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Abstract

The phase-field fracture free-energy functional is non-convex with respect to the displacement and the phase field. This
esults in a poor performance of the conventional monolithic solvers like the Newton–Raphson method. In order to circumvent
his issue, researchers opt for the alternate minimization (staggered) solvers. Staggered solvers are robust for the phase-field
ased fracture simulations as the displacement and the phase-field sub-problems are convex in nature. Nevertheless, the staggered
olver requires very large number of iterations (of the order of thousands) to converge. In this work, a robust monolithic solver
s presented for the phase-field fracture problem. The solver adopts a fracture energy-based arc-length method and an adaptive
nder-relaxation scheme. The arc-length method enables the simulation to overcome critical points (snap-back, snap-through
nstabilities) during the loading of a specimen. The use of an under-relaxation scheme stabilizes the solver by preventing the
ivergence due to an ill-behaving stiffness matrix. The efficiency of the proposed solver is further amplified with an adaptive
esh refinement scheme based on PHT-splines within the framework of isogeometric analysis. The numerical experiments

resented in the manuscript demonstrate the efficacy of the solver. All the codes and data-sets accompanying this work will
e made available on GitHub (https://github.com/rbharali/IGAFrac).
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Phase-field fracture; Brittle material; Monolithic solver; Arc length method; Variational damage; IGA

1. Introduction

The seminal work of Francfort and Marigo [1] led to the emergence of the phase-field based fracture model, as
n alternative fracture modelling technique. Therein, the Griffith fracture criterion was cast into a variational setting
ith certain limitations: no concept of internal length scale and maximum allowable stresses. Later, [2,3] proposed a

omputationally convenient framework of the Francfort and Marigo model, adopting a scalar auxiliary variable that
nterpolates between fully fractured and intact material states. In this context, the Ambrosio–Tortorelli regularization
f the Mumford–Shah functional [4] was utilized. Based on the minimization of the global energy function, the
hase-field model eliminates the need for tedious tracking of the fracture path and remeshing techniques, frequently
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observed in the discrete fracture models like XFEM [5]. Furthermore, the phase-field model for fracture has proven
its capabilities to handle topologically complex fracture patterns (branching, kinking and merging of cracks) [2].

Soon after the inception of phase field based fracture model, the concept was cast into a thermodynamically
onsistent framework in [6], adopting an energy-based fracture driving criterion. This work was later extended
owards a generic stress-based fracture driving criterion in [7], ductile fracture with plasticity models in [8,9],
nisotropic fracture [10,11], hydraulic fracture [12,13], desiccation cracking [14,15] in a non-exhaustive list
f single-scale brittle fracture applications. In the context of multi-scale modelling, the overlapping domain
ecomposition techniques were adopted in [16–20], while [21–23] adopted the hierarchical modelling technique
n the FE2 sense [24].

Despite its popularity in several multi-physics domains, the phase-field model has its own set of computational
hallenges in its implementation in fracture analysis. They include, (1) a non-convex free-energy functional with

respect to the coupled field variables, (2) variational inequality due to fracture irreversibility constraint, and (3)
the need to resolve the smeared fracture zone with a fine mesh. The coupled fields can be solved using either
a monolithic solver or a staggered solver. Provided that the non-linear solver converges, the monolithic solution
scheme is more efficient and faster than the staggered one. However, the non-convex energy functional generally
leads to poor convergence and loss of robustness of the monolithic solver. In order to circumvent this, [25] proposed
a line search technique which included a negative search direction, [26] proposed convexification of the energy
functional based on linear extrapolation of the phase-field for the momentum balance equation. Other methods
developed in this context include the arc-length solvers [27–29], modified Newton–Raphson method [30], error-
oriented Newton–Raphson method [31], and trust regions methods [32]. Nevertheless, the development of a robust
monolithic solver still remains an active research area in the phase-field fracture community. As an alternative
approach, [33] suggested the use of a staggered solution scheme, since the energy functional is convex with respect
to either of the coupled field, if the other one is held constant. The convex nature of the sub-problems in the staggered
solution scheme makes it robust. However, it is computationally expensive, requiring iterations in the order of
thousands at the onset of the localization. Recently, [34,35] demonstrated the efficiency of the quasi-Newton BFGS
method for the fully coupled phase-field fracture problem. In particular, [35] reported reduction of computation
times by several orders of magnitude with the BFGS method, and the number of load increments required by a
staggered solution scheme as 3000 times higher.

The second computational challenge associated with the monolithic solver pertains to the variational inequality
formulation that arises from the fracture irreversibility constraint. In this context, [25,36] opted for a simple
penalization technique, [26] adopted the primal–dual active set method, whereas [30,31] used an Augmented
Lagrangian method based on the Moreau–Yoshida indicator function [30,31]. More recent approaches include
the micromorphic approach that transforms the phase-field into a local variable [37,38], and the slack variable
approach [39]. Alternatively, a heuristic approach was proposed by [33], replacing the fracture driving energy with
its maximum value over the loading history. However, this method is not variationally consistent with the phase-field
fracture energy functional [36,40].

Finally, the phase-field model for fracture analysis requires a fine mesh to resolve the smeared region. A simple
and straight forward but computationally expensive way would be to use uniformly refined mesh. If the fracture
path is known a priori , a certain part of the computational domain may also be pre-refined. The latter case is more
applicable when it comes to benchmark models from the literature. However, in the scenarios where the fracture
path is not known in advance, adaptive mesh refinement techniques are the preferred option. In this context, the
elements are marked based on either a critical threshold value defined over the phase field parameter [26,41],
or by local increase in the tensile energy [42]. Other adaptive refinement schemes include the recovery-based
error indicator [43], a posteriori error estimation based on the dual-weighted residual method [44], the finite cell
method [45], and the dual mesh concept for the two coupled fields with different mesh refinement indicators [46].

To overcome the issues discussed in the current state-of-the-art, we propose a novel monolithic solver, which
is based on an adaptive under-relaxation scheme, and is integrated with fracture energy-based arc-length method.
Although the under-relaxation strategies result in decreased rate of convergence of the solver, for the phase-field
model, it ensures a guarantee to circumvent of divergence issues arising due to erratic behaviour of the jacobian [19].
The fracture energy-based arc-length method adopted in this work is displacement controlled, which provides the
flexibility to take larger displacement steps while accurately capturing the brutal nature of the crack growth. In this

work, we have studied displacement controlled fracture, where the load vs. displacement curve in the post-peak
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Fig. 1. A solid, Ω ∈ R2, embedded with (a) discrete crack C and (b) diffused (smeared) crack, with Dirichlet and Neumann boundaries
ndicated as Γ u

D and Γ u
N respectively.

ource: Figure reproduced from [23].

ehaviour encounters a discontinuity and the representative point drops onto the lower branch with negative slope,
ndicating that both load and displacement must decrease to obtain a controlled crack extension. Such observations
re often neglected in staggered solvers, but these phenomena are captured accurately using our fast and efficient
onolithic solver. Besides capturing the possible snap-back behaviour, the arc-length method also results in an

daptive time-stepping procedure, hence larger energy dissipation is permitted. The adaptive scheme enables a
ynamically changing mesh which in turn allows the refinement to remain local at singularities and high gradients.
he adaptive h-refinement technique is implemented using polynomial splines over hierarchical T-meshes (PHT-
plines). The PHT-splines possess a very efficient local refinement algorithm and they also inherit the properties of
daptivity and locality of T-splines. Moreover, in all the examples, the crack is not initialized but it is allowed to
ucleate naturally. The penalization approach is adopted to treat the variational inequality formulation.

