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Abstract

One of the tasks in nuclear safeguards is to regularly inspect spent nuclear fuel discharged
from nuclear power reactors and verify the integrity of it, so that illegal removal and di-
version of radioactive material can be promptly discovered. In the current project, which
is a collaboration between Chalmers University of Technology and SCK CEN, a novel
methodology for non-intrusive inspection of spent nuclear fuel is under development. The
methodology consists of two main steps: 1) neutron flux and its gradient are measured in-
side spent nuclear fuel assemblies using small neutron detectors; and 2) the measurements
are processed using an Artificial Neural Network (ANN) algorithm to identify the number
and location of possible fuel pins that have been removed from the fuel assemblies and/or
replaced with dummies. The use of small neutron detectors simplifies the inspection pro-
cedure since the fuel assemblies are not moved from their storage position. In addition,
the neutron flux gradient measurements and its processing with the ANN algorithm have
the potential for more detailed results. Different aspects have been investigated for the
development of the methodology. For the first step of the methodology, the concept of a
new neutron detector has been studied via Monte Carlo simulations and it relies on the use
of optical fiber-mounted neutron scintillators. The outcome of the computational study
shows that the selected detector design is a viable option since it has a suitable size to be
introduced inside a fuel assembly and can measure neutron flux gradients. Then, experi-
mental work has been carried out to test and characterize two optical fiber-based neutron
scintillators that can be used to build the detector, with respect to detection of thermal
neutrons and sensitivity to gamma radiation. For the second step of the methodology,
a machine learning algorithm based on ANN is studied. At this initial stage, a simpler
problem has been considered, i.e., an ANN has been prepared, trained and tested using a
dataset of synthetic neutron flux measurements for the classification of PWR nuclear fuel
assemblies according to the total amount of missing fuel, without including neutron flux
gradient measurements and without localizing the anomalies. From the comparison with
other machine learning methods such as decision trees and k-nearest neighbors, the ANN
shows promising performance.

KEYWORDS: nuclear safeguards, spent nuclear fuel, partial defect, neutron scintillator, flux
gradient detector, machine learning, artificial neural networks
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1 Introduction

In this chapter the area of research is introduced in section 1.1 , the objectives of the project are
discussed in section 1.2, and the structure of the thesis is provided in section 1.3.

1.1 Background

Nuclear energy is an energy source that may contribute to the energy mix needed for a more
sustainable society because of its small carbon footprints and by serving as a reliable base-load.
It is currently used in over 30 countries producing approximately 10% of global electricity from
about 440 nuclear power plants [1].

The complexity of nuclear technology and the harmful consequences that can result if this tech-
nology is misused are undeniable. In order to assure that Non-Nuclear Weapon States (NNWS)
honor their international obligations and in order to detect any diversion of nuclear material or
technology promptly, a set of technical measures referred to as safeguards [2] must be applied in
all nuclear facilities.

One of the most important tasks in nuclear safeguards that must be carried out in any nuclear
power plant is regular inspections to verify that no special nuclear material is missing from the
spent nuclear fuel assemblies. In the safeguards community, such a task is known as detection
of partial defects [3]. These assemblies are discharged from the reactor core at the end of their
life and are highly radioactive. They are temporarily stored in a water pool before they are sent
to either a dry storage facility, a final underground repository or a reprocessing facility. Spent
nuclear fuel is particularly sensitive from a safeguards perspective because of its residual fissile
material such as uranium-235 and plutonium-239. In the recent years, about 80% of the material
placed under safeguards was plutonium contained in spent fuel [4].

Currently, several methods of Non-Destructive Assay (NDA) such as the Digital Cherenkov
Viewing Device (DCVD), the Passive Gamma Emission Tomography (PGET) and the Fork
Detector (FD) among others are used to detect possible diversions in spent fuel assemblies.
These techniques are verified by the International Atomic Energy Agency (IAEA) and have
been extensively applied for many years, but they also have limitations.

The DCVD is based on the measurement of the Cherenkov (ultraviolet) light produced by the
gamma radiation escaping the fuel assembly and interacting with water. The method is limited
to wet storage and the interpretation of the Cherenkov images is not algorithmic, rather it
requires a subjective decision from the inspector [5].

The PGET is based on the measurement of the two-dimensional intensity distribution of gamma
radiation emitted mainly by Cesium-137. The method has a good identification accuracy up to
one-rod level [6] but it requires long measurement times (∼ hours) and the movement of the fuel
assemblies from their original storage position [5].

The FD uses a combination of gas-filled fission chambers and gas-filled ionization chambers to
detect both neutrons and gamma particles, respectively. The method has a high level of maturity
with a long history of applications. However, it also requires the movement of the fuel from its
original storage position [5]. Previous studies suggest that specific diversion configurations can
be designed in which the fork detector will not notice a difference between an intact assembly
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and an assembly with up to 50% missing fuel pins especially if the diversions are in the central
region of the assembly [7].

1.2 Objectives of the project

In an attempt to enhance safeguards inspections of spent fuel, the current research aims at
developing a methodology that can be accurate and non-intrusive and that does not require the
movement of the assemblies. The strategy of the methodology is to measure the neutron flux and
its gradient within a spent fuel assembly, and to identify possible anomalies and their locations
from an algorithmic processing of such information.

For the measurement of the neutron flux and its gradient inside the spent fuel assembly, a small
neutron detector that can be inserted in the system and can detect simultaneously neutrons at
multiple locations (and thus be angularly sensitive) is needed. Such a detector can be constructed
as a cluster of thin light guiding fibers on whose tips a small volume of a mixture of neutron
converter and scintillation material is mounted.

These types of optical fiber-based neutron scintillators were first developed and successfully
tested in Japan [8, 9, 10]. Efforts have been made in further development and characterization at
EPFL, e.g., see [11]. Recent work has also shown the suitability of using a cluster of optical fiber-
based scintillators for high-resolution neutron flux measurements and for the characterization of
highly localized gradients [12].

The identification of missing fuel pins from measurements is a so-called “inverse task”, i.e., the
unknown system configuration (the arrangement of fuel pins) is determined from measurable,
observable quantities (the neutron flux and its gradient), which originated from the system
configuration itself. In the current context, a machine learning algorithm based on an Artificial
Neural Network (ANNs) is investigated for the inversion problem.

