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Utilization of single-cell RNA-Seq and genome-scale modeling for investigating 
cancer metabolism 
Johan Gustafsson 
Department of Biology and Biological Engineering 
Chalmers University of Technology 
 

Abstract 
Cancer remains a leading cause of death worldwide, and its dysregulated metabolism is a 
promising target for therapy. However, metabolism is complex to study  the metabolism 
of a cell involves the interplay of thousands of chemical reactions that are combined in 
different ways across tissues and cell types. Genome-scale metabolic models (GEMs), 
where the reaction networks of cells are described using a mathematical formulation, have 
been developed to help in such studies.  
 
In this thesis, methods were developed for determining the active metabolic network (the 
context-specific model) in individual cell types, followed by studies of cancer metabolism. 
To enable identification of the active metabolic network per cell type, single-cell RNA 
sequencing (scRNA-Seq) was employed to detect the presence of individual genes. 
However, the technical and biological variation in scRNA-Seq data poses a major 
challenge to the identification of the active reaction network in a cell type. The variability 
of gene expression due to technical and biological factors was therefore examined, 
concluding that data from thousands of cells is often required to provide enough stability 
for robust model generation. An improved quantification method for scRNA-Seq data, 
called BUTTERFLY, was also developed and implemented as part of the kallisto-bustools 
scRNA-Seq workflow. A new optimized version of tINIT, which enables generation of 
context-specific models, was also developed. It allowed for generation of models based on 
bootstrapped cell populations, which were used to acquire the statistical uncertainty of 
models generated from scRNA-Seq data. Finally, the method was applied to a lung cancer 
dataset, identifying both known and unknown features of cancer metabolism. 
 
To further explore cancer metabolism, a study was conducted to investigate the most 
optimal metabolic behavior under different degrees of hypoxia. To this end, a diffusion-
based model for estimating nutrient availability was developed, as well as a light-weight 
version of the tool GECKO that enables constraining the total enzyme usage in the model. 
The model could explain the glutamine addiction phenomenon in cancers and was used to 
show that metabolic collaboration between cell types in tumors is likely not important for 
growth.  
 
Keywords: single-cell RNA-Seq, genome-scale metabolic modeling, metabolism, cancer.
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1. Background 
1.1. Metabolism in cells 
Metabolism is defined as the set of chemical reactions occurring in living cells to sustain 
life [1]. These reactions serve a multitude of purposes, mainly extraction of energy from 
metabolites, generation of the different building blocks needed in the cell, and disposal of 
waste products. To feed the reactions with substrates, the cell takes up metabolites from 
the surroundings, such as sugars, amino acids, lipids, and oxygen. Much of the metabolism 
is conserved across species, even between animals, bacteria, fungi, and plants [1]. This 
thesis is primarily focused on energy metabolism and generation of building blocks for 
cellular growth in human cancers. 
 
1.1.1. Energy metabolism 
The primary goal of energy metabolism is to extract chemical energy in a format that can 
be used in other reactions in the cell. While there are many molecules that can be used to 
store energy in the cell, a central energy metabolite is adenosine triphosphate (ATP), which 
serves as an energy currency that can be used by most energy-demanding reactions. Energy 
is extracted from ATP by the removal of one phosphate group, turning ATP into adenosine 
diphosphate (ADP). Likewise, ADP can be turned to ATP when coupled with the 
degradation of energy-rich substrates [1].  
 
An important aspect of energy metabolism is the maintenance of the reduction-oxidation 
(REDOX) balance in the cell. The cell needs both reducing and oxidizing agents for 
various tasks and the levels of these compounds need to be regulated for the cell to function 
properly. The most common such agents come in pairs: an oxidizing agent that when 
reduced is turned into a reducing agent and vice versa. The most important such redox 
pairs for energy metabolism are nicotinamide adenine dinucleotide (NAD+) and its 
corresponding reducing agent NADH, nicotinamide adenine dinucleotide phosphate 
(NADP+/NADPH), and flavin adenine dinucleotide (FAD/FADH2).  
 
The main processes for generation of ATP in human cells are glycolysis, the tricarboxylic 
acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) (Fig. 1). Glycolysis is the 
process in which glucose is converted into pyruvate at the net conversion of 2 ADP to ATP 
and 2 NAD+ to NADH. Glycolysis can be run independently of other processes by the 
conversion of the produced pyruvate to lactate, in which the NADH produced is converted 
back to NAD+, followed by lactate export. To yield more ATP from the substrates, the 
pyruvate and NADH can instead be supplied to the TCA cycle and OXPHOS [1].  
 



 

 2 

 
Fig. 1: Overview of energy metabolism in human cells. Glucose is passed through glycolysis to generate ATP, NADH 
and pyruvate. Pyruvate can either be exported as lactate or enter the TCA cycle together with amino acids and fatty 
acids (via beta oxidation). The TCA cycle generates ATP (or GTP), FADH2 and NADH. The FADH2 and NADH are 
oxidized via oxidative phosphorylation, generating the main amount of ATP. 

 
At full oxidation of glucose, the pyruvate generated by glycolysis enters the TCA cycle in 
the mitochondria, in which the carbon in the pyruvate is fully oxidized to form carbon 
dioxide (CO2). In the process, the cycle generates one ATP (henceforth meaning it is 
converted from ADP), or alternatively one guanine triphosphate, GTP. In addition, three 
NADH and one FADH2 are generated [2]. All NADH and FADH2 is then under normal 
aerobic conditions oxidized via OXPHOS, where the complexes of the electron transport 
chain (ETC) oxidize the NADH and FADH2 and use the released energy to pump protons 
out of the mitochondrial matrix. The proton gradient generated is then used by complex V 
of the ETC to generate ATP [3]. The total ATP generated from one glucose molecule 
cannot easily be calculated due to various factors such as the leakiness of mitochondrial 
membrane with regard to protons and may vary between conditions. Extracellular 
measurements have quantified the ATP production rate to around 33 ATP per molecule of 
glucose, where OXPHOS generates 29 ATP, emphasizing that OXPHOS is the main 
process for producing ATP in the cells [4].  
 
The TCA cycle can be fueled by various substrates, not just pyruvate from glucose. Other 
examples are fatty acids, which can enter the TCA cycle as acetyl-CoA after undergoing a 
process known as beta oxidation, and amino acids [2]. 
 
As mentioned above, glycolysis can be run independently of the TCA cycle and OXPHOS 
if combined with lactate export. Such an approach is useful in hypoxia, where oxygen is 
limited [5]. In addition, an important difference between glycolysis and OXPHOS is the 
difference in the mass of enzymes required to catalyze the reactions. While OXPHOS 
produces far more ATP per glucose molecule, OXPHOS requires a larger allocation of 
enzyme mass per ATP molecule produced to catalyze the chemical reactions. Thus, 
glycolysis can also be used in a stand-alone fashion to maximize the total ATP production 
in a cell under conditions where oxygen is not in sho

 [6], [7]. 
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1.1.2. Cellular growth 
Cells multiply (proliferate) through cell division, in which they undergo a series of 
transformations known as the cell cycle. The process is tightly regulated and cells pass 
through several stages in the process [8]. The cell requires a large variety of building blocks 
to be able to grow, which in some cases can be acquired from the surroundings but often 
need to be synthesized by the cell. In many cases, these building blocks are synthesized 
from intermediate metabolites in processes mainly associated with energy metabolism, 
namely glycolysis and the TCA cycle [2], [9].  
 
The substances needed for growth are a source of carbon, such as glucose, and a source of 
nitrogen, such as amino acids, and a collection of additional essential metabolites, 
cofactors, and vitamins. Examples of essential metabolites are the essential amino acids, 
which human cells cannot synthesize de novo. In addition, growing cells in general need 
to produce substantial amounts of ATP, both for cell maintenance and for biosynthesis of 
new biomass during growth [10].  
 

1.2. Cancer metabolism 
Despite the enormous scientific effort invested in cancer research, cancer still remains a 
leading cause of death worldwide. The cancer research field is multifaceted, addressing 
different goals such as prevention, early detection, and treatment of cancer, all with the 
common goal of reducing the total death and suffering caused by cancer [11] [13]. Within 
cancer treatment, scientists address different aspects of cancer biology to target cancer, 
such as immune system evasion, rapid proliferation, and cancer metabolism [14], [15]. 
This thesis is focused on finding aspects of cancer metabolism that are targetable for 
therapy. 
 
Dysregulated metabolism has been proposed as an emerging hallmark of cancer [14], [15], 
and the differences in metabolism are driven by a combination of lack of metabolites, 
adaptations to conditions, and optimizations to increase growth [15]. Solid tumors 
commonly suffer from a leaky and irregular vasculature, which leads to a high internal 
tissue pressure. The increase in pressure incapacitates the microcirculation and blocks the 
lymph vessels, severely reducing the flux of fluid and nutrients through a large portion of 
the tumor [16] [18]. The main remaining mechanism for transport of metabolites from the 
blood into the tumor is therefore diffusion [19]. The uneven distribution of blood vessels 
in solid tumors leads to large differences in nutrient availability, where some regions are 
severely hypoxic or even necrotic with a low influx of nutrients, while nutrient and oxygen 
availability is plentiful in other regions. Hypoxic and necrotic regions tend to be more 
common in the center (core) of tumors, while the edges of a tumor in general have a better 
availability of metabolites [20]. 
 
Cancer cells are exposed to a complex selection pressure, involving a plethora of factors 
[15], [21]. One such factor is cellular growth; cells that harbor a trait that increases 
proliferation while not causing any negative effects will eventually dominate a population, 
given enough time. Cancer cells have often therefore developed traits to increase the 
growth rate, and of particular interest for this thesis, the ATP production rate. A commonly 
observed behavior of cancer cells is to rely more on glycolysis and less on the TCA cycle 
and OXPHOS for ATP production, combined with secretion of lactate [7]. While such a 
behavior is directly understandable in hypoxia due to the lack of oxygen for driving 
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OXPHOS, the behavior is also observed in well oxygenated regions of the tumors. The 
latter is called the Warburg effect (also aerobic glycolysis), and is commonly observed in 
both tumors and cell lines [7], [22]. A potential explanation for this behavior is the 
difference in enzyme usage between OXPHOS and glycolysis, where OXPHOS allocates 
more enzyme mass per ATP production, enabling a higher total ATP production in a cell 
when relying on glycolysis [6]. 
 
The amino acid metabolism in cancer is different from that of normal cells [23]. Cancer 
cells tend to use glutamine as substrate for the TCA cycle instead of pyruvate, a 

 [24], which increases the lactate 
export of cancer cells even further. As part of this process, cancer cells also tend to export 
proline [25]. In addition, some cancers are known to secrete glutamate, potentially to 
support nucleotide synthesis  [25], [26]. The reason for these changes in metabolism is in 
general poorly understood, which calls for additional studies in the field.  
 
A tumor is in many aspects similar to an organ, with multiple cell types fulfilling different 
roles, forming the tumor microenvironment (TME) [27]. Over the last decade, the interplay 
between cell types in the TME has received increasing attention in cancer research, where 
this thesis focuses on metabolic interactions. For example, cancer-associated fibroblasts 
(CAFs) are thought to secrete metabolites such as lactate and ketone bodies to supply 
cancer cells with these resources for increasing growth [28] [30]. Likewise, macrophages 
in the tumor microenvironment have the ability to clean up dead cells and debris in the 
TME [31] and eventually produce metabolites useful for the cancer cells.  
 

1.3. Genome-scale metabolic models 
1.3.1. Genome-scale metabolic models and flux balance analysis 
Fluxes through individual chemical reactions in living cells are generally difficult to 
measure, and genome scale metabolic models (GEMs) have therefore been developed to 
enable prediction of such fluxes using a mathematical approach. Supported by advances in 
genome sequencing, the first GEM was published in 1999, modeling in total 488 metabolic 
reactions of Haemophilus influenzae Rd [32]. Since then, a plethora of GEMs have been 
developed for different organisms, for example Yeast-GEM [33] for Saccharomyces 
cerevisiae and Human1 [34] for human metabolism. GEMs have been proven useful in a 
number of areas, for example metabolic engineering [35], evolutionary systems biology 
[36], uncovering of metabolic behaviors in cells [6], and understanding of human disease 
[25]. 
 
A GEM is a mathematical representation of the available chemical reactions in a cell, 
stored as a stoichiometric coefficient matrix (Fig. 2 A-B). GEMs are often used together 
with flux balance analysis (FBA) [37]. FBA operates under a pseudo steady-state 
assumption, where the derivatives of metabolite concentrations with respect to time are 
assumed to be zero, meaning that there is no accumulation or depletion of metabolite 
concentrations. The goal of FBA is to solve the equation S*v = 0, where S is the matrix of 
stoichiometric coefficients describing the metabolic reactions and v is the unknown vector 
representing the fluxes through those reactions.  
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Fig. 2: The genome-scale metabolic model as a mathematical representation of the reaction network in a cell. A. 
Example of a metabolic network with 6 reactions (r1-r6) and 5 metabolites (m1-m5). B. The reaction network in A 
represented in matrix form, with reactions as columns and metabolites as rows. In flux balance analysis, the goal is to 
identify the fluxes through the reactions that yield a net change of zero in metabolite concentrations over time. 

 
The flux balance equation system is in most practical cases underdetermined, which 
means that there are many solutions to the problem. The reason for this is twofold: 1) 
there are usually fewer equations than unknowns, and 2) the right side of the equation is 
zero, meaning that the v vector can be multiplied by an arbitrary scalar and still provide a 
solution to the problem. Linear constraints are therefore imposed on the problem, which 
restricts the possible solutions to a volume often referred to as the solution space (Fig. 3). 
For example, linear constraints are commonly based on experimental measurements of 
the uptake rates of metabolites into the cell. However, linear constraints are in most cases 
not enough to determine a single solution. To address this issue the cell is assumed to in 
an optimal way pursue a certain objective, defined as the objective function. A common 
objective is to maximize cellular growth (biomass production), which is a reasonable 
assumption for some cells such as cancer cells and cell lines, for which there is a 
selection pressure for proliferation. The objective is defined as a linear combination of 
reaction fluxes and can be either maximized or minimized, where an optimal objective 
can always be found in a corner of the solution space. The problem is solved 
computationally using linear programming, in which the problem is solved using 
software such as Gurobi [38]. 
 
 

 
Fig. 3: The solution space in flux balance analysis. The solution space is bounded by linear constraints, but still allows 
for an infinite number of solutions within that volume. Optimizing towards an objective defined by the objective function 
can be used to select a single solution of biological relevance. 
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1.3.2. Enzyme usage constraints 
Most reactions in the cell are facilitated by enzymes, and the presence of such enzymes 
in adequate concentrations is therefore needed for the reactions to be able to carry a 
certain amount of flux. The required enzyme concentration to uphold a certain flux can 
under certain assumptions be estimated via the Michaelis-Menten equation: 
 

   (1) 

 
where v is the flux through the reaction, Vmax is the maximal flux through the reaction, 
[S] is the substrate concentration, and Km is the Michaelis constant, which is specific per 
enzyme and substrate. It directly follows that the flux cannot exceed Vmax, which can then 
be used as an upper flux constraint [39]. Vmax can be expressed as 
 

 (2) 
 
where kcat is the turnover rate of the enzyme and [E]0 is the enzyme concentration. As 
proposed in the GECKO method [39], it is possible to impose an enzyme cost Cr to each 
reaction r, such that 
 

 (3) 

 
where vr is the flux through reaction r and Mw is the molecular weight of the enzyme. Cr 
can then be constrained either per enzyme (using quantification of enzyme 
concentrations) or collectively by imposing a total enzyme usage constraint. While the 
cost Cr is the minimum enzyme cost to uphold the flux vr, it is a reasonable 
approximation of the actual cost when Km is much smaller than the substrate 
concentration. Measured kcat values for enzymes can be downloaded from the BRENDA 
database [40]. In this thesis, a total enzyme usage constraint is used. 
 