This remainder of the article is structured as follows: Section 2 introduces the reader to the phase-field model
or fracture analysis, its underlying energy functional and the pertinent Euler–Lagrange equations. Subsequently,
n Section 3, the isogeometric analysis framework and the discrete equations for the phase-field fracture model
re introduced. Section 4 presents the main contribution of this work, the robust monolithic solver. The numerical
enchmark problems are addressed in Section 5, followed by concluding remarks in Section 6.

. Phase-field model for fracture

.1. The energy functional

Let Ω ∈ Rdim (dim = 1, 2, 3) be a domain occupied by a fracturing continuum. A discrete representation of
racture is shown in Fig. 1(a) where the fracture C may be represented by a cohesive zone fracture interface. Its
iffused counterpart, obtained through the phase-field regularization is presented in Fig. 1(b). Here, the fracture
s represented by an auxiliary variable, the phase-field parameter, ϕ ∈ [0, 1] within a diffusive (smeared) zone of

width l > 0, where l denotes a length scale parameter that controls the width of the diffused zone. The bounds over
ϕ, zero and one indicate the intact material state and total loss of integrity, respectively. Furthermore, the surface
Γ of both, the discrete and the diffused fracture continuum is decomposed into a Dirichlet boundary, Γ u

D and a
Neumann boundary, Γ u

N , such that Γ = Γ u
D ∪ Γ

u
N and Γ u

D ∩ Γ
u
N = ∅.

A general form of the energy functional for the phase-field fracture model, shown in Fig. 1(b), is given by,

E(u, ϕ) =
∫
Ω

g(ϕ)Ψ f (ϵ(u)) dΩ +
∫
Ω

Ψ r (ϵ(u)) dΩ +
∫
Ω

Gc

cwl

(
w(ϕ)+ l2

|∇ϕ|2
)

dΩ , (1)

n the absence of any external loading (body and traction forces). Here, g(ϕ) is a monotonically decreasing stress-
egradation function attached to the fracture driving strain energy Ψ f (ϵ(u)), and Ψ r (ϵ(u)) is the residual strain
nergy. Moreover, Gc is the Griffith fracture energy, which is a material parameter, and cw is a normalization

onstant associated with the choice of the locally dissipated fracture energy function, w(ϕ). Finally, ϵ(u) is the

3
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Table 1
Stress-degradation functions, popular in the phase-field fracture literature.

Type g(ϕ) Contribution

Quadratic (1− ϕ)2 Bourdin et. al. [2]

Cubic s((1− ϕ)3
− (1− ϕ)2)+ 3(1− ϕ)2

− 2(1− ϕ)3 Borden et. al. [47]

Rational
(1− ϕ)p

(1− ϕ)p + a1ϕ + a1a2ϕ2 + a1a2a3ϕ3 Wu [48]

Table 2
Strain energy density decompositions in phase-field based fracture analysis.

Type Ψ f Ψ r Contribution

No Split 1
2 λtr2(ϵ)+ µ ϵ : ϵ 0 Bourdin et. al. [2,3]

Spectral 1
2 λ⟨tr (ϵ)⟩2+ + µ ϵ+ : ϵ+ 1

2 λ⟨tr (ϵ)⟩2− + µ ϵ− : ϵ− Miehe et. al. [33]

Rankine 1
2E ⟨σ1⟩

2
+ – Wu [48]

symmetric part of the deformation gradient, where u is the displacement field. The choice of w(ϕ) = ϕ2 (cw = 1/2)
typically denotes a AT2 phase field model, while the choice w(ϕ) = ϕ (cw = 8/3) is often referred to as the AT1
model.

The phase-field model for fracture allows great flexibility in the choice of degradation function g(ϕ) and locally
issipated energy function w(ϕ), albeit with some restrictions. The degradation function must satify the following
riterion: g(0) = 1, g(1) = 0, and g′(1) = 0, to ensure that the fracture driving energy reaches zero for fully
eveloped crack, i.e., for ϕ = 1.

Nevertheless, several researchers have proposed different combinations of degradation functions and locally
issipated fracture energy functions, some of which are presented in Table 1.

For AT1 and AT2 brittle fracture, the quadratic degradation function proposed in [2] is most commonly adopted.
owever, it is observed that the AT2 model lacks an initial elastic stage. In order to obtain a linear pre-peak response
ith the AT2 model, researchers opt for a cubic degradation function proposed in [47], with 0 < s ≤ 1, determining

he slope of g(ϕ) in the undamaged state. For quasi-brittle fracture, [48] developed a rational degradation function
ith model parameters a1, a2, a3, and p is used. With these parameters, the different traction-separation laws are
btained. The reader is referred to [48] for more on this aspect. In this work, the AT2 model is adopted along with
uadratic and cubic degradation functions.

Furthermore, the choice of the fracture driving strain energy, Ψ f (ϵ(u)) and the residual, Ψ r (ϵ(u)) is also not
nique. Table 2 presents a few commonly adopted fracture driving and residual energy. The first model proposed
n [2,3] assumes the fracture to driven by the strain energy density Ψ , without accounting for tension-compressive
symmetry. Such a model predicts similar fracture in tension and compression. However, most researchers have
dopted the notion that fracture is driven by the tensile strain energy density. In this context, [33] adopted a spectral
ecomposition of the strain energy density function. This yielded the tensile strain energy and the compressive
train energies as the fracture driving and residual energies respectively. In an alternative approach, [48] proposed
he energy associated with the maximum principal stress σ1 as the fracture driving energy. With reference to Table 2,
E , λ and µ are material constants corresponding to the Young’s modulus, Lamé constant and shear modulus
espectively. The trace operator is given by tr , while ⟨·⟩± represents the positive/negative Macaulay brackets.
urthermore, ϵ± indicates the tensile/compressive strain tensors, obtained through spectral decomposition of the
train tensor.

