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Abstract: The effects of temperature on the chloride-induced corrosion behavior of reinforcing steel
in simulated sea-sand concrete pore solution are studied by means of linear polarization resistance.
The results show that the Ecorr (corrosion potential) and icorr (corrosion current density) of the
reinforcing steels are temperature and/or chloride concentration (CCl)-related parameters. A linear
correlation between Ecorr and temperature and a natural logarithmic correlation between icorr and
CCl are observed. It is proved that the relationship between the corrosion rate and temperature
follows the Arrhenius equation, whereas the activation energy of corrosion reaction increases with
the increase of CCl.

Keywords: corrosion potential; corrosion current density; chloride concentration; temperature;
sea-sand

1. Introduction

Reinforced concrete structures manufactured with sea-sand without a fresh water wash
can be termed as “sea-sand houses” [1]. The usage of unwashed sea-sand is strictly limited
by different countries, and it can only be used for concrete mixtures when its chloride
content is lower than a specific value, such as 0.06% (referring to the weight percentage of
dry sand) in China [2] and 0.024% in Japan [3]. However, the direct usage of unwashed
sea-sand is commonly seen in practical engineering. Based on the information from on-site
investigation, reinforcements embedded inside “sea-sand house” will deteriorate far before
the designated service life [4–6], and this has been a key issue affecting the quality of
structures in many marine regions [7]. It is well known that, due to the highly alkaline
environment provided by cement hydration products, a passive film is formed on the
reinforcing surface that inhibits the metal corrosion reaction and is referred to as the steady
passivation state [8,9]. However, when concrete pH is reduced or the chloride concentration
(CCl) reaches a critical level, the passive film will be broken, and corrosion is initiated [4,5].
Based on Tuutti’s model [10], the corrosion of reinforcements in concrete usually can be
divided into two stages: i.e., the initiation and the propagation stages (Figure 1a). However,
providing that the chlorides introduced by sea-sands are higher than the threshold value,
the corrosion of reinforcement may skip the first initiation stage and go to the second
propagation stage immediately after concrete placement. This phenomenon could be called
the sea-sand house corrosion model (Figure 1b).
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Figure 1. Schematic sketch of steel corrosion model in concrete: (a) Tuutti model [10]; (b) sea-sand 

house model. 
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temperature is an important factor influencing the corrosion behavior, and many studies 

have been conducted in this field [11–18]. However, due to the complexity of the corrosion 

process, results from different researchers have showed significant differences. Jiang [11], 

Liu [12] and Pan et al. [13] reported a continuous increase in corrosion rate along with 

elevated temperatures. Zivica et al. [14] and Alhozaimy et al. [15] agreed with this 

tendency but also found that corrosion rates decrease once the temperature exceeds 40 °C. 

In contrast, the results of Andrade et al. [16] and Michel et al. [17] showed no direct 

correlation between corrosion rate and temperature, while Lopez et al. [18] found that the 

corrosion rate of reinforcing steel decreases with increasing temperature. The different 

results reported in the latter three studies might be due to the lack of consideration of 

changes in water content in prepared samples, as the drying effect under the elevated 

temperature was not considered in their studies. In addition, the individual effect of 

chloride concentration on the corrosion behavior has been thoroughly studied by other 

researchers [19–25]. However, for concrete structures made with sea-sand, there should 

be no initiation stage of corrosion when the chloride content exceeds the threshold value. 

Both chloride content and temperature should be the key parameters to predict the 

degradation process of sea-sand concrete during its service life. Nevertheless, the chloride 

concentration is not thoroughly studied together with temperature as a combined 

influencing factor [15,26,27], which should be more important for the sea-sand concrete 

structure considering the widespread utilization of sea-sand for building construction in 

some coastal areas, such as cities in the south of China. 