Recent research has shown the potential of machine learning for different inverse tasks in nuclear
technology [13], e.g.: the identification and localization of perturbations in nuclear reactor cores
from neutron flux measurements [14, 15, 16]; the prediction of Pressurized Water Reactor (PWR)
spent fuel parameters from observable quantities such as gamma, neutron and Cherenkov inten-
sities [17]; the detection and localization of missing radioactive sources within a small grid [18];
data analysis in tracking elemental and isotopic material flows through material balance areas
for safeguards [19]; and the detection of missing fuel pins in PWR spent fuel assemblies [20, 21].

1.3 Structure of the thesis

The thesis is built from the content of Paper I and Paper II and includes additional content
that has not been published yet. The structure is as follows. Chapter 2 summarizes Paper I
and Paper II and mainly concerns the conceptual design and initial evaluation of a gradient
detector suitable for the methodology under development. Chapter 3 describes the experimental
work that was performed at Chalmers and at SCK CEN for the characterization of two optical
fiber-based neutron scintillators. Chapter 4 discusses the initial development and training of an
ANN for the methodology. Chapter 5 provides conclusions and an outlook for the continuation
of the work.

2
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2 Conceptual study of the neutron flux gradient detector

The conceptual design of a flux gradient detector, suitable for the planned measurements within
the fuel assembly, as one phase of the full project, is investigated. First, the design of the de-
tector is described in section 2.1. Then, a model for the Monte Carlo simulation of the detector
behavior and a test case for the evaluation of the detector performance are introduced in section
2.2. Finally, the results of the simulations are discussed in section 2.3.

2.1 Detector design

As mentioned earlier, a detector can be constructed from several small optical fiber-based neutron
detectors [12], to measure concurrently the scalar flux in several positions over a two-dimensional
plane and thus determine the scalar flux gradient. The diameter of the individual fiber-based
detectors can be as small as about one mm, however, the diameter of the gradient detector will
be inevitably larger. By aiming at performing measurements within a nuclear fuel assembly, one
can use the instrumentation guide tubes of the assembly, which are about 1 cm in diameter.

A gradient detector, capable of measuring the two components of the flux gradient in the x-
y plane, with the mentioned size limitation, is proposed as follows. An aluminum cylinder of
a diameter of 1 cm with four axial holes arranged in a rectangular pattern serve as holder of
four fiber-mounted scintillation detectors, as shown in Figure 2.1. Each of the fibers is inserted
into one of the holes from above, and its tip is covered in the neutron sensitive converter and
scintillation material, as shown in Figure 2.1. Aluminum is chosen for the cylinder because of
its easy manufacturing properties, and low neutron absorption cross section.

The complete detector containing four fibers can be inserted into the instrumentation guide
tube and moved to a suitable axial position. Then the two detector pairs at diagonally opposite
positions, perpendicular to each other, can be used to measure the two horizontal components
of the flux gradient.

2.2 Monte-Carlo model

Whereas it is intuitively clear that, in theory, the detector design described earlier is suitable to
determine the flux gradient, it is useful to assess its performance by detailed simulations. For this
purpose, the open-source code Serpent is used [22]. Serpent is a multi-purpose three-dimensional
continuous-energy Monte Carlo particle transport code developed at VTT, the Technical Re-
search Centre of Finland. The code is designed for traditional reactor physics applications, for
multi-physics reactor calculations, and for neutron and photon transport calculations in radi-
ation, fusion and medical physics problems. Serpent also includes numerical capabilities that
allow parallel computing on clusters and multi-core workstations.

The Serpent model of the gradient detector is shown in Figure 2.2. There exist several different
options for small size neutron detectors in terms of neutron converter and scintillation material
(LiCaF, boron loaded plastic scintillator, etc.). We restrict the present study to the type of
detectors which we have at hands and which were also used in previous works [11], namely LiF
as neutron converter and ZnS(Ag) as the scintillation material.

3
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Figure 2.1: Vertical and horizontal cross section view of the detector concept.

Figure 2.2: LiF-based gradient detector as modelled in Serpent.

To assess the performance of the detector, a hypothetical test case is considered. The test case
was chosen to be similar to that used in earlier works, i.e., a neutron source in a water tank
[23, 24]. The reason is partly that it is a simple setup, with an azimuthally symmetric flux
distribution in the horizontal plane, in which the results can be easily interpreted. And partly,
because such an experiment will be possible to carry out at a later stage of the project, when
the detector will actually be fabricated. The general layout is shown in Figure 2.3. It consists

4
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of a cylindrical Aluminum tank 1m in height and 1m in diameter filled with water, with a 252Cf
source, 2 cm in diameter, in the middle.

Figure 2.3: Setup used for the evaluation of the detector, as modelled in Serpent.

The motivations behind the Monte Carlo simulations of the detector behavior are twofold. First,
similarly to the case of the ordinary neutron detectors, the presence of the detector might interfere
with the neutron flux distribution. The consequences of such a flux disturbance are usually not
significant when measuring the scalar flux. However, the detector under study will give an
estimation of the gradient from the difference between the neutron flux values that are measured
by the four scintillators, which are placed relatively close to each others. The potential distortion
introduced with the four scintillators might have a more substantial impact on the determination
of the flux gradient than on the scalar flux. Second, a systematic underestimation of the gradient
might arise from a self-shielding effect, i.e., the scintillators at the higher flux position might
shield against the neutron current pointing to the scintillators at the lower flux position. Then
it is important to investigate quantitatively these effects and to understand whether they are
relevant and need to be compensated by some procedures or not.

2.3 Simulations and analysis

The simulations performed in this work are restricted to the neutronic aspects of the measure-
ment, i.e. calculating the reaction rates in the detector. The generation and transport of the
scintillation light are not taken into consideration, since they would require a substantially larger
effort, with a rather modest extra information.

The performance of the detector to determine the magnitude (section 2.3.1) and the direction
(section 2.3.2) of the neutron flux gradient is investigated via Monte Carlo calculations in the
hypothetical measurement setup described in section 2.2. Different positions and orientations of
the detector in the water tank, and the effect of the different efficiency of the scintillators, e.g.
due to non-identical 6Li content, were considered (section 2.3.3).

