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A Primer on the Statistical Relation between
Wireless Ultra-Reliability and Location Estimation
Tobias Kallehauge, Pablo Ramı́rez-Espinosa, Kimmo Kansanen, Henk Wymeersch Senior Member, IEEE, and

Petar Popovski, Fellow, IEEE

Abstract—Location information is often used as a proxy to
infer the performance of a wireless communication link. Using a
very simple model, this letter unveils a basic statistical relation
between the location estimation uncertainty and wireless link
reliability. First, a Cramér-Rao bound for the localization error
is derived. Then, wireless link reliability is characterized by how
likely the outage probability is to be above a target threshold. We
show that the reliability is sensitive to location errors, especially
when the channel statistics are also sensitive to the location.
Finally, we highlight the difficulty of choosing a rate that meets
target reliability while accounting for the location uncertainty.

I. INTRODUCTION

U ser localization and ultra-reliable low-latency commu-
nications (URLLC) are ubiquitous concepts in 5G net-

works [1]. Reliability of wireless transmission is related,
among others, to the behavior of the propagation channel,
which is inherently correlated with spatial location. Conse-
quently, exploiting this relation is envisioned as a promising di-
rection in mobile networks, e.g., using location information to
assist millimeter-wave communications [2], the generation of
channel maps for increased reliability and predictive resource
allocation [3], [4], and channel charting for user localization
[5]. The standardization by 3rd Generation Partnership Project
(3GPP) of minimization of drive tests (MDT) [6] is an
additional motivation, allowing the operators to utilize end-
user devices measurements for the previously mentioned tasks.

In contrast to more conventional approaches where samples
are acquired over time to estimate channel statistics and thus
reliability [7], the relation between channel and location brings
forward the idea of using location to infer channel statistics
and, ultimately, as a proxy for guaranteeing reliability in
URLLC. Considering the latency introduced by estimating
channel statistics, a communication system that predicts re-
liability based on localization using only a few measure-
ments, is an attractive alternative. However, these reliability-
guaranteeing methods would rely, among other aspects, on
the ability to estimate location accurately, which raises the
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question: How can the accuracy of the localization procedures
impact the wireless reliability guarantees?

This letter will analyze a simplified framework to reveal
the fundamental relations between location uncertainty and
reliability guarantees, neglecting other sources of uncertainty
such as channel estimation. A user equipment (UE) is intended
to communicate with a base station (BS), and to isolate the
impact of location uncertainty on reliability, the UE is assumed
to perfectly know the statistics for channel propagation at
all locations around the BS. If the location were perfectly
known, the UE would correctly allocate resources to guarantee
some level of reliability. However, given the uncertainty of the
estimated location, the predicted reliability is also uncertain,
and the UE must account for scenarios where, e.g., the signal
level is weaker at the true location than at the estimated
location.

In this letter, we investigate the impact of location un-
certainty in reliability by modeling a system in the physical
communication layer with the additional simplification of only
considering one dimension for localization. This allows us
to extract important conclusions without dealing with the
complexity inherent to higher dimensional and higher layer
cases. The localization performance is characterized through
Fisher information analysis [8], and reliability is statistically
characterized following the probably correct reliability (PCR)
approach in [7].

Notation: R(z) and I(z) are the real and imaginary parts
z, and  is the imaginary unit. (·)T and (·)H are the matrix
transpose and conjugate transpose, and ‖·‖ is the `2-norm. For
matrix A, the submatrix with row i to j and column k to p is
denoted Ai:j,k:p. N (µ, σ2) and CN (µ, σ2) denote Gaussian
and complex circular symmetric Gaussian distributions with
mean µ and variance σ2. Finally, E[·] and Var[·] denote,
respectively, the expectation and the variance operators.

II. SYSTEM MODEL

A. Communication system and channel model

We consider a simple 1-D framework with two BSs at
locations x1, x2 ∈ R which communicate with a UE at
location x ∈ R. Both BSs and the user are equipped with a
single antenna. An orthogonal frequency division multiplexing
(OFDM) modulation scheme is considered, with bandwidth W
and N subcarriers spaced ∆f = W/N .

