fixed-core size. Hence, the resource control knobs, in this case, reduce to per-core DVFS and
LLC partitioning. We assume the same baseline setting as the high-performance target. Figure 7
shows the results, which are very similar to the ones in Section 5.1.1. This is due to the fact that
even with an adaptive architecture, the smaller core size is not likely to be selected under a high-
performance target. However, when comparing the CSM results in Figures 5 and 7, we can see
some improvement in energy savings using a fixed-core architecture. For example, the maximum

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:21

Fig. 8. Energy savings with the high-performance target for different 8-core workload scenarios and model-
ing assumptions.

potential energy savings increases from 36.7% to 41.1% in Wrk5, or from 25.4% to 32.6% in Wrk9.
This is because there are different ways to use performance slack to save energy. Downsizing the
core can linearly reduce its energy while reducing VF has a quadratic effect. Improving the LLC
partitioning can also dramatically reduce system energy, especially when applications are mem-
ory intensive (Scenario-1). With a fixed core size, CSM can utilize slack only with DVFS and LLC
partitioning, which can potentially save a larger amount of energy compared with core resizing.

5.2 Scalability

In order to study the scalability of the proposed approach, we conducted experiments similar to the
high-performance target (Section 5.1.1) for the 8-core and 16-core workloads presented in Tables 4
and 5.

5.2.1 8-Core System. The 8-core simulation results are demonstrated in Figure 8, which show
an overall trend similar to the 4-core experiments. CSM outperforms C3P and C3P+LSM in most
cases and potentially saves up to 27.3% and, on average, 17% in Scenario-1 and 16% in Scenario-2.
With realistic models, these values reduce to 26.4%, 16.2%, and 13.2%, respectively. Modeling errors
also lead to a maximum QoS violation of 10.6% in Wrk9, for hmmer. The next largest violation is
2.1% in Wrk8. While C3P and C3P+LSM are not effective in Scenario-1, they can potentially save, on
average, 12.5% and 13.9% energy in Scenario-2, respectively. Modeling errors reduce these values
to 7.1% and 9.4%, respectively, while causing a maximum QoS violation of 1.5% for C3P and 2.1%
for C3P+LSM.

Compared with 4-core simulations, the average results with the three RM schemes are closer in
workload Scenario-2 due to the presence of more CI applications in the 8-core workloads. There-
fore, C3P can find more unused cache space to optimize the LLC partitioning and save energy.

There are two anomalies in the results. First, the energy-saving with CSM is slightly smaller com-
pared with C3P and C3P+LSM in Wrk7 in the absence of modeling errors (Figure 8(b)). The same
explanation for the anomaly in Section 5.1.2 applies here. In short, there is a chance that resource
management decisions may cause more cache contention by shifting the timing of program phases
in different cores. Second, C3P+LSM saves more energy with realistic models compared with ide-
alistic models in Wrk10. In this case, under the influence of modeling errors, the RM has selected
configurations with lower energy that violated the performance target by a maximum of 1.7%.

5.2.2 16-Core System. Figure 9 shows the 16-core simulation results. The overall trend is consis-
tent with 8-core and 4-core results, which demonstrates the scalability of the proposed approach.
CSM can potentially save up to 24.2% and, on average, 20.0% and 13.6% energy in Scenario-1 and

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:22 M. Nejat et al.

Fig. 9. Energy savings with the high-performance target for different 16-core workload scenarios and mod-
eling assumptions.

Scenario-2, respectively. Modeling errors reduce these values to 22.6%, 18.3%, and 10.5%, respec-
tively. A maximum QoS violation of 7.7% is caused by modeling errors in Wrk8. While C3P is not
effective in Scenario-1, it can potentially save up to 11.9% and, on average, 8.7% in Scenario-2 with
idealistic models. As explained earlier, this is due to the presence of CI applications that can give
up their cache allocation to CS applications. C3P+LSM slightly improves the energy savings com-
pared with C3P. For example, the average of idealistic results increases to 9.8% in Scenario-2. In
Wrk5 and Wrk7, modeling errors caused a small improvement in energy savings with C3P+LSM
compared with idealistic models. This is achieved at the cost of 1.8% and 2.6% QoS violations in
these workloads, respectively.