5
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2.3.1 Magnitude of the gradient

As mentioned in Section 2.2, one goal is to investigate how the presence of the detector affects
the accuracy of the estimation of the gradient. The strategy to quantify this effect relies on two
sets of simulations. The first simulation does not include the detector and the ”unperturbed”
thermal neutron flux is calculated in hypothetical measurement positions where the gradient
detector can be inserted. In the second step, simulations are made for the case that the detector
occupies the positions previously selected, one at a time, and the reaction rates in the scintillators
are calculated. The gradient obtained from the difference of the reaction rates of the diagonally
opposite scintillator pairs is then compared with the gradient of the neutron flux obtained without
the detector.

The comparison between the gradient from the unperturbed flux and the gradient from the
reaction rates is not completely trivial. At any single measurement point, the magnitude of the
gradient will be quantitatively different for the flux and the reaction rate, since they correspond
to physically different quantities. Nevertheless, the two are proportional to a scaling factor
which can be considered as a constant for a given energy distribution. The scaling factor does
not depend on the actual value of the gradient, and hence on the measurement position. If the
space dependence of the two gradients is proportional to a constant scaling factor, then it is
a demonstration of the equivalence between the two gradients and the negligible effect of the
presence of the detector.

In the simulations with the detector, the detector orientation is chosen such that two scintillators
are lined up on the x-axis, i.e. the line connecting two of the scintillators points to the source
(towards the centre of the water tank). Because of the azimuthal symmetry of the setup, these
two scintillators measure the radial component of the gradient (i.e. its x-component), whereas
the azimuthal component of the flux gradient is zero. Hence, the radial component is equal to the
x -component of the gradient. This can be characterised by the signed magnitude of the gradient,
i.e. a positive value when the gradient is pointing outwards from the centre, and negative when
the gradient points towards the centre. The Serpent model of this arrangement is shown in
Figure 2.4.

The signed magnitude of the neutron flux gradient without the detector and that obtained from
the reaction rates estimated in the scintillators of the detector are compared at different distances
from the neutron source, see Figure 2.5. The two curves are normalized to each other using the
least square fit method. The space dependence of the two gradients are very close, indicating
that the distortion effect of the proposed detector design is negligible.

2.3.2 Direction of the gradient vector

The two-dimensional flux gradient has two Cartesian components which carry independent in-
formation. Instead of using these two components, the space dependence of the magnitude
(absolute value) and of the direction of the gradient are used because they are more effective
features in a pattern recognition or any other identification/unfolding task and because their
physical meaning is easier to interpret.

Therefore, the suitability of the detector to estimate the direction of the gradient vector is
investigated. A general case with non-zero components of the gradient is considered, i.e., the

6
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Figure 2.4: The Serpent model for the simulation of the measurement of the radial component of the
gradient.

Figure 2.5: The normalized spatial dependence of the radial component of the gradient with and
without the presence of the detector.

detector is positioned such that none of the two scintillator pairs lie on a radial line from the
neutron source. Other special orientations are also avoided, e.g., when the angle between the
two scintillator lines and the x axis is ±45◦. The system configuration is then chosen where
the detector is rotated 30◦ counterclockwise as compared to the calculations in the previous

7
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Subsection. An illustration of this case is given in Figure 2.6. Several simulations were performed
with the detector at different positions along the x axis. The results from the calculated reaction
rates show, also through a comparison with Figure 2.5, that the direction angle of the gradient
is estimated correctly, see Figure 2.7. One advantage of the direction of the gradient is that it
does not require any normalisation, i.e., it can be directly compared to the expected (true) value
of the direction.

Figure 2.6: Serpent model for the measurement of the direction of the gradient with the detector
shifted in a 30◦ angle counterclockwise.

2.3.3 Effect of the differences in the scintillators

In the simulations so far, it was assumed that all four scintillators are equal and thus have
the same efficiency. A quantitative investigation of the effect of different sensitivities of the
scintillators, and the methods for correcting them, are also of interest.

Scintillators manufactured at an industrial level can be bought. However, as a rule, these are of
larger size (thicker) than what is necessary for the current application. Hence, the prototype of
the detector which will be built in this project will be based on thin LiF-ZnS(Ag) scintillators,
whose manufacturing follows an artisanal process, which may impact the uniformity and precision
of the instrument. Therefore, the four scintillators may slightly differ from each other in terms
of the amount of neutron converter and scintillation material. Even if the scintillators can be
calibrated in laboratory measurements separately (see section 3.3), their efficiencies may not be
the same in the device because of the mounting material, the surrounding matrix, the optical
coupling of the fiber to both the scintillator and the Photo-Multiplier (PM) tube needed for the
generation of the signal for the data acquisition system (see section 3.1). Therefore, after the
scintillators are mounted in the detector, their individual efficiencies become more complicated
to determine.

On the other hand, one does not need the absolute efficiencies of the four scintillators, only the
efficiencies relative to each other, and a method to compensate for them. As mentioned earlier,
the flux gradient is only determined to a constant scaling factor, whose value is not of interest.
However, since scintillators with different efficiencies do not measure the same neutron flux val-
ues at a specific position, changes in the orientation of the scintillators might affect the scaling

8
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Figure 2.7: Estimated direction of the gradient vector at different locations of the detector along the
x -axis.

factor. The purpose of the correction is thus to make sure that a constant scaling is preserved,
irrespective of the orientation of the detector. Such correction methods are quantitatively in-
vestigated in Paper II. The correction method used in the current study amounts to an in-situ
calibration of the relative efficiencies, which can be even performed in a field measurement, and
has to be executed only once.

In the case of a detector with four scintillators of varying efficiencies, the correction method is
based on rotating the detector by 90◦, 180◦ and 270◦ from its original orientation. Accordingly,
each scintillator occupies the four angular positions once, providing four reaction rates that
allow to calculate an average value. Then the two components of the gradient are determined by
taking the difference of the average reaction rates of the diagonally opposing scintillators. Such a
correction method will lead to an unbiased estimate of the gradient and to the relative efficiencies
of the four scintillators. The relative efficiencies can be used to correct the measurements in other
points, without the need for additional rotations of the detector.