The channel between the UE and the BS i ∈ {1, 2} is
assumed to follow a two-path model with complex channel
coefficient ai,k and associated delay τi,k for path k. The first
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TABLE I
SYSTEM SETTINGS.

Symbol Description Value[
x1, x2

]
BS locations

[
0, 1000

]
m

Ptx Transmit power per sub-carrier 10 dBm
σ2
n Noise variance −70 dBm
W Bandwidth 10 MHz
fc Center frequency 2.1 GHz
N Number of sub-carriers 600

∆τi Excess delay (same for i = 1, 2) 50 ns
ρ Parameter for power delay profile 2

path (k = 1) characterizes the line-of-sight (LoS) link, being
thus deterministic and geometrically-dependent as [9], [10]

ai,1 =

√
λ2

16π2d2i
e−2πdi/λ =

√
PL(di)e−φ(di), (1)

where λ is the wavelength and di = ‖x− xi‖. Naturally, it
follows that τi,1 = ‖x− xi‖ /c with c the speed of light.
The second path (k = 2) represents the contribution of
the scattered paths, which cannot be mutually resolved and
hence ai,2 ∼ CN (0, σ2

i (∆τi)) with variance according to an
exponential power delay profile [11]:

Var[ai,2] = σ2
i (∆τi) =

PL(di)

ρ
exp

(
−∆τi

ρ

)
, (2)

where ∆τi = τi,2−τi,1 is the excess delay and ρ > 0 controls
how fast the power fades as a function of ∆τi. Note that the
choice to model ai,2 statistically, unlike, e.g., the deterministic
geometric models in [10], is made to allow for statistical
analysis of the communication reliability.

Given a modulated symbol s ∈ CN , the received baseband
signal in the frequency domain from BS i across the different
subcarriers, ỹi ∈ CN , is given by1 [10]

ỹi,j =
√
Ptxh̃i,jsj + ñi,j (3)

for j = 0, . . . , N−1, where Ptx is the transmit power per sub-
carrier, ñi,j ∼ CN (0, σ2

n) is the noise term with variance σ2
n

and h̃i,j = ai,1dj(τi,1) + ai,2dj(τi,2) is the Fourier transform
of the channel with dj(τ) = exp (−π2j∆fτ) .

The system settings used in the examples throughout this
letter are summarized in Table I. Note that some of the values
are chosen to produce results that clearly show the effect
of location uncertainty on reliability with less emphasis on
modeling a realistic scenario.

B. Localization and communication protocol

The following simple two-step protocol is assumed:
1) When the UE turns on for the first time, it estimates its

location using a ping — a single OFDM symbol as in (3)
with sj = 1 ∀ j — from each BS. To that end, time of arrival
(TOA) estimation is employed. Moreover, the pings are used
to select the BS with which the UE will communicate based
on the received power, i.e., BS i ∈ {1, 2} is chosen such that
‖ỹi‖2 is maximized.

1We assume identical uplink and downlink channels.

2) Once the UE has estimated its location and the target BS,
it starts the communication with the chosen BS by sending data
(power normalized E[|sj |2] = 1) using the OFDM channel
with rate R. It is assumed that the channels used in steps 1
and 2 are independent.

To inform rate selection, we introduce the maximum achiev-
able rate (MAR) Rmax as an information-theoretic bound, and
the UE should select R such that it only exceeds Rmax with
low probability (explained further in Sec. III-B). Following the
Sec. I, it is assumed that a mapping between location x and the
statistics of Rmax is available to the UE. We then analyze how
localization errors affect the reliability and throughput of the
system when the UE selects R using different location-based
rate selection schemes.