The additive decomposition of the strain energy density into fracture driving energy and a residual energy renders
he displacement sub-problem non-linear. In order to preserve a linear displacement sub-problem, [49] proposed a
hybrid’ approach. With this approach, the degradation function g(ϕ) is applied on the entire strain energy density

instead of Ψ f in the momentum balance equation. As a consequence, the variational consistency of the problem
s lost. Nevertheless, the formulation is consistent w.r.t thermodynamic principles. This formulation, referred to as
he ‘hybrid’ phase-field fracture model, is adopted in this work.
4
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2.2. Euler–Lagrange equations

The Euler–Lagrange equations for the phase-field model are obtained upon taking the first variation of the energy
unctional (1) w.r.t. its solution fields, vector-valued displacements, u and scalar-valued phase-field, ϕ. Incorporating
he hybrid formulation [49], and with appropriately defined test and trial spaces, the complete problem statement
ssumes the form:

roblem 1. Find (u, ϕ) ∈ U× P with

E ′(u, ϕ; δu) =
∫
Ω

(
g(ϕ)

∂Ψ (ϵ(u))
∂ϵ

)
: ϵ(δu) dΩ = 0 ∀ δu ∈ U0, (2a)

E ′(u, ϕ; ϕ̂) =
∫
Ω

(
g′(ϕ)Ψ f (ϵ(u))+

Gc

cw l
w′(ϕ)

)
(ϕ̂ − ϕ) dΩ (2b)

+

∫
Ω

2Gcl
cw

∇ϕ ·∇(ϕ̂ − ϕ) dΩ ≥ 0 ∀ ϕ̂ ∈ P.

considering the Dirichlet boundary conditions up on Γ u
D and ϕ p on Γ

ϕ

D , and Neumann boundary condition tu
p on

u
N . Moreover, the trial and test spaces are given by

U = {u ∈ [H 1(Ω )]dim
|u = up on Γ u

D}, (3a)

U0
= {u ∈ [H 1(Ω )]dim

|u = 0 on Γ u
D}, (3b)

P = {ϕ ∈ [H 1(Ω )]|ϕ ≥ nϕ|ϕ = ϕ p on Γ
ϕ

D}. (3c)

he left superscript n in (3c) refers to the previous step in (pseudo) time. ■

Problem 1 belongs to the variational inequality category (see Eq. (2b) and test/trial space (3c). The treatment of
ariational inequality is not new in the phase-field fracture model literature. A review of the different approaches
nsuring fracture irreversibility is presented in Section 1. Adopting the history-variable approach [33], in conjunction
ith appropriately defined test and trial spaces, the complete problem statement takes the form:

roblem 2. Find (u, ϕ) ∈ U× P with

E ′(u, ϕ; δu) =
∫
Ω

(
g(ϕ)

∂Ψ (ϵ(u))
∂ϵ

)
: ϵ(δu) dΩ = 0 ∀ δu ∈ U0, (4a)

E ′(u, ϕ; δϕ) =
∫
Ω

(
g′(ϕ)H+

Gc

cw l
w′(ϕ)

)
δϕ dΩ (4b)

+

∫
Ω

2Gcl
cw

∇ϕ ·∇δϕ dΩ = 0 ∀ δϕ ∈ P0,

onsidering the Dirichlet boundary conditions up on Γ u
D and ϕ p on Γ

ϕ

D . Moreover, the trial and test spaces are
iven by

U = {u ∈ [H 1(Ω )]dim
|u = up on Γ u

D}, (5a)

U0
= {u ∈ [H 1(Ω )]dim

|u = 0 on Γ u
D}, (5b)

P = {ϕ ∈ [H 1(Ω )]|ϕ = ϕ p on Γ
ϕ

D}, (5c)

P0
= {ϕ ∈ [H 1(Ω )]|ϕ = 0 on Γ

ϕ

D}. (5d)

he history-variable H is defined as the maximum fracture driving energy Ψ f over the entire loading history.
Mathematically,

H = max(nH,Ψ f ). (6)

The left superscript n in (6) refers to the previous step in (pseudo) time. ■

Remark 1. The history-variable approach in Problem 2 results in a variational equality problem, with relaxed test

and trial spaces for the phase-field (cf. Problems 1 and 2).
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3. Isogeometric analysis and discrete equations

3.1. Isogeometric analysis and NURBS

Isogeometric analysis (IGA) [50] allows an exact representation of complex geometries, such as spheres,
llipsoids, paraboloids and hyperboloids. The representation is carried out using polynomial functions, with the
on-Uniform Rational B-splines (NURBS) most commonly adopted. The smoothness of the NURBS basis functions

s advantageous in problems with multi-faceted surface, that can trigger traction oscillations, when simulated using
onventional geometry discretization. Furthermore, IGA also offers the ease in obtaining higher-order continuous
asis functions with NURBS. As a consequence, it is appealing for higher-order Partial Differential Equations
PDEs). However, NURBS based modelling is often recognized to have significant flaws in constructing watertight
eometries using tensor-product meshes. Also, the scale and scope of refining procedures cause the tensor product
tructure of NURBS to be inefficient leading to erroneous error estimation and improper implementation of
daptivity algorithms. In the context of phase-field fracture model, NURBS-based simulation was carried out in [51]
or the fourth-order phase-field fracture model, albeit without mesh refinement.

The restrictions of the NURBS-based models were mitigated using T-Splines, while keeping the recognizable
tructure of NURBS algorithms. T-splines alleviate the deficiencies of NURBS by generating a single patch of
atertight geometry that can be fine-tuned and coarsened locally. Implementation of T-splines within the framework
f IGA has gained a lot of attention. The Bézier extraction [52] of the basis makes it suitable to be efficient
ntegration into existing finite element programs. However, the linear independence of T-splines is not assured
n generic T-meshes. The concept of analysis suitable T-splines was proposed in [53], which adopts the essential

athematical entities of NURBS, such as linear independence and partition of unity under certain restrictions on the
-mesh, while giving a highly localized and efficient refining algorithm. As an alternative to T-Splines, PHT-splines
ere proposed, which are generalization of B-Splines over hierarchical T-meshes. The local refinement algorithm

or PHT-splines is efficient, and easy to implement.
In this section, the basic concepts of PHT-splines based IGA are discussed, which is then used as a discretization

echnique to solve the phase-field fracture problem. In one-dimension, the PHT-spline representation takes the form,

T(ξ ) =
ncp∑
i=1

Ni,p(ξ )Pi , (7)

here, Ni,p(ξ ) indicates the cubic B-spline basis functions with C1 continuity defined over the knot vector Ξ ,
nd ncp is the total number of control points defined over the control mesh used to determine the scaffolding of
he geometry. Furthermore, p denotes the order of the polynomial, and Pi ∈ Rd is the set of control points in d
imensions for the B-spline curve with the knot vector Ξ . The initial set of knot vectors is denoted by the set of
ertices Ξ d corresponding to each spatial direction in the parameter space, Ω̂ = [0, 1]d , and is given by:

Ξ d
= {ξ d

0 , ξ d
0 , ξ d

1 , ξ d
1 , ξ d

2 , . . . , ξ d
ni−1, ξ

d
ni−1, ξ

d
ni

, ξ d
ni
}. (8)

ere, ξ d
i ≤ ξ d

i+1, and ξ d
0 ≤ ξ d

1 = 0, ξ d
ni−1 ≤ ξ d

ni
= 1. Moreover, ni = ncp + p + 1 represents the number of

lements in each parametric direction. The knot vector is uniform when the distance between the consecutive knots
s constant. For each interior vertex ξi , there are two supporting basis functions, [ξi−1, ξi+1]. For cubic polynomials,
ne of the distinguishing aspects of PHT-splines is that they maintain C1 continuity, where the start and end knots
re repeated p + 1 times, while the interior knots are repeated only once. By repeatedly inserting vertices, all the
not spans can be obtained at the same refinement level, hence converting a PHT-spline to a B-spline.