The Michaelis-Menten kinetics is is based on certain assumptions, such as operations in 
quasi-steady-state (where substrate and enzyme concentrations are constant over time), 
that the enzyme concentration is much smaller than the substrate concentration, that the 
enzyme and substrate(s) are in rapid equilibrium with the complex they form during the 
reaction, and that the reactions are irreversible (which many reactions in cells in practice 
are, since the formed product is rapidly consumed by another reaction) [41]. These 
assumptions are normally acceptable for enzyme kinetics in cells, although it remains 
important to keep in mind that Michaelis-Menten is an approximation of the actual 
kinetics. 
 
1.3.3. Genome-scale models for human metabolism 
To facilitate genome-scale metabolic modeling we have developed the genome-scale 
model Human1 [34], which contains in total more than 13,000 metabolic reactions. In 
addition, the model has been used as template for generating GEMs for model animals 
such as mouse and rat [42], and is compatible with the GECKO toolbox [39], [43] for 
applying enzyme usage constraints. 
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1.4. Generation of context-specific genome-scale metabolic 
models
In complex multicellular organisms such as humans the active reaction networks vary 
across cell types. While all enzymes are encoded in the genome for all cells, not all 
enzymes are expressed in all cell types. Determining the active reaction network is a means 
to reduce the solution space in for example FBA and thereby yield more accurate 
predictions of metabolism in cell types. In addition, it provides a method for comparison 
of metabolism across cell types based on omics data.

Today many methods are available for prediction of the active metabolic networks of cell 
types and organs [44] [46]. The resulting models are often referred to as context-specific 
models and in this thesis I have used the method tINIT [46] for generating such models 
(Fig. 4). The reactions are associated with genes via gene-protein-reaction (GPR) rules, 
and the tINIT method scores each reaction based on evidence of presence of the associated 
enzymes from either proteomics or gene expression data. The reactions are given a 
negative score if there is little or no evidence that the associated enzymes are present, and 
a positive score otherwise. The algorithm then strives to identify the reactions to include 
by maximizing the sum of the scores of the included reactions, under the constraint that all 
included reactions must be able to carry flux. In practice, this constraint means that some 
reactions with negative score must be added to enable inclusion of other reactions with 
positive scores. The problem is solved by mixed integer linear programming (MILP) using 
a solver such as Gurobi [38].

Fig. 4: Generation of context-specific models with tINIT. tINIT takes as input a full model such as Human1 and data 
containing evidence of the presence of enzymes, here RNA sequencing data, and generates a context-specific model with 
a reduced set of reactions.

1.5. Means to identify enzyme presence
Although some metabolic reactions in cells are spontaneous, most reactions present in the 
metabolic models have a negligible spontaneous reaction rate and rely on enzymes. In 
genome-scale metabolic modeling the genes of primary interest are those directly coding 
for metabolic enzymes or parts of metabolic enzyme complexes, in total around 3,000 in 
Human1. Generation of context-specific models requires evidence of the presence of 
enzymes, which typically involves measurements of the proteome (proteomics) or gene 
expression data (transcriptomics). The goal is to measure the absolute proteome of a cell 
since the enzyme concentration is approximately proportional to the maximal flux capacity 
of a reaction. 

Human1 Context-specific 
model

RNA-Seq

tINIT
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Already in 1975, 2-dimensional gel electrophoresis was developed to separate more than 
a thousand different species of proteins. In the eighties, techniques were developed to 
measure proteomics with protein mass spectrometry [47], [48], and antibody-based 
techniques have also been developed for estimating the proteome [49]. Proteomics is today 
well-established for bulk data (a sample containing of a large number of cells), but while 
significant advances have also been made in the single-cell field, single-cell proteomics 
still struggles with many challenges, for example lack of methods for amplification of the  
small amount of starting material from a single cell [50]. An alternative to proteomics is 
to quantify the gene expression profile, known as the transcriptome. Studies of the 
transcriptome began in the nineties, and techniques such as quantitative PCR (qPCR), 
microarrays, and later RNA sequencing (RNA-Seq) have emerged as well established 
methods [51], [52]. During the last 15 years, the development of RNA-Seq methods have 
advanced rapidly. The first studies in 2008 covered the transcriptome of a few samples 
[53], [54], but over the last decade, efforts such as the cancer genome atlas (TCGA) has 
sequenced over 10,000 patient samples. The advances in the field of single-cell RNA 
sequencing (scRNA-Seq) are even more impressive  in ten years, it has gone from its 
infancy to enabling the profiling of hundreds of thousands of cells in a single dataset [55]. 
 
While the correlation between transcriptome and proteome is modest [56], RNA-Seq can 
still be used for detecting the presence of enzymes and thereby the presence of chemical 
reactions. There are several advantages of RNA-Seq compared to proteomics: Mass 
spectrometry suffers from large sources of noise and covers fewer genes than RNA-Seq, 
RNA-Seq cost less, single-cell RNA-Seq is a widely used technology while single-cell 
proteomics is less developed, and the number of public datasets is vast [57], [58]. 
Proteomics is however more advantageous when absolute protein measurements are 
required, for example for constraining individual reactions, or if additional information 
such as protein phosphorylation is desired. 
 
Bulk RNA-Seq can be useful for investigating the average gene expression in a cell 
population but fails to describe the heterogeneity within that population. FACS-sorting 
[59] can be used to sort cells into cell types defined by cell surface proteins, which partly 
helps in investigating the transcriptome of individual cell types with bulk RNA-Seq. 
However, FACS-sorting is limited to sorting on cell surface protein abundancies and is 
difficult to use for separating cells into more subtle categories than cell types and subtypes. 
In addition, publicly available datasets are often not FACS-sorted in categories suitable for 
other experiments. Single-cell RNA Sequencing can overcome these limitations by 
measuring the transcriptome of individual cells and thereby offers possibilities to 
investigate cell heterogeneity in detail. 
 

1.6. Bulk RNA Sequencing 
Bulk RNA-Seq is usually performed on transcripts originating from a large pool of cells 
(typically > 105 in a biopsy sample [60], although it depends on the size of the sample), 
yielding a fair amount of RNA as starting material. Fig. 5 describes a typical workflow for 
bulk RNA-Seq [61], although such protocols can vary much across experiments. The 
workflow starts with extraction of RNA from tissue. The extraction strategy varies 
substantially depending on tissue - it is for example easier to extract RNA from blood than 
from solid tissues, and commercial kits are available for such purposes. 
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Fig. 5: Typical bulk RNA-Seq workflow. The figure describes one possible workflow; there are however many different 
variants of workflows. For example, fragmentation can be done after reverse transcription. 

 
In the extracted RNA, the mRNA molecules are usually the ones of interest, and ribosomal 
RNA is abundant and needs to be removed to avoid sequencing reads of little interest. 
Common methods are poly-A selection, which enriches for RNA molecules with a poly-A 
tail and thereby removes rRNA, and rRNA depletion, which selectively removes rRNA 
molecules. The subsequent fragmentation step splits the mRNA into shorter sequences to 
simplify sequencing. Reverse transcription then creates complementary DNA (cDNA) 
from the RNA using reverse transcriptase [62], an enzyme naturally present in retroviruses. 
cDNA is much more stable than RNA and can also be used in polymerase chain reaction 
(PCR) [63], which is almost always required to yield enough material for sequencing. To 
enable PCR amplification, primer sequences are ligated at the ends of the cDNA 
molecules, which also serve as barcodes enabling pooling of different samples when 
sequencing. Commonly, about 10 cycles of PCR are run before sequencing is commenced, 
but the number of required cycles may vary depending on the amount of starting material. 
The sequence of a molecule affects the efficiency of the PCR, resulting in an uneven 
amplification across genes and samples, leading to technical batch effects [64] [67]. 
During sequencing, the sequencer can perform single-end or paired-end sequencing. In 
single-end sequencing, the sequencer reads one end of the molecule, while in paired-end 
sequencing, both ends are read, providing more data for each molecule.  
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1.7. Single-cell RNA-Sequencing 
Single-cell RNA-Seq seeks to capture the transcriptomic profile of individual cells. The 
number of mRNAs within a human cell varies across cell types and cell states and has been 
estimated as somewhere between 50,000 to 300,000 molecules [68], which is very small 
compared to the total number of molecules in for example a bulk biopsy sample. Therefore, 
scRNA-Seq typically requires more PCR amplification cycles than its bulk counterpart. 
Measurements of individual cells alone are in general noisy  the small number of mRNA 
molecules per cell in combination with PCR biases and other technical limitations yields a 
sparse transcriptional profile that diverges substantially from the average expression over 
many cells of the same cell type. In addition, the transcriptome of a cell varies 
stochastically with time due to a process called transcriptional bursting [69]. For many 
analyses, including genome-scale modeling, it is therefore desirable to identify similar 
cells and perform analyses on groups of cells. 
 
There exist a large variety of single-cell RNA-Seq technologies. The technologies can be 
divided into high-throughput methods, having the advantage of lower cost per analyzed 
cell, and methods that focus on high data capture per cell. High-throughput methods are 
often based on capturing cells in oil droplets (droplet-based methods), while methods 
focusing on high data capture often rely on FACS sorting of individual cells into plates 
(plate-based methods). 
 
1.7.1. Barcoding 
Individual mRNA molecules can be barcoded by attaching additional nucleotide 
sequences, commonly at the poly-A tail of the transcripts. Barcodes can be used for several 
purposes; the two most important are unique molecular identifiers (UMIs) and cell 
barcodes. A typical strategy is to combine barcoding with paired-end reads, where one read 
contains the barcodes and the other contains the biological read. 
 
UMIs are random sequences that are used to identify original molecules [70]. Since PCR 
amplifies the molecule fragments, several reads could originate from the same molecule. 
To reduce PCR biases and sampling noise, a common method is to count detected 
molecules rather than sequenced read counts, where all reads with the same UMI sequence 
(and sometimes also the same cell barcode and gene) are collapsed to a single molecule in 
a process called UMI collapsing. 
 
Cell barcodes are used to identify which cell an mRNA molecule originates from, and are 
commonly used in droplet-based methods. Cell barcodes enable pooling of mRNAs from 
multiple cells (on the order of thousands in droplet-based methods). The molecules from 
all pooled barcoded cells are then processed together and demultiplexed in the 
computational pipeline to form gene expression profiles for single cells, reducing both 
costs and unwanted technical variation across cells. 
 
1.7.2. Extraction of cells from complex tissue 
Single-cell RNA-Seq requires isolation of single cells for further processing. Depending 
on the tissue to investigate, this procedure may be challenging. In some cases, such as 
peripheral blood mononuclear cells (PBMCs), extraction is easy since the cells are already 
separated and freely available in a fluid. However, for complex tissues (such as brain, lung, 
etc.) many of the cells are tightly attached to the extracellular matrix and need to be freed 
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before processing. Commonly, the tissue is first dissected into smaller pieces, 
mechanically minced, and then treated with enzymes (such as dispase, collagenase, and 
trypsin) to break down the extracellular matrix, often followed by further mechanical 
treatment [71]. The extraction step introduces technical biases, since the cells may start to 
change their gene expression during the procedure as an adaptation to the new environment 
[71]. In addition, some cell types may be extracted more efficiently than others, which is 
one of the reasons why the fraction of cell types in the single-cell data cannot be assumed 
to reflect the fractions of the different cell types in the tissue [71]. 
 
1.7.3. Droplet-based methods 
Droplet-based methods allow for processing of thousands of cells in a single run at low 
cost. An example of a droplet technology is 10x Chromium NextGEM, where each cell is 
partly processed in its own oil droplet (Fig. 6). As described in the manual [72], cells are 
extracted from the tissue and input into a flow-cell together with beads containing barcoded 
reverse transcription (RT) primers. The cells attach to the beads, and both assemble in an 
oil drop together with a reverse transcription solution. The cells are lysed and the beads 
dissolve, producing oil drops containing all necessary ingredients to perform reverse 
transcription with barcoding. RT is then performed, generating barcoded full-length cDNA 
from RNA species with a polyA tail, where each molecule contains both a cell barcode and 
a UMI. Subsequently, the oil drops are dissolved, and the oil is removed. The barcoded 
full-length cDNA is then amplified in a preamplification PCR step. The rest of the 
processing resembles that of bulk RNA-Seq; the amplified full-length molecules are 
fragmented, followed by PCR amplification. Since the barcodes are attached to the polyA 
tail, only the fragments containing this tail will have barcodes, and only such fragments 
are selected for in the amplification. The cDNA library is then sequenced and processed, 
where the reads are demultiplexed by cell barcode and multiple copies of the same 
molecule, as identified by UMI, are discarded [72]. 
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Fig. 6: Overview of the 10x Chromium workflow. Cells are attached to barcoded beads and separated into droplets in 
which processing up to reverse transcription is performed, producing barcoded full-length transcripts. The transcripts 
from all cells are then pooled, preamplified, and then processed in a similar way as bulk RNA-Seq. In this context, GEM 
corresponds to gel-beads in emulsion.

In droplet-based methods, reads are concentrated to a limited part of the gene, since most 
amplified fragments are short and close to the polyA tail. It is therefore difficult to identify 
different splice variants of a gene from data of droplet-based methods.

The most commonly used droplet-based technologies to date are 10X Chromium [73] and 
DropSeq [74].
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1.7.4. Plate-based methods 
In plate-based methods, single cells are typically sorted into plate wells using FACS. The 
most common plate-based method to date is Smart-seq2 [75]. The protocol does not 
support unique molecular identifiers; the count matrix produced thus does not represent 
original molecules, but fragment counts after PCR. The two large advantages of Smart-
seq2 compared to droplet-based techniques is that it 1) captures much more original mRNA 
molecules and 2) captures fragments from the whole transcript, like in bulk, which enables 
identification of different splice variants of genes. Although such molecules cannot be 
uniquely identified, it is evident that more molecules are captured since the count matrix 
produced by this protocol is much less sparse than matrices from droplet-based 
technologies. Smart-seq2, being a plate-based protocol where each cell is treated in similar 
ways as bulk RNA-Seq samples, is much more expensive to perform per cell. The overall 
workflow is similar to that of bulk, although with more amplification. 
 
A new version of Smart-Seq, Smart-Seq3 [76], has recently been developed. Smart-Seq3 
supports unique molecular identifiers and has been shown to be able to capture up to 150k 
molecules per cell [76], which is at least an order of magnitude more than most droplet-
based datasets. This new version is a promising candidate for capturing the transcriptome 
of individual cells at high resolution. 
 

1.8. Analysis of single-cell RNA sequencing data 
1.8.1. Processing of sequence files 
The final output from sequencing is usually a list of text files in the FASTQ format [77], 
containing sequences from individual transcript fragments. The goal of alignment is to map 
these sequences to a reference genome and thereby enable the generation of a count matrix 
with samples as columns and genes or transcripts as rows. Common aligners are STAR 
[78] and HISAT2 [79], which adopt different algorithms for alignment. Additional options 
for alignment include pseudo-aligners such as kallisto [80] and Salmon [81], which rely 
on efficient mapping of kmers to the genome. Pseudoalignment and full alignment give 
similar results; however, a recent evaluation between STAR (full alignment) and kallisto 
showed that full alignment using STAR gives more mapped reads but is much slower and 
consumes much more memory [82].  
 
Droplet-based data require additional processing in the form of cell demultiplexing and 
UMI collapsing, and often include correction methods for sequence errors in both UMIs 
and cell barcodes. 10X Chromium data can be processed using CellRanger, which uses the 
STAR aligner and is provided by 10X Genomics. Alternatives are the kallisto-bustools 
[83] and Salmon-Alevin [84] workflows, which are based on pseudoalignment, as well as 
STAR Solo [85], which is tightly integrated with the STAR aligner. 
 