III. STATISTICS OF LOCALIZATION AND COMMUNICATION

A. Localization

In TOA localization, location is estimated based on the
propagation delay of the LoS path, although the accuracy
of this method suffers when the UE and BS clocks are
not perfectly synchronized [12]. We introduce the effect of
clock bias B in the localization uncertainty, i.e., the measured
delay is τ̃i,1 = ‖x− xi‖ /c + B. Then, given the received
signals ỹ1, ỹ2 from (3), we use the Cramér-Rao inequality to
characterize the variance of any unbiased estimator of x as

Var[x̂(ỹ1, ỹ2)] ≥ J−1(x), (4)

where J−1(x) is the Fisher information corresponding to the
location x [13]. To find J(x), we first derive the Fisher
information with respect to the unknown parameters

ηi =
[
τ̃i,1 τ̃i,2 R(ai,1) I(ai,1) R(ai,2) I(ai,2)

]T (5)

for i = 1, 2. For fixed channel coefficients, the normalized
received signal ỹi/

√
Ptx follows a circular symmetric, com-

plex Gaussian distribution with mean µ(ηi) = ai,1d(τ̃i,1) +

ai,2d(τ̃i,2) and covariance σ2
n

Ptx
IN×N . Therefore [13]:

J(ηi) =
2Ptx

σ2
n

N−1∑
j=0

R

(
∂µj
∂ηi

(
∂µj
∂ηi

)H
)
, (6)

whose closed form expression is omitted here due to space
limitation. In ηi, the LoS delay τ̃i,1 contains information about
the location x, so we continue with the equivalent Fisher
information [8]

JE(τ̃i) = J(ηi)1,1 − J(ηi)1,2:6J
−1(ηi)2:6,2:6J(ηi)2:6,1 (7)

where the second term is interpreted as the information loss
from the unknown variables. Due to independence of the
TOA signals, JE(τ̃1,1, τ̃2,1) is the diagonal matrix with entries
JE(τ̃1,1), J(τ̃2,1) and the Fisher information with respect to
(x,B) is obtained using the transformation [13]

J(x,B) = TTJE(τ̃1,1, τ̃2,1)T, T =

[
∂τ̃1,1
∂x

∂τ̃1,1
∂B

∂τ̃2,1
∂x

∂τ̃2,1
∂B

]
. (8)

Finally, J−1(x) =
(
J(x,B)−1

)
1,1

gives the Cramér-Rao
lower bound, which is assumed for the variance of x̂. Ad-
ditionally, we assume the asymptotic result in which the
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Fig. 1. Statistics for localization and MAR. The inverse CDF F−1(ε;x, i) is
the ε-quantile for Rmax at location x when communicating with BS i. Here,
ε = 10−3. σ2(x) is the localization variance σ2(x;φ) averaged over φ; the
figure shows the standard variation σ(x).

location estimator x̂ follows a Gaussian distribution [14], that
is x̂ ∼ N (x, J−1(x)). The variance J−1(x) contains the
random channel coefficients from the scatter paths, a1,2, a2,2,
and it turns out that only the phases of these, φ1,2, φ2,2,
affect the variance while the magnitudes cancel. Denoting
σ2(x;φ) = J−1(x) and using that φ =

[
φ1,2 φ2,2

]T
is

uniform on [0, 2π)2, we get the hierarchical model for the
output of the localization algorithm

x̂ |φ ∼ N (x, σ2(x;φ)), φ ∼ uniform([0, 2π)2). (9)

For the sake of illustration, Fig. 1 shows localization uncer-
tainty for different locations x.

B. Rate and Communication Reliability

At the physical layer, we assess the system’s reliability by
its ability to choose a rate R that does not exceed the MAR.
From (3), the instantaneous MAR for the channel between the
UE at location x and BS i is given by [9]

Rmax(x, i) =

N−1∑
j=0

log2

(
1 +

Ptx|h̃i,j |2

σ2
n

)
. (10)

Fig. 1 shows statistics for Rmax as a function of location x.
Reliability is characterized by the outage probability

P (R > Rmax(x, i)) = F (R;x, i), (11)

where F is the cumulative distribution function (CDF) for
Rmax. Introducing ε > 0 as an upper bound for the outage
probability, the rate is ideally selected as R = F−1(ε;x, i),
also known as the ε-outage capacity. However, if F is not
perfectly known, the outage probability is not guaranteed to
meet this constraint, and the concept of probably correct reli-
ability measured by the meta-probability arises as an approach
to characterize the uncertainty [7].