5.3 Sensitivity Analysis

There are a few predetermined parameters in CSM, including the lower and upper bounds on
SD, denoted by ϵ and SDthr , respectively, as well as the energy budget for generating additional
slack (Ebudдet). As explained in Section 3.3, ϵ determines a minimum constraint on SD to avoid
considerable QoS violations while SDthr prevents additional slack generation when the current SD
is already too large. These parameters are used to adjust the behavior of CSM based on conditions
such as the criticality of QoS targets. Here, we provide a quantitative analysis of the sensitivity of
energy-saving results to these parameters.

For this analysis, we focus on 4-core workloads with the high-performance target similar to
Section 5.1.1 and Idealistic assumptions. By isolating the effect of modeling errors, we can see a
more clear picture of the CSM behavior. According to our experiments, CSM shows negligible
sensitivity to SDthr , ranging from 5 ms to 2,000 ms. Therefore, we present experimental results for
ϵ and Ebudдet in Figure 10. For each workload, there are multiple bars that correspond to different
parameter values, as mentioned on top of the figure.

The bars in Figures 10(a) and 10(b) represent ϵ values ranging from 0% to –5% from left to right.
The data show a clear trade-off between energy savings and a relaxation in the QoS constraint.
By changing ϵ from 0% to –5%, the average energy savings improves from 20% to 28.5% and from
13.6% to 23.3% for workload Scenario-1 and Scenario-2, respectively. However, this can potentially
cause a QoS violation close to the ϵ value. As mentioned earlier, we use ϵ = −0.1% for the rest of
the experiments.

Unlike ϵ , sensitivity to Ebudдet does not follow a fixed trend, as illustrated in Figures 10(c)
and 10(d). In this case, we can see a sweet spot in the average results around Ebudдet = 6%. In-
creasing the energy budget can raise the SD, enabling more energy-saving opportunities in fu-
ture intervals. However, it imposes more energy costs for generating slack in the current interval.
The combination of these two effects leads to the behavior described earlier. The sweet spot is

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:23

Fig. 10. Sensitivity of energy savings to lower bound on SD (ϵ) and energy budget (Ebudдet) for generating
additional slack for different 4-core workload scenarios.

dependent on multiple factors, such as the workload characteristics and the performance targets.
In the rest of the experiments, we used Ebudдet = 6% except for the mid-range performance target
(Section 5.1.2), with Ebudдet = 0.8%. In that case, the sweet spot shifts to smaller values because of
the lower performance target. Based on this observation, we envision the potential for an upgraded
version of CSM that automatically adapts the Ebudдet value at runtime.

6 RELATED WORK

This section provides a brief overview of the related work. We start by discussing the related work
with respect to target resources. Next, we review different resource management approaches for
supporting QoS-constrained applications, followed by studies that considered some form of slack
management.

DVFS has been studied and used in numerous papers. For example, [11, 15, 20, 33, 44] used DVFS,
while considering applications with QoS constraints. Core adaptation is another resource control
knob that has been used, for example, in [18, 37, 40, 47] for QoS applications and in a more general
scope in [1, 2, 7, 12, 23, 24, 36]. In contrast to these resources that can be controlled independently
for a particular core, cache partitioning affects every core in the processor. This technique has
been used in many studies, including [9, 10, 13, 14, 21, 28–32, 35, 41, 45].