1.8.2. Statistical properties of single-cell RNA-Seq data 
Bulk RNA-Seq data is often modeled using a negative binomial distribution for the counts 
for each gene, for example in DESeq2 [86]. Practically, this means that many mathematical 
methods that assume normally distributed data, such as least squares regression, T tests 
etc., should be used with caution on count data. A common method to make the data 
approximately normally distributed is to log transform the data before further processing. 
Although single-cell data resembles bulk data in many ways, there are several additional 
aspects to take into consideration when working with such data. 1) UMI-based scRNA-
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Seq behaves differently than technologies relying on direct count data (such as Smart-
seq2), in that several copies of the same molecule are encountered in the direct counts, 
creating grouping in the data and dependence across reads. While UMI-counts for a cell 
can be described with a simple sampling model [87], grouping in the data (here referring 
to the presence of multiple reads from the same original molecule amplified with PCR) 
will lead to excess zeros in the total counts matrix as compared to what would be expected 
from sampling [88]. This phenomenon, which is termed zero-inflation, only applies to 
direct counts and makes the data deviate from the expected sampling (multinomial) 
distribution. The same effect should in theory appear in bulk data; however, the number of 
copies per molecule encountered in a typical bulk sample is much smaller, making this 
effect less important. 2) Due to the limited number of molecules in a cell, many lowly and 
moderately expressed genes will by chance become zero in many cells, although they are 
most likely expressed. This property of single- [89] and 
causes problems for many computational methods. 
 
Generation of single-cell RNA-Seq data involves many factors that can affect the final 
gene expression values obtained, for example sample preparation method, different 
personnel, different equipment, and even technology platform [67]. Together, all these 

For integration of single-cell datasets, batch correction, which attempts to remove such 
effects, is an important step of the analysis [67]. 
 
1.8.3. Processing of gene count data 
The processing of single-cell gene count matrices is today fairly standardized in software 
packages such as Seurat [90]. The standard steps for the analysis are outlined in Table 1. 
In addition, more analysis options, such as differential expression analysis, are supported. 
Normalization, data transformation and scaling can be replaced with a method called 
scTransform, which is based on using Pearson residuals from a generalized linear model 
(GLM), and it can reduce biases across cells induced by library size [91]. To present an 
overview of the dataset, single-cell data is often finally visualized using uniform manifold 
approximation and projection (UMAP) [92], which when used with single-cell data often 
(as in Seurat) uses the output from PCA as input (Fig. 7). Additional steps can include 
removal of contaminating transcripts from broken cells [93] and removal of doublets 
(droplets/wells containing more than one cell) [94]. 
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Table 1: The standard Seurat Workflow. The table describes a typical step-by-step performed with the software package 
Seurat. 

Step Description 
Filtering of low-quality 
cells 

Filtering of empty droplets/wells and dead cells. 

Normalization Library size normalization. 
Data transformation Each normalized value is transformed to ln(c + 1), where ln 

is the natural logarithm and c is the normalized count value 
in the matrix. 

Finding variable genes It is advantageous to filter the genes before processing, only 
including the most variable genes. Genes expressed 
similarly across cells mostly adds noise to the analysis and 
worsens the results. 

Data scaling Involves centering of the data and scaling to yield the same 
standard deviation for all genes. 

PCA Principal component analysis, used to reduce the number of 
dimensions of the data. 

Clustering of cells Clusters the cells, usually into cell types and subtypes. 
UMAP Uniform manifold approximation and projection, used for 

visualizing the cells in two dimensions. 
Visualization Various figures to visualize different aspects of the data. 

 

 
Fig. 7: Visualization of single-cell data using the UMAP projection. The dataset presented is 2,900 frozen peripheral 
blood mononuclear (PBMC) cells, sample A [73]. 

  
1.8.4. Filtering of low-quality cells 
Single-cell RNA-Seq produces low quality data for some cells that need to be filtered out 
before data analysis. There are three common ways to identify such cells: 1) Cells with too 
few or too many total counts/UMI counts, where too few UMI counts often represent 
empty droplets in droplet data; 2) Cells with too few detected genes (often called features); 
and 3) Cells with too high fraction of mitochondrial gene content, which may indicate dead 
cells (Fig 8) [95], [96]. 1 and 2 above are often highly correlated (Fig 8B), and 2 is often 
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excluded from the filtering process. The threshold values for these metrics vary across 
datasets and must be estimated from the data. For droplet-
represent empty droplets, containing few mRNA molecules. The mRNA molecules found 
here originate from broken cells and are spread throughout the cell solution [93] and the 
aim is to find the threshold value where the vast majority of the empty droplets are below 
the threshold. Typical threshold values here may vary from 200 to 1000 UMI counts, 
whereas typical values for the mitochondrial content threshold may range between 4-10%. 
Estimating these values is supported by software packages such as Seurat [90].  
 

 
Fig. 8: Filter criteria for single cells. A. Mitochondrial (MT) content per cell (fraction of total counts that belongs to 
mitochondrial genes). A suitable threshold for this dataset could be 4.5%. B. Number of detected genes per cell. Suitable 
filtering for this dataset could be to keep cells with between 200 and 2,000 detected genes. The dataset presented contains 
2,900 frozen peripheral blood mononuclear (PBMC) cells, sample A [73]. 

 
1.8.5. Normalization 
Bulk RNA-Seq and other full-length protocols such as Smart-seq2 suffer from gene length 
bias, since the number of cDNA fragments generated per molecule is approximately 
proportional to the gene length. To remedy the bias, the counts can be divided by gene 
length, and are often scaled to a total sum of 106, yielding transcripts per million (TPM). 
An alternative method is FPKM/RPKM [97], where library size scaling is performed 
before compensation for gene length. A comparable normalization for droplet-based data, 
for which there is no obvious source of gene length bias, is to simply scale the total counts 
of a cell to a sum of 106, forming counts per million (CPM). These methods are called 
library size normalization methods and are useful for normalization across genes (TPM 
and FPKM/RPKM).  
 
Library size methods have been shown to be less effective for normalization across 
samples in bulk RNA-Seq samples [98]. Therefore, more advanced methods, such as the 
trimmed mean of M values (TMM) [98] and the median of ratios normalization performed 
by DESeq2 [86], have been developed to control for this effect. These methods assume 
that most genes are not differentially expressed across samples and scale the samples to fit 
this assumption. A downside with these approaches is that it is difficult to compensate for 
gene length, since they operate on direct counts, which makes them less suitable for 
comparisons across genes. For datasets with technical biases that change the distribution 
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of counts per gene, quantile normalization [99] can be applied, which makes the counts 
distributions equal across samples. 
 
Normalization of the transcriptomes of single cells in scRNA-Seq is more challenging due 
to the high number of zeros in the data. Methods commonly applied to bulk data, such as 
TMM and the normalization performed by DESeq2, fails due to the high zero content. 
Library size normalization is therefore still commonly applied to single-cell data, for 
example in Seurat [90], despite its shortcomings. An advanced method for normalizing 
single-cell data is based on repeatedly normalizing the total transcriptome of groups of 
cells, and then applying a deconvolution strategy to single out the scale factor for 
individual cells [100]. With this method, TMM or the normalization performed by DESeq2 
can be applied. The method is implemented in the Bioconductor scran package [101]. 
 
1.8.6. Clustering of cells 
The purpose of clustering is to divide the cells into groups, called clusters, where the cells 
in a cluster share common properties such as cell type/subtype and/or cell state. There are 
numerous clustering algorithms available for this purpose and there is no clear recipe for 
which algorithm to choose for a certain dataset. Most algorithms adopt an unsupervised 
approach, meaning that they do not use any previous knowledge about the expected 
transcriptional profiles of clusters. The data is often preprocessed, by normalization, log 
transformation and dimensionality reduction methods such as principal component 
analysis (PCA). The algorithms can be grouped into categories, for example k-means 
clustering, hierarchical clustering, and community-detection-based algorithms [102]. K-
means identifies a specified number of cluster centers in multidimensional space and 
assigns each cell to the closest cluster. Hierarchical clustering creates a tree structure where 
the nodes are clusters, where each cell is assigned to a node at each tree level. Close to the 
root, there are few, large clusters, while the leaves represent a larger collection of clusters 
with fewer cells. A downside with hierarchical clustering is the required computational 
resources and memory, which both scale at least quadratically with the number of cells 
[102]. Community-detection-based algorithms, such as the Louvain algorithm, which for 
example is implemented in Seurat [90], work on a k-nearest-neighbors graph and are 
generally fast. All clustering methods mentioned here require the user to specify 
parameters that either directly or indirectly specify the number of clusters desired. 
 

1.9. Use of single-cell RNA-Seq with genome-scale metabolic 
modeling 
While single-cell RNA-Seq has not been extensively used together with genome-scale 
metabolic modeling, there are a few examples. Some methods focus on generating context-
specific models from single cells, but due to lack of data use small simplified models 
containing highly expressed enzymes [103]. Other methods employ different strategies to 
integrate data across neighboring cells, which gives a more stable gene expression, but still 
only investigate highly expressed pathways [104]. Others have generated context-specific 
GEMs from pooled pseudo-bulk RNA-Seq profiles derived from single-cell data, but have 
not fully investigated the effects of sparsity on the model quality [105], [106]. While these 
methods are useful, none of them fully address the problem of generating full (non-
simplified) context-specific models, where the uncertainty of the sparsity from scRNA-
Seq is considered. These models can then be used in advanced simulations including 
constraints on enzyme usage and metabolite uptake rates.  
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1.10. Aims and significance 
Genome-scale metabolic modeling holds promise to unravel the metabolism of human 
cells in health and disease [107]. However, the method is limited by difficulties in 
determining the presence of individual enzymes in the different cell types in the human 
body. Previously, such analyses from public datasets have mainly been limited to whole 
tissues [46], or potentially to cell types for which data is available in FACS-sorted datasets. 
The metabolic interplay between different cell types in organs is therefore largely unknown 
and dysregulation of such interactions may play an important role in human disease. With 
the arrival of single-cell RNA sequencing, a new opportunity has arisen to generate 
context-specific GEMs for individual cell types.  
 
Despite the vast scientific effort spent on cancer research, cancer remains a leading cause 
of death worldwide, and dysregulated metabolism has been identified as an emerging 
hallmark of cancer [15]. The metabolism in the tumor microenvironment of solid tumors 
is to date not fully understood. Previous research has implicated metabolic collaboration 
between stromal cell types and cancer cells in the TME [28] [30], but no such effects have 
been quantified and it is therefore unknown if they exist. Genome-scale metabolic 
modeling is ideal for quantifying such a collaboration, which if proven to exist could 
motivate further research in the area. Likewise, proving the collaboration to be nonexistent 
could help by avoiding spending more research effort on the subject. 
 
In this thesis, the two primary aims have been to develop a method that utilizes single-cell 
RNA-Seq data for generation of context-specific genome-scale models and to investigate 
cancer metabolism in the TME using genome-scale models. Secondary aims have been to 
develop methods for improved quantification of single-cell RNA-Seq data and to improve 
methods for applying enzyme usage constraints to GEMs.  
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2. Addressing variation in RNA Sequencing data 
Part of this thesis is centered around generation of context-specific models from RNA-Seq 
data, particularly by utilizing RNA-Seq data from single cells. As a first step on the road 
towards generation of context-specific models from such data, methods for normalization 
and batch correction were examined (Paper I). As a second step the sources of variation 
in the data were examined (Paper I). The third part concerned investigation of the variation 
across cells in single-cell data (Paper II). The fourth part focused on the possibility to 
address sparsity in single-cell data by pooling cells (Paper II). The fifth part of this work 
explored the possibility to utilize bulk RNA-Seq data together with mathematical 
deconvolution [108] to estimate the gene expression of individual cell types in cancers 
(Paper I). 
 

2.1. Evaluation of normalization and batch correction methods 
Normalization of individual cell profiles in single-cell RNA-Seq data is nowadays part of 
the standard workflow in tools such as Seurat [90], and is well understood. However, 
normalization of profiles from pooled single-cell populations is less investigated, 
especially how they compare to bulk RNA-Seq. To evaluate normalization methods for 
bulk RNA-Seq profiles and RNA-Seq profiles generated by pooling data from populations 
of cells in scRNA-Seq, three normalization methods were applied on a collection of 105 
profiles from 10 publicly available datasets (Fig. 9). The samples were either B or T cells, 
so a certain deviation between the samples was expected, but the effect of different 
normalization methods was still apparent. Library size methods, such as TPM (or CPM), 
failed to properly normalize the samples. While it is tempting to use more advanced 
normalization methods, there is a catch  such methods operate on count data. Count data 
is not comparable between droplet-based single-cell methods and full-length protocols 
such as bulk RNA-Seq and Smart-seq2, since the counts for the former category should 
not be compensated for gene length, while the counts for the latter should. To circumvent 
this issue, the TPM and count values were used together for bulk/Smart-seq2 data, where 
the TPM was scaled to the same library size as the total number of counts for each sample, 
generating pseudo-counts that were used instead of counts. TMM improved the 
normalization to an acceptable level, and although quantile normalization improved the 
results further, quantile normalization introduced much unwanted changes in the data and 
should be avoided if possible. 
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Fig. 9: The effect of different normalization methods. Relative log expression is calculated as the log2 fold change (with 
a pseudo-count of 1 in the log2 transformation) between the expression of each gene and the median expression of that 
gene across all samples, presented as one boxplot of all genes per sample. The samples consist of a mix of B and T cells 
from 10 datasets, of which 5 are single-cell datasets. For single-cell datasets, the samples consist of RNA-Seq profiles 
generated by pooling cells of the same cell type. SC Melanoma is Smart-Seq2 data, the rest of the single-cell data was 
generated using 10X Chromium. 

 
To investigate the effect of the failure to normalize samples properly, the samples were 
compared using PCA, where the two first components were deemed to be technical (PC1) 
and cell type (PC2) (Fig 10). TMM clearly reduced the technical component compared to 
TPM (or CPM), while quantile normalization only yielded a small improvement compared 
to TMM. To test the effect of batch correction, ComBat [65] was applied, instructed to 
preserve differences in cell type. As expected, ComBat removes most technical effects 
across datasets.  
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Fig. 10: The effect of normalization on PCA. The bars indicate the variance explained by the principal components.
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2.2. Sources of variation in RNA-Seq profiles 
To investigate what explains the differences in gene expression between samples, we 
quantified the effect of several factors on TMM-normalized gene expression (the same 
data as used for evaluation of normalization above). Specifically, the R package 
variancePartition [109] was used, where all factors were modeled as random effects in a 
mixed linear model. The factors investigated were the laboratory that produced the data, 
cell type (B or T cell), and tissue of origin (i.e., the tissue the biological sample was 
collected from).  
 
Across all genes in bulk data, the laboratory was the most important factor (Fig. 11A), 
likely partly since different types of 
lymphocytes. For housekeeping genes, laboratory as expected became even more 
important since the biological differences are expected to be small (Fig. 11B). Interestingly, 
tissue of origin explained more variance than cell type in these cases, which may suggest 
that local adaptations to tissue occurs for many genes, while fewer genes are actually 
different across B and T cells. When focusing on genes that are different between B and T 
cells (denoted LM22S, as identified in the LM22 matrix in CIBERSORTx [108], filtered 
on having an absolute log fold change > 1 between the cell types), cell type became the 
most important factor (Fig. 11C).  
 