In order to solve the above-mentioned problems, experimental works, assessed by 

Ecorr (corrosion potential) and icorr (corrosion current density), were carried out in this study 

to explore the corrosion behavior of reinforcing steel in a simulated pore solution of sea-

sand concrete under different chloride concentrations and temperatures. The relationship 

between the icorr of reinforcing steel and temperature was then deduced with the Arrhenius 

equation. The activation energy of the reinforcing steel corrosion reaction and the pre-

exponential factor with different CCl were obtained by calculation. A unified equation 

describing the relationship between the icorr, temperature and CCl was also developed. 

2. Experimental Program 

In this study, HRB335 ribbed reinforcing steel with a diameter of Φ10 mm and a 

length of 220 mm was employed to represent the widely used reinforcing steel in practical 

engineering, and its chemical composition is given in Table 1. 
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Figure 1. Schematic sketch of steel corrosion model in concrete: (a) Tuutti model [10]; (b) sea-sand
house model.

For the chloride-induced corrosion of reinforcing steel in sea-sand concrete, tempera-
ture is an important factor influencing the corrosion behavior, and many studies have been
conducted in this field [11–18]. However, due to the complexity of the corrosion process,
results from different researchers have showed significant differences. Jiang [11], Liu [12]
and Pan et al. [13] reported a continuous increase in corrosion rate along with elevated
temperatures. Zivica et al. [14] and Alhozaimy et al. [15] agreed with this tendency but also
found that corrosion rates decrease once the temperature exceeds 40 ◦C. In contrast, the
results of Andrade et al. [16] and Michel et al. [17] showed no direct correlation between
corrosion rate and temperature, while Lopez et al. [18] found that the corrosion rate of
reinforcing steel decreases with increasing temperature. The different results reported
in the latter three studies might be due to the lack of consideration of changes in water
content in prepared samples, as the drying effect under the elevated temperature was not
considered in their studies. In addition, the individual effect of chloride concentration on
the corrosion behavior has been thoroughly studied by other researchers [19–25]. However,
for concrete structures made with sea-sand, there should be no initiation stage of corrosion
when the chloride content exceeds the threshold value. Both chloride content and tempera-
ture should be the key parameters to predict the degradation process of sea-sand concrete
during its service life. Nevertheless, the chloride concentration is not thoroughly studied
together with temperature as a combined influencing factor [15,26,27], which should be
more important for the sea-sand concrete structure considering the widespread utilization
of sea-sand for building construction in some coastal areas, such as cities in the south of
China.

In order to solve the above-mentioned problems, experimental works, assessed by
Ecorr (corrosion potential) and icorr (corrosion current density), were carried out in this study
to explore the corrosion behavior of reinforcing steel in a simulated pore solution of sea-
sand concrete under different chloride concentrations and temperatures. The relationship
between the icorr of reinforcing steel and temperature was then deduced with the Arrhenius
equation. The activation energy of the reinforcing steel corrosion reaction and the pre-
exponential factor with different CCl were obtained by calculation. A unified equation
describing the relationship between the icorr, temperature and CCl was also developed.

2. Experimental Program

In this study, HRB335 ribbed reinforcing steel with a diameter of Φ10 mm and a
length of 220 mm was employed to represent the widely used reinforcing steel in practical
engineering, and its chemical composition is given in Table 1.
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Table 1. Composition of reinforcing steel (wt. %).

Fe C Mn Si P S

98.96 0.21 0.63 0.17 0.005 0.026

Prior to immersion in chloride solution, oxide skins and corrosion artifacts on sample
surfaces were removed following the method prescribed in RILEM TC 235 CTC [28], which
can be briefly summarized as follows.

(a) The samples are immersed in acid solution, containing HCl (HCl: H2O = 1:1 by
volume) and urotropine (3 g/L).

(b) After a 2~3 min ultrasonic shower, oxide skins and surface corrosion are cleaned with
a brush.

(c) The samples are rinsed with deionized water and are soaked in acetone solution for
2~3 s.

(d) Copper wire is welded at one end of each steel sample after drying.
(e) Both ends of each sample are coated with epoxy resin, leaving a 10 cm length uncoated

(a sketch of the coating geometry is shown in Figure 2).
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Figure 2. Schematic figure of a reinforcing steel sample.