We focus on the resource management approaches that include cache partitioning for QoS-
constrained applications. Such applications typically require a guaranteed share of LLC. How-
ever, the initial allocation may not be utilized efficiently during runtime. To alleviate this prob-
lem, one line of research, including [10, 21, 25, 28, 35, 48], targeted for data centers, attempts to
reclaim excess resources for best-effort (BE) jobs when they are not fully utilized. Such an ap-
proach can be effective when a subset of applications do not have any performance constraints
and when the goal is to improve utilization or throughput. However, they are not designed for
energy efficiency. Increasing the performance beyond the QoS requirements can lead to excessive
energy consumption. In contrast, [33] proposed a QoS-aware task manager to improve energy ef-
ficiency in data centers. However, they did not study cache partitioning among QoS-constrained

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:24 M. Nejat et al.

applications. In another line of research [30–32], coordinated management of cache partitioning
with core resources (DVFS and microarchitecture scaling) is proposed to reduce energy consump-
tion while meeting the performance targets of all applications.

These studies did not consider the possibility of using slack to improve energy efficiency. Slack
is typically defined in a long-term scope when a processing task finishes earlier than its dead-
line, for example, in [3, 4]. In that case, it can be used to slow down subsequent tasks to save
energy. Thus, this form of slack is an application-dependent parameter. Furthermore, the problem
of cache partitioning among QoS-constrained applications is not considered in these works. In
an earlier study [9], a time-sharing approach was presented to improve cache partitioning while
maintaining QoS. In this approach, applications take turns in expanding and shrinking their base-
line cache partitions in order to achieve an overall improvement in throughput. This happens
only if the performance boost with an expanded cache partition is considerably higher compared
with the performance degradation with a shrunken partition. In contrast, management of perfor-
mance slack, as presented in this article, can improve cache partitioning to save processor energy
while continuously meeting the performance targets of all applications. This is achieved with the
help of core resources in generating/consuming short-term performance slack that is not con-
sidered in [9]. To the best of our knowledge, such an approach has never been studied in prior
work.

7 CONCLUDING REMARKS

When multiple QoS-constrained applications share a processor resource such as LLC, it may be
impossible to change the baseline LLC partitioning to improve energy efficiency without causing
any performance degradation. Previous work proposed coordinated management of core resources
such as VF or size of the microarchitectural components together with LLC partitioning to alleviate
this problem. However, continuously tracking a fixed performance target can considerably limit
the energy savings. Therefore, this article presents an alternative approach based on managing
short-term performance slack.

It first demonstrates that slack can be generated at a relatively low energy cost and consumed
later to save a larger amount of energy. Furthermore, it shows the possibility to transfer slack from
one application to another, which enables more opportunities to improve energy savings. Based
on these insights, an online resource management scheme, called Cooperative Slack Management
(CSM), is presented to reduce processor energy while respecting the QoS of all applications. CSM
is quantitatively evaluated against the previous approach and an extension with local slack man-
agement in several different scenarios. According to the evaluations, CSM can achieve substantial
energy savings, even in scenarios when the other two schemes cannot save considerable energy.
CSM is especially effective when the performance target is high, the core architecture is fixed, and
when there is high contention in LLC. For example, it can potentially save up to 41% energy in
a case in which the savings with the other approaches is around 1%. With perfect models, the
average potential energy savings range from 13% to 25% in different scenarios. However, when
using the proposed modeling framework, this range reduces to 10% to 21% due to limited accuracy.
That said, the proposed hybrid (active/passive) sampling technique provides a means to further
improve modeling accuracy by selectively increasing the configurations that are actively sampled.
This can be studied in future work.

ACKNOWLEDGMENTS

The simulations were performed on resources at Chalmers Centre for Computational Science and
Engineering (C3SE) provided by the Swedish National Infrastructure for Computing (SNIC).

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:25

REFERENCES

[1] T. Adegbija and A. Gordon-Ross. 2016. Phase-based dynamic instruction window optimization for embedded systems.

In 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (Pittsburgh, PA, USA). 397–402.

[2] D. H. Albonesi, R. Balasubramonian, S. G. Dropsbo, S. Dwarkadas, E. G. Friedman, M. C. Huang, V. Kursun, G. Magklis,

M. L. Scott, G. Semeraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E. Schuster. 2003. Dynamically tuning

processor resources with adaptive processing. Computer (2003).