B-splines are non-local, in the sense that, a B-spline typically encompasses more than more element. However,
n a finite element framework, a local representation of the B-splines within each element is desired. This local
epresentation of the B-spline is extracted using the Bézier decomposition technique. The Bézier extraction operator
s generated using information from the knot vectors and does not rely on the control points or basis functions.
ernstein polynomials have an edge over NURBS basis functions in terms of implementation because the Bernstein
asis functions are the same for all elements, as observed from Fig. 2. Following this idea, the Bézier extraction
llows for the pre-computation of the Bernstein basis on the reference element. During the simulation, the Bernstein
asis function can be mapped to each element, with minimal effort.

The initial discretization, designated as level 0, is a tensor-product mesh. By splitting the components into 2d

ub-elements using the cross-insertion approach, the coarse meshes at level k are refined to obtain finer meshes

6
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Fig. 2. Bézier extraction operator implemented for a cubic B-spline curve with Ξ = [0,0,0,0,1/3,2/3,1,1,1,1]. Here, a rational Bézier curve,
(ξ̄ ) =

{
βi,p

}p+1
i=1 and its associated control points are Q = {Qi }

p+1
i=1 is defined in a reference space Ω̄ = [−1, 1], where βi,p are rational

ernstein polynomial basis functions. The B-spline basis functions, N(ξ̄ ) are obtained from the Bernstein basis functions, B(ξ̄ ) using the
linear Bézier extraction operator C. In case of obtaining the Bézier control points, the mapping is reversed [54].

at level (k + 1), following the principle of adaptivity. The basis functions for an element on the coarse mesh are
replaced by a set of basis functions generated over the refined element in the hierarchical approach. For detailed
implementation of the Bézier extraction operator and method to obtain the control points on the refined mesh, the
reader is referred to [55].

3.2. Discrete phase-field fracture equations

The IGA proposed for the phase-field fracture model in this work, is similar to the classical Finite Element
Analysis (FEA), the only difference being in the basis functions used. For the phase-field fracture model, the Euler–
Lagrange equations in Problem 2 are used as the starting point for discretization. Considering the displacement and
the phase-field at control points (ũi , ϕ̃i ) as the fundamental unknowns, the corresponding continuous fields (u, ϕ)
are approximated as,

u =
m∑

i=1

N u
i ũi , ϕ =

m∑
i=1

Nϕ

i ϕ̃i . (9)

In the above equation, N u
i and Nϕ

i are the basis functions for the displacement and the phase-field, associated with
the i th control point. The total number of control points is given by m. The spatial derivatives of the basis functions
N u

i and Nϕ

i in a two-dimensional case are computed as,

Bu
i =

⎡⎣ Ni,x

0
Ni,y

0
Ni,y

Ni,x

⎤⎦ , Bϕ

i =

[
Ni,x

Ni,y

]
. (10)

Here, the subscripts, x and , y indicate spatial derivatives in x and y directions respectively. Using (10), the strain
ϵ, and the gradient of the phase-field ∇ϕ are defined as,

ϵ =

m∑
i=1

Bu
i ũi , ∇ϕ =

m∑
i=1

Bϕ

i ϕ̃. (11)

he discrete phase-field fracture problem is obtained upon inserting (9)–(11) in the Euler–Lagrange equations
rom Problem 2. Thereafter, (4a) and (4b) are assumed as the internal forces, and stiffness matrix derived from
ts derivative. This notation is consistent with [56]. This allows the presentation of the phase-field fracture problem

ithin the incremental iterative framework as:

7
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Discrete Problem 1. Compute the solution increment (∆̃u, ∆̃ϕ)i+1 in the current iteration i + 1 using[
Kuu Kuϕ

Kϕu Kϕϕ

]
i  

Stiffness matrix

{
∆ũ
∆ϕ̃

}
i+1
=

{
fext,u

fext,ϕ

}
i
−

{
fint,u

fint,ϕ

}
i  

Residual

, (12a)

nd update the solution fields,{
ũ
ϕ̃

}
i+1
=

{
ũ
ϕ̃

}
i
+

{
∆ũ
∆ϕ̃

}
i+1

, (12b)

ntil convergence is achieved. The local element stiffness matrices are given by:

Kuu
=

∫
Ω

[
Bu]T

(
g(ϕ)

∂2Ψ

∂ϵ2

) [
Bu] dΩ ,

Kuϕ
=

∫
Ω

[
Bu]T

(
g′(ϕ)

∂Ψ

∂ϵ

) [
Nϕ

]
dΩ ,

Kϕu
=

∫
Ω

[
Nϕ

] (
g′(ϕ)

∂H
∂ϵ

) [
Bu] dΩ ,

Kϕϕ
=

∫
Ω

{[
Bϕ

]T
(

2Gcl
cw

) [
Bϕ

]
+

[
Nϕ

] (
g′′(ϕ)H+

Gc

cwl
w′′(ϕ)

) [
Nϕ

]}
dΩ ,

(12c)

nd the local internal force vectors are computed as

fint,u
=

∫
Ω

[
Bu]T

(
g(ϕ)

∂Ψ

∂ϵ

)
dΩ ,

fint,ϕ
=

∫
Ω

{[
Bϕ

]T
(

2Gcl
cw

) [
Bϕ

]
ϕ̃ +

[
Nϕ

]T
(

g′(ϕ)H+
Gc

cwl
w′(ϕ)

)}
dΩ .