In order to investigate the effect of having imperfect scintillators on the estimation of the flux
gradient, 4 scenarios are considered. In the first scenario, one of the four scintillators is altered
to have a lower atomic fraction of 6Li and hence a lower efficiency. The second scenario is such
that the detector defined in the first scenario is tested with a different orientation. In the third
scenario, the gradient detector consists of 4 scintillators, each with a different content of 6Li.
In the fourth scenario, the detector with 4 different scintillators is studied adding a possible
uncertainty to the initial position and the rotation angles. The results for these scenarios are
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discussed in details in Paper II.

An illustrative example of these results is shown in Figure 2.8, where the fourth scenario (rep-
resented by the yellow arrow) is compared with the ideal scenario (blue arrow), given a fixed
position of the detector with respect to the neutron source. In the ideal scenario, the four scin-
tillators have the exact same material composition and the detector is placed accurately at 30◦

as its initial orientation. In the fourth scenario, the atomic fractions of 6Li is 100% for D1, 80%
for D2, 70% for D3, and 60% for D4, and the detector is rotated with 92◦ (instead of 90◦), 179◦

(instead of 180◦), and 273◦ (instead of 270◦) during the calibration. For the comparison, an ad-
ditional scenario (red arrow) is considered, in which the four scintillators have the same material
composition but an error is assigned to the ideal orientation angle, i.e., the detector is shifted
of 27◦ with respect to the x-axis. Both the magnitude and the direction of the gradient vector
can be reconstructed despite the varying efficiencies of the scintillators and the uncertainty in
the initial positioning of the detector or in the rotation angles during the calibration process.

Figure 2.8: Estimated direction of the flux gradient with imperfect efficiencies, positions and rotations
during the calibration
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3 Characterization of optical fiber-based neutron scintil-

lators via experiments

Two optical fiber-based neutron scintillators, on which the concept of the gradient detector
described in the previous chapter is based, were tested and characterized. The two scintillators
are of the same type and are briefly described in section 3.1. The sensitivity of the two scintillators
to thermal neutrons was tested in the presence of a neutron source in the hot-cell laboratory at
the Department of Physics, Chalmers University of Technology, see section 3.2. Further testing
was carried out in the BR1 research reactor at SCK CEN, where the two scintillators were
exposed to a well-known Maxwellian thermal flux, see section 3.3. The sensitivity to gamma
rays was investigated using calibrated gamma sources with various strengths in the Laboratory
for Nuclear Calibration (LNK) at SCK CEN, see section 3.4.

3.1 Optical fiber-based scintillators

Two optical fiber-based neutron scintillators of the same type are available in the current project,
courtesy of Kyoto University Institute for Integrated Radiation and Nuclear Science (KURNS),
Japan. Their testing and characterization is useful for the future construction of the gradient
detector discussed in the previous chapter.

Each of them consists of a ∼ 2 m long and ∼ 1 mm thin plastic optical fiber whose tip is covered
with a LiF-ZnS(Ag) material as shown in Figure 3.1. The tip of the fiber acts as the neutron
sensitive part, where LiF is the neutron converter according to the reaction [11]

6Li + n −−→ 4He + 3H+ 4.78MeV (3.1)

and ZnS(Ag) is the scintillation material. The two products of the reaction in Eq. (3.1), an
α particle and a triton, interact with the ZnS inorganic scintillator grains mixed into the same
matrix and a scintillation light (photons) is produced. The scintillation light is the result of the
de-excitation of the luminescence centers in the ZnS molecules [25].

The generated photons travel through the single optical fiber which is coupled to a Photo-
Multiplier (PM) tube (Hamamatsu R9880U-210) where the photons are converted into electrons,
and where a D-type socket assembly (Hamamatsu E10679-02) acts as a voltage divider.

The neutron detection system including the scintillator, optical fiber and PM tube, needs to
be connected to a Data Acquisition System (DAS). For the experiments conducted at Chalmers
University of Technology, the signal coming from the PM tube is amplified and enhanced with an
amplifier. The signal then goes through a discriminator, where it has to be higher than a certain
threshold to be considered meaningful. The discriminator helps to reduce noise and parasitic
signals. At the last stage, the output from the discriminator reaches an analog counter, which
registers the neutron count rate with respect to the measurement time. For the experiments
performed at SCK CEN the DAS consisted of a pre-amplifier and a Multi-channel Analyzer
(MCA) connected to a digital software. The pre-amplifier integrates the incoming signal and
the MCA sorts the pulses into a spectrum of number of events versus the pulse height. The
spectrum is displayed on the software where discrimination can be applied by an offline threshold
in addition to other data analysis processes.

11



Licentiate Thesis Al-Dbissi M.

Figure 3.1: One of the two optical fiber-based scintillators.

3.2 Experiment in the hot-cell laboratory

The first set of experiments were performed in the hot-cell laboratory at the Department of
Physics, Chalmers University of Technology. The sensitive parts of the scintillators are placed
one at a time near an Americium-Beryllium (Am-Be) neutron source surrounded by polyethylene
plates, see Figure 3.2. The Am-Be source has an activity of 5 curie and an emission rate of
1.1 × 107 n/s and is stored in a small steel canister (3 cm in radius and 6 cm in height) for a
safe handling. The neutron source is surrounded by polyethylene plates from all sides to act as
a moderator for slowing down the neutrons emitted from the source. The thermalisation of the
neutrons emitted from the source is needed since the detectors are mainly sensitive to neutrons
in the thermal energy range.

Ten measurements were performed with each scintillator, with a measurement time of 10 s each.
The neutron counts were recorded from the counter after each measurement, and the histograms
of the counts/10 s for the two scintillators (denoted as A and B) are shown in Figure 3.3.
The mean value and the standard deviation of the neutron count rates are reported in Table 3.1.
Scintillator A tends to provide a slightly higher neutron count rate as compared to scintillator B.
These kind of deviations are expected, since the neutron-sensitive tips and the coupling between
the optical fibers and the PM tubes were made by hand. Nevertheless, the two scintillators are
proven to provide relatively close count rates for thermal neutrons.
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Figure 3.2: Set-up of the experiment in the hot-cell laboratory at Chalmers.

