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ARTICLE OPEN

Disorder-robust phase crystal in high-temperature
superconductors stabilized by strong correlations
Debmalya Chakraborty 1✉, Tomas Löfwander 2, Mikael Fogelström 2 and Annica M. Black-Schaffer 1

The simultaneous interplay of strong electron–electron correlations, topological zero-energy states, and disorder is yet an
unexplored territory but of immense interest due to their inevitable presence in many materials. Copper oxide high-temperature
superconductors (cuprates) with pair breaking edges host a flat band of topological zero-energy states, making them an ideal
playground where strong correlations, topology, and disorder are strongly intertwined. Here we show that this interplay in cuprates
generates a fully gapped ‘phase crystal’ state that breaks both translational and time-reversal invariance, characterized by a
modulation of the d-wave superconducting phase co-existing with a modulating extended s-wave superconducting order. In
contrast to conventional wisdom, we find that this phase crystal state is remarkably robust to omnipresent disorder, but only in the
presence of strong correlations, thus giving a clear route to its experimental realization.

npj Quantum Materials            (2022) 7:44 ; https://doi.org/10.1038/s41535-022-00450-w

INTRODUCTION
Different phases of matter appear in condensed matter physics due
to the presence of strong correlations1,2, disorder3,4, or topology5,6.
While they have all been intensively studied individually and also to
some extent pair-wise7–9, the combination of all three effects is one
of the currently most challenging problem in physics. Cuprates with
pair breaking edges provide an interesting platform where this
three-way interplay can become manifest. First, the d-wave pairing
symmetry in cuprates leads to Andreev-bound states at the pair
breaking [110] edges forming flat bands of zero-energy states10,11,
protected by the bulk topology12,13. Secondly, electron correlations
are exceptionally strong in the cuprates, with the undoped parent
compound even being a Mott insulator1. Finally, disorder, both
intrinsic or extrinsic, is prominent in all cuprates14,15. It has already
been shown that the flat band of zero-energy states is thermo-
dynamically unstable due to the extensive ground-state degen-
eracy and is hence highly susceptible to electronic correlations16.
However, the question of how these zero-energy states respond to
a simultaneous presence of strong correlations and disorder is still
an unsolved problem.
The thermodynamic instability of the zero-energy states opens

for a possible appearance of competing phases, breaking the
topological protection16–21. The likely most promising intrinsic
scenario involves an exotic state called ‘phase crystal’, which
spontaneously breaks both time-reversal and translational sym-
metries along the [110] edge22–25. In this state, the phase of the d-
wave superconducting order parameter is modulated along the
edge, creating superflow patterns which lower the free energy by
Doppler shifting some, but not all, states away from zero energy.
This state was originally found in quasiclassical calculations22, but
subsequently also in a weak-coupling tight-binding model25.
However, these and most other studies of competing phases, do
not take into account two of the most essential ingredients of
cuprates: strong correlations and disorder. It is both unknown if
the phase crystal even survives in the presence of strong
correlations, and, most importantly, disorder is known to
essentially eliminate the ground state degeneracy26,27, thus

making any competing phase seemingly unlikely when real-
world disorder is present.
Here we perform fully self-consistent calculations of the

superconducting state in cuprate superconductors and find that
strong correlations stabilize a phase crystal state along the [110]
edge that develops a full energy gap due to a co-existing s-wave
superconducting order. We first show how strong correlations
increase the number of zero-energy states for any uniform
superconducting phase, contradicting simple topological
arguments. Then, when allowing for a non-uniform solution, we
find a cascade of phase transitions occurring at different
temperatures: d-wave superconductivity occurs below a transition
temperature Tc, the phase crystal appears further below at
temperature T* ~ 0.2Tc, and finally an additional extended s-wave
order, with the same spatial modulations as the phase crystal, is
generated below Ts, generating a full energy gap. Taken together,
these phase transitions explain a set of so far seemingly
contradictory experimental results28–32. Furthermore, we find that
the phase crystal state is unexpectedly very robust to disorder, but
notably only in the presence of strong correlations. Our results
show that the combined effects of strong correlations and
topology lead to the emergence of phases of matter that survives
strong disorder in a highly non-intuitive manner.

RESULTS
Model and approach
The d-wave superconducting state in the strongly correlated
cuprates has long been assumed to be described by the strong
coupling repulsive Hubbard-U model33 and the equivalent t–J
model34:
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Here cyiσ (ciσ) is the creation (annihilation) operator of an electron
with spin σ at lattice site i in a two-dimensional square lattice, Si
and ni are the spin and electron density operators, respectively, μ
is the chemical potential fixing the average electron density, 〈ij〉
denotes nearest-neighbor bonds, J= 4t2/U is the super-exchange
interaction with U being the onsite Hubbard repulsion strength,
and tij is the hopping amplitude for an electron from site i to j,
where we consider tij=−t for nearest-neighbor bonds and tij ¼ t0
for next-nearest-neighbor bonds. For simplicity we express
energies in units of t, lengths in units of the lattice spacing a,
and set ℏ= kB= 1. Furthermore, P is the projection operator
which prohibits double occupancies on each lattice site due to the
strong onsite repulsive U. The effects of the projection operator
can be implemented by the Gutzwiller approximation, where the
Hamiltonian parameters are renormalized by statistical factors
ensuring no double occupancy35. The Gutzwiller approximation
has been verified to agree well with variational Monte Carlo
calculations, which treat the effects of the projection exactly36, in
both homogeneous systems37,38 and for bulk impurities39. In the
presence of inhomogeneities, such as edges or disorder, the
Gutzwiller approximation should be implemented with renorma-
lization factors determined by the local electron density40. In this
way, the Gutzwiller approximation becomes a powerful theoretical
tool encapsulating the simultaneous effects of strong correlations
and inhomogeneities.
We perform a Gutzwiller inhomogeneous mean-field theory

(GIMT) treatment of the Hamiltonian in Eq. (1)40,41. The super-
exchange J term gives rise to superconductivity with spin-singlet
Cooper pairs living on nearest-neighbor bonds, which can be
represented by the local d- and extended s-wave pairing
amplitudes40: ΔdðiÞ ¼ 0:25ðΔþx

i þ Δ�x
i � Δþy

i � Δ�y
i Þ and

ΔsðiÞ ¼ 0:25ðΔþx
i þ Δ�x

i þ Δþy
i þ Δ�y

i Þ. Here Δδ
i is the pairing

amplitude on the nearest-neighbor bond in direction δ. We are
further interested in the phase θ of the d-wave pairing amplitude
characterized through ΔdðiÞ ¼ ΔdðiÞj j expðiθÞ. To quantify the
effects of strong correlations, we compare our GIMT results with
the results of standard weak-coupling Bogoliubov–de Gennes
(BdG) calculations42, where the important projection P in Eq. (1)
is ignored and the only effect of the correlations is to create
superconducting pairing. Finally, we introduce generic non-
magnetic disorder by studying

H ¼ Ht� J þ
X
i

V ini; (2)

where Vi is a site-dependent non-magnetic impurity potential
drawn from a random distribution, such that Vi ∈ [−V/2,V/2]
uniformly, also known as Anderson disorder. Details of the GIMT
and BdG methods, system geometry, and choice of the
parameters are given in the “Methods” section.