[3] M. W. Azhar, M. Pericàs, and P. Stenström. 2019. SaC: Exploiting execution-time slack to save energy in heterogeneous

multicore systems. In Proceedings of the 48th International Conference on Parallel Processing (Kyoto, Japan) (ICPP’19).

Association for Computing Machinery, 1–12.

[4] M. W. Azhar, P. Stenström, and V. Papaefstathiou. 2017. Sloop: QoS-supervised loop execution to reduce energy on

heterogeneous architectures. ACM Transactions on Architecture and Code Optimization 14, 4 (2017), 1–25.

[5] B. Bowhill, B. Stackhouse, N. Nassif, Z. Yang, A. Raghavan, C. Morganti, C. Houghton, D. Krueger, O. Franza, J. Desai,

J. Crop, D. Bradley, C. Bostak, S. Bhimji, and M. Becker. 2015. 4.5 The Xeon processor E5-2600 v3: A 22nm 18-core

product family. IEEE Journal of Solid-State Circuits 51, 1 (2015), 92–104.

[6] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks, P. Bose, and P. Cook. 2001. A circuit level implementation of

an adaptive issue queue for power-aware microprocessors. In Proceedings of the 11th Great Lakes symposium on VLSI

(West Lafayette, Indiana, USA). Association for Computing Machinery, 73–78.

[7] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. W. Cook, and D. H. Albonesi. 2001. An adaptive issue queue for

reduced power at high performance. In International Workshop on Power-Aware Computer Systems (Berlin, Heidelberg).

Springer, 25–39.

[8] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. 2014. An evaluation of high-level mechanistic core

models. ACM Transactions on Architecture and Code Optimization 11, 3 (2014), 1–25.

[9] J. Chang and G. S. Sohi. 2007. Cooperative cache partitioning for chip multiprocessors. In ACM International Conference

on Supercomputing 25th Anniversary Volume (Munich, Germany). Association for Computing Machinery, 402–412.

[10] S. Chen, C. Delimitrou, and J. F. Martínez. 2019. PARTIES: QoS-aware resource partitioning for multiple interactive

services. In Proceedings of the 24th International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS) (Providence, RI, USA). Association for Computing Machinery, 107–120.

[11] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram. 2002. Frame-based dynamic voltage and frequency scaling for a

MPEG decoder. In Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design (New York, NY,

USA). Association for Computing Machinery, 732–737.

[12] Y. Eckert, S. Manne, M. J. Schulte, and D. A. Wood. 2012. Something old and something new: P-states can borrow mi-

croarchitecture techniques too. In Proceedings of the 2012 ACM/IEEE International Symposium on Low Power Electronics

and Design (Redondo Beach, California, USA). Association for Computing Machinery, 385–390.

[13] X. Fu, K. Kabir, and X. Wang. 2011. Cache-aware utilization control for energy efficiency in multi-core real-time

systems. In 2011 23rd Euromicro Conference on Real-Time Systems (Porto, Portugal). 102–111.

[14] L. Funaro, O. A. Ben-Yehuda, and A. Schuster. 2016. Ginseng: Market-driven LLC allocation. In 2016 USENIX Annual

Technical Conference (USENIX ATC 16) (Denver, CO). USENIX Association, 295–308.

[15] M. Ghorbani Moghaddam and C. Ababei. 2017. Dynamic energy management for chip multi-processors under perfor-

mance constraints. Microprocessors and Microsystems 54 (2017), 1–13.

[16] M. S. Gupta, G.-Y. Wei, and D. Brooks. 2008. System level analysis of fast, per-core DVFS using on-chip switching

regulators. In 2008 IEEE 14th International Symposium on High Performance Computer Architecture (Salt Lake City, UT,

USA). 123–134.

[17] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and R. Iyer. 2016. Cache QoS: From concept to

reality in the Intel ® Xeon ® processor E5- 2600 v3 product family. In 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA) (Barcelona, Spain). 657–668.