For pooled single-cell profiles, lab was still the most important factor across all genes, 
although the residuals are large (Fig. 11D). The high residuals, which represent either 
random noise or factors not accounted for, could potentially be explained by sampling 
noise arising from data sparsity, since pooled single-cell profiles in many cases have much 
fewer counts than a bulk sample. For the LM22S gene subset, cell type was the most 
important factor, although the residuals were still high (Fig. 11E). For a mix of bulk and 
pooled single-cell profiles, cell type was still the most important factor for the LM22S gene 
subset (Fig. 11F). 
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Fig. 11: Factors explaining the variation in RNA-Seq profiles. A collection of B and T cell RNA-Seq profiles from both 
bulk and pooled single-cell was used (see Paper I). A. Explained variances across all genes (12072 genes) in bulk 
samples. B. Explained variances for the housekeeping genes (3393 genes) in bulk samples. C. Explained variances for 
the LM22S genes (274 genes) in bulk samples. D. Explained variances for all genes in pooled single-cell RNA-Seq 
profiles. E. Explained variances for the LM22S genes in pooled single-cell RNA-Seq profiles. F. Explained variances for 
the LM22S genes in a mix of bulk and pooled single-cell RNA-
variance not explained by the other factors in the figure. 
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2.3. Cell-to-cell variation in single-cell data 
Cell-to-cell variation in single-cell data is dominated by sampling noise for most genes. To 
investigate the part of the variation that does not originate from sampling noise we 
developed the DSAVE (DownSAmpling-based Variation Estimation) method, which is 
available as an R package (Paper II). The method is based on partitioning the variation 
into two components; sampling noise and BTM (Biological, Technical and cell 
Misclassifications) variation, where the BTM variation corresponds to all variation not 
related to sampling. The method is designed to be used with UMI-based data  for non-
UMI-based data such as Smart-seq2, the assumptions regarding the sampling process are 
incorrect, which will lead to an overestimation of the BTM variation. 
 
The sampling noise represents the variation that originates from data sparsity and 
approaches zero as the number of counts approaches infinity. For most genes (except 
highly expressed genes) in most datasets, the sampling noise is the dominating component. 
A problem with the sampling noise is that it varies across datasets and sometimes between 
different cell populations within a dataset, since it is dependent on the number of counts 
per cell (and its distribution across cells). To estimate the sampling noise per gene 
expression in each cell population, we generated in silico datasets by sampling cells with 
the same number of counts from the mean gene expression of the cell population. These 
generated datasets are called sampling noise only (SNO) datasets and always have less or 
equal variation compared to the real datasets (Fig. 12A). Since the sampling noise is 
different for the cell populations, it is difficult to compare the BTM variation between 
populations.  
 
To make the BTM variation comparable across datasets we developed a down-sampling 
based method called cell population alignment, in which a template distribution of counts 
per cell is generated from a template dataset. To compare the BTM variation of cell 
populations, all such populations are first aligned to the template, which gives them 
virtually the same sampling noise (Fig. 12B). Any difference in variation between aligned 
populations must therefore be explained by differences in BTM variation. To generate a 
variation metric that is reasonably stable across gene expression ranges, the BTM variation 
is expressed as the total variation subtracted by the sampling noise, which shows a large 
variation across cell populations (Fig. 12C). To convert the BTM variation into a single 
number, we defined the BTM score as the average BTM variation across the gene 
expression range. 
 
To single out the factors causing the BTM variation, we calculated the BTM variation 
score for in total 68 cell populations from 5 datasets, 5 cell types and 9 tissues. The results 
were used as input in a relative importance analysis where the contribution to the total 
variance from each factor was estimated (Fig. 12D). The estimated difference in variation 
between cell types was small. The four variables that explained most of the variation were 
all associated with the BC dataset. Although the variation could in theory be associated 
with tissue, the most likely explanation is that the BC dataset has a much BTM higher 
variation than the other datasets, since all samples from the tissues with high variation 
come from that dataset. When BC dataset samples were removed from the analysis the 
PBMC68k dataset became the most important factor, which strengthens this theory (Paper 
II). It is likely that technical effects such as strong batch effects are present in the BC 
dataset, which could cause such an increase in BTM variation. 
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Details of the method can be found in Paper II. 
 

 
Fig. 12: Cell-to-cell variation in single-cell data. A. Comparison of the cell-to-cell variation (within genes) between 
different cell populations and their SNO counterparts. No cell population alignment was performed. B. Identical to A, 
but with cell population alignment. All SNO curves are now virtually identical. C. BTM variation per gene expression. 
D. Relative important analysis of how different factors affect the BTM score. One variable type per factor (dataset/cell 
type/tissue) is used as intercept in the calculation and is therefore not included in the figure. 
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2.4. The relationship between pool size and variation 
To generate context-specific GEMs from single-cell data, multiple cells must be pooled 
due to the sparsity of the data. To initially examine the order of magnitude of number of 
cells required, we developed the total variation metric (Rmean) as part of the DSAVE 
method. The purpose of the method is to estimate the number of cells needed in a cell pool 
to obtain the same expected variation in gene expression as between typical bulk samples. 
In this method, pairs of non-overlapping subpopulations of cells are selected from a 
population to investigate, and pooled into two RNA-Seq profiles, followed by a 
comparison of the two profiles. The process is run for different pool sizes and repeated 
many times for each size to reduce the influence of randomness. Similarly, the metric is 
calculated between pairs of reference bulk samples (T cells). The difference is large across 
datasets, and the overall result suggests that the pool size needed to obtain the same 
variation as in bulk is on the order of thousands of cells (Fig. 13A). For the dataset 
generated by Smart-seq2 (LIVC), which can be expected to be less sparse, many cells are 
still needed, although fewer than for most droplet-based datasets. For highly expressed 
genes, much fewer cells are needed, typically on the order of 100 cells (Fig. 13B).  
 

 
Fig. 13: Variation per pool size in RNA-Seq profiles assembled from pools of single-cells. A. Variation for genes > 0.5 
CPM/TPM, which covers most expressed genes. B. Variation for highly expressed genes, > 100 CPM/TPM. The LIVC 
dataset was generated using Smart-Seq2, while the other datasets were generated using droplet-based technologies. The 
bulk variation presented is the average across all pairs from 8 samples. 
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2.5. Mathematical deconvolution for estimating cell type 
proportions in bulk data 
The number of publicly available single-cell RNA-Seq datasets is today growing at an 
unprecedented rate, but the number of patients involved is still small compared to that 
available for bulk RNA-Seq. For example, the cancer genome atlas (TCGA) contains 
RNA-Seq profiles from more than 10,000 patients. It would therefore be of interest to 
utilize such bulk data for generating context-specific models of individual cell types if 
possible. CIBERSORTx [108] supports a method called digital cytometry, in which the 
gene expression profiles of individual cell types can be extracted from bulk data. Part of 
the method uses cell-type-specific RNA-Seq profiles derived from other datasets, either 
single-cell RNA-Seq or FACS-sorted bulk data, to determine the abundances of different 
cell types in bulk data. To investigate the potential for this technology for generating 
context-specific GEMs, the performance of this part of the algorithm, often termed 
mathematical deconvolution (although the solution in CIBERSORTx is technically based 
on support vector machines), was evaluated. 
 
To evaluate the performance of CIBERSORTx on the B and T cell data previously used 
for evaluation of normalization methods, the data was divided into different sets of cell 
type profiles and in-silico mixtures of B and T cells, 50% each. The errors in estimation of 
cell type abundances were generally substantial, but much worse when single-cell and bulk 
data were combined (Fig. 14). Although batch correction helps, the performance is still at 
best modest. CIBERSORT (the predecessor of CIBERSORTx) performed well compared 
to other methods in a benchmark study [110], suggesting that the problem as such is 
difficult. In the benchmark study the performance was better. However, the study authors 
generated profiles and mixtures from the same dataset, thereby avoiding much of the 
unwanted variation. In a real use case, the profiles are in most cases generated from other 
datasets, and in most evaluations this complication is simply ignored. The performance 
observed in this experiment, which is a simplification in that there are only two cell types 
involved, was not deemed sufficient for extracting cell-type profiles for generation of cell-
type-specific GEMs from bulk data. 
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Fig. 14: Deconvolution performance. Deconvolution of cell type abundances of 40 in-silico mixtures containing 50% B 
cells and 50% T cells generated from bulk RNA-Seq profiles. The relative error presented is the deviation from ground 
truth, i.e., 50% B cells (and the other half T cells) in the mixture. 13 different sets of cell type profiles were used: 1: Cell 
type profiles from LM22 from CIBERSORT were used (the fractions of all B and T cell subtypes were summed), mixtures 
were generated from bulk samples. 2-3: Bulk samples from the same lab were split in two groups used for cell type 
profiles and mixtures, respectively. 4-6: Cell type profiles were generated from bulk data from one lab and mixtures 
were created from bulk data from other labs. 7-13: Cell type profiles were generated from single-cell datasets and 
mixtures were generated from bulk data. CIBERSORTx supports two different normalization methods, TPM (or CPM) 
and quantile normalization, and two different batch correction methods, B and S, both used with TPM (or CPM) data. 
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2.6. Summary 
In this chapter, I have shown that the technical variation in bulk RNA-Seq is high, where 
much of the variation can be attributed to differences between the labs in which the datasets 
were produced. Reproducibility has previously been reported to be high, for example in 
the Geuvadis project [111], while others have reported the need for batch effect correction 
[64], [112]. A difference is that in the Geuvadis project, the labs were given strict 
instructions about the laboratory procedures to maximize the similarity, which is not the 
typical case when using data from different sources. For gene expression profiles generated 
from single cells, we have shown that the technical variation is even greater, including 
severe effects from data sparsity. Typically, more than a thousand cells are required to 
obtain a stable profile, and my initial ambition to generate GEMs for single cells was 
simply not possible with the data at hand. While I have not explicitly examined batch 
effects in single-cell data, such effects are also reported to be substantial, and need to be 
taken into consideration [67]. While at this point it is not clear which level of expected 
variation is acceptable in an RNA-Seq profile used for generating context-specific models, 
I have identified a dilemma: there are usually not enough cells in a single batch (here 
referring to 10X Chromium) to supply thousands of cells for many cell types. In general, 
batch effects will therefore in most cases be present in the data when we seek to generate 
context-specific GEMs from single-cell data. 
 
The high technical variation in RNA-Seq data, potentially in combination with a high 
biological variation, makes mathematical methods such as digital cytometry [108] very 
challenging. I cannot at this point see that they are useful for generating context-specific 
models by extracting gene expression profiles for cell types from bulk mixes, the 
uncertainties are simply too high. Neither have I found any examples in the literature where 
digital cytometry is used for this purpose. 
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3. Detection of misclassified cells in single-cell RNA-
Seq data 
The previous chapter concerned the variation in RNA-Seq profiles from both bulk and 
single-cell data. For single-cell data, the assembly of single cells into clusters based on 
similarity is an important part of the analysis and has a profound effect on the RNA-Seq 
profiles. In this chapter, I have investigated the presence of misclassified cells in clusters 
and provide a method for detecting such cells. 
 

3.1. Method and method evaluation 
Clustering is a challenging task due to data sparsity [102] and it is especially challenging 
to separate cell subtypes, for example subtypes of B and T cells. To investigate to what 
extent misclassified cells are present in clusters, we as part of DSAVE developed a method 
to detect misclassified cells (Paper II). For each cell in a population, the method calculates 
the probability to acquire the observed gene expression counts by sampling from the mean 
gene expression of the cell population. The probability is transformed into a cell divergence 
metric, which increases the more a cell diverges from the population. In addition, the 
method identifies which genes that exhibit the most diverging gene expression for each 
cell, which is useful information when trying to understand the reason why cells diverge 
from the mean gene expression of the population. 
 
To simplify the examination of single cells, we as part of DSAVE developed an interactive 
tool that supports investigation of individual cells (Fig. 15A). The tool can show the most 
divergent genes for each cell, often giving a hint about whether the cell is of a different 
cell type or potentially a doublet. For example, the dendritic cell population in Fig. 15A, 
as identified by the authors of the publication where the dataset was published [73], 
contains both natural killer (NK) cells and megakaryocytes.  
 
To further investigate the presence of misclassified cells in clusters, we applied DSAVE 
to a lung cancer dataset with associated cell type classifications [113]. First, we 
investigated the cells classified as T cells (Fig. 15B). We identified three classes of cells 
that were divergent in some aspect. Some cells had high expression of hemoglobin-related 
genes, suggesting red blood cell precursors (nucleated red blood cells, NRBC). Other cells 
had high expression of immunoglobins, suggesting plasma cells. T cells with a high 
expression of lactate dehydrogenase A are an example of cells with the right cell type 
classification, but with some diverging genes. Such T cells have likely entered a program 
where more ATP is needed, such as T cell activation [114]. We then investigated clustering 
into cell subtypes, where the clusters are more similar. Specifically, we investigated a 
population of follicular B cells, and found misclassified cells or doublets showing the 
phenotypes of cytotoxic T cells, NRBCs, and plasma cells (Fig. 15C). As expected, we 
found more misclassified cells for this subpopulation compared to the T cells. 
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Fig. 15: Detection of misclassified cells. A. Screen shot from the interactive divergence plot available in DSAVE, here 
investigating a population of dendritic cells from PBMC (The PBMC68k dataset, see paper II). Divergence details are 
shown when hovering over the cells with the mouse, where the 5 most divergent genes are shown. Here, a potential NK 
cell is found in the population. B. Divergent cells in a T cell population from lung cancer. C. Divergent cells in a 
population of follicular B cells from lung cancer. 

 

  

A

B C

Interactive divergence plot

Divergent T cells Divergent follicular B cells



 

 33 

3.2. Summary 
It is evident that clustering results in misclassified cells. DSAVE provides a semi-
automatic method for finding such cells, and DSAVE finds misclassified cells not found 
by other tools (Paper II). An alternative approach to handle part of this issue is to 
computationally identify and remove doublets [94]. Given misclassified cells, an intriguing 
question that remains is to what extent such cells affect the generation of context-specific 
GEMs for cell types. 
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4. Improved quantification of UMI-based RNA-Seq data 
In the previous two chapters, I have addressed the problem of forming reliable RNA-Seq 
profiles from clusters of single-cell data, based on a count matrix from single-cell data. 
However, such work is entirely dependent on the quality of the count matrix, and I have 
taken a particular interest in biases introduced by PCR. While much attention has been 
given to reducing such bias across cells in single-cell RNA-Seq where UMI collapsing is 
adequate, bias across genes, which is more important for generation of pooled RNA-Seq 
profiles, have been given less attention. In paper I, we discovered that measuring the 
number of counts per UMI affects the quantification and can be used to regress out 
technical differences between bulk and single-cell data. We therefore in paper III set out 
to investigate this problem in more detail and developed a correction method called 
BUTTERFLY. 
 

4.1. Discovery of the problem 
In paper I, we investigated a dataset processed by a customized single-cell pipeline (based 
on STAR) that produced both UMI-collapsed count matrices and raw counts matrices 
[115]. Specifically, we investigated the differences explained by different covariates 
between 10X Chromium (v2) data from mouse cortex and matching bulk samples. Since 
we had access to both raw counts and UMI counts, we could calculate the average number 
of copies per UMI for each gene, which explained much of the difference between 10X 
Chromium and bulk data (Fig. 16A). Likewise, we investigated the effect of gene length 
(Fig. 16B) and GC content (Fig. 16C). GC content has previously been used to regress out 
technical PCR bias across genes in RNA-Seq [81], [116], but interestingly, the number of 
copies per UMI seemed to explain more differences between single-cell and bulk, although 
the combination of both is helpful (Fig. 16D). This discovery called for an in-depth 
investigation of the problem. 
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Fig. 16: Technical differences in RNA-Seq data between pooled cells from 10X chromium and bulk. UMI copy fraction
(UMICF) for a gene is defined as (total counts UMI counts)/total counts. A-C. Log2 fold change between pooled cells 
from 10X Chromium data and bulk across genes plotted against different covariates, fitted to linear (orange) and LOESS
(green) curves. D. Improvement in correlation between 10X Chromium and bulk after regressing out different 
combinations of the covariates from A-C. Specifically, the difference in LFC between single-cell and bulk was regressed 
out in the single-cell data. The labels on the x axis describe which covariates were regressed out.