Clean superconductor edge
We begin by looking at a clean superconductor with a pair
breaking [110] edge. In Fig. 1a, b we show the phase θ of the
d-wave pairing amplitude of the ground state at a low
temperature, obtained with strong correlations within GIMT and
as a comparison without strong correlations within BdG. In both
cases θ acquires distinct and modulating non-zero values near the
pair breaking [110] edge. These non-zero values of the phase of
the d-wave pairing amplitude near the edge imply that this phase
cannot be gauged away and, consequently, time-reversal sym-
metry is broken43. Additionally, the modulating nature of this
phase shows that the translational symmetry along the [110] edge
is also broken. These modulations define a phase crystal state24,
previously found in the absence of strong correlations in both
quasi-classical theory22,44 and BdG25. Clearly, the phase crystal also
thrives in the presence of the strong correlations found in the
cuprates, and remarkably here also features multiple distinct

properties, as we report below. Before proceeding we also note
that the modulating phase of the superconducting order
additionally results in circulating orbital currents which we
demonstrate in the Supplementary Note 1.
To start characterizing these distinct properties, we investigate

in Fig. 1c, d the behavior of the relative change of the magnitude
of the d-wave pairing amplitude, δ Δdj j, and its phase, θ, along x⊥,
i.e. perpendicular to the pair breaking edge. As seen, the length
scale λ⊥, at which the phase θ decays to its zero bulk value, is the
same as the healing length of Δdj j, with and without strong
correlations. But notably, λ⊥ is much shorter when we appro-
priately include the strong correlations. The reason for this
dramatically shorter λ⊥ is two-fold: First, strong correlations
renormalize the hopping amplitudes tij and the super-exchange
interaction J through Gutzwiller factors in the bulk. Hence the bulk
superconducting coherence length is reduced, which automati-
cally leads to a decreasing healing length of Δdj j. We however
note that these factors are not significantly different between the
bulk and the edge. Secondly, strong electronic repulsion
suppresses the charge fluctuations formed at the edge due an
increased proximity to the Mott insulating normal state, as
previously also established for local impurities45. This suppression
of the charge fluctuation is mimicked by the local Hartree shift
(see the “Methods” section), which is notably different on the edge
compared to the bulk. As a result, the charge density heals to its
bulk value over a short distance and also the healing length of Δdj j
is closely tied to the healing length of the charge density in a
strongly correlated state41,45. In fact, even near the edge we find
that Δdj j is closely following the relative increase δρ of the charge
density, as seen in Fig. 1c. To summarize, both a short bulk
superconducting coherence length and a short charge density
healing length result into a short healing length of Δdj j into the
bulk, and consequently a short λ⊥. In contrast, λ⊥ in BdG25 (and
also quasiclassical results24) is only related to the bulk super-
conducting coherence length, with no relation to the charge
density fluctuations, as also clearly seen in Fig. 1d. The strikingly
short λ⊥ with strong correlations has important consequences for
the phase crystal as its modulations along the edge is set by an
intricate energy balance: A spatially varying θ in the bulk costs
kinetic energy, whereas such variations in θ along the edge
instead lower the free energy through a Doppler shift of the zero-
energy states23,24. Hence, the very short λ⊥ in GIMT automatically
gives a very short modulation wavelength of the phase crystal
along the edge, as is evident in Fig. 1a.
Another striking feature of strong correlations is the appearance

of an extended s-wave pairing amplitude Δsj j at the edge with a
modulation length scale set by that of the phase crystal, as seen in
Fig. 1e, while the s-wave amplitude is always negligible in the bulk.
Although not shown in Fig. 1e, the phase of the s-wave pairing
amplitude is nearly constant in all regions where its magnitude is
finite, with a value of π/2 relative to the phase of the d-wave
amplitude. We attribute the existence of this s-wave component
to the very short modulation wavelength of the phase crystal as it
gives a large number of phase nodes. These nodes lead to some
zero-energy states still persisting in the phase crystal, although
their degeneracy is reduced. At low enough temperatures, these
remaining zero-energy states make the system thermodynami-
cally unstable, with the consequence that the extended s-wave
state is developed, gapping out the last states and generating a
full energy gap. Ignoring strong correlations, the phase crystal
modulation wavelength is instead longer, no extended s-wave
pairing amplitude emerges, and consequently the energy
spectrum is never fully gapped22,25. Here we note that the time-
reversal symmetry breaking due to the formation of the phase
crystal state can technically also generate subdominant odd parity
pairing amplitudes, as in superconductor–magnet hybrid sys-
tems46,47. However, with the interaction strength J limited to the
spin-singlet channel in the ‘t−J’ model and the cuprate
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superconductors, such pairing amplitudes never appear in the
Hamiltonian and thus cannot affect the energetics48,49. Similarly,
no longer range spin-singlet even parity pairing amplitudes,
beyond the considered nearest neighbor d- and s-wave pairing
amplitudes, are important as they do not either appear in the
Hamiltonian in Eq. (1).
Having found a phase crystal state with accompanied s-wave

pairing at low temperature in the cuprate superconductors,
we next investigate how this exotic state develops with
temperature and, in particular, how it compares with a uniform
state (say θ= 0) throughout the superconductor, as that is also a
viable superconducting solution to Eq. (1). In order to investigate
the thermodynamic properties, we calculate the free energy
Ω= Eg−TS, where Eg is the internal energy corresponding of the
Hamiltonian Eq. (1) and S is the entropy (see the “Methods”
section). In Fig. 2 we plot Ω for both the phase crystal state and
the uniform phase state. The phase crystal state has a lower free
energy than the uniform phase state for all temperatures below T*.
Thus, T* defines the transition temperature of the phase crystal
state, with its spontaneous breaking of both time-reversal and
translational symmetry. At an even lower T= Ts, the phase crystal
free energy shows a marked downturn. This temperature
corresponds to the appearance of the modulating s-wave pairing

inside the phase crystal state, see upper inset in Fig. 2. Finally, to
understand the effects of strong correlations on the stability of the
phase crystal state, we show the free energy difference between
the phase crystal state and the (metastable) uniform phase state in
the lower inset of Fig. 2 for both GIMT and BdG calculations. The
energy gain due to the formation of the phase crystals is much
larger in GIMT compared to BdG. We further expect the
enhancement of the energy gain in GIMT to be even more
pronounced for a lattice with larger pair breaking [110] edges than
the one considered here, since phase crystal is only occurring at
the pair breaking edge. Also, as indicated by arrows, T*(GIMT) >
T*(BdG). Both the large free energy gain and the higher T*

demonstrate that the strong correlations give a notably enhanced
thermodynamic stability of the phase crystal state.
The remarkably increased thermodynamic stability of the phase

crystal state with strong correlations can be understood by
looking at the eigenvalues of the Hamiltonian Eq. (1). In Fig. 3 we
plot the distribution of the low-energy eigenvalues En, where n is
the eigenindex, at a low temperature, for both the phase crystal
and metastable uniform phase states and with and without strong
correlations.
In the uniform-phase state, zero-energy Andreev bound states