In the experiment, saturated Ca(OH)2 solution was used as the alkaline electrolyte solu-
tion to simulate concrete pore solution, which is thought to be close to the condition in actual
pore solution [19,29–34]. To simulate a chloride-induced corrosion environment, NaCl was
added to the simulated pore solution with concentrations ranging from 0.078~0.727 mol/L.
All chemicals used in this experiment were analytical reagents, and distilled water was
used as a solvent. To evaluate the influence of temperature on corrosion performance, the
immersion solution was controlled in a constant temperature state during the experiment
using a temperature-controlled water tank, which controlled the temperature varied in a
range of 20~50 ◦C.

A three-electrode system, with Princeton Applied Research Model 283 Potentiostat/
Galvanostat, as shown in Figure 3, was used for to measure the Ecorr and icorr of rein-
forcement in the simulated concrete pore solution. The reference electrode was a Leici
232/232-01-type saturated calomel electrode, the counter electrode was a Pt, the working
electrode was the tested reinforcing steel, and the electrolyte solution was the simulated
concrete pore solution. An example of linear polarization fitting is given in Figure 4. A
linear equation, as shown in Equation (1), was used to fit the relationship between potential
(y) and current (x).

y = ax + b (1)

where a is fitted polarization resistance (Ω), and b is the fitted intercept.
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Figure 4. An example of linear polarization fitting.

Following ASTM G59 [35], the linear polarization scan was conducted with the sweep-
ing range of −20~+20 mV with respect to open circuit potential at a scan rate of 0.166 mV/s.
The open circuit potential was stabilized for 1 h before the start of each experiment.

3. Results and Analysis
3.1. Classical Testing Curve for Corrosion Potential and Corrosion Current Density

Figure 5 shows the variations of Ecorr and icorr as function of immersion duration in the
simulated concrete pore solution, which is a saturated Ca(OH)2 solution with and without
chloride ions, respectively. It can be seen that the Ecorr shifts upward and icorr decreases
with the immersion duration in the saturated pore solution without chlorides. In contrast,
once the electrolyte contains chlorides, the Ecorr shifts downward and icorr increases with
the immersion duration. The difference in the corrosion potential history between these
two cases can be explained by the mixed potential theory. After 48 hours of immersion,
the Ecorr and icorr reached a stable state. The purpose of conducting the electrochemical
measurements after a period of immersion is to obtain a reliable result without other
interferences [36–38]. Basically, the measurements should be applied until the OCP values
are stabilized enough; e.g., less than 2 [39] or 5 mV [40] within 5 min. In our study, the
records of corrosion potential and corrosion current density were performed after 48 hours
of immersion. It was found that the variations of OCP values were within 3 mV from 24
to 48 h, which is quite stable in our view and the same as the procedure adopted by Lu
et al. [41]. Therefore, the results after 48 hours of immersion presented in this study should
be reliable and convincing.
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Figure 5. Developments of Ecorr (a) and icorr (b) during immersion in simulated concrete solution.

3.2. Corrosion Potential of Reinforcement at Different Temperatures and Chloride Concentrations

Figure 6 show the relationships of Ecorr with the temperature and CCl in the simulated
pore solution. As seen in Figure 6a, the Cl− in the simulated pore solution lowered the
Ecorr of reinforcing steel obviously, to an extent of about 200~300 mV, and an increase of CCl
also decreased the Ecorr. When there was no Cl− in the simulated pore solution, the value
of Ecorr of the reinforcing steel was roughly between −236 and –249 mV at the detected
temperatures; in comparison, once Cl− was present, the value was roughly between −405
and –573 mV. Based on the work of Hausmann [42], it can be inferred that the reinforcing
steel is in the passivation state in the simulated solution without Cl−, but in the activation
state if the CCl equals to or is greater than 0.078 mol/L.