(12d)

he external force vectors f ext,u and f ext,ϕ are considered equal to zero. ■

. A monolithic solution technique

.1. Incremental fracture energy-based arc-length method

Since the inception of the dissipation-based arc-length solver in [57], variants thereof have been utilized for the
hase-field based fracture modelling [27–29]. Motivated by these studies, in particular, the fracture path controlled
ath following method proposed in [29], a fracture energy-based arc-length method is proposed in this work. From
he phase-field fracture energy functional (1), the energy associated with fracture is identified as:

G(ϕ) =
∫
Ω

Gc

cwl

(
w(ϕ)+ l2

|∇ϕ|2
)

dΩ , (13)

nd its incremental form is given by

∆G(ϕ,∆ϕ) =
∫
Ω

Gc

cwl

(
w′(ϕ)∆ϕ + 2l2

∇ϕ ·∇∆ϕ
)

dΩ . (14)

Thereafter, an arc-length constraint equation Λ(ϕ,∆ϕ) is devised, limiting the incremental phase-field fracture
energy in (14) to a certain value ∆τ . Mathematically,

Λ(ϕ,∆ϕ)
:= ∆G(ϕ,∆ϕ)−∆τ = 0. (15)

Within a displacement-controlled loading scenario, an additive decomposition of the displacement is carried out
s,

ũ = Cũ f + ũp + λ̃û. (16)

ere, C is a constraint matrix [58], ũ f , ũp and ûp are free, prescribed and unit displacements. The load level λ̃

ˆ
acts only on the prescribed displacements up. With this setup, the discrete problem assumes the form:

8
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Discrete Problem 2. Compute the solution increment (∆̃u, ∆̃ϕ, ∆λ̂)i+1 in the current iteration i + 1 using

⎡⎣Kuu Kuϕ Kuλ

Kϕu Kϕϕ Kϕλ

0 Kλϕ 0

⎤⎦
i  

Stiffness matrix

⎧⎨⎩
∆ũ
∆ϕ̃

∆λ̃

⎫⎬⎭
i+1

= −

⎧⎨⎩ fint,u

fint,ϕ

Λ(ϕ,∆ϕ)

⎫⎬⎭
i  

Residual

(17a)

and update the solution fields,⎧⎨⎩
ũ
ϕ̃

λ̃

⎫⎬⎭
i+1

=

⎧⎨⎩
ũ
ϕ̃

λ̃

⎫⎬⎭
i

+

⎧⎨⎩
∆ũ
∆ϕ̃

∆λ̃

⎫⎬⎭
i+1

. (17b)

until convergence is achieved. The local element stiffness matrices Kuu, Kuϕ , Kϕu and Kϕϕ , and the local internal
force vectors fint,u and fint,ϕ remain same as that presented in Discrete Problem 1. The additional matrices are
given by

Kuλ
= Kuu û,

Kϕλ
= Kϕu û,

Kλϕ
=

Gc

cwl

∫
Ω

{[
Nϕ

]T (
w′′(ϕ)∆ϕ + w′(ϕ)

)
+ 2l2 [

Bϕ
]T
·
(
∇∆ϕ +∇ϕ

)}
dΩ ,

(17c)

nd the additional internal force vector is computed as

Λ(ϕ,∆ϕ)
=

∫
Ω

Gc

cwl

(
w′(ϕ)∆ϕ + 2l2

∇ϕ ·∇∆ϕ
)

dΩ −∆τ. ■ (17d)

In this work, the phase-field fracture problem is solved using both the conventional displacement-controlled
olution scheme (Discrete Problem 1) and the Arc-length method (Discrete Problem 2). Algorithm 1 presented
n Appendix A combines both within a single monolithic solution strategy. The time-stepping commences with

displacement-controlled solution scheme and the Newton–Raphson method. Upon convergence, the incremental
issipation ∆G is computed using (14). If ∆G is greater than a certain user-defined switch energy, the method
s switched to the Arc-length method. Additionally, ∆τ is set to the switch energy, and ∆λ is set to zero. Upon

achieving convergence in a certain step, an increment in ∆λ is carried out, subjected to a maximum value of
∆τmax .

4.2. Adaptive under-relaxation scheme

An under-relaxation scheme introduces a scalar parameter β ∈ (0, 1) such that the solution field is updated
using, ⎧⎨⎩

ũ
ϕ̃

λ̃

⎫⎬⎭
i+1

=

⎧⎨⎩
ũ
ϕ̃

λ̃

⎫⎬⎭
i

+ β

⎧⎨⎩
∆ũ
∆ϕ̃

∆λ̃

⎫⎬⎭
i+1

. (18)

When β is set to one, the Newton–Raphson method is recovered, otherwise, the method maybe referred to as
a modified Newton approach. Under-relaxation schemes are usually robust, however, it may reduce the rate of
convergence of the problem [59]. For the phase-field fracture problem, the under-relaxation scheme is adopted to
prevent divergence due to an ill behaving stiffness matrix.

Algorithm 2 in Appendix A presents the under-relaxation adopted in this work. In this scheme, β starts with a
value one, corresponding to a full Newton–Raphson update. When the convergence is not achieved, the value to
β is reduced by a factor 1.25. This reduction is carried out twice before performing a reduction in the prescribed
incremental dissipation ∆τ . The motivation behind this is to try the current dissipation step with smaller solution
increments within the iterative process of the Newton–Raphson method. Such an approach prevents divergence due
to an ill behaving stiffness matrix.
9
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4.3. Adaptive mesh refinement and solution transfer

The phase-field fracture model requires a fine mesh to resolve the crack zone in the computational domain, Ω . A
sharp crack topology is recovered in the limit as l → 0 [2]. With fracture length-scales l very small compared to |Ω |,
a uniformly refined mesh enormously increases the resources required in terms of computing power and storage. In
this work, the novel monolithic solver is integrated with an efficient adaptive mesh refinement (AMR) scheme. The
elements of the mesh are chosen for refinement based on a critical threshold value of ϕ, ϕthreshold [26,46], which is
typically referred as the refinement indicator. To locally refine the crack path, polynomial splines over hierarchical
T-meshes (PHT-splines) are used within the framework of IGA. The PHT-splines possess a very efficient and easy
to implement local refinement algorithm. The hierarchical approach replaces the basis functions for an element on
the coarse mesh with a set of basis functions constructed over the refined element. The refinement of an element
originally defined on the coarse mesh is restricted by a pre-decided maximum number of allowable refinements, to
avoid repeated refinements of the elements which are already in the cracked domain.

An adaptive h-refinement scheme is adopted in this work, in which the order of the basis functions remains
constant throughout the refinement process. Within the simulation, a series of hierarchical meshes evolve. The
mesh during the onset of the simulation is denoted as the base mesh or Level 0 mesh. At any hierarchical level, say
‘k’, some (parent) elements are marked for refinement, following which they are sub-divided into 2dim (children)
elements. Once a parent element is refined, it becomes inactive and its children take the place in the computational
domain as active elements. Finally, for computational efficiency, the basis functions are computed only for the
children elements upon refinement, and not for the entire computational domain.

The field variables are projected from the coarser mesh to the finer mesh for each refined element, repeatedly
during the mesh refinement. To avoid re-computation of the problem from the beginning, a variable transfer is
required. The discretized variables include the field variables such as u and ϕ, computed at the control points that
are required to be transferred to the new element. The projection of the field variables from a coarser mesh to a
finer mesh is implemented using a similar technique to that described in [55]. For computing the new control points,
instead of projecting the geometrical information at the basis vertex, we project ϕ on the finer mesh.