form at [110] edges10,11. The origin of these zero-energy states lies

Fig. 1 Phase crystals for clean sample. Color density maps of the phase sinðθÞ of the local d-wave superconducting pairing amplitude within
GIMT (a) and BdG (b) at temperature T= 0.01. x∥ and x⊥ denote distances along and perpendicular to the pair breaking [110] edge,
respectively. c, d Relative change in the magnitude of the d-wave pairing amplitude, defined as δ Δdj j ¼ h Δdj jirms � ΔdðbulkÞj j, phase
sinðθÞh irms, and relative change in the charge density defined as δρ= 〈ρ〉rms − ρ(bulk) plotted as a function of x⊥ for GIMT and BdG,
respectively. Here 〈. . . 〉rms denotes the root mean square average over all the sites in the x∥ direction for a fixed x⊥. e Line plots of the phase
modulations together with the magnitude of the extended s-wave pairing amplitude Δsj j at the pair breaking edge. See the “Methods” section
for remaining parameters.
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in the change of the sign of the d-wave superconducting order
parameter experienced by quasiparticles Andreev scattering off
the [110] edge10. Such a sign change does not occur at edges
parallel to the crystallographic axes, such as the [100] edge, and
hence the zero-energy states are only existing at the [110] edge in
our sample. Moreover, since scattering trajectories are dependent
on the quasiparticle band structure and its superconducting
nodes, there exists an inherent band structure effect. Alternatively,
and completely equivalently, the zero-energy states at [110] edges
in a d-wave superconductor can be seen as having a topological
origin set by the nodal structure of the quasiparticle band
structure12,13. More specifically, the number of zero-energy edge
states is equal to the number of states in the region of the edge
Brillouin zone bounded by the projections of the superconducting
nodes in the bulk band structure16. It is here important to
emphasize that the topological nature of the edge states thus
depends both on the orientation of the edge and the nodal band
structure, which distinguishes the behavior of topological edge
states of a d-wave superconductor from the edge states of a
topological insulator. As expected, we find zero-energy states in
the uniform phase of both GIMT and BdG, as shown in Fig. 3a.
However, the number of zero-energy states is significantly
increased with strong correlations in GIMT.
We can relate this increase of the number of zero-energy states

to a notable increase in the charge density at the edge always
found when including strong correlations within GIMT, but not in
BdG. This increase of the charge density at the edge can in turn be
understood using a simple argument: Strong electronic repulsion
tries to keep the electrons as far apart from each other as possible,
or in other words, strong correlations smear out any charge
accumulation. However, at the edge, this smearing effect is always
reduced due to a reduced number of neighbors, and, as a result,
the electrons accumulate at the edge compared to the bulk. In a
sense, the enhancement of charge density at the edge can thus be
thought of as a ‘surface tension’ caused by strong correlations.
Notably, this result asks for a reconsideration of the straightfor-
ward use of the bulk-boundary correspondence in nodal super-
conductors, which is used to build a topological relation between
the gap nodes and the number of zero-energy edge states13,50. A
straightforward use of the bulk-boundary correspondence for the
[110] edge of a d-wave superconductor would mean that the
number of zero-energy edge states is set by the projections of the
gap nodes in the bulk band structure onto the edge Brillouin
zone16. However, the change in the edge charge density when
including strong correlations results in a different effective band
structure near the edge compared to that of the bulk. As a
consequence, a reasonable understanding of the number of zero-
energy states can only be established if the bands corresponding
to the edge charge density are considered, instead of those
corresponding to the bulk charge density, see Supplementary
Note 3 for additional details. Thus, the bulk-boundary correspon-
dence should be applied using the modified edge band structure
as the new 'bulk' part in the correspondence. This is a clear
example where the topological relation between the super-
conducting gap nodes and the zero-energy edge states in nodal
superconductors needs to be reformulated in the presence of
strong correlations.
In the phase crystal state, eigenvalues are also shifted to finite

energies (see Fig. 3b), making it the ground state below T* in both
GIMT and BdG. Still, there exist three crucial effects of strong
correlations. First, the number of zero-energy states is significantly
larger in the GIMT uniform phase than in the BdG uniform phase
and consequently the energy gain in the phase crystal state, due
to the shift of these states to finite energies, is much larger in
GIMT. Secondly, due to the presence of the extended s-wave
order, the GIMT phase crystal state features a full energy gap
below Ts, while there are always zero-energy states present in BdG
calculations. Finally, even outside the full energy gap, the

Fig. 2 Thermodynamics for clean sample. Free energy Ω
calculated in GIMT for phase crystal and uniform phase states as
a function of scaled temperature T/Tc, where Tc is the d-wave
superconducting transition temperature. Green arrow indicates
the phase crystal transition temperature T*. Upper inset shows the
phase transition temperatures T* and Ts obtained by plotting
the phase hsinðθÞirms and the magnitude of the extended s-wave
pairing amplitude h Δsj jirms , respectively, averaged along the [110]
edge (a very small temperature-independent value of Δs of the
uniform phase state has been subtracted to extract Ts). Lower inset
shows difference in free energy between the phase crystal state,
Ωpc, and the metastable uniform phase state, Ωms, within GIMT and
BdG. The energy jump in GIMT near T= T* is mainly from the
internal energy Eg.
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Fig. 3 Distribution of low-energy eigenvalues for clean sample.
Eigenvalues En within GIMT and BdG in the uniform phase (a) and
phase crystal (b) states at a low temperature, T= 0.08Tc < Ts < T*.
Strong correlations generate a higher number of zero-energy states
in the uniform phase in (a). The phase crystal state shifts most zero-
energy states to finite energies within both BdG and GIMT, but GIMT
displays larger shifts and a full energy gap (minfEng ¼ 0:006) due to
the formation of co-existing s-wave state. Here, the eigenindex n is
shifted by the total number of lattice sites N.
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eigenvalues of the negative energy states are found at lower
energies in GIMT compared to in BdG, and also display a moderate
temperature dependence, see Supplementary Note 2 for addi-
tional data. These effects all contribute to making the phase
crystal state more heavily preferred in the presence of strong
correlations. We thus find that strong electronic correlations are
crucial to generate both the correct stability and the full energy
gap of the phase crystal state.

Dirty superconductor edge
After having established a fully gapped phase crystal state at pair
breaking edges of clean d-wave superconductors when account-
ing for strong correlations, we turn to another important aspect of
cuprate superconductors, that of disorder. The bulk both
possesses intrinsic disorder14 and disorder is generated with
chemical substitution and doping15. For systems with edges,
disorder is even more important as it inevitably appears while
preparing any edge. Since we are here primarily interested in edge
properties, we only consider non-magnetic disorder for which the
bulk d-wave superconducting state has been shown to be robust
when including strong correlation effects40,41,51.
In Fig. 4a, b we show the evolution of the phase of the d-wave

pairing amplitude at a temperature within the phase crystal
state for different disorder strengths V. The phase modulations
near the pair breaking edge persist in the whole range from weak
to strong disorder strength V= 1.5. This is also seen in the line
plots of the phase at the pair breaking edge in Fig. 4c. Moreover,
the disorder averaged values of the phase crystal transition
temperature T* and the accompanying extended s-wave transition
temperature Ts also remain constant with disorder (see Fig. 4d).