Figure 3.3: Neutron count rate from Scintillator A (left) and from Scintillator B (right).

Table 3.1: Mean value and standard deviation of the neutron count rates from the scintillators.

Scintillator
Count rate (/10 s)

Mean value Standard deviation
A 808.5 18.5
B 791.3 16.8
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3.3 Experiment in the BR1 research reactor at SCK CEN

Further characterization of the two scintillators was carried out in the BR1 research reactor at
SCK CEN in order to determine the sensitivity to thermal neutrons, the calibration factors and
the relative efficiencies.

The BR1 was the first research reactor in Belgium and was commissioned in 1956 [26]. The
reactor is air-cooled and graphite-moderated, see its schematic view in Figure 3.4. At the top
of the reactor a spherical cavity with a radius of 50 cm is available for irradiation experiments
and calibration of detection instruments under a well-defined Maxwellian thermal neutron flux.
The neutron flux at the center of the cavity is constantly monitored using a calibrated fission
chamber.

The two scintillators were inserted into the cavity one at a time using customized aluminum rods
as the one shown in Figure 3.5. The fibers were taped to the inside of the aluminum rods with
their tips at the bottom of the rod. The rods were then inserted into the cavity from the top.
When the rod is fully inserted, its bottom is located exactly at the centre of the cavity.

Figure 3.4: Schematic of the BR1 research reactor [26].

At first, background measurements were performed with both scintillators while inserted in the
cavity with the reactor being turned-off. The background count rate was negligible for both
scintillators. The reactor was then turned-on and the neutron count rate was recorded for each
scintillator, at the centre of the cavity, at different reactor power levels. The measurements were
performed after the reactor reached criticality at each power level and the measurement time was
chosen to be 10 minutes each. Figure 3.6 shows how the neutron count rate from each scintillator
increases with increasing the power level of the reactor. As already observed in the experiments
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Figure 3.5: Aluminum rods used to insert the scintillators in the reactor cavity.

in the hot-cell laboratory at Chalmers University of Technology, scintillator A tends to provide
higher neutron count rates compared to scintillator B.

The conventional thermal neutron flux in the center of the cavity can be obtained by multiplying
the corrected count rate of the monitor fission chamber with a calibration factor (CF), i.e.:

CF =
Conventional Thermal Neutron F lux (cm−2s−1)

Monitor F ission Chamber Count Rate (s−1)
= (2.60± 0.03)104 (cm−2) (3.2)

The count rates from the fission chamber and the correction factor were provided by the reactor
operators and the values of the thermal neutron flux at each power level are listed in Table 3.2.
The ratio between the count rate from the neutron scintillators and the conventional thermal
flux at the center of the cavity represents the sensitivity of the scintillators in (cm2):

SensitivityA,B (cm2) =
Count Rate From DetA,B (s−1)

Thermal Neutron F lux (cm−2s−1)
(3.3)
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Figure 3.6: Neutron count rates from scintillators A and B with respect to the reactor power.

This ratio should be the same at all power levels, and Table 3.3 shows that this is indeed the
case. Thus, the fiber-based neutron scintillators are proven to be viable for estimating accurately
the thermal neutron flux. The sensitivities given in Table 3.3 can serve as a calibration factor,
similar to the one from the calibrated fission chamber, so that the thermal neutron flux at one
point can be obtained from the neutron count rate of the scintillators at the same point.

Table 3.2: Thermal flux at the center of the cavity, at different power levels.

Power (kW) Flux (cm−2s−1) Uncertainty (±)
0.1 1.04E + 05 1.92E + 03
0.3 2.86E + 05 4.80E + 03
0.7 6.76E + 05 9.48E + 03
1 9.62E + 05 1.28E + 04
3 2.91E + 06 3.88E + 04

Table 3.3: Sensitivities of scintillators A and B and their relative efficiencies at different power levels.

Power
(kW)

Sensitivity A
(cm2)

Uncertainty
(%)

Sensitivity B
(cm2)

Uncertainty
(%)

Relative ef-
ficiency B/A
(%)

Uncertainty
(%)

0.1 1.15E − 03 1.87 1.08E − 03 1.86 93.82 2.48
0.3 1.30E − 03 1.69 1.19E − 03 1.69 91.43 2.19
0.7 1.25E − 03 1.41 1.19E − 03 1.40 94.88 1.89
1 1.24E − 03 1.34 1.16E − 03 1.34 93.63 1.77
3 1.23E − 03 1.33 1.14E − 03 1.34 92.26 1.74
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The relative efficiency of scintillator B compared to that of scintillator A is calculated as:

Relative EfficiencyB/A (cm2) =
SensitivityB (cm2)

SensitivityA (cm2)
× 100% (3.4)

The values of the relative efficiency for all measurement points are included in Table 3.3 and are
almost constant and thus independent from the power level. Consistently with the results in the
experiment carried out at Chalmers University of Technology and with the count rates of Figure
3.6, the scintillator A has a higher efficiency.

The detector response to spatial variation of the neutron flux was also measured at different
axial positions in the BR1 cavity. Figure 3.7 shows the comparison between the axial flux
profiles (relative to the flux at the centre of the cavity) obtained from the scintillators A and B
and a best-fitting of measurements from the calibrated fission chamber. The overall agreement
is good, although discrepancies are found for positions between 30 cm and 40 cm from the center
of the cavity.

Figure 3.7: Axial neutron flux profile relative to the flux at the centre of the BR1 cavity; comparison
between scintillators A and B and a best-fitting of measurements from the calibrated fission chamber.
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3.4 Experiment in LNK at SCK CEN

In the context of the current project, the neutron scintillators are planned to be used within
spent nuclear fuel assemblies. In such an environment, detectors are exposed to both a neutron
flux and a gamma dose rate. Therefore, it is important to test the sensitivity of the scintillators,
optical fibers and PM tubes to gamma rays as well. If the whole detection system is not properly
shielded, gamma rays may cause undesired contributions in terms of photons and thus an inac-
curate estimation of the neutron flux. If the sensitivity to gamma rays is correctly identified, the
detector could be calibrated accordingly by setting a proper discrimination threshold to discard
the contribution of the gamma rays in the recorded count rate. To investigate this aspect, a
third set of experiments was performed in the Laboratory for Nuclear Calibrations (LNK) at
SCK CEN. The LNK facility operates a state-of-the-art calibration building constructed in 2021
and equipped with modern irradiators, reference instruments and data acquisition software.