As seen in Figure 6b, there is a negative linear correlation between Ecorr and tempera-
ture in the simulated pore solution, which is consistent with the tendency represented by
the Nernst equation [14]. During the analysis, linear regressions of Ecorr as a function of
T are carried out in samples immersed by solutions with different CCl and the obtained
coefficients (slopes and intercepts) are shown in Figure 7.
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Figure 6. Effects of chloride concentration (a) and temperature (b) on the corrosion potential.

As can be seen from Figure 7a, the slope of the Ecorr-T relationship in Figure 6b dra-
matically became negative at the condition of 0.072 mol/L Cl− and then became relatively
constant when CCl in the range of 0.167 to 0.727 mol/L. This could be the reason that Cl−

exceeding 0.167 mol/L exerts a significant influence on the behavior of metallic passivation
and the anodic dissolution rate; however, Cl− itself does not directly participate in the
anodic oxidation or cathodic reduction reactions. So, the CCl has a negligible effect on the
linear correlation of Ecorr-T for Cl− > 0.0167 mol/L. Figure 7b shows that the intercept of
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the Ecorr-T relationship, roughly obeying the exponential tendency, became more negative
when CCl increased, implying severer corrosion at the higher temperature.
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Figure 7. Regression coefficients of Ecorr-T relationship: (a) slope; (b) intercept.

Given the linear relationship between Ecorr and T, an empirical equation for the
estimation of Ecorr and T can be established irrespective of whether the reinforcing steel is
in the activation or passivation state, as shown in Equation (2), which is valid within the
temperature range of 20–50 ◦C.

Ecorr,T − Ecorr,T0 = kT × (T − T0) (2)

where T (◦C) is the temperature of the solution; Ecorr,T and Ecorr,T0 (mV) are the corrosion
potentials of reinforcing steel at T (◦C) and T0 (◦C), respectively; kT is a constant with a
value of 1.1 mV/◦C for the passivation state and 3.3 mV/◦C for the activation state (the
average value for different CCl). Providing the corrosion potential of steel reinforcement
at a certain temperature is known, the Ecorr at other temperatures can be estimated based
on Equation (2). Using T0 = 20 ◦C as the reference temperature, a comparison between
the measured and estimated values of the Ecorr at different temperatures is illustrated in
Figure 6b. All the relative errors between the measured and estimated values are less
than 5%.

3.3. Corrosion Current Density of Reinforcements at Different Temperatures and
Chloride Concentrations

Figure 8a shows the variation of icorr with the CCl at different temperatures. It can be
seen that the CCl has an obvious impact on the icorr and a higher CCl resulting in a larger icorr.
With the increase of the CCl from 0.078 to 0.727 mol/L, the icorr at different temperatures
increases by more than double on average, which is a similar trend to that reported by peer
researchers. Jiang et al. [43] and Yu et al. [44] proved that CCl has a limited effect on icorr
for reinforcing steel with a protective passive film, whereas significant effects were only
found for reinforcing steel in the active state. The associations between icorr and CCl may
be related to the dissolution rate of the passive film [45] or the adsorption characteristics
of Cl− at the surface of reinforcing steel [46]. Moreover, as chloride ions are mainly in the
anodic region, their effects on the anodic reaction are significant, which in turn influences
the corrosion current [47].
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Figure 8. Relationship between current density and chloride concentration: (a) icorr vs. CCl; (b) lnicorr

vs. lnCCl.