Thus, the phase crystal state is remarkably robust to disorder
when strong correlations are appropriately included. The almost
complete disorder insensitivity of the phase crystal is very
surprising. It is true that strong correlations have previously been
seen to be the reason for the robustness of d-wave super-
conductors to disorder40,41,51, but this robustness has always
involved the magnitude of the pairing amplitude. In contrast, the
phase crystal state exists only near pair breaking edges where the
magnitude is suppressed and it is here instead the super-
conducting phase that is completely robust to disorder.
To further imprint the importance of strong correlations for the

disorder robustness, we plot in Fig. 4e, f the phase of the d-wave
pairing amplitude obtained within BdG for V= 0.5. Even for this
relatively weak V= 0.5, where bulk d-wave superconductivity
clearly still thrives41, the edge phase modulations are almost
completely disrupted. Thus, in the absence of strong correlations,
the phase crystal state is clearly extremely sensitive to disorder,
much more so than the bulk d-wave state. This further emphasizes
the remarkable role of strong correlations in the stability of the
phase crystal state. We have verified that these results hold also
for other models of disorder (see Supplementary Note 4).
The disorder robustness of the phase crystal state is even more

surprising if we consider the energetic origin of the phase crystal
state: a large degeneracy of zero-energy states in the uniform
phase state. It has recently been shown using both T-matrix
calculations26 and topological arguments27 that disorder generally
weakens zero-energy state degeneracies. This we also see in the
uniform phase state in Fig. 5a, where we plot the low-energy
eigenvalues En. In the uniform state, the spectrum of eigenvalues
is changed by disorder and the number of zero-energy states is
indeed rather dramatically reduced. Based on this, we would

Fig. 4 Phase crystals for disordered sample. Color density maps of sinðθÞ in both GIMT (a, b) and BdG (e) for T= 0.32T* < Ts. Line plots of the
phase modulations along the pair breaking [110] edge as a function of x∥ are shown for GIMT (c) and BdG (f) for different disorder strengths V.
The phase crystal is stable even in the presence of strong disorder within GIMT but does not survive even moderately weak disorder if strong
correlation effects are not included. Phase crystal transition temperature T* and extended s-wave transition temperature Ts are shown in (d),
averaged over five disorder configurations, both scaled by the V= 0 superconducting transition temperature T0c . Error bars indicate the
standard deviation about the mean disorder averaged value.
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naively expect that the phase crystal state would quickly
disappear with increasing disorder. Instead, we see that disorder
has very little effect on the phase crystal states and its low-energy
states, when we appropriately include strong correlation effects in
Fig. 5a. As a consequence, the energy gain due to the formation of
the phase crystal state is still higher than the disorder-induced
shift of the energy spectrum in the uniform phase state. This
results in the phase crystal state being robust to disorder in the
presence of strong correlations, even though the degeneracy of
the zero-energy states in the uniform state is nearly eliminated. In
contrast to the disorder robustness when strong correlations are
appropriately included, we find in Fig. 5b that the BdG
eigenspectra of the uniform and phase crystal states start to
overlap even for small disorder. As a result, the formation of a
phase crystal state does not reduce the total free energy and thus
the phase crystal state is destroyed even at weak disorder when
strong correlations are ignored.
The striking disorder robustness of the phase crystal state in

the presence of strong correlations has two underlying reasons.
First, the enhanced number of zero-energy states in the uniform
phase state of GIMT results in a larger energy gain of the phase
crystal state for the clean sample, compared to the non-
correlated case. This energy gain is clear from the lower inset of
Fig. 2. All by itself, this large energy gain already suggests that
the phase crystal within GIMT can withstand disorder up to a
larger disorder strength compared to BdG. Second, strong
electronic repulsion smears out the charge inhomogeneities
caused by the presence of disorder. This results in a strongly
weakened effective disorder41. These two features cumulatively
make the phase crystal state robust to disorder in the presence
of strong correlations.
Our results demonstrate that the combined effects of strong

correlations, topology, and disorder can be very non-intuitive.
The phase crystal state, which initially is formed due to a large

degeneracy of topologically protected zero-energy states, is
extremely robust to disorder but only in the presence of strong
correlations. This result holds even though the original
degeneracy of the zero-energy states is drastically reduced
by disorder.

Comparison with experiments
Above we established the existence of a disorder robust phase
crystal state with a full gap at the lowest temperatures at edges of
strongly correlated high-temperature cuprate superconductors.
These findings have direct experimental application in super-
conducting cuprate devices since the presence of zero-energy
edge states without the phase crystal state should, if indeed
present, significantly affect transport properties. In fact, different
experiments on cuprate devices have for a long time given
contradictory results, with no previous viable theoretical explana-
tion. At intermediate temperatures, tunneling experiments across
cuprate–normal metal junctions unanimously see a large zero-bias
conductance peak10,52, consistent with the existence of many
zero-energy edge states. However, at lower temperatures, some
experiments reveal a full gap in the tunneling spectra28–30,
whereas others only see a so-called temperature-independent
broadening31,32, i.e. broadening beyond standard thermal broad-
ening through the Fermi–Dirac distribution, of the zero-bias
conductance peak. This dichotomy at low temperatures has
previously been notoriously hard to explain theoretically. A set of
theories, based on either spontaneous formation of subdominant
s-wave superconducting order19,20, magnetic order16,17, or super-
currents18 all give only a split in the zero-energy density of states
at low temperatures. On the other hand, a phase crystal state in
the absence of strong correlations only explains the temperature-

Fig. 5 Distribution of low-energy eigenvalues for disordered
sample. Eigenvalues En within GIMT (a) and BdG (b) at the same
temperature as in Fig. 4 (T= 0.32T* < Ts), with stars (circles) for the
phase crystal (uniform phase) state at different disorder strengths V.
The phase crystal state within GIMT in (a) is stable for all V, while the
eigenvalues for the phase crystal and uniform phase states almost
overlap within BdG in (b), corroborating the fact that the phase
crystal does not survive disorder when strong correlations are
ignored.

Fig. 6 Low-energy density of states. Spatially averaged density of
states N(E) within GIMT at different temperatures for clean (a) and
disordered samples (b). N(E) is extracted with a constant broadening
parameter, which excludes the temperature broadening caused by
the Fermi–Dirac distribution. A clear zero-bias peak is seen for T > Ts,
with insets showing its full width at half maximum, FWHM. The
increase of FWHM with decreasing temperature shows that the zero-
bias peak is broadened beyond the Fermi–Dirac distribution effects,
i.e. a temperature-independent effect. For T < Ts, N(E) develops a full
gap (small remnant N(E) inside the gap is due to the broadening of
the delta-function). Plots for finite disorder are averaged over five
disorder configurations.
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independent broadening of the zero-energy states22 but not the
full gap. By including strong correlation effects we remedy these
theory shortcomings and can now explain all experimental data.
To connect to the experiments, in Fig. 6 we show the spatially

averaged low-energy density of states N(E) obtained within GIMT
at different temperatures in clean (a) and disordered (b) samples.
To numerically evaluate N(E), we choose a small and temperature
independent energy smearing in N(E) (see the “Methods” section
for details). We do not expect broadening due to any other
scattering processes to be temperature dependent for the low
temperatures considered in this work, as the energy scales
associated with these temperatures are much smaller than the
superconducting gap. We find that for both clean and disordered
samples, at high temperatures, T > T*, the zero-energy states of
the uniform phase state persist, giving a pronounced zero-bias
peak in the N(E). Below a lower temperature, T*, the phase crystal
state develops, which induces a broadening of the lowest energy
peak. This is most clearly seen in the temperature evolution of
the full width at half maximum (FWHM) of the zero-energy peak,
which we plot in the insets of Fig. 6. Most importantly, the zero-
energy peak broadening increases with decreasing temperature
and exists independently of the thermal broadening (which is
not included), therefore being a temperature-independent
effect. It is caused by an increase in the Doppler shift of the
low energy states in the phase crystal state with lowering
temperatures, see also Supplementary Note 2 for the explicit
temperature dependence of the eigenvalues. Finally, at an even
lower temperature, Ts, an additional extended s-wave compo-
nent appears causing a full energy gap to develop. Thus, it is very
feasible to experimentally measure, across different devices with
their different T* and Ts due to microscopic details, both a full
energy gap and a temperature-independent broadening of the
zero-bias conductance peak at low temperatures, while at
intermediate temperatures consistently see the large zero-bias
peak of the uniform state. This illustrates how our findings likely
resolve the long-standing experimental dichotomy and provide
future guidelines for the design of superconducting devices.