In the experiment in LNK, the two scintillators were exposed to Cs-137 and Co-60 sources with
different dose rates that varied in a range between 5 mGy/h and 200 Gy/h. The scintillators did
not show any response to gamma rays for dose rates below ∼ 70 Gy/h. For higher dose rates, the
scintillators were placed at the closest distance to the collimator of a Co-60 source (77.19 Gy/h),
as shown in the experimental setup in Figure 3.8. For a higher dose rate (approximately 200
Gy/h), the scintillators were placed inside the collimator. The count rates from both scintillators
were affected at these two dose rates, see Figure 3.9. Again, scintillator A provides slightly higher
results in comparison with scintillator B.

This experiment proves that the neutron scintillators do have a sensitivity to gamma radiation.
In a spent fuel assembly the gamma dose rate can be up to 1000 Gy/h [27] which is much higher
than 200 Gy/h, so further testing is required to study the behavior of the scintillators under
gamma radiation.

Figure 3.8: Set-up for the experiment with Co-60 at the LNK facility.
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Figure 3.9: Count rates from scintillators A and B at different gamma dose rates.
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4 Machine learning for inspection of spent nuclear fuel

assemblies

The detector described in Chapter 2 and under development in the current project will allow to
perform neutron flux and neutron flux gradient measurements inside spent nuclear fuel assem-
blies. Then this information can be used to discern if the assembly is intact or if fuel pins have
been removed and/or replaced by dummy rods and from which position. The analysis of the
neutron measurements from the spent nuclear fuel assembly to reconstruct the actual configu-
ration of the system (and thus to find possible partial defects) is a typical inverse problem that
can be efficiently solved with identification algorithms based on machine learning.

This chapter concerns the first step in the development of an identification algorithm for partial
defects in spent nuclear fuel using an Artificial Neural Network (ANN). Basics of ANNs are
introduced in section 4.1. The initial training and testing of the ANN model is carried out with
only synthetic neutron flux measurements in PWR fuel assemblies, as discussed in sectio 4.2. The
performance of the ANN algorithm is then compared with other machine learning algorithms,
see section 4.3.

4.1 Basics of Artificial Neural Networks

Artificial Neural Networks (ANNs) are an advanced approach for machine learning and deep
learning tasks. They can model non-linear relationships and thus learn and identify complex
patterns through large datasets. Examples of their application can be found in systems for
image, voice and text recognition [28]. ANNs are attractive for the investigation of partial
defects in spent nuclear fuel assemblies because they may enable a more detailed evaluation of
the system configuration which is needed, e.g., for a precise localization of the possible missing
fuel pins.

Different architectures and strategies can be used to construct ANNs. In the current context,
a typical feed-forward ANN [29] has been chosen and it consists of interconnected neurons,
arranged in an input layer, one or more hidden layers, and an output layer, see Figure 4.1.

Figure 4.1: Generic schematic of a feed-forward artificial neural network [29].

To provide correct and usable predictions, a Neural Network needs to be trained, i.e., its model
requires a proper tuning with the problem under study. Then sets of inputs and outputs that
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represent true cases of the specific application of interest are used to make the neural network
learn the relationship and the mapping between inputs and outputs.

The network receives a set of inputs (xi, i=1...n) via the input layer. The input quantities
take weights in the neurons, are combined according to the connections between the neurons
and moved progressively through the hidden layers until they reach the output layers where
the output result is delivered. The processing is regulated through hyper-parameters such as,
the number of neurons and layers, the activation function, the optimizer function and the loss
function.

The neurons are usually selected so that their number in the input layer is equal to the number
of input features, and their number in the output layer is equal to the size of the output. For the
hidden layers, the number of neurons needs to be tuned in order to optimize the performance of
the algorithm.

The activation functions are mathematical gates in between the input feeding the current neuron
and its output going to the next layer. Artificial neural networks use non-linear activation
functions in order to learn more complicated patterns. The non-linearity also allows for back-
propagation. This is a standard method to fine-tune the weights of the network in the training
via the error rate obtained in the previous iteration [30]. Such a procedure makes the model
more general and reliable. A neural network without an activation function is simply a linear
regression model. Different activation functions can be chosen, depending on the problem to
process. Some popular activation functions [31] are: the Sigmoid, the Hyperbolic Tangent (Tan-
h), the Rectified Linear Unit (ReLU) and the Softmax.

The optimizer is an algorithm that is used to change the attributes of the neural network such
as the weights and the learning rates in order to reduce the losses (errors). Some popular
optimization functions [32] are: the Gradient Descent, the Stochastic Gradient Descent, the
Nestrov Accelerated Gradient, the Adaptive Gradient (AdaGrad) and the Adaptive Moment
Estimation (AdaM).

A loss function is needed to estimate the error of the model during the optimization process.
The loss function calculates how closely the distribution of the model predictions matches the
distribution of the target variables in the training data. Some popular loss functions [33] are:
the Logarithmic Loss (Cross-Entropy) and the Categorical Cross-Entropy.

The accuracy of an ANN model can be estimated via a N-fold cross-validation process. Accord-
ingly, the whole dataset is shuffled and divided into N random batches. N-1 of these batches
are used for the training, while the remaining one is used as a testing dataset. The process is
repeated N times so that each of the N batches can serve as testing dataset. The final estimate
of the model accuracy is taken as the average of the accuracy on the testing dataset calculated
in the N repetitions. The result will then be less biased and the prediction capability of the
model can be evaluated in a fairer manner when compared with other types of models. However,
the cross-validation is computationally expensive since it requires the development of a separate
model for each repetitions.

For the training of the ANN, the number of epochs and the batch-size are key-parameters
to select. The batch-size represents the number of training samples that the ANN needs to
process before updating its internal parameters. The number of epochs determines the number
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of complete passes the network makes through the entire dataset. These parameters have no
default/preferable values, therefore they have to be optimized with respect to the problem at-
hand in order to avoid over- or under-fitting of data.