4.2. Problem definition
As mentioned in the background section, UMI-based single-cell data is commonly 
quantified using UMI collapsing, where all sequencing reads that belong to the same UMI, 
cell, and sometimes gene are treated as the same molecule. We discovered an effect that 

that can lead to amplification biases 
across genes. The effect introduces biases in cases when there is a systematic difference in 
amplification across genes and the library is incompletely sequenced, where the latter is 
practically always the case (Fig. 17). In paper III, we hypothesized that a method often 
used in ecology, called prediction of unseen species [117], [118], could be used to correct 
the bias. We implemented an unseen molecules correction method based on fitting a zero-
truncated negative binomial distribution to the distribution of copies per UMI within each 
gene.
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Fig. 17: The pooled amplification paradox. Description of a seemingly paradoxical reversal in gene expression that 
arises from differences in amplification across genes. In this example, more molecules have been captured for gene 1 
compared to gene 2, but the molecules in gene 2 are more highly amplified. Since the sequencing process only captures 
a subset of all molecules available after PCR, some original molecules (having distinct UMIs and cell barcodes) will not 
be sequenced at all. The number of unseen molecules differs across genes, where highly amplified genes have fewer
unseen molecules, introducing a bias yielding a reversal in gene expression despite the bias reduction attained by UMI 
collapsing. The bias can be partly remedied using unseen molecules correction.

To investigate the effect of the pooled amplification in sequencing data, we began by
evaluating the differences in amplification per gene. For this purpose, we defined two 
metrics: the fraction of single-copy molecules for the gene across all cells in a dataset 
(FSCM), representing the fraction of the molecules found that only have a single read, and 
the average number of copies (reads) per UMI for the gene across all cells in the dataset 
(CU). FSCM varied substantially across genes within a dataset, and highly expressed genes 
in general tended to be more amplified (Fig. 18A). We measured the FSCM metric for a 
collection of datasets, and found that datasets generated by the same technology and from 
the same tissue had similar relative amplification across genes (Fig 18B). However, 
differing sequencing depth between datasets can introduce a skew in that relationship, 
since more reads per UMI on average in a dataset leads to lower FSCM values for all genes. 
Datasets generated from the same tissue but using different technologies exhibited 
substantially larger differences in amplification per gene (Fig. 18C).
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Fig. 18: Variation in amplification across genes and datasets. A. FSCM vs gene expression for all genes in the 
PBMC_V3_3 dataset (see paper III). B. Differences in FSCM per gene across datasets generated using the same 
technology (10X Chromium v3, PBMC_V3_2 vs PBMC_V3_3). C. Differences in FSCM per gene across datasets 
generated with different technologies (10X Chromium v3 vs DropSeq, EVALPBMC vs EVALPBMC_DS). 

 

4.3. Description and evaluation of the correction algorithm 
To predict the number of molecules that would be detected given deeper sequencing, we 
used the zero-truncated negative binomial (ZTNB) method previously implemented in the 
R package PreSeqR [119] [121]. The method is based on fitting a ZTNB distribution to 
the CU histogram of each gene. It is not possible to measure the number of molecules with 
zero copies (which is ultimately what we seek), hence the zero truncation of the negative 
binomial distribution. While it may seem natural to predict the gene expression at an 
infinite number of reads (and thereby include all predicted molecules with zero copies), 
such a strategy turned out to introduce much technical noise. The CU histograms of some 
genes do not perfectly follow a negative binomial distribution and the sampling noise is 
high for lowly expressed genes, leading to errors in the parameter estimations. A 
conservative approach is therefore to predict the gene expression at a higher, but not 
infinite, sequencing depth. First, the ZTNB is fitted to the CU histogram for each gene, 
estimating the negative binomial parameters  (mean) and size (reflecting the dispersion). 
To predict number of molecules with non-zero copies given x times as many reads, the 
mean of the distribution is simply multiplied with x, since the mean number of copies per 
UMI (including molecules with zero copies) is proportional to the total number of reads 
(Figs. 19 A, B, D, E). Both genes in the figure get more molecules in the prediction, but 
for gene 2 a substantially higher relative number of new molecules are detected. When 
downsampling the predicted histogram to the original number of reads, the negative 
binomial parameters are roughly preserved, motivating that the size parameter is 
reasonably independent of the sequencing depth and can be kept constant during prediction 
(Figs. 19 C, F). 
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Fig. 19: Illustration of ZTNB prediction. The ZTNB prediction of unseen molecules assumes that CU diagrams 
reasonably well follow a negative binomial distribution. The figure shows in-silico generated data sampled from a 
negative binomial distribution for two imaginary genes with different amplification (106 molecules each). A. The original 
CU histogram for gene 1. B. The CU histogram when predicting to 5 times the number of reads. C. The histogram in B 
downsampled to reflect the number of reads in A, including the negative binomial parameters fitted to the distribution. 
D-F: Same as A-C, but the data is simulated with a smaller mean parameter, representing a lower-expressed gene (gene 
2). 

 
To investigate the effect of the pooled amplification paradox on individual genes we 
conducted a downsampling experiment on a mouse cortex dataset (EVAL, see paper III). 
We compared the gene expression of two genes with different amplification (Fig. 20A) 
and found that the gene expression gradually changed in favor of the highly amplified gene 
as the data was downsampled (Fig. 20B). Applying the unseen molecules correction, where 
the downsampled data is predicted to the same number of reads as the full dataset, largely 
removes the bias (Fig 20C). 
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Fig. 20: Example of the pooled amplification paradox in real data. A. CU histograms for two differently amplified 
genes in a mouse dataset generated using 10X Chromium, v2 chemistry (the EVAL dataset, see Paper III). The 
histograms were generated using data downsampled to a quarter of the original reads, as visualized by the dashed line 
in B and C. B. The normalized gene expression generated using UMI collapsing changes with sequencing depth
(simulated using downsampling) for the two genes Vmn1r13 has more unseen molecules, which worsens with lower 
sequencing depth. C. Application of the unseen molecules correction, where the number of molecules at each point is 
predicted up to the full reads without downsampling.

To evaluate the performance of the prediction, we conducted downsampling experiments 
on real data, where we evaluated the performance of several prediction methods, including 
ZTNB and the PreSeq DS method [119] [121]. In general, the methods performed 
similarly (Paper III), and we choose to proceed with the ZTNB method. For the 
PBMC_V3_3 dataset (see paper III), the method for example increased the concordance 
correlation between downsampled and original data (Fig. 21A). The improvement is 
largest for the highly expressed genes, likely since the CU histograms for those genes are 
based on more data and hence are more stable. Interestingly, when comparing datasets 
produced from the same biological sample but with different technologies, the correlation 
increases with correction (Fig. 21B). These results suggest that differences in amplification 
across genes play a part in the batch effects often experienced when combining 
technologies.
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Fig. 21: Performance of the unseen molecules correction. A. The difference (log fold change) in gene expression 
between original and downsampled data (to 10% of the UMIs) for the PBMC_V3_3 dataset (see paper III). Two cases 
are displayed: the downsampled data is either uncorrected or corr
between a DropSeq and a 10X Chromium dataset generated from the same sample, as a function of prediction range. 
For negative prediction ranges, the data has been downsampled and not predicted. 

 
The correction method, called BUTTERFLY, has been implemented as part of the 
kallisto/bustools [80], [83] workflow. The method has not been tested together with other 
data processing workflows such as Cellranger or Salmon [81] since the copies per UMI 
information is not available as output from these pipelines.  
 

4.4. Batch effects from different sequencing depth 
Due to the pooled amplification paradox, there will be batch effects between datasets with 
different sequencing depth. To investigate this effect in real datasets, we mixed cells from 
two datasets generated from the same biological sample and processed the mixed data 
using Seurat. The uncorrected data exhibited clear batch effects (Fig. 22 A). To correct for 
the differences, we did not use prediction, but a method we termed binomial 
downsampling, which in short resembles downsampling but calculates the expected 
outcome after downsampling of reads. This choice is motivated by that downsampling is 
more stable than prediction, and that it is therefore better to downsample the more deeply 
sequenced dataset than to predict the lower sequenced dataset. The effort increased the 
correlation (CCC increased from 0.991 to 0.994) and gave a better visual overlap between 
cells (Fig 22 B). 
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Fig. 22: Batch correction of datasets with different sequencing depth. A. Uncorrected data. B Data batch-corrected 
using binomial downsampling. The datasets are generated from the same biological sample. The figures show a 
subselection of the clusters in the data. 

 

4.5. Differences in amplification across clusters 
We also investigated the difference in amplification across clusters in the single-cell data. 
Interestingly, the amplification of some genes varied across cell types (Fig. 23 A-B), which 
we expect will introduce a bias when comparing gene expression across clusters. The CU 
histograms of genes clearly do not resemble a negative binomial distribution. We therefore 
applied the PreSeq DS method for prediction for these genes, showcasing that the unseen 
molecules correction can assist in reducing the bias between such genes (Fig. 23 C-F). 
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Fig. 23: Gene amplification differs across clusters. A-B:CU histograms of the same gene for two different cell types. C-
D: Gene expression of 8 different clusters from B cells, T cells and monocytes, before and after unseen molecules 
correction. E-F: Gene expression of the 50 genes with most variation in CU across clusters, plotted versus CU. Each 
dot represents a combination of cluster and gene. E shows uncorrected gene expression, F corrected. 
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4.6. Summary 
In this part of the thesis, we have shown that the gene expression in single-cell data is 
dependent on the distribution of copies per UMI and sequencing depth, described by the 
pooled amplification paradox. We also showed that the distribution of copies per UMI can 
be used to predict the gene expression at greater sequencing depth, and thereby be used for 
correction of gene abundance estimations. However, we have not provided clear evidence 
that the correction increases the similarity between the measured and true gene expression, 
although the result in Fig. 21 B points in that direction. We have recently discovered that 
many reads with low CU values are falsely aligned, and origin from non-exon parts of the 
genome. The problem arises because pseudo-alignment usually only maps reads to the 
transcriptome, and some sequences in exons are shared with introns from other genes or 
other parts of the genome. Such non-transcriptome reads are poorly but sometimes falsely 
aligned, and most copies are therefore discarded, yielding a low CU value for such 
molecules. This problem is known from literature, and is corrected in for example Salmon 
using decoys [122], and a similar correction is underway in kallisto. While BUTTERFLY 
correctly increases the abundances of such transcripts, this behavior is not desired. These 
molecules are false positives that should be filtered out, not scaled up, and it is very 
possible that this effect can explain the differences in amplification across clusters. 
However, the differences in copies per UMI across genes is not purely an artefact arising 
from false positives in pseudo-alignment, since the same effect was observed in paper I, 
where alignment was done by STAR. It is also important to realize that regardless of the 
source of the observed differences in CU across genes, they will induce batch effects 
depending on sequencing depth. To conclude, it is recommended to remove these false 
reads before running BUTTERFLY. With the removal of such reads, BUTTERFLY will 
lead to an improved gene expression matrix. 
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5. Generation of context-specific models from scRNA-
Seq  
In paper IV, the learnings from paper I and II were put into use for the generation of 
context-specific GEMs from single-cell RNA-Seq data. While the ultimate goal would be 
to generate one such model per cell, there is simply not enough data per cell to generate 
such models with reasonable quality. To understand why this is the case, let us first look 
at the threshold level used in tINIT, which is the method used in this thesis for generation 
of context-specific GEMs. In tINIT a reaction is considered to be 
expression is above 1 TPM (or CPM), which corresponds to one molecule out of a million. 
The number of mRNAs in a cell has been estimated to somewhere between 50,000 to 
300,000 [68], but in practice, the captured number of molecules by the scRNA-Seq 
technologies is much lower, for example typically 1,000-10,000 per cell in 10X Chromium 
data. It is simply not possible, even if all molecules of a cell are captured, to get a stable 
gene expression for genes close to the tINIT threshold. The expression value of these genes 
in a cell will largely be determined by randomness, since the gene is only expected to be 
detected in a small percentage of the cells in a population even if it is expressed in all, due 
to the sparsity in the data. We are therefore left with little choice but to combine the gene 
expression over multiple cells to generate context-specific models for a certain phenotype. 
 

5.1. Method and method evaluation 
To investigate the metabolism in individual cell types, we formed populations of single 
cells that we used as input for generation of context-specific GEMs (Fig. 24A). The cell 
populations in the single-cell data can be identified by using tools such as Seurat to process 
and cluster the data. Here, we used public datasets with associated cell type classifications, 
which simplified the analysis. To estimate the uncertainty in the generated models, we 
generated 100 bootstraps (subsamples of the data of the same size as the original 
population, sampled with replacement) per cell type, and the UMIs of the cells in each such 
bootstrap were pooled (summed) to form a gene expression profile for each bootstrap in 
each cell type. We then applied tINIT on the gene expression profiles from the bootstraps, 
using Human1 as template model. The models were then both compared directly (structural 
comparison) and used in network analyses where the ability of the cell to perform certain 
tasks was determined. A task was here defined as the ability to produce a specific set of 
products given a set of substrates. Statistics were then applied across the bootstrap models 
to determine for a cell type if a task could be performed, if it was absent, or if the results 
were uncertain. 
 
Since the strategy using bootstraps generates thousands of models, the execution time of 
tINIT became a serious issue. tINIT typically takes between 20 minutes and 3 hours to run, 
which for thousands of models results in a substantial computational effort. To reduce the 
execution time, we developed a new version of tINIT, called ftINIT, that runs substantially 
faster, but also uses a slightly different algorithm. Substantial changes were applied to the 
tINIT algorithm, which is based on mixed-integer linear programming (MILP). In short, 
the number of integer variables included in the problem were substantially reduced, the 
optimization was split up into several substeps to reduce the complexity of the problem, 
and reactions without gene associations were treated differently. To ensure that the quality 
of the generated context-specific models was retained, we evaluated both algorithms in 
several ways, which showed similar performance. For example, we generated models from 
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RNA-Seq profiles of 15 cell lines from DepMap [123], [124] with both methods. We then 
compared the ability of the resulting models to predict essential genes, as compared to 
ground truth available as CRISPR screens (Fig. 24B). To evaluate the gain in computation 
time by ftINIT, we generated 10 models from the genotype-tissue expression project 
(GTEx) [125]. We measured the computation time required to generate each model on a 
standard laptop computer (Intel Core i7-6600U, 2.60 GHz, 2+2 cores), which showed a 
substantial reduction in computation time for ftINIT compared to the previous version of 
tINIT (Fig. 24C).  
 

 
Fig. 24: Generation of context-specific GEMs from single-cell RNA-Seq data. A. Overview of the method. Clusters of 
cells are formed from single-cell data and bootstraps are then generated from each cluster. The bootstrapped cell 
populations are then pooled to form RNA-Seq profiles, which are used together with a template model such as Human1 
to form context-specific GEMs, one per bootstrap. The cell clusters can then either be compared structurally or be used 
further in for example network analyses that determines the ability to perform metabolic tasks. In both cases, the 
bootstraps are used to determine the uncertainty of the results. B. Gene essentiality analysis, where the new version of 
tINIT (ftINIT) is compared to the previous (tINIT). The ability to predict essential genes by models generated from RNA-
Seq from 15 cell lines from DepMap is compared to ground truth values from CRISPR knockout screens from the same 
cell lines. The performance is measured using Matthews correlation coefficient (MCC). C. Evaluation of the execution 
time of the previous and new version of tINIT on 10 RNA-Seq profiles from GTEx. 

 
When trying to draw statistical inference from modeling results from bootstrap models, 
two challenges arise: 1) In for example differential expression analysis in DESeq2 [86], 
the uncertainty from data sparsity (i.e., total number of counts) can directly be estimated 
by modeling the gene expression using the negative binomial distribution. It is very 
challenging (probably not possible) to estimate the uncertainty in the output from ftINIT 
from the number of counts. Although bootstrapping helps, it does not fully address the 
problem. For example, let us consider a case where we pool 10 cells from 10X Chromium 
data. Most lowly expressed genes will by chance be zero in this data. Zeros will also be 
zero in all bootstraps, thereby giving a false certainty that the gene is not expressed. While 
differential expression analysis can handle such sparse samples by directly estimating the 
uncertainty from sparsity, our method cannot. It is therefore important to use cell pools 
large enough to reduce this problem to an acceptable level. 2) There is often substantial 
variation across batches and biological samples. The total variation in the data becomes 
underestimated if all cells are treated as they belong to the same cell population. It has 
recently been shown that single-cell differential expression analysis methods that do not 
take the sample origin of cells into account underestimates the uncertainty in the data and 



 

 47 

thereby produce false positives [126]. However, in most datasets there is not enough data 
to be able to create large enough cell populations per cell type and sample. We are therefore 
in most cases not able to estimate this uncertainty. 
 