During the analysis, it was found that there is a good linear relationship between
natural logarithms of icorr and CCl , as seen in Figure 8b. The corresponding equation can be
expressed as Equation (3):

ln icorr = aCl + bCl · ln CCl (3)

where aCl and bCl are the linear fitting coefficients, and CCl is the chloride concentration.
This linear relationship between lnicorr and lnCCl was also reported by Abd El Aal et al. [45],
who used simulated pore solution containing chlorides together with Ca(OH)2. Figure 9
provides regression coefficients of aCl and bCl . It is obvious that both coefficients of aCl and
bCl are temperature dependent and exponentially increased and decreased, respectively,
with the increasing temperatures. Based on the theory of reaction kinetics, the electrode
reaction speed (v) is linearly associated with the concentration of the electrode reactant
(c), while according to Equation (3) obtained from experimental results, icorr is natural
logarithmically related to the CCl. Therefore, it can be deduced that Cl− is not a reactant of
the anode electrode reaction of metal anode dissolution; instead, it works as a catalyst for
the corrosion reaction.
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Figure 9. Regression coefficients of lnicorr-lnCCl relationship: (a) aCl ; (b) bCl .

Figure 10 shows the influence of temperature on icorr and the current density ratio
(icorr,T/icorr,20). With an increase in temperature, the polarization resistance of reinforcing
steel falls significantly, and the icorr shows a clear increase. When the reinforcing steel is in
the passivation state—i.e., without influence from Cl−, an increase of 10 ◦C could lead to a
further increase in icorr by a factor of 1.3~1.8. This illustrates that temperature also has a
significant influence on the corrosion rate of reinforcing steel in the passivation state, which
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is consistent with the studies of Michel et al. [17]. In contrast, once the reinforcing steel is in
the activated state, influenced by 0.078~0.727 mol/L of Cl−, an increase of 10 ◦C could lead
to a 1.4~1.9 times increase in icorr. Therefore, the effect of temperature on the corrosion rate
of reinforcing steel, in either passivated or activated state, makes limited difference, and
the values are lower than the previous values from 2 to 4 times, as deduced according to
Van’t Hoff’s rule [48].
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Figure 10. Relationship between current density and temperature: (a) icorr vs. temperature; (b) ratio
of icorr,T/icorr,20 vs. temperature.

Based on the Arrhenius equation [49,50], the dependence between the reaction rate
constant (k) and T for reinforcing steel corrosion follows Equation (4).

k = A· exp (− Ea

RT
) (4)

where A is the pre-exponential factor (mol−1·dm3·s−1), Ea is the activation energy (kJ·mol−1),
and R is the gas constant. For the electrode system of reinforcing steel corrosion, the value
of k cannot be easily and directly measured. Instead, its mathematical relationship with icorr
can be derived from the Stern–Geary equation and Faraday’s law, following the calculation
as mentioned in Equations (4)–(9) listed below.

The relation between icorr and polarization resistance RP is expressed as
Equation (5) [51,52]:

icorr = B/RP (5)

where B is the Tafel constant, which can be determined based on Andrade and Gonzalez’s
work [53–55] and has the value of 26 mV. According to Faraday’s law, the relationship
between icorr of the electrode reaction from metal anode dissolution and the electrode
reaction rate can be calculated following Equation (6).

icorr = nFv (6)

where n is the stoichiometric coefficient of electrons in the electrode reaction, F is the
Faraday constant, and v is the electrode reaction speed. When the electrode reaction
proceeds in the direction of metal anode dissolution and the reaction is rate-limited by
the charge migration step at the solid–liquid interface, the relationship between v and the
concentration of electrode reactants c can be expressed as Equation (7).

v = kc (7)
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where k is the rate constant of the electrode reaction, as referenced in Equation (4). When
the reactant is a metal atom, the value of c is unity (1 mol/cm3). Substituting Equation (7)
into Equation (6) yields

icorr = nFkc (8)

According to Equation (8), the reaction rate constant k can be calculated by using icorr
of the reinforcing steel. Substituting Equation (4) into Equation (8), the correlation equation
between icorr and temperature can be obtained as shown in Equation (9).

icorr = nFcA· exp
(
− Ea

RT

)
(9)

Taking the natural logarithm calculation of both sides of Equation (9), we find

ln icorr = ln(nFcA)− Ea

RT
(10)

Consequently, the Arrhenius plots, as shown in Figure 11, can be obtained by plotting
ln icorr vs. 1/T. As can be seen from the figure, there is a good linear relationship between
these two parameters, which illustrates that the relationship between the corrosion rate of
reinforcing steel and temperature conforms well with the Arrhenius equation at the tem-
perature of 20~50 ◦C. Meanwhile, the result proves that the slop of the linear relationship
(−Ea/R) is constant for each analysis, which means that the Ea is a temperature-independent
factor for the corrosion of reinforcing steel.
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Figure 11. Arrhenius plots of the corrosion reaction with chloride concentration and temperature.

