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Abstract

We show that the system of equations
s∑

i=1

(x j
i − y j

i ) = aj (1 � j � k)

has appreciably fewer solutions in the subcritical range s < 1
2 k(k + 1) than its homogeneous counterpart,

provided that a� � 0 for some � � k − 1. Our methods use Vinogradov’s mean value theorem in
combination with a shifting argument.

2020 Mathematics subject classification: primary 11D45; secondary 11D85, 11L15, 11P05, 42B05.
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1. Introduction

Sitting squarely at the interface of harmonic analysis and analytic number theory,
systems of diagonal equations have long attracted a significant amount of attention.
In particular, thanks to the resolution of the main conjecture associated with Vino-
gradov’s mean value theorem by Wooley [10] and Bourgain et al. [2] (see also [11]),
we now have essentially sharp upper bounds for the number of integer solutions of
systems of equations of Vinogradov type.

For integral s, k, denote by Js,k(X) the number of solutions x, y ∈ Zs ∩ [−X, X]s

satisfying
s∑

i=1

(x j
i − y j

i ) = 0 (1 � j � k). (1.1)

We remark for future reference that by transitioning to exponential sums, the quantity
Js,k(X) may be defined also for noninteger positive s (see (2.4)). In this notation,
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2 J. Brandes and K. Hughes [2]

[2, Theorem 1.1] (see also [11, Corollary 1.3]) shows that for all positive numbers s
and all k ∈ N,

Js,k(X) � Xε(Xs + X2s−k(k+1)/2). (1.2)

The second term in (1.2), dominant when s > 1
2 k(k + 1), conforms with the circle

method heuristic which states that a system of equations in n variables and of total
degree K should have ∼ cXn−K solutions over the integers of size at most X, where the
factor c encodes the density of solutions of the underlying system over all completions
of Q. Indeed, in the case of (1.1), such an asymptotic formula is readily established
for s > 1

2 k(k + 1) by a classical application of the Hardy–Littlewood method (see [7,
Ch. 7]). Moreover, these methods are robust with respect to small modifications to
the system (1.1) such as nontrivial coefficients or a nonvanishing expression on the
right-hand side of (1.1).

When s is smaller than 1
2 k(k + 1), the circle method heuristic fails for (1.1), as

we have to allow for the existence of diagonal solutions in which the variables
(x1, x2, . . . , xs) are a permutation of (y1, y2, . . . , ys). The contribution of these solutions
amounts to s! Xs, so it is natural to expect an asymptotic formula of the shape

Js,k(X) ∼ s! Xs (1.3)

to hold in the subcritical range. Adventurous souls might even go as far as to conjecture
that the nondiagonal contribution to the mean value Js,k(X) should be no larger than
O(Xε(1 + X2s−k(k+1)/2)), based on an expectation that the circle method heuristic should
continue to be valid in that setting. Somewhat frustratingly, however, we are able to
establish (1.3) only in the range s � k + 1 (see [8, Theorem 1]), which falls far short of
the conjectured range s < 1

2 k(k + 1).
The purpose of this note is to study an inhomogeneous version of the system (1.1)

that does not allow for diagonal contributions. For s, k ∈ N and a1, . . . , ak ∈ Z, write
Js,k(X; a) for the number of x, y ∈ Zs ∩ [−X, X]s satisfying the system of equations

s∑
i=1

(x j
i − y j

i ) = aj (1 � j � k). (1.4)

Systems of this or similar types have recently arisen in a range of different contexts
(for example, [1, 4, 5]). It follows easily by a standard application from the triangle
inequality that

Js,k(X; a) � Js,k(X) � Xs+ε (1.5)

in the subcritical range. We show that for most a, we can do better.

THEOREM 1.1. Suppose that k � 2 and a ∈ Zk \ {0}. Let � ∈ {1, . . . , k} be the smallest
integer for which a� � 0. Then for any integer s < 1

2 k(k + 1) and any ε > 0,

Js,k(X; a) � Xs−1/2+ε + Xs−ηs,k(�)+ε, (1.6)
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[3] The inhomogeneous Vinogradov system 3

where

ηs,k(�) =
(k − �)(k − � + 1)

2

(
1 − 2s

k(k + 1)

)
.

By a brief computation, the first term in (1.6) dominates for s = 1
2 k(k + 1) − 1 as

soon as a� � 0 for some � � k − 1
2 (
√

2k2 + 2k + 1 − 1). Hence, we have the following
simple consequence of Theorem 1.1.

COROLLARY 1.2. Suppose that k � 2 and assume that a� � 0 for some

� � k − 1
2 (
√

2k2 + 2k + 1 − 1).