Given the limitations mentioned above, our approach for handling the uncertainty in model 
generation is based on bootstrapping, where we ensure that the cell populations have 
sufficient size to avoid any large effects from challenge 1. In addition, we use low p value 
thresholds for significance to counter for the remaining effects for which we cannot 
properly estimate the uncertainty. We began by measuring the uncertainty in model 
generation by comparing pairs of models generated from random non-overlapping cell 
subpopulations of certain sizes (Fig 25A). Similar to our previous result from paper II, 
thousands of cells were needed to reach the same similarity as between bulk samples, and 
the number of cells needed varied across datasets. To estimate the required pool size this 
way is very computationally demanding, which calls for a more practical approach. 
Seemingly, the DSAVE total variation score developed in paper II yielded similar results 
(Fig. 25B). As a rule of thumb, we therefore recommend to pool at least the number of 
cells that yields the same DSAVE total variation score as between the bulk reference 
samples (see paper II). 
 

 
Fig. 25: Evaluation of required cell population size for generation of context-specific models from single-cell data. A. 
Reproducibility of context-specific models generated using ftINIT, with cell populations of varying size. Pairs of non-
overlapping cell populations of the same size were sampled from the same population of cells. Context-specific models 
were then generated from the pooled transcriptomic profile of each population in the pair, followed by a structural 
comparison. For each size, the procedure was repeated 30 times; the figure shows the average Jaccard index across the 
repetitions for each population size. B. DSAVE total variation score for a collection of datasets, including the datasets 
used in A. C. The effect of misclassified cells on model structure. T cells from the LC dataset (see paper IV) were 
contaminated with a varying fraction of cancer cells from the same dataset, followed by model generation. The 
contaminated models were then compared to pure models by comparing the reaction scores generated, where positive 
reaction scores are interpreted as reaction presence. The reaction scores calculations are part of tINIT (See paper IV).  

 
To investigate the impact of cell misclassification on model generation we made a similar 
comparison of variation between pairs of cell subpopulations of a certain size, but where 
one of the T cell populations used was contaminated with a certain fraction of cancer cells 
(Fig 25C). Surprisingly, the effect of contamination is rather small compared to other error 
sources, and it is first at levels of 10-20% of contamination that we can observe a decline 
in model similarity. Thus, while we showed in paper II that misclassified cells are 
common, and in that paper developed a method for detecting such cells, they only pose a 
concern if there is a large portion of misclassified cells. For clusters containing top level 
cell types (such as fibroblasts, T cells, etc.), this problem can therefore likely be ignored, 
while it may be of concern for clusters at the cell subtype level. 
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To compare models generated from bulk RNA-Seq and single-cell data, we generated 5 
models for each of 53 tissues from GTEx bulk RNA-Seq data [125] and additional models 
from different single-cell datasets (Fig. 26A). The bulk models originating from the same 
tissue and technology clustered together, while the models generated from all single cells 
from the same tissue (L4 samples) showed less agreement. The models generated from 
individual cell types in single-cell data clustered by cell type similarity, and interestingly, 
immune cells clustered with GTEx blood, which has a high immune cell content. Likewise, 
the L4 spleen sample clustered with blood instead with spleen, which may suggest that a 
higher portion of the captured cells from spleen in single-cell data are immune cells. The 
different groups of cell types are well separated, suggesting that their metabolism is clearly 
different, which motivates our approach. Further structural comparisons confirm that 
technology introduces bias (Fig. 26B). Similar to our previous results from paper I, we 
conclude that TMM normalization reduces variation in bulk data (using pseudo-counts as 
described in the normalization section) (Fig. 26C). However, TMM normalization does not 
help between clusters, likely because the cells in these clusters have been processed 
together and thereby have similar biases. Although quantile normalization reduces the 
variation further, we concluded in paper IV that it also introduces new biases and that the 
models no longer group as well on tissue. We therefore do not recommend quantile 
normalization for generation of context-specific models. 
 

 
Fig 26: Structural comparison of models generated from bulk and single-cell RNA-Seq data. A. t-SNE projection of 
models generated from GTEx bulk data and cell populations from different single-cell datasets (see paper IV) For the 2 
models from the L4 dataset, all cells from each tissue (lung or spleen) were pooled together, while the 16 models from 
the LC3 dataset were generated from individual cell types from tumor (10) and healthy tissue (6). B. Structural variation 
within and across different model groups. C. The effect of normalization on structural variation. 
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5.2. Application: Mouse primary motor cortex 
To evaluate the utility of our method, we generated context-specific GEMs from a deeply 
sequenced scRNA-Seq dataset from the mouse primary motor cortex [127] and the model 
Mouse-GEM [42]. We used DSAVE to estimate the required pool size, resulting in the 
selection of 17 predefined neuron subpopulations (provided together with the dataset) with 
at least 450 cells, where we only used samples processed in one batch (labeled 4/26/2019). 
The UMAP projection was in good agreement with the predefined cell types (Fig. 27A). 
The cell types still separated well in the UMAP when only metabolic genes were used, 
suggesting that each neuron subtype has a unique metabolism (Fig. 27B). A structural 
comparison (PCA) of the generated models revealed that they grouped primarily by neuron 
type (IT: inferial temporal, NP: near-projecting, CT: corticothalamic, and Lamp5-
expressing neurons), and not by cortex layer (Fig. 27C) (See paper IV for details). 
 
 

 
Fig. 27. Generation of context-specific models for different neuron types in the primary mouse motor cortex. A. UMAP 
projection of the single cells from the 17 largest clusters in the MCOR3 dataset (see paper IV), colored by cell subtype 
from classifications published together with the data. The full gene set is used. B. Similar to A, but only metabolic genes 
present in the Mouse-GEM model are used. C. Structural comparison (PCA) of the GEMs generated from the neuron 
subtypes shown in A. The symbols group the models into neuron types (IT/NP/CT/Lamp5/Vip). PC 3 was used instead of 
PC 2, since PC 2 represented an unknown factor for which we could see no pattern. D. Task analysis of bootstraps (100 
per cell subtype). The color represents for how many bootstraps of a cell subtype that the task could be completed. Only 
tasks that could be completed for at least 99 bootstraps in one cell subtype while only being completed in a maximum of 
1 bootstrap for another cell subtype are shown.  

 
To evaluate differences in metabolic capabilities between the neuron subtypes, we 
generated 100 bootstraps per subtype, followed by model generation by ftINIT and task 
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analysis (Fig. 27D). We defined a task to be available (on) if it could be completed in at 
least 99 of 100 bootstraps and unavailable (off) if it could be completed in one or zero 
bootstrap models, and we have shown that the difference between on and off is statistically 
significant (see Note S1 in paper IV). We found 13 tasks that were considered on in at 
least one cell type while off in at least one other. Most such tasks were related to de novo 
synthesis of fatty acids, phospholipids (PE and PI) and cardiolipin. Interestingly, the 
importance of lipids as signaling molecules in the brain have recently been highlighted, 
where deficiencies in lipid metabolism is associated with neurogenerative diseases and 
cognitive problems [128]. Likewise, we detected significant differences in homocysteine 
synthesis capabilities, and high levels of homocysteine in the blood is associated with 
neurological disorders [129]. While homocysteine levels in blood are mainly regulated by 
the liver, it seems that the capability of homocysteine synthesis is available for some 
neuron subtypes, but not for others, which may be of interest to investigate further. 
 

5.3. Application: Tumor microenvironment 
To investigate metabolic differences across cell types in the tumor microenvironment, we 
generated context-specific models for 16 cell subtypes from a lung adenocarcinoma dataset 
[130]. 10 cell subtypes were extracted from the tumor and 6 from healthy lung tissue, and 
all had at least 1,600 cells (the limit determined by DSAVE). We used cell subtype 
classifications distributed with the dataset, and the classifications were in good agreement 
both for the cell subtypes found in the tumor (Fig. 28A) and healthy lung tissue (Fig. 28B). 
The cell subtypes were similar across patients except for the neoplastic cells (tS1 and tS2), 
which have unique mutations for each patient (Fig. 28C). A structural comparison (PCA) 
of the models generated from the cell subtypes revealed that they grouped with cell 
subtypes of similar class (myeloid cells, epithelial cells, lymphocytes, and mast cells) 
rather than tissue (Fig. 28D). This is an interesting finding, since the tumor 
microenvironment in contrast to other tissues is often nutrient-deprived, hypoxic, and 
acidic, at least in some regions [131]. Apparently, these differences in conditions had less 
of an effect on the metabolism of cells than the cell subtype for these tumors.  
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Fig. 28: Generation and analysis of context-specific models in the tumor microenvironment. A. UMAP projection of 
the single cells from lung adenocarcinoma tumor samples (The LC3 dataset, see paper IV, contains cells from several 
patients). The cells are colored by cell subtype classification published together with the dataset. Only cell subtypes with 
at least 1,600 cells were included in the analysis. The full gene set is used. B. Similar to A but shows healthy tissue 
samples extracted from the cancer patients. C. Similar to A, but the cells are colored per sample instead of cell subtype. 
D. Structural comparison (PCA) of the GEMs generated from the cell subtypes shown in A and B. The symbols group 
the models into cell type classes (myeloid, epithelial, lymphocytes, mast cells). E. Task analysis of bootstraps (100 per 
cell subtype). The color represents for how many bootstraps of a cell subtype the task could be completed. Only tasks 
that could be completed for at least 99 bootstraps in one cell subtype while only being able to complete in maximum 1 
bootstrap for another cell subtype are shown. 

 
We next investigated the ability of the different cell subtypes to perform metabolic tasks. 
We found 14 tasks with a significant difference in the ability to perform tasks (i.e., the task 
could be completed for at least 99 of the bootstrap models in one cell subtype and could 
be completed for no more than 1 bootstrap model in another cell subtype) (Fig. 28E). The 
two transcriptional states of neoplastic cells (tS1 and tS2) show differences in bile acid 
metabolism (taurochenodeoxcholate and taurocholate synthesis and excretion), despite 
containing cells from multiple patients with clearly different transcriptional programs (Fig. 
28A, E). The role of bile acids in cancer has been a topic of interest for decades [132], but 
its role in lung cancer is unknown, and may be interesting to investigate further. Another 
observation of interest is the ability of the cancer cells to synthesize heme. Heme synthesis, 
coupled to degradation of the just-synthesized heme and export of bilirubin, provides 
means to degrade succinyl-CoA from the TCA cycle without involving fumarate 
hydratase. While we cannot see any benefit from using this pathway for this purpose in 
healthy cells, it has been proven vital for cancer cell lines with dysfunctional fumarate 
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hydratase, allowing for generation of mitochondrial NADH by running parts of the TCA 
cycle [133]. The role of this pathway in lung cancer is to my knowledge unknown. 
 

5.4. Summary 
It is not possible to generate reliable context-specific GEMs that cover the entire 
metabolism from the transcriptomic profile of a single cell due to data sparsity  it is often 
required to pool thousands of cells to yield reasonably reproducible results. Statistical 
comparison of model properties is generally challenging. To handle such comparisons, we 
in this work propose three things: 1) to use the DSAVE total variation score to estimate 
the required number of cells, which reduces the uncertainty from sparsity; 2) to use 
bootstrapping to estimate the uncertainty from sampling; and 3) to only accept very low p 
values as significant, which makes it possible to without comparison between models 

icance. 
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6. A light-weight approach to enzyme usage constraints 
As mentioned in the introduction, GECKO toolbox [39], [43] supports the addition of 
enzyme usage constraints to a GEM. However, during my PhD, I encountered three 
problems when using the GECKO Toolbox with the Human1 model. 1) Addition of 
enzyme constraints using the GECKO Toolbox made the model substantially larger, which 
led to long run times for flux balance analyses, especially on large, combined models where 
several cell types are interacting with each other. 2) The solver encountered numerical 
issues when using GECKO models, and in some cases, it could not solve the problem. The 
issue was related to the stoichiometry in the GECKO model, where some fluxes became 
very small. 3) The run time of the GECKO pipeline was substantial, which slowed down 
my research efforts. As part of paper V, I therefore investigated the possibility to remedy 
these issues. 
 

6.1. The method 
GECKO was designed to allow for constraining the total enzyme usage in a cell as well as 
constraining individual enzymes by proteomics data, and the latter makes the models 
generated by GECKO larger and more complex. In most projects on human metabolism, 
only the total enzyme usage constraint is used. I therefore set out to create a simplified 
version of GECKO, called GECKO Light (Paper V), that runs faster and generates smaller 
models without numerical issues. Consequently, GECKO Light does not support 
constraining the fluxes through individual enzymes, but only allows for constraining the 
total enzyme usage. The strategy of GECKO Light is similar to that described in 
sMOMENT [134]. 
 
A complication when applying enzyme usage constraints are isozymes, i.e., parallel 
enzymes that can catalyze the same reaction. The enzyme usage ce,r per flux unit for the 
enzyme e in reaction r is in Gecko modeled as  
 

 (4) 

 
where Mw,e is the molecular weight of the enzyme e and kcat,e,r is the turnover rate for 
enzyme e in reaction r. These values typically vary between isozymes, and in the full 
GECKO model, each of those can be constrained separately. However, if support for 
constraining of individual enzymes is omitted, we can assume that the isozyme with the 
lowest cost will always be used, since that enzyme will always be used in an optimization 
where enzyme usage is limiting. While GECKO Toolbox builds up a complex network of 
reactions to reflect all possible paths through different isozymes, it is possible to simplify 
the network and just use one reaction, by defining the cost cr for the reaction r as 
 

 (5) 

 
where E is the set of available isozymes for reaction r, Mw,i,e is the molecular weight of 
subunit i in enzyme e, kcat,e,r is the turnover rate for enzyme e when catalyzing reaction r, 
and Ie is the set of subunits that enzyme e consists of. With this approach, which will give 
the same results as GECKO when only constraining the total protein usage, the total 
enzyme usage constraint can be implemented by adding one metabolite and one reaction. 
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-cr to each 
enzyme-catalyzed reaction 

the total enzyme usage of the model. 
 
GECKO Light has two advantages compared to the original GECKO approach  the 
generated models are smaller, and we no longer experience numerical issues with the 
solver (Gurobi). The reason for the latter is that the stoichiometry of GECKO Light avoids 
the very low fluxes sometimes produced by the original GECKO models. To speed up the 
execution time of the model generation, the code was also optimized, which reduced the 
execution time by an order of magnitude  GECKO Light typically finishes within 2 
minutes on a standard laptop computer (Intel Core i7-6600U, 2.60 GHz, 2+2 cores) for 
adding enzyme constraints to Human1. The same optimizations were as part of this work 
implemented in the original GECKO workflow as well, which yielded a similar 
improvement in execution speed.  
 

6.2. Summary 
The use of enzyme-constrained models can be divided into two use cases: 1) when 
constraining individual enzymes is of interest, and 2) when only a global enzyme usage 
constraint is applied. GECKO Light cannot be used for the first case, but is the better 
approach for the second, especially when generating large models containing several cell 
types.  
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7. Genome-scale metabolic modeling of the tumor 
microenvironment 
The complex metabolism in the tumor microenvironment is difficult to study. While it is 
often possible to measure the uptake rates of different metabolites for experiments 
performed on cell lines in vitro [25], such measurements are very difficult to perform in 
living tissue. In paper V, we therefore set out to investigate this metabolism using a 
modeling approach, where the maximum uptake rates of metabolites were defined by a 
theoretical diffusion model based on diffusion coefficients and metabolite concentrations 
in blood. While we in paper IV worked with context-specific models, we in this work 
used the full Human1 model (curated), to investigate the theoretically most optimal 
behavior of cells in the TME. Specifically, we 1) set out to investigate the optimal 
metabolic behavior of cancer cells at different pseudo-distances from blood vessels, 2) 
investigated the optimal amino acid metabolism for the tumor conditions in detail, and 3) 
investigated if the common belief that stromal cells help tumor cells by providing them 
with energy-rich resources such as lactate is truly beneficial for cancer cell growth. 
 