Here, as stated in Sec. II-B, it is assumed that the CDF has
been mapped for all locations prior to transmission, i.e., given
a location x, F−1(ε;x, i) is perfectly known. Therefore, after
estimating its location x̂, the UE selects the rate using some
function Rε,i(x̂) (specific examples are introduced in Sec. IV).

Given an estimated location x̂, the outage probability is

pout(x, x̂; i) = P (Rε,i(x̂) > Rmax(x, i) | x̂, i)
= F (Rε,i(x̂);x, i), (12)

Fig. 2. Meta-probability statistics with backoff rate selection function
Rε,i(x̂) = 0.25 · F−1(ε; x̂, i) (see Sec. IV-A). The location probability
density function (PDF) p(x̂) is the marginal PDF of p(x̂,φ) according to
(9). The UE location is 300 m with ε-outage capacity F−1(ε;x, 1) = 70
bits/s/Hz and the resulting outage region is S(x, 1) = [−136.2, 136.2] m.

and the meta-probability for the link between the UE and BS
i is [7, Eq. (15)]

p̃ε(x; i) = P (P (Rε,i(x̂) > Rmax(x, i) | x̂, i) > ε)

= Px̂(pout(x, x̂; i) > ε). (13)

Assuming block fading where Rmax(x, i) is drawn indepen-
dently for each block, (13) gives the probability that the outage
probability exceeds ε for any of these blocks. Averaging over
the BSs we have

p̃ε(x) =

2∑
i=1

Px̂(pout(x, x̂; i) > ε)pi(i;x), (14)

where pi(i;x) is the probability of selecting BS i which is
obtained through Monte-Carlo simulation according to Sec.
II-B2. In (14), the first factor is rewritten by introducing the
outage region

S(x, i) = {x̂ ∈ R |pout(x, x̂; i) > ε} (15)

such that

Px̂(pout(x, x̂; i) > ε) = Px̂(x̂ ∈ S(x, i)). (16)

The outage region is interpreted as the region of estimated
locations x̂ where the rate selection function chooses a rate
that is too optimistic for the MAR at location x. Fig. 2 depicts
various statistics relevant for the meta-probability using one of
the rate selection functions from Sec. IV. It is observed that
the UE will choose an overly optimistic rate if it thinks it is
closer to the BS than it actually is. The particular rate selection
function shown in Fig. 2 is somewhat conservative; therefore,
the outage region is pushed away from the UE, and the meta-
probability is the probability mass from localization inside the
outage region.

Together with the meta-probability, the other metric used to
evaluate location-based rate selection methods is the through-
put ratio, defined as the ratio [7]

ωε(x) =
E [Rε,i(x̂)1{Rε,i(x̂) ≤ Rmax(x, i)}]
E[R∗ε,i(x)1{R∗ε,i(x) ≤ Rmax(x, i)}]

, (17)

2The estimated location x̂ and selected BS i are dependent since they use
the same signal, but their dependence is neglected for the reliability analysis.
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between the throughput using Rε,i(x̂) and the optimal through-
put using R∗ε,i(x) = F−1(ε;x, i) where 1 is the indicator
function. The throughput ratio is expanded with repeated use
of the law of total expectation, yielding

ωε(x) =
Ei
[
Eφ

[
Ex̂ |φ [Rε,i(x̂) (1− pout(x, x̂; i)) |i,φ] |i

]]
Ei[R∗ε,i(x)](1− ε)

.