DISCUSSION
The strong disorder robustness of the phase crystal state in
strongly correlated superconductors makes it a very promising
candidate for finally explaining the physics of boundaries and
edges in the cuprate superconductors. The disorder robustness
of the phase crystal state is also remarkable from the point of
view that it concerns the phase of the superconducting pairing,
not the magnitude. Conventional s-wave superconductors have
for a long time been known to be highly robust against disorder
thanks to the celebrated Anderson’s theorem53. In the presence
of strong correlations, an analogy of the Anderson’s theorem has
recently been constructed for d-wave superconductors54. How-
ever, these results both only concern the magnitude of the
superconducting pairing. The phase crystal state on the other
hand is characterized by its strong modulation of the phase of
the superconducting pairing and it even only exists in regions
where the magnitude is suppressed. Thus, there exists no
established reason to expect a phase crystal state to be anything
but unstable towards disorder. This disorder sensitivity is even
verified in the absence of strong correlations, where the phase
crystal is very easily destroyed by disorder. It is only when
including strong correlation effects that the phase crystal state is
stabilized to the degree that it can be present in a real material.
Thus our results establish the importance of strong correlations
for disorder robustness of superconducting phase modulations.
Since disorder robustness is often used to predict the underlying
pairing symmetry of various superconductors, our findings can
additionally play a pivotal role in determining the pairing
symmetry of recently discovered superconductors such as

nickelates or twisted bilayer graphene, where electronic correla-
tions are considered to be strong55,56.

METHODS
In this section, we first provide details of the two methods, GIMT and BdG,
implemented to solve the Hamiltonian in Eq. (2) to extract the self-
consistent superconducting pairing amplitude, eigenvalues, and thermo-
dynamic quantities. Then we provide values and motivations for the lattice
geometry and different parameters used to obtain the results.

GIMT
Solving the (disordered) ‘t−J’ Hamiltonian in Eq. (2) requires handling the
projection operators that prohibit formation of double occupancy on any
lattice site. Within the Gutzwiller inhomogeneous mean-field theory
(GIMT) the effects of this projection is treated locally, i.e. at each site, using
the Gutzwiller approximation. To implement the Gutzwiller approxima-
tion, we first consider the Gutzwiller wave function34,36,57 ψj i ¼ P ψ0j i,
where ψ0j i is the ground state wave function in the Hilbert space that
allows double-occupancy and P is the projection operator: P ¼ Q

iPi ,

with P i ¼ γ
ni=2
i ð1� ni"ni#Þ, where γi are the local fugacity factors38

obtained by demanding conservation of the local electron densities.
Expectation values of a general operator O are likewise hOi0 ¼
ψ0h jO ψ0j i=hψ0jψ0i and hOi ¼ ψh jO ψj i=hψjψi in the unprojected and
projected Hilbert space, respectively. Within the Gutzwiller approximation,
expectation values of the different terms of the Hamiltonian Eq. (2) are
assumed to be related by35,58,59

hcyiσcjσi � gtijhcyiσcjσi0;
hSi � Sji � gJijhSi � Sji0; hninji � hninji0;

(3)

where gtij and gJij are known as the Gutzwiller renormalization factors. In the
absence of magnetic order and ignoring intersite correlations, gtij and gJij
are given in terms of the local hole doping xi38,40:

gtij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4xixj
ð1þ xiÞð1þ xjÞ

s
and gJij ¼

4
ð1þ xiÞð1þ xjÞ :

(4)

Using the relations obtained by the Gutzwiller approximation in Eq. (3), the
internal energy of the Hamiltonian in Eq. (2), Eg ¼ ψ0h jH ψ0j i, can be
expressed as

Eg ¼ P
ij
2tijgtij τij þ τ�ij

� �
þP

i
V i � μð Þρi

� J
2

P
hiji

3gJij � 1
� �

τij
�� ��2 þ ρiρj

2 þ 3gJijþ1ð Þ
4 Δij

�� ��2� 	
;

(5)

where ρi ¼
P

σhniσi ¼
P

σhniσi0 is the local electron density, Δij ¼
hcj#ci"i0 � hcj"ci#i0 is the spin-singlet Cooper pairing amplitude on each

nearest-neighbor bond, and τij ¼ hcyi#cj#i0 ¼ hcyi"cj"i0 is the particle–hole
bond expectation value. The local doping is given by xi= 1−ρi. In writing
Eq. (5), we assume full spin rotational symmetry (due to no magnetic order)
and no spin-triplet superconducting order, both appropriate for cuprate
superconductors. Finally, the extremum of Eg with respect to the different
mean-field variables gives the GIMT Hamiltonian39,41,60–62

HGIMT ¼
P
ijσ

∂Eg
∂τij

cyiσcjσ þ H:c:

þ P
ij

∂Eg
∂Δij

cyi"c
y
j# � cyi#c

y
j"

� �
þ H:c:þP

i

∂Eg
∂ρi

ni ;
(6)

which, when combining Eqs. (5) and (6), can be written as

HGIMT ¼
P
i;δ;σ

�tgti;iþδ �WFS
iδ

n o
cyiσciþ δσ

þ P
i;~δ;σ

t0gt
i;iþ ~δ

cyiσciþ ~δσ þ
P
i

V i � μþ μHSi
� �

ni

� P
i;δ

J 3gJi;iþ δ
þ 1

� �
16 Δδ

i cyi"c
y
iþ δ# þ cyiþ δ"c

y
i#

� �
þ H:c:

� 	
;

(7)

where now nearest-neighbor sites of i are denoted as j= i+ δ, δ= ± x, ± y,
and the next-nearest-neighbor sites as j ¼ i þ ~δ, ~δ ¼ ± ðx ± yÞ. Conse-
quently, Δij, which resides on nearest-neighbor bonds, is denoted as Δδ

i ,
and similarly for τ. Here, WFS

iδ and μHSi are the Fock and Hartree shifts,
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respectively, given by

WFS
iδ ¼ J

4 3gJi;iþ δ � 1
� �

τδi ;

μHSi ¼ � 2t
P
δ

∂gti;iþδ

∂ρi
τδi þ ðτδi Þ

�� �
þ 2t0

P
~δ

∂gt
i;iþ ~δ

∂ρi
τ
~δ
i þ ðτ~δi Þ

�� �

� 3J
2

P
δ

∂gJi;iþδ

∂ρi
1
4 Δδ

i

�� ��2 þ τδi
�� ��2� �

� J
4

P
δ

ρiþ δ:

(8)