7.1. A diffusion model for constraining metabolite uptake rates 
It is challenging to estimate the maximum uptake rates of metabolites in cells in the TME. 
The maximum influx of a metabolite to a cell depends on many factors such as the distance 
to blood vessels and blood vessel permeability, and to estimate the absolute maximum 
influx to a particular cell becomes a very complex task. We therefore instead set out to 
estimate the relative maximum uptake rates of the different metabolites in the tumor, based 
on metabolite concentrations in blood and their diffusion coefficients. 
 
As mentioned in the Background section, the main mechanism for metabolite influx from 
a blood vessel into solid tumors is diffusion. The influx can be modeled as an 
axisymmetrical two-dimensional model, since we assume that there is no concentration 
gradient along the blood vessel axis (Fig. 29). We assume a radial diffusion flux from the 
capillary. Under certain assumptions, for example steady state conditions, the uptake 
bound Ui for a metabolite i can then be estimated as 
 

    
 
where Di is the diffusion coefficient for metabolite i, cb,i its concentration in blood, and a 
is a proportionality constant that is related to the distance from the capillary to the point 
for which the uptake bound is to be estimated. 
 

 
Fig. 29: The diffusion model used to estimate the maximum metabolite flux uptake for a metabolite. The influx of the 
metabolite is proportional to the diffusion coefficient and the concentration of the metabolite in blood and assumed to 
be 0 at a distance far away. The proportionality constant a is the same for all metabolites, and is related to the distance 
to the capillary, although not linearly. We can define a pseudo-distance from the capillary as the maximum value of a 
minus its current value. 

Radial Flux
capillary

(a)

Pseudo-dist.
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The model should be viewed in the light that it is an approximation that provides uptake 
constraints on the right order of magnitude. The modeling results presented later in this 
thesis are not sensitive to small changes in the metabolite uptake constraints. The model is 
justified in detail in Note S2 in paper V. 
 

7.2. The optimal metabolic behavior for cellular growth in the 
TME 
As described in the background section, the metabolism of the tumor microenvironment is 
dysregulated, partly since the metabolite availability is different compared to other tissues. 
To investigate the optimal metabolic behavior under these conditions we set up a modeling 
scenario with the diffusion model and the Human1 GEM, curated and extended with an 
enzyme usage constraint (Fig. 30A). In addition, non-growth associated maintenance 
(NGAM) was added as an ATP cost of 1.833 mmol gDW-1 h-1, which was derived from 
literature [135], [136]. Metabolite blood concentrations for in total 69 metabolites were 
collected from several sources [137] [140]. We used the concentration of free oxygen, 
which is free to diffuse, excluding roughly 98% of the total oxygen concentration in blood, 
which is bound to hemoglobin and therefore cannot diffuse. Lipids were grouped into 2 
groups: sterols (represented by cholesterol) and other lipids (fatty acyls, glycerolipids, 
glycerophospholipids, and sphingolipids, represented as a mix of fatty acids). Diffusion 
coefficients for 18 metabolites were downloaded from several sources [141] [143]. For 
lipids, we used the diffusion coefficient of albumin, since they diffuse bound to either 
albumin or a lipoprotein, while the rest of the diffusion coefficients were predicted using 
a linear model based on molecular weight [144]. 
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Fig. 30: Modeling of cancer cell growth in the TME. A. Modeling setup. The model Human1 is prepared with enzyme 
usage constraints using GECKO Light. The metabolite uptake rates are limited by the diffusion model. B. Simulated 
specific growth rate and metabolite uptake at different a values, which is inversely proportional to the distance from 
blood vessels. C. Fluxes through glycolysis and the enzyme complexes in the electron transport chain.

The metabolism of the different regions of the tumor, represented by different values of a, 
were simulated using FBA, optimizing for biomass (growth) (Fig. 30B). At large distances 
from blood vessels (low a) the model could not produce enough ATP for maintaining the 
cell (NGAM), resulting in necrosis. When moving closer to the capillaries (moderate a
values), the metabolism was dominated by hypoxia and lack of nutrients, which limited
the growth. At small distances (high a values), the enzyme usage constraint was the main 
factor limiting growth, and lack of oxygen and nutrients was less of a problem. 
Interestingly, the model predicted the Warburg effect [22], where lactate is exported 
despite that all oxygen is not used, which can be explained by the higher enzyme usage 
cost per produced molecule of ATP in the electron transport chain. The fluxes of the 
different complexes vary with the constant a, predicting an early bypass of complex I, 
which is consistent with a previous report modeling muscle tissue [6] (Fig. 30C). Likewise, 
the model predicted high use of glutamine, which we will examine in more detail later. 
The modeling results here need to be taken for what they are, a simplified model. The 
behavior of the model is extreme in real cells, OXPHOS and the TCA cycle are not 
reduced to zero at high glucose availability. For example, 80% of the ATP has been 
reported to be generated by oxidative phosphorylation in some highly proliferative cells 
[145]. However, the mechanisms are still of interest to study, and many of them are present 
in real cells [22], [24], although real cells only partly employ the strategies fully adopted 
by the model.
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To estimate which metabolites were limiting for growth, we ran the simulation in a mode 
where the uptake rate of a single metabolite was reduced to 90% of its original value (Fig. 
31A). Glucose was the most important metabolite for growth, followed by oxygen, and we 
also saw a small effect from glutamine. The effect from reducing lipids, cholesterol, lactate 
and albumin (not shown) was negligible. To understand which parts of the biomass 
reaction limit growth, we conducted simulations where different components of the 
biomass were removed (Fig. 31B). ATP production was the limiting process for growth; 
only removal of components requiring ATP increased growth. After removing the ATP 
costs, lipids became limiting. Interestingly, the direct use of amino acids for protein 
synthesis was small compared to the availability  the only reason that glutamine was 
limiting for growth is because it can be used to increase ATP production. 
 

 
Fig 31: Growth limitation from metabolites. A. Changes in specific growth rate when the uptake constraint of a specific 
metabolite is reduced to 90% of its original value (as defined by the diffusion model). B. Specific growth rate ratio 
between models with original and reduced biomass reaction (some components have been removed), where the model is 

ation ATP cost and the direct ATP cost removed from the biomass 
 

 

7.3. Amino acid metabolism in the TME. 
Amino acid metabolism in tumors is not fully understood, and to shed light on the subject 
we investigated the fluxes of amino acids predicted by the model. The model predicted 
large uptake rates of glutamine, glycine, serine, and threonine, and large export of aspartate 
and proline (Fig. 32A). In addition, arginine, asparagine, cysteine, glutamate, histidine, 
and valine showed irregular uptake patterns that vary with a (Fig. 32B), while the rest of 
the amino acids are taken up at rates proportional to the specific growth rate and were used 
primarily for protein synthesis (not shown). Glutamate secretion, which is observed in 
many cell lines [25], [146], was not observed in the model. Such a behavior has previously 
been linked to nucleotide synthesis [25], which our model does not predict, and also to 
signaling effects that increase growth in glioblastoma, where glutamate acts as a signaling 
molecule [147], [148].  
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Fig. 32: Amino acid uptake and export. A. Uptake and export of amino acids with large fluxes. Negative flux 
corresponds to export of the metabolite. B. Uptake (no export observed) of amino acids with small but irregular fluxes. 
The fluxes for the amino acids not presented in A or B are proportional to the specific growth rate. 

 
The model predicts two interesting behaviors: use of glutamate (mainly converted from 
glutamine) to feed the TCA cycle, and the export of proline. To understand these behaviors, 
we need to first understand the effects of hypoxia and limitations of enzyme usage in the 
TCA cycle and OXPHOS. The TCA cycle generates NADH and FADH2, which is oxidized 
during OXPHOS to generate ATP. While many carbon-based metabolites via conversions 
can enter the TCA cycle for ATP production, the process requires oxygen, and most such 
metabolites are useless for ATP generation if oxygen cannot be used. When oxygen is 
limited, it is therefore crucial to maximize the ATP production per oxygen molecule spent, 
and not per carbon-based metabolite. In Human1, which reflects the latest understanding 
of the stoichiometry in OXPHOS, complex I pumps 4 protons out of the mitochondrial 
matrix per oxidized NADH. Complex V produces 1 ATP per 3 such protons, so in practice, 
complex I produces 1.33 ATP per NADH oxidized. More protons are then pumped out of 
the mitochondrial matrix using complex III and IV. Complex II (which oxidizes FADH2) 
on the other hand does not pump any protons (but the same amount as for NADH is pumped 
by complex III and IV, i.e., in total 6 H+). This means that if oxygen is used to oxidize 
FADH2, 1.33 less ATP will be produced compared to if the same amount of oxygen was 
used to oxidize NADH. It is therefore of interest to maximize the ratio of NADH vs 
FADH2. It could be hypothesized that it could be beneficial to find ways to get rid of 
NADH through other pathways, and thereby increase the flux through the TCA cycle if 
oxygen is limiting, since less oxygen would then be required per round of the cycle. 
However, as long as the FADH2 cannot be oxidized, such a strategy will not work. Each 
round of the TCA cycle will produce 1 ATP and 1 FADH2, and for each FADH2 molecule 
that is oxidized instead of a NADH molecule, 1.33 ATP is lost, yielding a net ATP loss of 
0.33 ATP per cycle round. 
 
When enzyme usage is limiting, the situation is quite different. In such cases, it is beneficial 
to minimize the use of OXPHOS since the complexes in the ETC are large and slow and 
thereby constitute much of the total enzyme pool. The most optimal behavior in the model 
to maximize ATP production is to run glycolysis alone and export lactate. However, in the 
middle range of a, where glucose is still in shortage, it is still beneficial to use the TCA 
cycle. In such cases, it contrasts with the hypoxic case where it is beneficial to dispose of 
NADH, since the enzymatic cost of running the TCA cycle is lower per ATP produced 
than that of OXPHOS. As long as the NADH can be oxidized, the TCA cycle can therefore 

A B
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complete more cycles as an alternative to running full oxidation in OXPHOS. In enzyme-
limited cases, it is therefore optimal to minimize the NADH/FADH2 ratio since there at 
least in the model is no mechanism to oxidize the FADH2 other than complex II in the 
electron transport chain.

The use of glutamine by cancer cells to feed the TCA cycle instead of pyruvate derived 
[24], 

[149] [151]. However, the reason why cancer cells prefer glutamine as substrate is not 
well understood, which the model could potentially help with. We therefore investigated 
the high uptake of glutamine in the model (Fig. 33). When glutamate (mainly derived from 
glutamine) is used to feed the TCA cycle, only part of the cycle is used. We compared the 
use of glutamate as substrate to the cycle with lactate, since lactate is what will in such 
cases be exported from glycolysis. While lactate produces 5 NADH per round of the cycle 
(one extra when converting lactate to pyruvate), only 2 NADH are produced when using 
glutamate. Under enzyme-limited conditions, the TCA cycle can therefore be run more 
cycles with glutamine and increase the total ATP production. As part of the process, 
aspartate is produced and exported by the model. 

Fig. 33: The pathway used when glutamine feeds the TCA cycle. Using glutamine to feed the TCA cycle leads to less 
production of NADH for each round in the cycle. When OXPHOS is limited by its high enzyme usage, the TCA cycle flux
can therefore be increased, producing more ATP. The arrow thicknesses indicate the amount of flux that passes through 
the reactions, where thick arrows represent higher flux.

While glutamine import is well documented, aspartate export is not, and was not observed 
in a cell culture experiment of the NCI-60 cell lines [152]. However, there are several 
pathways that can convert aspartate to other metabolites. For example, it can be converted 
to lactate (via fumarate, malate, and pyruvate) without extra ATP cost or altering the redox 
balance (except for shifts between NADH and NADPH), which may explain why aspartate 
export is not observed. In addition, aspartate can be exported to dihydroorotate, which was 
reported for hypoxic conditions [150].

Turning the attention to proline export in cancers, which has been observed in both NCI60 
and HEK293 cell lines [25], [152], there are two potential pathways to consider (Fig. 34). 
Under normal conditions, the PYCR enzymes (PYCR3 or other enzymes of the same 
family) is responsible for proline synthesis, while the PRODH is used in the opposite 
direction. However, an intriguing option is the possibility that PRODH could be run in 

TCA Cycle

Glutamate

Mitochondria

Cytosol

Succ.-CoA

AKG

Succinate

Fumarate

Malate

OAA

Citrate

Isocitrate

Acetyl-CoA

AKG Malate

OAAAspartate

pyruvate

NADH

NADHNADH

FADH2

NADH

NADH

ATP



61

reverse, which is predicted as favorable in the model. We have not found any evidence of 
this behavior in the literature, and since it is less favorable from a thermodynamic 
perspective compared to PYCR, it is unclear if it is favorable enough to carry flux. 
However, it has been shown that complex II, which catalyzes a similar reaction, can be run 
in reverse in rats [153]. Running PRODH in reverse would be favorable in hypoxia, since 
it would enable the running of complex I without oxygen consumption, and thereby enable 
production of extra ATP. PYCR is shown by to be favorable at enzyme-limited conditions
by the model, since it provides means to dispose of NADH. 

Fig. 34: The potential mechanism for running PRODH in reverse. Proline synthesis can assist in increasing the flux 
through the TCA cycle, leading to an increase of ATP production, by the following mechanisms: 1) By oxidation of 
NADH through any of the PYCR enzymes, since less enzymatic capacity would need to be spent on OXPHOS in situations 
where enzyme usage is limiting. 2) By running PRODH in reverse, if possible. This would enable increased flux through 
complex I in hypoxic conditions, since PRODH can be used instead of using oxygen for converting ubiquinol (QH2) into 
ubiquinone (Q). Consequently, more ATP can be produced in complex V since complex I pumps more protons out of the 
mitochondrial matrix.

To quantify the metabolism of each amino acid in different conditions, we ran simulations 
where the model was given a single substrate of a limited amount and maximized ATP 
production (Table 2). Under hypoxia and no enzyme constraints, PRODH in reverse was 
beneficial for many amino acids, and many amino acids gave a higher ATP yield than 
lactate. With PRODH in reverse blocked, the positive effect for amino acids was lost 
except for serine, threonine and glycine, which still gave a higher ATP yield compared to 
lactate. With a model where enzyme usage constraints were limiting for ATP production, 
the overall picture changed, and glutamine (and glutamate) became the substrates with the 
highest yield. As described above, this can be understood from an increased flux in the 
TCA cycle due to better possibilities to dispose the NADH (Fig 35).
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Table 2: Simulation of ATP production from lactate and amino acids under different conditions. The ATP production 
(mmol/gDW/h) is maximized given a maximal uptake of 5 mmol/gDW/h of a single substrate and varying oxygen 

- limited to 5 mmol/gDW/h, which is not enough to fully oxidize any of 
- -

constraint is set to 
total available enzyme usage pool is constrained to a low value (0.001 g/gDW). PRODH is not active in such conditions. 
Green background corresponds to a higher ATP production compared to lactate, white to identical, and red to a lower 
flux.  
 