(18)

IV. LOCATION-AWARE RATE SELECTION

Location-based rate selection methods naturally depends on
the rate function Rε,i(x̂), and the ultimate goal would be to
solve the optimization problem

sup
Rε,i

∫
ωε(x) dx, s.t. p̃ε(x) ≤ δ ∀x, (19)

where δ is the confidence parameter bounding the meta-
probability. This section introduces three examples of rate
selection functions that account for uncertainty in the location
estimate by selecting a conservative rate compared to the op-
timal rate selection function, i.e., Rε,i(x̂) < R∗ε,i(x̂). We limit
the search to functions that satisfy the inequality constraint
in (19) and then analyze the tradeoffs between reliability and
throughput.

A. Backoff rate selection
The backoff rate selection function chooses the rate propor-

tional to the ε-quantile for the MAR at the estimated location:

Rε,i(x̂) = k · F−1(ε; x̂, i), (20)

where 0 < k ≤ 1 is the proportionality constant. The param-
eter k is interpreted as how conservatively the system selects
the rate relative to the optimal selection when the location is
perfectly known. Finding k such that the meta-probability is
below the confidence parameter δ requires knowledge of the
system statistics, including location uncertainty, which may or
may not be available in practice. For the sake of illustration,
we simply choose the maximum k ∈ (0, 1] such that the meta-
probability is below δ within a range of locations.

B. Confidence intervals rate selection
This approach considers a confidence interval for estimated

location and then chooses the minimum rate within that
interval. Denoting CIα(x̂) as the confidence interval for x with
confidence level (1− α), the rate is selected as

Rε,i(x̂) = min
x

{
F−1(ε;x, i) |x ∈ CIα(x̂)

}
. (21)

Setting an appropriate confidence level and obtaining the
confidence interval again requires knowledge of the system
statistics. Similarly to the backoff method, we find the ap-
propriate α ∈ (0, 1) considering the constraint on the meta-
probability. Specifically, we use the approximate interval3

CIα(x̂) =
[
x̂− q1−α/2σ(x̂), x̂+ q1−α/2σ(x̂)

]
, (22)

where q are the quantiles of the standard Gaussian distribution
and σ(x̂) is the standard deviation for localization at x̂
according to (9), which is assumed to be known.

3The confidence interval in (22) is only approximate since it assumes that
x̂ is Gaussian, where in reality, it is only conditionally Gaussian.

C. Oracle rate selection

Lastly, oracle rate selection is introduced, which attempts
to solve (19) by exhaustive search for the selected rate. This
obviously requires a full statistical characterization of the
system and is not of much practical interest. However, it serves
as an upper bound and importantly shows that throughput
suffers due to localization uncertainty even when the statistics
of the system are fully known.

For the three aforementioned rate selection functions, the
outage region in (15) is evaluated numerically. Interestingly,
we observe that it reduces to a single interval for the con-
sidered 1-D scenario, i.e., S(x, i) = [xmin,i, xmax,i]. Thus,
according to the hierarchical model from (9), we can expand
(16) as

Px̂(x̂ ∈ S(x, i)) =
1

4π2

∫
[0,2π)2

Px̂ |φ(x̂ ∈ S(x, i) |φ) dφ

=
1

4π2

∫
[0,2π)2

Q

(
xmin,i − x
σ(x;φ)

)
−Q

(
xmax,i − x
σ(x;φ)

)
dφ,

(23)

using the Q-function for the standard Gaussian distribution.

V. EVALUATION OF RELIABILITY AND THROUGHPUT

To get some intuition about the reliability of the system,
we analyze the error-distance between the UE and the out-
age region, denoted ∆x (see Fig. 2), in the case of just
one subcarrier. The fading power |h̃i,j |2 follows a Rician
distribution whose tail can be modeled using a power-law
approximation [15] and the ε-outage capacity then reduces
to F−1(ε;x, i) = log2(1 + x−2εψ), where ψ depends on
the system settings. From this, it follows that the simple
relation ∆x ≈ x(1 −