4.2 Development of an ANN algorithm for partial defects in spent
nuclear fuel

One of the objectives of the current project is to develop an ANN algorithm that can process
neutron flux and neutron flux gradient measurements from a spent nuclear fuel assembly and
identify possible partial defects. As a starting point, a dataset based only on simulated neutron
flux measurements in PWR fuel assemblies (section 4.2.1) is used to train and test the ANN
algorithm (section 4.2.2). The extension of the dataset to neutron flux gradient is planned at a
later stage of the project.

4.2.1 Available dataset

The database for an initial training and testing of the ANN algorithm relies on previous work
performed at SCK CEN [20, 21]. The overall set consists of synthetic data generated via Monte
Carlo simulations of the response of specific detection techniques for intact 17x17 PWR spent
nuclear fuel assemblies and a variety of hypothetical diversion scenarios in which different number
of fuel pins have been replaced by dummy pins made of stainless steel. The detection techniques
that are included in the previous work [20, 21] are non-destructive assay (NDA) techniques, e.g.,
the fork detector and the Partial Defect Tester (PDET). At this stage of the project, only the
part of the dataset for PDET is used because the neutron flux is evaluated in the guide tubes of
the fuel assemblies, which is similar to the strategy followed in the application of the gradient
detector described in Chapter 2.

The PDET consists of a set of neutron and gamma-ray detectors that are positioned inside the
empty guide tubes of a PWR fuel assembly and outside the assembly in order to measure the
passive emission of neutrons and gamma-rays from spent fuel [34, 35]. The first prototype of the
PDET instrument was developed by Lawrence Livermore National Laboratory (LLNL) [36] and
then further developed by SCK CEN [21].

The database contains 1160 different full assembly models; 197 cases of intact assemblies with
varying Initial Enrichment (IE, between 2 and 5w%), Cooling Time (CT, 1 to 50 years) and
Burn-Up (BU, 5 to 60 MWd/kgU) and 963 cases of both symmetric and asymmetric diversion
scenarios, as shown in Figure 4.2, with varying IE and BU. The results of the Monte Carlo
simulations (e.g., the neutron flux in the guide tubes of the assemblies) are the input features
of the machine learning model, and the class label based on the percentage of replaced fuel
pins represents the model response (output). Seven class labels were defined for the response,
representing complete fuel assemblies (class 0) and fuel assemblies with increasing number of
replaced pins (classes 1 to 6 as reported in Table 4.1). Then, the problem corresponds to a
supervised, multi-class classification problem.
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Figure 4.2: Examples of diversion scenarios included in the dataset [21].
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Table 4.1: Class labels with respect to the percentage of replaced fuel pins.

Percentage of replaced pins Class label Number of observations
0 0 196

<= 10% 1 171
10% < x < 20% 2 216
20% < x < 30% 3 189
30% < x < 40% 4 144
40% < x < 50% 5 144

>= 50% 6 99

4.2.2 Settings and Training

A sequential neural network model with 1 hidden layer was built using the TensorFlow [37] and
the Keras [38] open-source software libraries.

The Rectified Linear Unit (ReLU) activation function is used in the input layer and in the
hidden layer because of its computational efficiency and quick convergence rate. The SoftMax
activation function is used in the output layer because it can provide, in a multi-class problem,
the probability of an input value to be in a specific class.

The Adaptive Moment Estimation (ADAM) optimizer was chosen as optimizer because it can
converge at a fast rate and overcome vanishing learning rates and high variances.

The evaluation of the error (loss) of the algorithm in the optimization process is obtained from
the Categorical Cross-Entropy loss function, which can handle multiple classes.

For the training, different numbers of epochs and different batch-size are tested simultaneously.
Figure 4.3 shows how the classification accuracy on the training dataset changes with changing
the number of epochs (from 1 to 3000) and the batch-size (from 5 to 100). Based on these results,
a number of epochs of 1000 and a batch-size of 5 are selected.

The number of neurons in the hidden layer is varied from 0 to 192 and the results are shown
in Figure 4.4. Then a number of neurons of 96 is considered to be optimal for the current
application.

4.3 ANN compared with Decision Trees and k Nearest Neighbors

The ANN model discussed in section 4.2 is compared with two different non-parametric super-
vised learning methods, namely the decision tree (DT) and the k-nearest neighbors (kNN). For
this purpose, the DT and kNN models for safeguards applications developed at SCK CEN were
used [20].

4.3.1 Decision Tree algorithm

Decision trees are one of the most commonly used and easy to implement models of machine
learning. The decision tree algorithm developed at SCK CEN relies on binary trees, i.e., the
internal nodes contain only one incoming branch and two outgoing branches. According to a
splitting criterion based on the value of one input feature, each internal node in the decision tree
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Figure 4.3: Classification accuracy of the ANN with 96 neurons in the hidden layer with: varying
number of epochs (batch size=5) (left), and varying batch size ( of epochs=1000) (right).

Figure 4.4: Classification accuracy of the ANN with respect to the number of neurons in the hidden
layer.

splits the observations into two groups. At the end, each leaf node is assigned to one class label
which is the class label of the majority of the training observations that reach the leaf node.

26



Licentiate Thesis Al-Dbissi M.

Given the simulated neutron flux measurements from the database described in section 4.2.1,
the hyper-parameters of the decision tree are tuned-in. The maximum number of splits (tree
depth) is varied from 2 to 25, the minimum number of observations in one branch is kept to the
default value which is 10. The minimum number of observations in one leaf node is also kept to
the default value, i.e. 1. The Gini diversity index [39] (Gini impurity) is chosen as the splitting
criterion.

The classification accuracy is estimated via a cross-validation process which is similar to the one
described in section 4.1 for ANNs and makes use of 5 random batches.

The evaluation of the classification accuracy shows that a higher tree depth, within the range
between 1 and ∼ 15, leads to a better performance, see Figure 4.5. To avoid overfitting of the
training dataset, a tree depth of 10 can be considered optimal.

Figure 4.5: Classification accuracy of the DT algorithm.