The derivatives of the Gutzwiller factors in Eq. (8) are calculated
analytically using the expressions in Eq. (4). Notably, these derivatives
suppress any change in the charge density between the site i and its
neighbors j and are thus responsible for reducing charge accumulation
within GIMT.
The mean-field Hamiltonian HGIMT in Eq. (7) is diagonalized using the

Bogoliubov–de Gennes transformations42, ciσ ¼ P
nðγnσui;n � σγynσv

�
i;nÞ,

where γynσ and γnσ are the creation and annihilation operators of the
Bogoliubov quasiparticles and ui,n and v�i;n the eigenfunctions with
eigenvalues En,. The resulting eigen-system is then solved self-
consistently for all independent local variables: Δþx

i , Δþy
i , τþx

i , τþy
i ,

τyþx
i , τy�x

i and ρi. Finally, in order to analyze the pairing amplitude we
project Δδ

i on its local d- and s-wave components Δd,s(i) as outlined in
the main text. In this work, we always report on the superconducting
pairing amplitudes Δδ

i , as is commonly done in GIMT calcula-
tions40,41,61,62, while technically the superconducting order parameter
is given by gti;iþδΔ

δ
i
35,63.

With both Δδ
i and τδi possibly being complex-valued, we obtain self-

consistency on both the real and the imaginary parts. A crucial aspect in
this process is the initial guess of the self-consistent variables. With real-
valued inputs for Δδ

i and τδi , the solution always converges to a real Δδ
i .

Thus, a purely real Δδ
i is always a solution of the Hamiltonian, albeit it

might not be the ground state. In order to converge to the true ground
state, that might also include complex values of Δδ

i , complex-valued initial
guesses of either Δδ

i or τδi are essential. We have tried many different
inputs as starting guesses. All results for the phase crystal state reported in
this work are obtained using completely random complex initial inputs for
both the amplitude and phase of Δδ

i , while the uniform phase state is

obtained using completely random real-valued amplitude inputs with
zero phase.
We also extract several different physical properties. In order to compare

the thermodynamic stability of different solutions and determine the
ground state, we calculate the free energy Ω= Eg−TS, where Eg is
given by Eq. (5) and S is the entropy given by
S ¼ �2

P
n f ðEnÞ ln f ðEnÞ þ ð1� f ðEnÞÞ lnð1� f ðEnÞÞ½ �, where f is the

Fermi–Dirac distribution function. We also calculate the spatially averaged
density of states NðEÞ ¼ 1=N

P
i;ng

t
i;iðjui;nj2δðE � EnÞ þ jvi;nj2δðE þ EnÞÞ.

Here N is the total number of lattice sites. To numerically evaluate N(E),
we use a Lorentzian with fixed width 0.0015 to calculate the delta-function
and implement a small and temperature independent energy smearing.
The fixed width explicitly excludes the standard thermal broadening effect
caused by the Fermi–Dirac distribution of electrons, allowing us to isolate
effects beyond the standard thermal broadening.

BdG
To identify the effects of strong electronic correlations, we compare the
results of GIMT with a standard Bogoliubov–de Gennes (BdG)
calculation42, where the sole effect of the correlations becomes the
creation of the superconducting pairing amplitude. Within the BdG
method, the (disordered) ‘t−J’ model Eq. (2) is thus solved by ignoring
the effects of projection, i.e., the Hilbert space does not have any
restriction on the formation of double occupancy, and mean-field
decoupling of the super-exchange interaction term is only performed
in the Cooper pairing channel. As a consequence, the BdG method
does not capture the no-double occupancy constraint imposed by the
strong correlations, nor does it include the Hartree (μHSi ) and Fock (WFS

iδ )
shifts also given by the strong correlations. However, the lattice scale
effects (short wavelength fluctuations) that are relevant for high-
temperature superconductors with short superconducting coherence
lengths are still included in a BdG solution. The resulting BdG mean-
field Hamiltonian is given by

HBdG ¼ P
i;δ;σ

�tcyiσciþ δσ þ
P
i;~δ;σ

t0cyiσciþ ~δσ þ
P
i
V i � μð Þni

�P
i;δ

J
4Δ

δ
i cyi"c

y
iþ δ# þ cyiþ δ"c

y
i#

� �
þ H:c:

n o
:

(9)

Practically this BdG Hamiltonian is obtained by setting the Gutzwiller
factors gtij and gJij to unity and ignoring the Hartree (μHSi ) and Fock (WFS

iδ )
shifts in the GIMT Hamiltonian in Eq. (7). Then, we follow the same iterative
self-consistency treatment as in GIMT, but here self-consistency is only
needed for Δδ

i .

Lattice geometry
We primarily consider the lattice geometry shown in Fig. 7, using N= 1926
lattice points. This particular lattice geometry gives us an optimum length
for the [110] edge (dashed line in Fig. 7) with minimum interference from
other edges. This is important since the [110] edge is pair breaking for d-
wave pairing on nearest-neighbor bonds (technically dx2�y2 symmetry, but
here abbreviated as d-wave) as the Andreev reflection at this edge mixes
opposite signs of the superconducting pairing amplitudes. We have also
performed calculations for other system sizes with similar qualitative
outcomes, provided the [110] edge is long enough to host multiple
modulations of the phase crystal state.

Parameters
Within GIMT we set t= 1 and t0 ¼ 0:5 to mimic a normal-state band with
Fermi velocities at the anti-nodes being very similar to the nodal ones,
which is the case for cuprate materials such as Bi2Sr2CaCu2O8 + x

(BSCCO)64, while only using a minimal number of hopping parameters. We
fix the average density to be ρav= 0.8 (i.e. average hole doping 0.2), which
gives a doping slightly below the optimal doping for superconductivity for
the chosen parameters. Our choice of ρav allows us to ignore any
competing magnetic order (which appears near the extremely under-
doped regime) or competing extended s-wave superconducting order
(which appears in the extremely overdoped regime) in the bulk. Further,
we set the super-exchange interaction to J= 0.33, a value close to the one
obtained in scattering experiments on cuprates65,66. The chosen value of J
corresponds to a large value of U= 12, mimicking the strong Coulomb
interaction in cuprates. In the bulk this gives rise to a bulk super-
conducting Tc= 0.148 and Δdj j ¼ 0:236. We have also checked that the

Fig. 7 Schematic of lattice geometry. Sites (blue) arranged in a
square lattice with red and green colors indicating opposite signs of
the d-wave superconducting pairing amplitude residing on each
bond in the bulk. The [110] edge is pair breaking for such
superconducting pairing and is shown with a dashed line, while
the [010] and [100] edges are non-pair breaking. Kinks indicate that
the actual number of lattice sites considered is much larger than
what is included in this schematic.
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qualitative findings of this work do not change for other lower values of J.
In terms of the Gutzwiller renormalization factors, we find that they are all
significant but that both the hopping amplitudes tij and the super-
exchange interaction J are essentially the same in the bulk as on the edge.
However, through the derivatives in Eq. (8), the local Hartree shift of the
chemical potential differs substantially, being around 1.5 in the bulk but
1.15 at the edge.
For the BdG calculations we choose the same parameters as used in

ref. 25 to study the phase crystal state. In particular, within BdG we set t=
1, t0 ¼ 0:25, J= 1.4, and μ= 0.0, giving an average density to be ρav=
1.18 and the bulk superconducting Tc= 0.122 and Δdj j ¼ 0:108. These
parameters both reproduce earlier data in the literature for BdG
calculations and also generate normal-state band parameters that are
very close to those of the GIMT calculations. We note however that both
the density and transition temperatures are different compared to in
GIMT, but we can still compare the GIMT and BdG solutions by reporting
properties rescaled by Tc. In the Supplementary Note 3 we provide an
alternative BdG (alt-BdG) calculation where we choose the BdG
parameters explicitly such that both the bulk average density ρav and
pairing amplitude Δd(i) are matching those of the GIMT calculations. This
allows us to compare the number of zero-energy states in the uniform
phase state, which is the purpose of the Supplementary Note 3. However,
the phase crystal state become extremely weak in this alt-BdG setup, with
also a large s-wave component, making the edge region being almost
instead in a d+ is-wave state. This result in fact illustrates a common
feature of our BdG calculations, that they are surprisingly hard to
converge into a phase crystal state. Including strong correlations, this
problem completely disappears and the phase crystal is stable in a large
parameter regime.