[18] C. J. Hughes, J. Srinivasan, and S. V. Adve. 2001. Saving energy with architectural and frequency adaptations for mul-

timedia applications. In Proceedings 34th ACM/IEEE International Symposium on Microarchitecture MICRO-34 (Austin,

TX, USA). IEEE, 250–261.

[19] R. Jevtic, H.-P. Le, M. Blagojevic, S. Bailey, K. Asanovic, E. Alon, and B. Nikolic. 2015. Per-core DVFS with switched-

capacitor converters for energy efficiency in manycore processors. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 23, 4 (2015), 723–730.

[20] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez. 2015. Rubik: Fast analytical power management for latency-

critical systems. In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (Waikiki, HI,

USA). 598–610.

[21] H. Kasture and D. Sanchez. 2014. Ubik: Efficient cache sharing with strict QoS for latency-critical workloads. In Proceed-

ings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems

(Salt Lake City, Utah, USA), Vol. 49. Association for Computing Machinery, 729–742.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

21:26 M. Nejat et al.

[22] S. K. Khatamifard, L. Wang, W. Yu, S. Köse, and U. R. Karpuzcu. 2017. ThermoGater: Thermally-aware on-chip voltage

regulation. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA) (Toronto, ON,

Canada). 120–132.

[23] M. Khavari Tavana, M. H. Hajkazemi, D. Pathak, I. Savidis, and H. Homayoun. 2018. ElasticCore: A dynamic heteroge-

neous platform with joint core and voltage/frequency scaling. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 26, 2 (2018), 249–261.

[24] Y. Kora, K. Yamaguchi, and H. Ando. 2013. MLP-aware dynamic instruction window resizing for adaptively exploiting

both ILP and MLP. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (Davis,

California). Association for Computing Machinery, 37–48.

[25] N. Kulkarni, G. Gonzalez-Pumariega, A. Khurana, C. A. Shoemaker, C. Delimitrou, and D. H. Albonesi. 2020. Cut-

tleSys: Data-driven resource management for interactive services on reconfigurable multicores. In 2020 53rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO) (Athens, Greece). 650–664.

[26] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. 2009. McPAT 1.0: An integrated power, area,

and timing modeling framework for multicore architectures. In Proceedings of the 42nd Annual IEEE/ACM International

Symposium on Microarchitecture (New York, NY, USA). Association for Computing Machinery, 469–480.

[27] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. 2008. Gaining insights into multicore cache partitioning:

Bridging the gap between simulation and real systems. In 2008 IEEE 14th International Symposium on High Performance

Computer Architecture (Salt Lake City, UT). 367–378.

[28] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis. 2015. Heracles: Improving resource efficiency at

scale. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA). Association for

Computing Machinery, New York, NY, USA, 450–462.

[29] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero. 2009. FlexDCP: A QoS framework for CMP archi-

tectures. ACM SIGOPS Operating Systems Review 43, 2 (2009), 86–96.

[30] M. Nejat, M. Manivannan, M. Pericàs, and P. Stenström. 2020. Coordinated management of DVFS and cache partition-

ing under QoS constraints to save energy in multi-core systems. Journal of Parallel and Distributed Computing (JPDC)

144 (2020), 246–259.

[31] M. Nejat, M. Manivannan, M. Pericàs, and P. Stenström. 2020. Coordinated management of processor configuration

and cache partitioning to optimize energy under QoS constraints. In 2020 IEEE International Parallel and Distributed

Processing Symposium (IPDPS) (New Orleans, LA, USA). IEEE, 590–601.

[32] M. Nejat, M. Pericàs, and P. Stenström. 2019. QoS-Driven coordinated management of resources to save energy in

multi-core systems. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (Rio de Janeiro,

Brazil). IEEE, 303–313.

[33] R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander. 2020. Twig: Multi-Agent task management for colocated

latency-critical cloud services. In 2020 IEEE International Symposium on High Performance Computer Architecture

(HPCA) (San Diego, CA, USA). 167–179.