5. Numerical experiments

In this section, numerical experiments are carried out on representative fracture problems. These include a tapered
bar under tension, a specimen with an eccentric hole under tension, a single edge notched specimen under tensile and
later shear loading. For all problems, the geometry, material properties as well as loading conditions are presented
in the respective sub-sections. The load–displacement curves and the phase-field fracture topology at the final step
of the analysis are also presented therein.

A residual-based convergence criterion is adopted in this work. More specifically, the iterations pertaining to the
Newton–Raphson method is terminated, when the norm of the residual is less than 1e − 3.

5.1. Tapered Bar under Tension (TBT)

The first example in the numerical study section is a tapered bar under tensile loading, as shown in Fig. 3. The
bar has dimensions 5 [mm] in length, 0.75 [mm] and 2 [mm] width of fixed end and the prescribed loading edges
respectively. The loading is applied in the form of prescribed displacement increment λ̃û, where û is a unit load
vector and λ̃ is the load factor. When the analysis is started, the displacement-controlled approach is adopted and
λ̂ is incremented in steps of 1e − 2 [mm]. Following the switch to the arc-length method, λ̂ becomes an unknown
ariable, and is solved with the arc-length constraint equation. The additional parameters required for the analysis
re presented in Table 3.

Fig. 4(a) presents the load–displacement curves for the tapered bar under tension. For both, quadratic and cubic
egradation function, the specimen exhibits a snap-back behaviour upon localization. Furthermore, consistent with
ther studies in the literature, the cubic degradation function demonstrates a linear pre-peak behaviour for small
alues of s (< 1). It is also observed that the use of the cubic degradation function yields a higher peak load
ompared to the quadratic degradation function. The reason for this behaviour can be explained with analytical
tudies on 1D bar [60]. Finally, in Fig. 4(b), the phase-field fracture topology at the final step of the analysis is

resented, where the fracture is seen to appear on the fixed end.

10
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Fig. 3. TBT experiment.

Table 3
Model parameters.

Parameters Value

Model AT2
Ψ f No Split
λ 0.0 [MPa]
µ 50.0 [MPa]
Gc 1.0 [N/mm]
l 0.25 [mm]
ϕthreshold 0.2
∆τmax 0.0125 [N]

Fig. 4. Figure (a) presents the load–displacement curves for the tapered bar under tension. The legend entries correspond to the choice of
egradation functions. Figure (b) shows the distribution of the phase-field variable at the final step of the analysis.

.2. Specimen with an eccentric hole under tension (EH)

A unit square (in mm) embedded with a eccentric hole [61], as shown in Fig. 5, is considered for numerical study.
he hole has a radius 0.2 [mm] and is centred at (0.6,0.0). A quasi-static loading is applied at the top boundary

n the form of prescribed displacement increment λ̃û, where û is a unit load vector and λ̃ is the load factor. The
loading in applied in the form of prescribed displacement increment λ̃û, where û is a unit load vector and λ̃ is the
load factor. When the analysis is started, the displacement-control approach is adopted and λ̂ is incremented in steps
of 1e − 4 [mm]. Following the switch to the arc-length method, λ̂ becomes an unknown variable, and is solved
with the arc-length constraint equation. The bottom boundary remains fixed. The additional parameters required
for the analysis are presented in Table 4. The fracture is assumed to occur only under tensile load. As such, the
energy driving the fracture Ψ f is based on the Rankine stress [34]. Note that the tension–compression asymmetric
behaviour may also be obtained using the spectral decomposition method proposed in [33].
11
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Table 4
Model parameters.

Parameters Value

Model AT2
Ψ f Rankine
λ 121.154 [GPa]
µ 80.769 [GPa]
Gc 2700 [N/m]
l 2e−2 [mm]
ϕthreshold 0.2
∆τmax 0.05 [N/mm2]

Fig. 5. EH experiment.

Fig. 6. Figure (a) presents the load–displacement curves for the single edge notched specimen under shear. The legend entries correspond
to the choice of degradation functions. Figure (b) shows the distribution of the phase-field variable at the final step of the analysis.

Fig. 6(a) presents the load–displacement curves for the unit square specimen with an eccentric hole under tension.
The different curves correspond to the choice of the degradation function, quadratic and cubic. It is observed that
the specimen exhibits a linear pre-peak behaviour with the cubic degradation function for s < 1. This linear stage is
missing for the quadratic degradation function and the cubic degradation function with s = 1. However, irrespective
of the choice of the degradation function, two snap-back behaviours are observed. The first one occurring at the onset
of the localization from the hole towards the right of the specimen. The second snap-back behaviour corresponds to

the onset of the localization from the hole towards the left edge of the specimen. Next, in Fig. 6(b), the phase-field

12
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Fig. 7. Figures (a–d) show the evolution of the phase-field, and the corresponding refined meshes are shown in Figures (e–h) for the eccentric
hole. The colours in the latter figures represent the different patches in the IGA context.

Fig. 8. SENT experiment.

fracture topology at the final step of the analysis is presented. The fracture topology similar to those observed in
the literature [61]. The refined meshes corresponding to the different stages in the evolution of the phase-field are
shown in Fig. 7.

5.3. Single Edge Notched specimen under Tension (SENT)

A unit square (in mm) embedded with a horizontal notch, midway along the height is considered, as shown
in Fig. 8. The length of the notch is equal to half of the edge length of the plate (shown in red). The notch is
modelled explicitly in the finite element mesh. A quasi-static loading is applied at the top boundary in the form of
prescribed displacement increment λ̃û, where û is a unit load vector and λ̃ is the load factor. When the analysis is
started, the displacement-control approach is adopted and λ̂ is incremented in steps of 1e− 4. Following the switch
o the arc-length method, λ̂ becomes an unknown variable, and is solved with the arc-length constraint equation.
urthermore, the bottom boundary remains fixed. The additional parameters required for the analysis are presented

n Table 5.
Fig. 9(a) presents the load–displacement curves for the single edge notched specimen under tension. The different

urves correspond to the choice of the degradation function, quadratic and cubic. Similar to the previous section, it is
bserved that the specimen exhibits a linear pre-peak behaviour with the cubic degradation function for s < 1. The
uadratic degradation function does not exhibit a linear pre-peak behaviour. Moreover, beyond the first snap-back

ehaviour, the post-peak branches of all curves are similar. Next, in Fig. 9(b), the phase-field fracture topology at

13



R. Bharali, S. Goswami, C. Anitescu et al. Computer Methods in Applied Mechanics and Engineering 394 (2022) 114927

t

s

t
f
s

Table 5
Model parameters.