DATA AVAILABILITY
The data are available from the corresponding author upon reasonable request.

CODE AVAILABILITY
The codes are available from the corresponding author upon reasonable request.

Received: 28 April 2021; Accepted: 21 March 2022;

REFERENCES
1. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-

temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
2. Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys.

3, 9–26 (2021).
3. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109,

1492–1505 (1958).
4. Goldman, A. M. & Markovic, N. Superconductor–insulator transitions in the two-

dimensional limit. Phys. Today 51, 39–44 (1998).
5. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).
6. Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80,

076501 (2017).
7. Punnoose, A. & Finkel’stein, A. M. Metal–insulator transition in disordered two-

dimensional electron systems. Science 310, 289–291 (2005).
8. Meier, E. J. et al. Observation of the topological Anderson insulator in disordered

atomic wires. Science 362, 929–933 (2018).
9. Shi, W. et al. A charge-density-wave topological semimetal. Nat. Phys. 17,

381–387 (2021).
10. Kashiwaya, S. & Tanaka, Y. Tunnelling effects on surface bound states in

unconventional superconductors. Rep. Prog. Phys. 63, 1641–1724 (2000).
11. Löfwander, T., Shumeiko, V. S. & Wendin, G. Andreev bound states in high-Tc

superconducting junctions. Supercond. Sci. Technol. 14, R53–R77 (2001).
12. Ryu, S. & Hatsugai, Y. Topological origin of zero-energy edge states in

particle–hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002).
13. Sato, M., Tanaka, Y., Yada, K. & Yokoyama, T. Topology of Andreev bound states

with flat dispersion. Phys. Rev. B 83, 224511 (2011).
14. Howald, C., Fournier, P. & Kapitulnik, A. Inherent inhomogeneities in tunneling

spectra of Bi2Sr2CaCu2O8−x crystals in the superconducting state. Phys. Rev. B 64,
100504 (2001).

15. Alloul, H., Bobroff, J., Gabay, M. & Hirschfeld, P. J. Defects in correlated metals and
superconductors. Rev. Mod. Phys. 81, 45–108 (2009).

16. Potter, A. C. & Lee, P. A. Edge ferromagnetism from majorana flat bands: appli-
cation to split tunneling-conductance peaks in high-Tc cuprate superconductors.
Phys. Rev. Lett. 112, 117002 (2014).

17. Honerkamp, C., Wakabayashi, K. & Sigrist, M. Instabilities at [110] surfaces of
dx2�y2 superconductors. EPL 50, 368–374 (2000).

18. Löfwander, T., Shumeiko, V. S. & Wendin, G. Time-reversal symmetry breaking at
Josephson tunnel junctions of purely d-wave superconductors. Phys. Rev. B 62,
R14653–R14656 (2000).

19. Black-Schaffer, A. M., Golubev, D. S., Bauch, T., Lombardi, F. & Fogelström, M.
Model evidence of a superconducting state with a full energy gap in small
cuprate islands. Phys. Rev. Lett. 110, 197001 (2013).

20. Nagai, Y., Ota, Y. & Tanaka, K. Time-reversal symmetry breaking and gapped
surface states due to spontaneous emergence of new order in d-wave nanois-
lands. Phys. Rev. B 96, 060503 (2017).

21. Matsubara, S. & Kontani, H. Emergence of d ± ip-wave superconducting state at
the edge of d-wave superconductors mediated by ferromagnetic fluctuations
driven by Andreev bound states. Phys. Rev. B 101, 235103 (2020).

22. Håkansson, M., Löfwander, T. & Fogelström, M. Spontaneously broken time-
reversal symmetry in high-temperature superconductors. Nat. Phys. 11, 755–760
(2015).

23. Holmvall, P., Vorontsov, A. B., Fogelström, M. & Löfwander, T. Broken translational
symmetry at edges of high-temperature superconductors. Nat. Commun. 9, 2190
(2018).

24. Holmvall, P., Fogelström, M., Löfwander, T. & Vorontsov, A. B. Phase crystals. Phys.
Rev. Res. 2, 013104 (2020).

25. Wennerdal, N. W., Ask, A., Holmvall, P., Löfwander, T. & Fogelström, M. Breaking
time-reversal and translational symmetry at edges of d-wave superconductors:
microscopic theory and comparison with quasiclassical theory. Phys. Rev. Res. 2,
043198 (2020).

26. Kalenkov, M. S., Fogelström, M. & Barash, Y. S. Two regimes for effects of surface
disorder on the zero-bias conductance peak of tunnel junctions involving d-wave
superconductors. Phys. Rev. B 70, 184505 (2004).

27. Ikegaya, S. & Asano, Y. Stability of flat zero-energy states at the dirty surface of a
nodal superconductor. Phys. Rev. B 95, 214503 (2017).

28. Covington, M. et al. Observation of surface-induced broken time-reversal sym-
metry in YBa2Cu3O7 tunnel junctions. Phys. Rev. Lett. 79, 277–280 (1997).

29. Dagan, Y. & Deutscher, G. Doping and magnetic field dependence of in-plane
tunneling into YBa2Cu3O7�x : possible evidence for the existence of a quantum
critical point. Phys. Rev. Lett. 87, 177004 (2001).

30. Gustafsson, D. et al. Fully gapped superconductivity in a nanometre-size
YBa2Cu3O7�δ island enhanced by a magnetic field. Nat. Nanotechnol. 8, 25–30
(2013).

31. Alff, L. et al. Spatially continuous zero-bias conductance peak on (110)
YBa2Cu3O7�δ surfaces. Phys. Rev. B 55, R14757–R14760 (1997).

32. Neils, W. K. & Van Harlingen, D. J. Experimental test for subdominant super-
conducting phases with complex order parameters in cuprate grain boundary
junctions. Phys. Rev. Lett. 88, 047001 (2002).

33. Scalapino, D. The case for dx2−y2 pairing in the cuprate superconductors. Phys.
Rep. 250, 329–365 (1995).

34. Anderson, P. W. et al. The physics behind high-temperature superconducting
cuprates: the plain vanilla version of RVB. J. Phys.: Condens. Matter 16, R755–R769
(2004).

35. Zhang, F. C., Gros, C., Rice, T. M. & Shiba, H. A renormalised hamiltonian approach
to a resonant valence bond wavefunction. Supercond. Sci. Technol. 1, 36–46
(1988).