Substrate Low O2 Low O2, no 
PRODH 

No O2, no 
PRODH 

Enzyme lim.  

lactate                    5 5 0 0.0938 
aspartate 6.5 5 0 0.0937 
glutamine 10 5 0 0.1042 
glycine 5.7 5.7 0 0.0929 
proline 4.7 4.7 0 0.0943 
serine 9 9 3.33 0.0945 
threonine 9 9 3.33 0.0931 
alanine 5 5 0 0.0932 
arginine 12.3 5 0 0.0942 
asparagine 6.5 5 0 0.0940 
cysteine 5 5 0 0.0927 
glutamate 10 5 0 0.1020 
histidine 11.1 5 0 0.0923 
isoleucine 5 5 0 0.0921 
leucine 5 5 0 0.0917 
lysine 4.8 4.8 0 0.0918 
methionine 5 5 0 0.0830 
phenylalanine 5 5 0 0.0900 
tryptophan 3.8 3.8 0 0.0877 
tyrosine 5 5 0 0.0915 
valine 5 5 0 0.0917 

 

 
Fig. 35: ATP production from the substrates glutamine and lactate. A. Hypoxic conditions (reverse PRODH reaction 
blocked). B. Enzyme-limited conditions. 
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7.4. Evaluation of metabolic collaboration between cell types in 
the TME 
It is commonly believed that stromal cells in the TME support cancer cells by providing 
them with resources. For example, it has been proposed that cancer-associated fibroblasts 
(CAFs) in the TME supply cancer cells with pyruvate and lactate [28], [154]. Furthermore, 
macrophages the TME could consume dead cell and debris and convert this mass to 
resources useful for cancer cell growth. To investigate such collaboration scenarios, we 
constructed a combined model of three cell types: cancer cells, fibroblasts, and other cells, 
where the latter represents cells that do not collaborate with the cancer cells (for example 
immune cells) (Fig. 36A-B). While the tumor cells need to grow to enable tumor growth, 
the fibroblasts and other cells are expected to be recruited to the tumor. The fibroblasts 
however need to produce the extracellular matrix (ECM) for the tumor. 
 

 
Fig. 36: Modeling setup for cell type collaboration in the TME. A. Modeling setup. The model consists of interconnected 
cell types: Cancer cells, fibroblasts, and other cells (for example immune cells). Each cell type is represented by a 
separate model of the type that was used in the simulations in Fig. 30, with NGAM included. The model is fed with 
metabolites from blood as defined by the diffusion model. Fibroblasts and other cells are assumed to be recruited from 
outside the tumor, and thus their biomass production is not included in the tumor growth. However, the tumor cells need 
to grow, and the fibroblasts need to build the extracellular matrix for the tumor. B. Communication between 
compartments in the combined model. While the fibroblasts can send metabolites back to the cancer cells, the other cells 
cannot since they are not expected to collaborate with the cancer cells. 

 
The combined model can be parameterized regarding the cell type mixture in the tumor 
and the portion of the tumor that the ECM constitutes, and we worked with 7 different 
configurations in the simulations (Table 3). The ECM was fixed to 80% collagen 
(represented by collagen I) and 20% glycosaminoglycans (represented by heparan sulfate). 
 
Table 3: Models used in the simulations. The m0 model contains only tumor cells and is identical to the model used in 
Fig. 30. The ECM fraction represents the weight fraction of the total objective that the ECM constitutes. 

Model Cancer cell 
fraction 

Fibroblast  
cell fraction 

Other cells 
fraction 

ECM fraction 

m0 1 0 0 0 
m1 0.6 0.2 0.2 0.01 
m2 0.6 0.2 0.2 0.25 
m3 0.6 0.2 0.2 0.5 
m4 0.75 0.05 0.2 0.25 
m5 0.45 0.35 0.2 0.25 
m6 0.9699 0.0001 0.03 0.00001 
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As a direct consequence of the first law of thermodynamics, fibroblasts cannot increase 
the total available amount of accessible energy in the TME. However, it is possible for the 
fibroblasts to lend enzymatic capacity to the cancer cells, and thereby increase the growth 
rate. Indeed, the models predict such a behavior in some cases (Fig. 37A). Depending on 
the size of the extra burden from generation of ECM, the combined model can grow faster 
than the model where only cancer cells are present in cases where resources are plentiful. 
To investigate which metabolites contributed to the increase in growth, we designed an 
iterative algorithm that extracted all metabolites that were exported from the fibroblasts 
and imported into the cancer cells, identifying in total 233 such potential collaboration 
metabolites (Fig. 37B). However, many of these metabolites are unrealistic and lack 
support in the literature (for example ATP). We therefore limited the allowed collaboration 
metabolites to those proposed in literature, namely lactate, pyruvate, free fatty acids, 
glutamine, ketone bodies, and alanine [154], [155]. With the transport of metabolites from 
fibroblasts to cancer cells limited to these metabolites, we could no longer observe any 
growth advantage compared to if the same transport is completely shut down (not shown, 
see paper V for details). 
 

 
Fig. 37: Tumor model simulations. A. Growth simulations with different model setups. B. The number metabolites sent 
from the fibroblasts to the tumor cells (collaboration metabolites) during growth for the m2 model. C. Increase in growth 
rate by adding 10% of the biomass back as input for the tumor, which simulates the macrophage activity to clean up 
dead cells. D. Change in growth rate from limiting the lactate output to half of the maximum uptake rate of glucose. 
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Macrophages can scavenge dead cells and debris and convert it into usable metabolites, 
which could be beneficial for growth. To simulate such a scenario, we assumed that 10% 
of the tumor cells die, and that the materials those cells consist of can be used as input for 

macrophages, but rather extracted the relevant parts of the biomass equation and used 10% 
of those metabolites as input for growth. The ATP costs for growth were omitted since that 
part is consumed in the growth process, and we also omitted any costs, including cell 
maintenance, related to the operation of the macrophages. The growth advantage of the 
extra input of metabolites was small (Fig. 37C), which can be attributed to the lack of 
oxygen or enzymatic capacity for the different values of a. The major limiting factor for 
growth is ATP production, and for most materials found in a cell, oxygen and the use of 
OXPHOS is required for ATP generation. 
 
In another type of collaboration often proposed in literature, oxygenated cancer cells 
consume lactate instead of glucose and thereby increase the available amount of glucose 
in the TME [156], [157]. Sonveaux et al [156] presented experimental evidence that the 
necrotic regions of tumors were enlarged when blocking lactate uptake in mice. However, 
I reason that although there will be an increase in glucose availability, there will also be a 
corresponding decrease in oxygen availability, which likely cancels out any such positive 
effect. I hypothesize that the effect could instead be related to the pH in tumors  inhibition 
of the lactate transporter MCT1 (which was done in the study) will likely reduce lactate 
uptake in the entire body. The lactate levels will then likely be higher in the blood and 
tumor-adjacent tissue, leading to smaller lactate gradients and lower diffusion rate from 
the tumor into blood and adjacent tissue. For a cell to survive, the internal pH needs to stay 
within a narrow range [151], [157] [159], and it has been proposed that a higher external 
pH requires a larger ATP maintenance to sustain the internal pH [158], [160]. A reduction 
in lactate diffusion may then set an upper limitation to cellular lactate production. A 
reduction of the maximum lactate output to half of the glucose uptake bound led to a large 
growth reduction and an increase of the necrotic range (Fig. 37D). Mammalian cells have 
also been shown take up lactate if available when not under stress [161], for example to 
regulate the pH, and cancer cells may simply share this behavior with healthy cells. In this 
alternative hypothesis, the lactate uptake by oxygenated cancer cells may not be directly 
beneficial for growth in the hypoxic parts of the tumor. 
 

7.5. Summary 
In this chapter, I have demonstrated another use case for GEMs  simulations of 
metabolism using enzyme usage constraints. A diffusion model was developed to estimate 
the metabolite uptake constraints, which enabled simulation of the whole range of hypoxia 
in tumors. I here looked at the optimal behavior in the TME, assuming the cancer cells will 
express the required enzymes. The model recapitulated known behaviors of metabolism in 
tumors, showcasing the usefulness of both the diffusion model and enzyme usage 
constraints. Specifically, the model gave a plausible explanation to the phenomenon known 

TCA cycle leads to a higher ATP production in enzyme-limited conditions. In addition, 
the model predicted interesting behaviors regarding proline export through PYCR1 and 
PRODH (in reverse) , which matches experimental observations [25], [152]. PYCR1, one 
of the PYCR enzymes, is commonly overexpressed across different cancers [162]. While 
the role of the reverse PRODH is unclear, PYCR enzymes are predicted by the model to 
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help in disposing of NADH under enzyme usage limitation conditions. I also investigated 
metabolic collaboration scenarios between stromal cells and cancer cells in the TME. I 
conclude that the growth benefit for cancer cells from such scenarios is likely small, or 
potentially non-existent.  
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8. Conclusions 
In this thesis, I have investigated the usefulness of genome-scale metabolic models for 
understanding the metabolic behavior of cancers. I have used two different strategies for 
this purpose: 1) use omics data to generate context-specific models and compare the active 
networks between different cell types or conditions and 2) perform advanced simulations 
including enzyme usage constraints to try to understand the behavior of cells. 
 
The use of single cell RNA-Seq data for generating context-specific models has been 
central in this thesis. I have concluded that it is nearly impossible to generate complete 
context-specific models from the data of a single cell, while it is plausible to pool data 
from cells in a cell population to generate a model. However, with current technologies, 
typically thousands of cells are needed per cell population, and the needed pool size should 
be estimated for each dataset. I have also showed that the available metabolic network 
differs substantially across cell types, which motivates the study of their metabolism 
individually. While context-specific models can be generated from other types of data, 
scRNA-Seq clearly offers an advantage in that multiple cell types can be studied from 
complex organs. Although this is to some extent also possible via FACS-sorting followed 
by bulk RNA-Seq, the advantage of scRNA-Seq is that the method is not dependent on 
surface markers for def
defined in advance, and the high availability of public single-cell datasets. 
 
While investigating the properties of single-cell RNA-Seq, I discovered that there is a bias 
across genes in scRNA-Seq data that can be estimated using copies per UMI. Under 
supervision by Prof. Lior Pachter I developed the BUTTERFLY method, which can be 
used to reduce the bias. While the method is useful, the most important part of the work 
was the realization 
exists in single-cell data and that it gives rise to for example batch effects between datasets. 
 
In paper V, I performed metabolic simulations on cancer with enzyme usage constraints 
based on a diffusion model for setting the metabolite uptake constraints. As part of the 
work, I also developed a method for adding enzyme usage constraints to models, called 
GECKO Light. I used the model to explain metabolic behaviors such as glutamine 
addiction and protein secretion and showed that the metabolic collaborations between 
stromal cells and cancer cells are likely not important.  
 
My three main contributions to the field are the development of a series of methods useful 
for genome-scale modeling, especially for investigating the tumor microenvironment, an 
improvement of the quantification of single-cell RNA-Seq data, and interesting discoveries 
around metabolism in the TME. I hope and believe that these findings and methods will 
prove useful both for myself in my future research but also for both the single-cell and 
modeling community as well as in cancer research, where I predict that mathematical 
modeling will become increasingly important.  
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9. Future perspectives 
In this thesis, I have in addition to single-cell RNA-Seq studies developed methods for 
genome-scale metabolic modeling and applied some of them to explore the metabolism in 
tumors. Both the use of context-specific GEMs generated from single-cell RNA-Seq and 
the use of enzyme usage constraints for the study of human health and disease are in their 
infancy, but show great promise for the future. For example, I find it fascinating that the 
model, with just the reaction network and constraints on metabolite availability and 
enzyme usage, still can reproduce metabolic behaviors of tumors that are poorly 
understood. With further development in the field, I am convinced that it will be possible 
to get new mechanistic insights of human metabolism. So far, I did not combine the 
generation of context-specific GEMs from scRNA-Seq with enzyme-constrained models, 
which could be used to increase the accuracy of the simulations further, especially when 
performing simulations with multiple cell types. Likewise, I mainly focused on cancer, but 
there are many diseases where metabolism plays a role. For example, diabetes and 

cases where different modeling approaches involving single-
cell RNA-Seq and enzyme usage constraints could be applied. 
 
The human body has through evolution been exposed to starvation, and the metabolism is 
likely therefore optimized to preserve energy. Likewise, there is sometimes a need for high 
energy production, which can be vital for example in muscles when exposed to danger or 
in expanding T cells when responding to a pathogen. Therefore, I think that the metabolic 
programs we encounter in the body are to a large extent optimized for a combination of 
these two aspects, and how much of each depends on the urgency for energy. Aerobic 
glycolysis, which is active in for example the Warburg effect, is one such example. This 
strategy potentially makes it possible to increase ATP production in a cell without a net 
loss of energy for the organism, as long as other cells with lower ATP needs can take up 
the lactate and use it (resulting in a lower ATP production in those cells). This could be 
compared to other pathways suggested by the model, that for example oxidate NADH 
without gain in ATP, which are less realistic since they lead to a net loss of energy for the 
organism. It seems plausible that the reason why aerobic glycolysis is used during high 
ATP need is because it uses less enzymatic capacity per ATP produced. The enzyme 
allocation needed per reaction flux plays an important part in this analysis, and together 
with understanding the metabolic needs of the cell and the urgency, this information holds 
promise to explain many behaviors in human cells. Software that adds enzyme usage 
constraints to metabolic models, such as GECKO Light, are an important piece of this 
puzzle. Unfortunately, the gene associations are still missing for many reactions in 
Human1, and in addition, kcat values are also not available for many enzymes. However, 
the continuous improvements of models and kcat databases improves the prediction of 
enzyme usage costs over time. In addition, efforts such as DLKcat [163], where unknown 
kcat values are predicted using a deep learning approach based on substrates and protein 
sequence, will likely play an important role. 
 
To narrow down the possible behaviors of different cell types in the human body, omics 
data plays an important role. In particular, single-cell RNA-Seq data holds promise to 
increase the understanding of individual cell populations. While I in this thesis only 
investigated cell populations identified by clustering, different approaches for defining 
populations are possible. One example is to define cell populations using a sliding window 
through a cell continuum, which may be useful for identifying metabolic switches. With 
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the recent arrival of spatial transcriptomics [164], even more possibilities arise. The 
context-specific model can then be connected to for example surrounding cells and be 
constrained according to an estimated metabolite availability based on spatial location. 
 
I have in this thesis used scRNA-Seq to determine if a reaction is present or not in a cell 
type. While useful, such a method fails to detect many metabolic differences between cell 
types, for example when a pathway is overexpressed in one cell type compared to another, 
but still exists in both. An alternative approach could be to generate context-specific 
difference models by using p values from differential expression as input to a MILP, used 
much in the same way as in tINIT. Another alternative approach could be to penalize flux 
through reactions where there is poor evidence of enzyme presence, in a similar way as in 
the COMPASS method [104]. Single-cell RNA-Seq data contains much information, and 
it is evident that a simple thresholding approach per cluster and gene only uses a small part 
of that information content. It is therefore likely possible to develop new methods that 
extract more information about the metabolism in cell populations from scRNA-Seq data. 
 
As part of this thesis, I investigated and developed a correction method for amplification 
biases across genes in scRNA-Seq data. I have recently learned that false positives that 
arise from alignment add biases to the amplification measurements, making them less 
reliable, especially for pseudo-alignment tools that map reads to the transcriptome only. 
However, we can still observe large differences in amplification across data aligned using 
STAR (paper I), suggesting that either similar problems exist with full alignment tools or 
that the true PCR amplification biases across genes are substantial. While RNA-Seq has 
existed for more than a decade, it still seems that the quantification problem is not fully 
solved. This is also apparent from our results in paper I, where the technical variation 
between samples is high. Tools such as BUTTERFLY, that strive to improve 
quantification, will likely be important in future RNA-Seq pipelines in combination with 
methods that effectively filter out falsely aligned reads. 
 
Mathematical modeling is a powerful tool, and I strongly believe it will become 
increasingly important in future efforts to understand the metabolism in human health and 
disease. To understand the motivations behind metabolism with human reasoning and 
measurements alone is hard, and without modeling, the progress will be slower, especially 
when trying to understand complex behaviors. This thesis is a step in the direction of 
making complex modeling of human metabolism more available to scientists, and thereby 
ultimately assist in the effort to understand human metabolism. I foresee that in the future, 
metabolic modeling will be seen as a key component in studies concerning metabolism. 
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