Parameters Value

Model AT2
Ψ f No Split
λ 121.154 [GPa]
µ 80.769 [GPa]
Gc 2700 [N/m]
l 2e−2 [mm]
ϕthreshold 0.2
∆τmax 0.025 [N]

Fig. 9. Figure (a) presents the load–displacement curves for the single edge notched specimen under tension. The legend entries correspond
o the choice of degradation functions. Figure (b) shows the distribution of the phase-field variable at the final step of the analysis.

Fig. 10. Figures (a–d) shows the evolution of the phase-field, and the corresponding refined meshes are shown in Figures (e–h) for the
ingle edge notched specimen under tension. The colours in the latter figures represent the different patches in the IGA context..

he final step of the analysis is presented. The fracture topology is consistent with those observed in the literature,
or instance, [33]. The refined meshes corresponding to the different stages in the evolution of the phase-field is
hown in Fig. 10.
14
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Fig. 11. SENS experiment.

Table 6
Model parameters.

Parameters Value

Model AT2
Ψ f Rankine
λ 121.154 [GPa]
µ 80.769 [GPa]
Gc 2700 [N/m]
l 2e−2 [mm]
ϕthreshold 0.1
∆τmax 0.025 [N]

Furthermore, sensitivity studies are carried out w.r.t to the choice of the prescribed maximum dissipation ∆τmax

and the phase-field threshold for mesh refinement. The results in Appendix B present the ∆τmax for which similar
load–displacement curves are obtained. Next, it is also observed that the adaptive mesh refinement technique
with different values of ϕth. yield similar load–displacement curve as that obtained on a fixed mesh. Finally, in
Appendix C, the proposed monolithic solver is compared with conventional alternate minimization solver and the
quasi-Newton Raphson method [26]. For the SENT problem, it is observed that all methods/solvers yield similar
peak load and pre-peak behaviour. However, the proposed monolithic solver augmented with the arc-length method
captures snap-back behaviours, which is not possible with alternative minimization and quasi-Newton Raphson
method.

5.4. Single Edge Notched specimen under Shear (SENS)

The shear test is carried out on the single edge notched specimen by loading in the horizontal direction, as shown
in Fig. 11. The model parameters remain same as presented in Table 6. Similar to the SENT model, a quasi-static
loading is applied at the top boundary in the form of prescribed displacement increment λ̃û, where û is a unit load
vector and λ̃ is the load factor. The loading in applied in the form of prescribed displacement increment λ̃û, where
û is a unit load vector and λ̃ is the load factor. When the analysis is started, the displacement-control approach is
adopted and λ̂ is incremented in steps of 5e − 4 [mm]. Following the switch to the arc-length method, λ̂ becomes
an unknown variable, and is solved with the arc-length constraint equation. The bottom boundary of the specimen
is fixed, while the left and right edges are restricted in the vertical direction.

Fig. 12(a) presents the load–displacement curves for the single edge notched specimen under shear. The different
curves correspond to the choice of the degradation function, quadratic and cubic. It is observed that the specimen
exhibits a linear pre-peak behaviour with the cubic degradation function for s < 1. This linear stage is not exhibited
by the quadratic degradation function and the cubic degradation function with s = 1. However, irrespective of the
choice of the degradation function, two snap-back behaviours are observed. The first one occurring at the onset
of the localization whereas the second snap-back behaviour appears when the crack has reached the bottom edge.
Next, in Fig. 12(b), the phase-field fracture topology at the final step of the analysis is presented. The fracture
15
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Fig. 12. Figure (a) presents the load–displacement curves for the single edge notched specimen under shear. The legend entries correspond
to the choice of degradation functions. Figure (b) shows the distribution of the phase-field variable at the final step of the analysis.

Fig. 13. Figures (a–d) show the evolution of the phase-field, and the corresponding refined meshes are shown in Figures (e–h) for the single
dge notched specimen under shear. The colours in the latter figures represent the different patches in the IGA context..

opology differs from that presented in [33], and the reason lies in the choice of fracture driving Ψ f . In [33], the
fracture is driven by the tensile strain energy obtained through spectral decomposition, whereas in this work, the
Rankine criterion [48] is adopted. The refined meshes corresponding to the different stages in the evolution of the
phase-field are shown in Fig. 13.

5.5. Performance assessment

In this section, a performance assessment of the proposed arc-length solution technique is presented. In this
context, it is worth mentioning that the aforementioned technique achieves convergence throughout the entire loading
path for the problems presented in Sections 5.1–5.4. This, however, is not the case for conventional monolithic
technique like the Newton–Raphson method. The Newton–Raphson method fails to achieve convergence in the first
post-peak step of the loading path.

Fig. 14 presents the number of iterations required for convergence and the relaxation parameter β corresponding

to the numerical experiments. Note that the sub-figures correspond to the choice of a quadratic degradation function.
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Fig. 14. Figures showing the number of iterations required for convergence and the relaxation parameter β for the numerical experiments on
(a) Tapered Bar under Tension (TBT), (b) Eccentric Hole (EH), (c) Single Edge Notched specimen under Tension (SENT), and (d) Single
Edge Notched specimen under Shear (SENS).

The Tapered Bar under Tension (TBT) problem is a simpler problem from a computational perspective as it requires
a few iterations (less that 4) for convergence. Moreover, the relaxation parameter stays at unity, indicating a full
solution update in every iteration throughout the simulation process. In the case of the Eccentric Hole (EH), Single
Edge Notched specimen under Tension (SENT) and shear (SENS), a large number of iterations are required to
achieve convergence (see Figs. 14(b), 14(c) and 14(d)). It is also observed that β drops to values below one for
certain steps during the loading path. These reductions in β correspond to the snap-backs in the load–displacement
curves (see Figs. 6(a), 9(a) and 12(a)). From (18), it is evident that β < 1 corresponds to an under-relaxation based
solution update.

Table 7 presents additional performance measure details corresponding to the numerical experiments. In this
context, the notion of Solution, Refinement and Failed steps are introduced. The Solution step indicates acceptance
of a converged solution and the solver advances onto the next step. In the Refinement step, convergence is achieved,
however, the mesh needs to be refined, hence, the solver repeated the current step on a refined mesh. When the
iterative process fails due to divergence of the residual or when the maximum number of iterations is reached,
the Failed step counter is increased by one. These additional measures provide an indication of the computational
complexity of the numerical experiments carried out in this manuscript.

6. Concluding remarks

In this work, we have proposed a robust monolithic solver to accurately forecast the material behaviour, which
is essential for predicting damage progression and estimating possible failure paths. The literature on variational
phase-field based fracture modelling indicates the design of a reliable, efficient, and simple monolithic solver capable
of capturing the pre- and post-peak behaviours accurately is still an ongoing area of research. The proposed fully
monolithic solver adopts a fracture energy-based arc-length method and an adaptive under-relaxation technique to
17
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Table 7
Table showing the number of Solution (Sol), Refinement (Ref) and Failed (Fail) steps, corresponding average iterations and the CPU runtime
in seconds for the numerical experiments on Tapered Bar under Tension (TBT), Eccentric Hole (EH), Single Edge Notched specimen under
Tension (SENT), and Single Edge Notched specimen under Shear (SENS).