√
k) approximates the error distance

for backoff rate selection with parameter k [16]. The reader is
kindly referred to the extended version in [16] for the details.
Interestingly, the relation suggests that the distance to the
outage region scales linearly with the distance to the to the BS.
As such, a larger localization error is allowed as the UE moves
farther away from the BS, which may result in increased
reliability depending on how the localization error changes.
The general case with multiple subcarriers is now examined
by evaluating the meta-probability in (14) and throughput ratio
in (18) under the different rate selection schemes from Sec.
IV and settings in Table I. The rate selection functions are
calibrated such that the meta-probability with ε = 10−3 is
below δ = 10−3 for x ∈ [45, 955]. Fig. 3 depicts the results
for the meta-probability and throughput ratio. Both (18) and
(23) are evaluated through numerical integration.

The results for the backoff and confidence interval methods
in Fig. 3 show that the meta-probability, i.e., the probability
of selecting a rate that exceeds the MAR, tends to decrease
when the UE is farther away from the BSs, which aligns
well with the previous intuition. Two effects contribute to this:
the decreasing location uncertainty and the rapidly decreasing
ε-quantile for Rmax as the distance between the UE and
the BS increases (see Fig. 1). To understand the latter, note
that the two methods select rates based on the ε-quantile.
Therefore, even a small localization error close to a BS can
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Fig. 3. Meta-probability and throughput ratio of the different rate selection
schemes for each UE location x ∈ [10, 990]. Backoff rate selection uses
k = 0.25 and confidence interval rate selection uses α = 1.6 · 10−5.

cause the UE to pick a much higher rate, whereas the same
error farther away causes a smaller change in the selected
rate. In fact, considering that the changes in the average
location uncertainty are almost negligible compared to the
rapid variations in the ε-quantile (see Fig. 1), it is mainly
the change in the quantile that causes the meta-probability
to decrease, hence reliability to increase, with the distance
to the BS4. For oracle rate selection, we see values close
to the confidence parameter δ, as expected. Regarding the
throughput ratio in Fig. 3, it is interesting to see that for the
backoff approach it is more or less flat with ωε(x) ≈ k. In
contrast, the throughput ratios for the confidence interval and
oracle approach have a strong dependence on x. For these
methods, we also observe that the throughput ratios increase
farther away from the BSs, again explained by the ε-quantile
for Rmax. To see this, consider the extreme case where the
distribution F (R;x, i) is constant for all locations x. Here,
the UE would choose R = F−1(ε; x̂, i), which is invariant to
the estimated location; thus, the meta-probability is zero, and
the optimal throughput ratio is achieved. In our setup, when
the UE is far away from the BSs, it experiences a similar case
where the distribution is almost constant within the range of
likely estimated locations (see Fig. 1), thus enabling the UE
to be less conservative and achieve higher throughput.

In summary, we observe degradation in the system when
the UE is close to a BS and vice versa due to how quickly
the ε-quantile for Rmax changes for different x, leading to the
conclusion that lower but more spatially consistent channel
statistics are desirable for location-based rate selection. In fact,

4This has been numerically verified by computing the meta-probability
under constant Var[x̂], where we see similar curves as in Fig. 3.

we arrive at the fundamental observation that the spatial vari-
ation of channel statistics determines the quality of location
as a proxy for reliability, which generalizes to other channels,
number of antennas, higher dimension for localization, etc.

VI. CONCLUSIONS

This letter has analyzed the impact of location uncertainty
on communication reliability through a rigorous statistical
framework. By eliminating all other sources of uncertainty, we
have shown that localization error alone considerably impacts
the reliability, especially in areas where channel statistics
rapidly varies in space, e.g., close to the BSs. Conservative
rate selection schemes can avoid this at the expense of reduced
throughput. Different rate selection functions were considered,
but ultimately this task requires accurate knowledge of channel
statistics at different locations to ensure a certain level of
reliability. Thus, we have shown that it is not straightforward
to use uncertain location as a reliability proxy. This letter
analyzed a simple setting, and the followup work will consider
extensions such as higher dimensions for localization.
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