[34] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang. 2013. Accurate modeling of the delay and energy

overhead of dynamic voltage and frequency scaling in modern microprocessors. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 32, 5 (2013), 695–708.

[35] T. Patel and D. Tiwari. 2020. CLITE: Efficient and QoS-aware co-location of multiple latency-critical jobs for warehouse

scale computers. In 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA) (San Diego,

CA, USA). 193–206.

[36] P. Petoumenos, G. Psychou, S. Kaxiras, J. M. Cebrian Gonzalez, and J. L. Aragon. 2010. MLP-aware instruction queue

resizing: The key to power-efficient performance. In International Conference on Architecture of Computing Systems

(Berlin, Heidelberg). Springer, 113–125.

[37] R. P. Pothukuchi, A. Ansari, P. Voulgaris, and J. Torrellas. 2016. Using multiple input, multiple output formal control

to maximize resource efficiency in architectures. In ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA) (Seoul, Korea (South)). IEEE, 658–670.

[38] M. Qureshi and Y. Patt. 2006. Utility-based cache partitioning: A low-overhead, high-performance, runtime mecha-

nism to partition shared caches. In 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06)

(Orlando, FL, USA). 423–432.

[39] D. Sanchez and C. Kozyrakis. 2011. Vantage: Scalable and efficient fine-grain cache partitioning. In Proceedings of the

38th Annual International Symposium on Computer Architecture (San Jose, California, USA) (ISCA’11). Association for

Computing Machinery, 57–68.

[40] R. Sasanka, C. J. Hughes, and S. V. Adve. 2002. Joint local and global hardware adaptations for energy. In Proceedings

of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems (San

Jose, California) (ASPLOS X). Association for Computing Machinery, 144–155.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

Cooperative Slack Management: Saving Energy of Multicore Processors 21:27

[41] A. Sharifi, S. Srikantaiah, A. Mishra, M. Kandemir, and C. Das. 2011. METE: Meeting end-to-end QoS in multicores

through system-wide resource management. In Proceedings of the ACM SIGMETRICS Joint International Conference on

Measurement and Modeling of Computer Systems (San Jose, California, USA). Association for Computing Machinery,

13–24.

[42] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. 2002. Automatically characterizing large scale program behavior.

ACM SIGARCH Computer Architecture News 37, 10 (2002), 45–57.

[43] T. Sherwood, S. Sair, and B. Calder. 2003. Phase tracking and prediction. In Proceedings of the 30th Annual International

Symposium on Computer Architecture (San Diego, California) (ISCA’03). Association for Computing Machinery, 336–

349.

[44] J. Suh, C.-T. Huang, and M. Dubois. 2015. Dynamic MIPS rate stabilization for complex processors. ACM Transactions

on Architecture and Code Optimization (TACO) 12, 1 (2015), 1–25.

[45] N. Takagi, H. Sasaki, M. Kondo, and H. Nakamura. 2009. Cooperative shared resource access control for low-power

chip multiprocessors. In Proceedings of the 2009 ACM/IEEE International Symposium on Low Power Electronics and

Design (San Fancisco, CA, USA). Association for Computing Machinery, 177–182.

[46] B. Wolford, T. Speier, and D. Bhandarkar. 2017. Qualcomm Centriq 2400 processor. In Hot Chips: A Symposium on High

Performance Chips (HC29).

[47] Y. Zhou, H. Hoffmann, and D. Wentzlaff. 2016. CASH: Supporting IaaS customers with a sub-core configurable ar-

chitecture. In Proceedings of the 43rd International Symposium on Computer Architecture (Seoul, Republic of Korea)

(ISCA’16). IEEE Press, 682–694.

[48] H. Zhu and M. Erez. 2016. Dirigent: Enforcing QoS for latency-critical tasks on shared multicore systems. In Proceed-

ings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating

Systems (Atlanta, Georgia, USA) (ASPLOS’16). Association for Computing Machinery, 33–47.

Received July 2021; revised October 2021; accepted December 2021

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 21. Publication date: January 2022.