# Steps [–] Average Iterations CPU time [s]

Sol Ref Fail Sol Ref Fail

TBT 47 6 0 1.13 1 NA 65.73
EH 209 74 2 3.09 18.14 39.5 2562.17
SENT 148 57 3 3.30 4.14 6.00 656.46
SENS 66 50 11 9.80 21.04 24.36 2097.33

Fig. 15. Figure (a) presents the load–displacement curves for the single edge notched specimen under tension. The legend entries correspond
o the choice of prescribed maximum dissipation energy ∆τmax . Figure (b) presents the load–displacement curves for the single edge notched
pecimen under tension. The legend entries correspond to the choice of solution techniques.

ridge this gap. The proposed solver utilizes an adaptive mesh refinement scheme using polynomial splines over
ierarchical T-meshes (PHT-splines) within the framework of IGA. The PHT-splines possess a very efficient and
asy to implement local refinement algorithm, which makes it a right choice for capturing quantities of local interest.
he combination of the proposed solver with an adaptive mesh refinement technique could facilitate the application
f this approach to more complex structures and with sophisticated constitutive laws. Through the four test cases
resented in this work, the crack is allowed to nucleate on its own, and also the solver captures the post-peak snap
ack effects which is not possible with the alternate minimization solver [3,6] and the quasi-monolithic scheme [26].

Further extensions of this work may include complex multiphysics problems (e.g., porous media, corrosion),
ynamic fracture, and the unified phase-field fracture model [48] for quasi brittle fracture. Also, plasticity models
ould be incorporated for ductile fracture.
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Appendix A. Solution algorithms

Algorithm 1: Solution scheme without under-relaxation
Data: Initialization

1 method ← ‘displacement’
2 step← 0
3 λ← 0
4 ∆λ← ‘stepsi ze’
5 forall timesteps do
6 step+ = 1
7 λ+ = ∆λ

8 while not Converged do
9 switch method do

10 case ‘displacement’ do
11 Solve Discrete Problem 1

12 case ‘Arc-length’ do
13 Solve Discrete Problem 2

14 Compute energy dissipated (∆G) in the step using (14)
15 if ∆G ≥ swi tchEnergy && method == ‘displacement ′ then
16 ∆λ = 0
17 ∆τ = swi tchEnergy
18 else
19 if i ter < opti ter then
20 ∆τ∗ = ∆τ

21 ∆τ = min(∆τ,∆τmax )
22 else
23 ∆τ = 0.5(0.25∗(i ter−opti ter ))

24 ∆τ = min(∆τ,∆τmax )

Appendix B. Sensitivity w.r.t maximum dissipation allowed in a step and refinement indicator

In this section, the sensitivity of the load–displacement curves w.r.t the maximum dissipated energy ∆τmax [N]
nd refinement indicator (ϕth.) is investigated. To this end, the single edge notched specimen under tension (SENT)
rom Section 5.3 is considered. All aspects of the model (geometry, material parameters and loading conditions)
emain same, the only variation being in ∆τmax and the degradation function set to quadratic.

Fig. 15(a) presents the load–displacement curves obtained using the proposed solver for different values of ∆τmax .
or the values chosen in this study, the load–displacement curves are similar. This indicates that the relevant features
snap-back behaviour) could be sufficiently captured even with a larger dissipation steps, for instance ∆τmax = 0.05
N].

The sensitivity of the load–displacement curves obtained using the proposed solver with different refinement
ndicator is studied with three different threshold phase-field values. An element is marked for refinement once this
hreshold value is exceeded. Fig. 15(b) presents the load–displacement curves obtained for the different phase-
eld threshold values along with that obtained using a fixed mesh. It is observed that the curves are similar.
his indicates that the proposed monolithic solver does not exhibit any bias w.r.t. adaptive mesh refinement
echniques.
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t
d
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Algorithm 2: Solution scheme with under-relaxation
Data: Initialization

1 method ← ‘displacement’
2 step← 0
3 λ← 0
4 ∆λ← ‘stepsi ze’
5 forall timesteps do
6 step+ = 1
7 λ+ = ∆λ

8 while not Converged do
9 switch method do

10 case ‘displacement’ do
11 Solve Discrete Problem 1
12 Update solution fields with relaxation (18)

13 case ‘Arc-length’ do
14 Solve Discrete Problem 2
15 Update solution fields with relaxation (18)

16 if failed to Converge then
17 Revert to old step solution and λ

18 if method == ‘displacement’ then
19 ∆λ/ = 10
20 else
21 f ail+ = 1
22 if f ail > 2 then
23 ∆τ / = 2
24 β / = 1.25
25 β / = 1.25

26 break
27 f ail ← 0
28 β ∗ = 1.05
29 Compute energy dissipated (∆G) in the step using (14)
30 if ∆G ≥ swi tchEnergy && method == ‘displacement ′ then
31 ∆λ = 0
32 ∆τ = swi tchEnergy
33 else
34 if i ter < opti ter then
35 ∆τ∗ = ∆τ

36 ∆τ = min(∆τ,∆τmax )
37 else
38 ∆τ = 0.5(0.25∗(i ter−opti ter ))

39 ∆τ = min(∆τ,∆τmax )

Appendix C. Comparison with alternative minimization solver and Quasi-Newton Raphson method [26]

In this section, a comparison of the proposed monolithic solver with alternative minimization solver [3,6,33] and
he quasi Newton–Raphson method proposed by [26] is carried out. The comparison is based only on the load–
isplacement curves obtained from the respective solvers. The alternate minimization solver solves the displacement
nd the phase-field sub-problems alternatively until a certain tolerance criterion is met. The quasi Newton–Raphson
20
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Fig. 16. Figure presents the load–displacement curves for the single edge notched specimen under tension. The legend entries correspond
to the choice of solution techniques.

approach proposed in [26] adopts a linear extrapolation of the phase-field variable for the momentum balance
equation. Although, the extrapolation strategy is questionable, it yields a convex energy functional, resulting in a
better convergence behaviour of the Newton–Raphson method.

For the comparative study, the SENT model from Section 5.3 is chosen. For both the alternate minimization solver
and the quasi Newton–Raphson method, the fracture irreversibility is enforced using the penalization method [25,36].
Fig. 16 presents the load–displacement curves obtained using the solver proposed in this work, and the alternate
minimization solver and the quasi-Newton Raphson method. It is observed that all methods/solvers predict a similar
peak load and pre-peak behaviour. However, the post-peak behaviours are different. The proposed monolithic solver
equipped with the arc-length method is able to predict snap-back behaviour, which is not possible with conventional
alternate minimization solver and the quasi-Newton Raphson method.
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