The values of Ea (kJ·mol−1) and ln(A) (mol−1·dm3·s−1) of the corrosion reaction of
reinforcing steel in the simulated pore solutions with various CCl are shown in Figure 12. It
can be known that Ea decreases with increases in CCl, providing the existence of Cl−, and
ranges from 35.8 and 41.5 kJ/mol, which is very close to the values of 35~40 kJ/mol, as
presented by Michel et al. [17]. By discarding the value at 0 mol/L Cl−, the relationship
between Ea and chloride concentration seems unclear, as the value in 0.727 mol/L Cl− has
exceeded the 95% confidence interval. Further study is needed to study this relationship in
wider ranges of chloride concentration. Regarding the ln(A), all of the fitted results with
the existence of Cl− are within the 95% confidence interval, which means that ln(A) could
be seen as a constant in this condition.
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Additionally, as explained in the former paragraph, the value of Ea, or the “−Ea/R”,
reveals the sensitivity of the electrode reaction rate to the change in temperature. It can be
assumed that the samples immersed in a higher concentration of chloride solution have
a lower value of Ea and a corresponding lower temperature sensitivity. This is consistent
with the results shown in Figure 10b: for the tests containing Cl−, the highest increase rate
of icorr due to a change in temperature is in the sample with the lowest CCl (0.078 mol/L),
for which the Ea is the highest.

According to the mathematical relationships between ln icorr, CCl and T, as described
in Equations (2) and (9), a unified equation for the three variables can be deduced as the
Equation (11):

ln icorr = aT,Cl + bT,Cl · ln CCl + cT,Cl ·
1
T

(11)

where aT,Cl , bT,Cl and cT,Cl are constants. By a linear fitting of the lnCCl, T and ln icorr,
the values of aT,Cl , bT,Cl and cT,Cl are obtained, which have the values of 18.4, 0.39 and
−4691, respectively, and the coefficient of fitting R2 is about 0.99. Therefore, the corrosion
current density of the reinforcing steel in the simulated pore solution that has a chloride
concentration and temperature can be determined based on the empirical relationship as
shown in Equation (12).

ln icorr = 18.4 + 0.39· ln CCl − 4691· 1
T

(12)

4. Conclusions

In this paper, the effects of temperature on the chloride-induced corrosion behavior
of reinforcing steel in simulated concrete pore solution are examined by means of linear
polarization resistance (LPR). From the obtained results, the following conclusions can be
drawn:

(1) There is an excellent linear correlation between Ecorr and temperature. The slope of
the linear correlation is related only to the corrosion state of the reinforcing steel—i.e., the
passivation or activation—and this slope is independent of the chloride concentration CCl
in the simulated pore solution.

(2) The chloride concentration in the simulated pore solution significantly affects icorr.
When the chloride concentration increases from 0.078 to 0.727 mol/L, icorr values at different
temperatures are more than doubled on average. There is a natural logarithmic correlation
between icorr and chloride concentration in the simulated pore solution.

(3) Temperature has a significant influence on icorr. The relationship between cor-
rosion rate and temperature T is found to be well described by an Arrhenius equation
within the experimental temperature range. The activation energy Ea of the corrosion
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reaction decreases with increasing chloride concentration in the simulated pore solution.
However, there is no clear correlation between the pre-exponential factor A and chloride
concentration.

(4) Although a big difference may exist between pore solution in concrete and simu-
lated pore solution, the results obtained in this study could still be an indication of corrosion
behavior of reinforcements in sea-sand concrete.
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