36. Paramekanti, A., Randeria, M. & Trivedi, N. Projected wave functions and high
temperature superconductivity. Phys. Rev. Lett. 87, 217002 (2001).

37. Sensarma, R., Randeria, M. & Trivedi, N. Can one determine the underlying fermi
surface in the superconducting state of strongly correlated systems? Phys. Rev.
Lett. 98, 027004 (2007).

38. Fukushima, N. Grand canonical Gutzwiller approximation for magnetic inhomo-
geneous systems. Phys. Rev. B 78, 115105 (2008).

39. Fukushima, N., Chou, C.-P. & Lee, T. K. Impurity potential renormalization by
strong electron correlation. Phys. Rev. B 79, 184510 (2009).

40. Garg, A., Randeria, M. & Trivedi, N. Strong correlations make high-temperature
superconductors robust against disorder. Nat. Phys. 4, 762–765 (2008).

41. Chakraborty, D. & Ghosal, A. Fate of disorder-induced inhomogeneities in
strongly correlated d-wave superconductors. N. J. Phys. 16, 103018 (2014).

42. Zhu, J. Bogoliubov–de Gennes Method and Its Applications. Lecture Notes in Physics
(Springer International Publishing, 2016).

43. Sigrist, M. & Ueda, K. Phenomenological theory of unconventional super-
conductivity. Rev. Mod. Phys. 63, 239–311 (1991).

D. Chakraborty et al.

9

Published in partnership with Nanjing University npj Quantum Materials (2022)    44 



44. Vorontsov, A. B. Broken translational and time-reversal symmetry in unconven-
tional superconducting films. Phys. Rev. Lett. 102, 177001 (2009).

45. Tang, S., Miranda, E. & Dobrosavljevic, V. Mottness-induced healing in strongly
correlated superconductors. Phys. Rev. B 91, 020501 (2015).

46. Nakosai, S., Tanaka, Y. & Nagaosa, N. Two-dimensional p-wave superconducting
states with magnetic moments on a conventional s-wave superconductor. Phys.
Rev. B 88, 180503 (2013).

47. Chen, W. & Schnyder, A. P. Majorana edge states in superconductor–noncollinear
magnet interfaces. Phys. Rev. B 92, 214502 (2015).

48. Baskaran, G. Resonating-valence-bond contribution to superconductivity in
MgB2. Phys. Rev. B 65, 212505 (2002).

49. Schmidt, J., Scherer, D. D. & Black-Schaffer, A. M. Topological superconductivity in
the extended Kitaev–Heisenberg model. Phys. Rev. B 97, 014504 (2018).

50. Schnyder, A. P. & Brydon, P. M. R. Topological surface states in nodal super-
conductors. J. Phys.: Condens. Matter 27, 243201 (2015).

51. Tang, S., Dobrosavljević, V. & Miranda, E. Strong correlations generically protect d-
wave superconductivity against disorder. Phys. Rev. B 93, 195109 (2016).

52. Wei, J. Y. T., Yeh, N.-C., Garrigus, D. F. & Strasik, M. Directional tunneling and
Andreev reflection on YBa2Cu3O7−δ single crystals: predominance of d-wave
pairing symmetry verified with the generalized Blonder, Tinkham, and Klapwijk
theory. Phys. Rev. Lett. 81, 2542–2545 (1998).

53. Anderson, P. Theory of dirty superconductors. J. Phys. Chem. Solids 11, 26–30
(1959).

54. Ghosal, A., Chakraborty, D. & Kaushal, N. Prospects of Anderson’s theorem for
disordered cuprate superconductors. Phys. B Condens. Matter 536, 867–876
(2018).

55. Zhang, G.-M., Yang, Y.-f & Zhang, F.-C. Self-doped Mott insulator for parent
compounds of nickelate superconductors. Phys. Rev. B 101, 020501 (2020).

56. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle gra-
phene superlattices. Nature 556, 80–84 (2018).

57. Gutzwiller, M. C. Effect of correlation on the ferromagnetism of transition metals.
Phys. Rev. Lett. 10, 159–162 (1963).

58. Edegger, B., Muthukumar, V. N. & Gros, C. Gutzwiller-rvb theory of high-
temperature superconductivity: results from renormalized mean-field theory and
variational monte carlo calculations. Adv. Phys. 56, 927–1033 (2007).

59. Ko, W.-H., Nave, C. P. & Lee, P. A. Extended gutzwiller approximation for inho-
mogeneous systems. Phys. Rev. B 76, 245113 (2007).

60. Wang, Q.-H., Wang, Z. D., Chen, Y. & Zhang, F. C. Unrestricted renormalized mean
field theory of strongly correlated electron systems. Phys. Rev. B 73, 092507
(2006).

61. Christensen, R. B., Hirschfeld, P. J. & Andersen, B. M. Two routes to magnetic order
by disorder in underdoped cuprates. Phys. Rev. B 84, 184511 (2011).

62. Yang, K.-Y., Chen, W. Q., Rice, T. M., Sigrist, M. & Zhang, F.-C. Nature of stripes in
the generalized t−j model applied to the cuprate superconductors. N. J. Phys. 11,
055053 (2009).

63. Chakraborty, D., Sensarma, R. & Ghosal, A. Effects of strong disorder in strongly
correlated superconductors. Phys. Rev. B 95, 014516 (2017).

64. Norman, M. R. Linear response theory and the universal nature of the magnetic
excitation spectrum of the cuprates. Phys. Rev. B 75, 184514 (2007).

65. Lyons, K. B., Fleury, P. A., Schneemeyer, L. F. & Waszczak, J. V. Spin fluctuations
and superconductivity in Ba2YCu3O6+δ. Phys. Rev. Lett. 60, 732–735 (1988).

66. Tranquada, J. M., Shirane, G., Keimer, B., Shamoto, S. & Sato, M. Neutron
scattering study of magnetic excitations in YBa2Cu3O6+x. Phys. Rev. B 40,
4503–4516 (1989).

ACKNOWLEDGEMENTS
We thank P. Holmvall for useful discussions. We gratefully acknowledge financial
support from the Swedish Research Council (Vetenskapsrådet, Grant No. 2018-03488)
and the Knut and Alice Wallenberg Foundation through the Wallenberg Academy
Fellows program. The computations were enabled by resources provided by the
Swedish National Infrastructure for Computing (SNIC) at the Uppsala Multidisciplinary
Center for Advanced Computational Science (UPPMAX) partially funded by the
Swedish Research Council through grant agreement no. 2018-05973.

AUTHOR CONTRIBUTIONS
A.B.S. and D.C. conceived the project. D.C. performed the numerical simulations. All
authors analyzed and interpreted the results. D.C. and A.B.S. wrote the manuscript
with inputs from all authors.

FUNDING
Open access funding provided by Uppsala University.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41535-022-00450-w.

Correspondence and requests for materials should be addressed to Debmalya
Chakraborty.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

D. Chakraborty et al.

10

npj Quantum Materials (2022)    44 Published in partnership with Nanjing University

https://doi.org/10.1038/s41535-022-00450-w
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Disorder-robust phase crystal in high-temperature superconductors stabilized by strong correlations
	Introduction
	Results
	Model and approach
	Clean superconductor edge
	Dirty superconductor edge
	Comparison with experiments

	Discussion
	Methods
	GIMT
	BdG
	Lattice geometry
	Parameters

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