4.3.2 k Nearest Neighbors

The k nearest neighbors (kNN) model is used to classify the observations into separate classes
based on the distance from k neighboring observations. The most important steps in building
the kNN model are: the selection of the input features used in the model, the approach used to
calculate the distance between the observations, and the choice of the number of neighbors (k)
that are considered for the classification.
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The hyper-parameters of the kNN model are tuned-in for the dataset discussed in section 4.2.1.
The Euclidean distance metric [40] is applied and equal weight is assigned to all training obser-
vations.

Similar to the case of the DT algorithm, the classification accuracy is estimated via a 5-fold cross-
validation process. The variation of the classification accuracy with respect to the k number,
varying between 1 and 25, is shown in Figure 4.6. Higher k-values lead to lower accuracy and a
k-value of 5 can be optimal to not over-fit the training dataset.

Figure 4.6: Classification accuracy of the kNN algorithm.

4.3.3 Comparison

The ANN, DT and kNN algorithms are compared via Figures 4.4, 4.5 and 4.6. For an optimal
choice of the parameters, the ANN (with 96 neurons) and DT (with tree depth equal to 10) have
a similar classification accuracy (90.8% for the ANN and 86.5% for the DT), while the kNN
(with a number of neighbors of 5) has a worse performance, the classification accuracy being
equal to 69.2%.

More insights can be obtained from the confusion matrix of each algorithm, see Figure 4.7. The
confusion matrix provides a summary of the number of correct and incorrect predictions of one
algorithm, for each class included in the database. The different number of cases per class label
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in the case of ANN, compared to DT and kNN, is due to the random shuffling of the dataset
prior to the splitting into the training and testing subsets.

The results show that the majority of the misclassifications from all three models appear in
classes 1 to 3 (assemblies with 10-30% replaced fuel pins).

The most undesirable misclassification in terms of safeguards is a false negative, i.e., when a
non-intact assembly is predicted as intact (class 0), since removed fuel will be undetected. The
ANN model shows the best performance in terms of classification accuracy. However, the DT
model gives the lowest number of false negatives.

For the current problem, the decision tree algorithm, even though its implementation is simple,
has performances that are comparable to the performances of the artificial neural network.
The use of a more complex approach such as artificial neural networks is expected to be more
advantageous when more difficult problems are considered, such as the identification of the
number and location of missing fuel pins from the measurements of the gradient detector.

Figure 4.7: Confusion matrices for ANN, DT and kNN models applied to the PDET dataset.
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5 Conclusions and future work

Conclusions and future work are discussed in section 5.1 and 5.2, respectively.

5.1 Conclusions

In this thesis different aspects have been explored for the development of a novel methodology
for non-intrusive inspection of spent nuclear fuel. The methodology is based on two main steps:
1) measurements of the neutron flux and its gradient are performed in spent nuclear fuel as-
semblies using small neutron detectors; and 2) the measurements are processed using an ANN
algorithm to identify number and location of possible fuel pins that have been removed from
the fuel assemblies and replaced with dummies. The use of small neutron detectors simplifies
the inspection procedure since the fuel assemblies do not need to be moved from their storage
position. In addition, the neutron flux gradient measurements and its processing with the ANN
algorithm may lead to more accurate results.

For the first step of the methodology, a new neutron detector that can measure the neutron flux
gradient within a fuel assembly needs to be constructed. The design of the neutron gradient
detector consists of four thin LiF-ZnS(Ag) optical fiber-mounted neutron scintillators arranged
in an aluminium matrix in a rectangular pattern. Monte Carlo simulations were used to study
the concept (Chapter 2, Paper I, and Paper II), and experiments were carried out to test and
characterize two LiF-ZnS(Ag) optical fiber-based neutron scintillators (Chapter 3).

The outcome of the computational study of the gradient detector shows that the selected design
is a viable option in terms of size and performance. The detector is small enough to be inserted
in the guide tubes of PWR fuel assemblies, and the magnitude and direction of the neutron
gradient vector in a neutron multiplying system, under different conditions, have been correctly
retrieved from the reaction rates estimated via Monte Carlo calculations.

In the experimental work, two LiF-ZnS(Ag) optical fiber-based neutron scintillators (courtesy of
KURNS, Japan) have been tested with a neutron source in the hot-cell laboratory at Chalmers
University of Technology and in the BR1 research reactor at the Belgian Nuclear Research
Centre (SCK CEN), so that their sensitivities to thermal neutron and relative efficiencies have
been determined. Their sensitivity to gamma radiation has been also investigated in LNK (SCK
CEN).

For the second step of the methodology, a machine learning algorithm based on an ANN is
under development (Chapter 4). At this initial stage, a simpler problem has been considered,
i.e., the ANN has been prepared, trained and tested using a dataset of synthetic neutron flux
measurements that allow to classify PWR spent nuclear fuel assemblies according to the number
of removed fuel pins. Such an ANN algorithm has been compared with a DT and a kNN algo-
rithm. In the multi-class problem analyzed in this thesis, the ANN algorithm provide somewhat
better results, although its implementation is much more complex than the one needed for DT
and kNN methods. However, the ANN algorithm is expected to be more advantageous when
processing richer inputs (e.g., the neutron flux and the neutron flux gradient measurements) and
aiming at more detailed predictions (e.g., the identification of the number and location of the
missing fuel pins in a fuel assembly).
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5.2 Future work

In the continuation of this research, several developments are planned as follows:

• Monte Carlo simulations will be used to study the performance of the new detector in
estimating the gradient of the neutron flux in PWR and BWR spent nuclear fuel assemblies.
The intact configurations and examples of partial defects with different numbers of removed
fuel pins and at different locations will be considered.

• Further experiments will be carried out to evaluate the sensitivity of the optical fiber-
based neutron scintillators to gamma radiation fields that are typical of spent nuclear fuel
assemblies.

• The gradient detector will be constructed and investigated for neutron gradient measure-
ments in a MOX fuel assembly available at SCK CEN.

• A database that includes simulated neutron flux gradient measurements in fuel assemblies,
with and without partial defects, will be generated and used for the training and testing
of the ANN algorithm.

• The overall methodology that combines measurements with the neutron flux gradient de-
tector and the processing of the measurements with the ANN algorithm will be verified.
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