Then for any integer s � 1
2 k(k + 1) − 1 and any ε > 0,

Js,k(X; a) � Xs−1/2+ε.

Here, one can compute

k − 1
2

(
√

2k2 + 2k + 1 − 1) =
(
1 − 1
√

2

)(
k +

1
2

)
+ O(1/k)

= 0.292 . . . · k + 0.146 . . . + O(1/k).

It may be worth pointing out that we do not expect to obtain power savings over the
bound (1.5) when s is at or beyond the critical point and |aj| � 2sXj for 1 � j � k, since
at that point, the contribution from a major arcs analysis will be of size � X2s−k(k+1)

(see [7, Ch. 7] for details). In this sense, the range s � 1
2 k(k + 1) − 1 is optimal.

The proof of Theorem 1.1 relies crucially on the absence of translation invariance
in the system (1.4). For this reason, our result becomes gradually weaker as the
system acquires larger translation-invariant subsystems, up to the point when a =
(0, . . . , 0, ak)t, where we have � = k and ηs,k(k) = 0. At this point, the entire system
becomes translation-invariant, so we fail to make any progress beyond the trivial
bound (1.5).

Our strategy transfers to several other settings, but in the interest of a slick
presentation, we have opted to focus our attention on the inhomogeneous Vinogradov
system, since this seems to be by far the most relevant example. However, we discuss
some possible extensions of our result as well as some of its limitations in the final
section.

Notation. We denote the unit torus by T = R/Z. Throughout, the letter ε will be used
to denote an arbitrary positive number. We adopt the convention that whenever ε
appears in a statement, the statement holds for all ε > 0. Finally, we take X to be a
large positive number which, just like the implicit constants in the notations of Landau
and Vinogradov, is permitted to depend at most on s, k and ε.
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2. Proof of the main theorem

In our proof, we employ a strategy inspired by work of Wooley [9] to understand
systems with incomplete translation-invariant structure. Our first step is to bound
Js,k(X; a) in terms of a different quantity which will be easier to handle. Define
polynomials pj by setting

pj(h) =
j∑

m=1

(
j
m

)
amh j−m (1 � j � k). (2.1)

Write Hs,k(X; a) for the number of z, w ∈ Zs ∩ [−2X, 2X]s and h ∈ Z ∩ [−X, X] satisfy-
ing the system of equations

s∑
i=1

(z j
i − w j

i ) = pj(h) (1 � j � k). (2.2)

LEMMA 2.1. We have

Js,k(X; a) � X−1Hs,k(X; a).

PROOF. Suppose that (x, y) is a solution to (1.4), and fix a parameter h ∈ Z. It follows
from the binomial theorem that (x, y) is also a solution of the shifted system

s∑
i=1

((xi + h) j − (yi + h) j) = pj(h) (1 � j � k).

If now |h| � X, then the number of such solutions x, y ∈ Zs ∩ [−X, X]s is certainly no
larger than the number of z, w ∈ Zs ∩ [−2X, 2X]s satisfying (2.2) with that particular
value of h. The desired conclusion now follows upon summing over all |h| � X. �

Next, we write Hs,k(X; a) in terms of mean values over exponential sums. Set

fk(α; X) =
∑
|x|�X

e(α1x + · · · + αkxk)

and

gk(α; X) =
∑
|x|�X

e(α1 p1(h) + · · · + αk pk(h)), (2.3)

and recall that in this notation, we have

Js,k(X) =
∫
Tk
| fk(α; X)|2s dα. (2.4)

Similarly, it follows from standard orthogonality relations that we may write

Hs,k(X; a) =
∫
Tk
| fk(α; 2X)|2sgk(−α; X) dα. (2.5)

From the definition of pj in (2.1), we see that gk(α; X) is an exponential sum of
degree at most k − 1; however, its degree may be lower depending on the values of
the coefficients a1, a2, . . . , ak. In particular, recalling that � ∈ {1, . . . , k} denotes the
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smallest integer for which a� � 0, we discern from (2.1) that

deg pj = max{0, j − �} (1 � j � k). (2.6)

Thus, gk(α; X) is an exponential sum containing k − � integer polynomials with
degrees 1, . . . , k − �.

We now apply Hölder’s inequality to (2.5) and find that

Hs,k(X; a) �
( ∫
Tk
| fk(α; 2X)|k(k+1) dα

)2s/k(k+1)( ∫
Tk
|gk(α; X)|2σ dα

)1/(2σ)
, (2.7)

where

σ =
k(k + 1)

2(k(k + 1) − 2s)
. (2.8)

Clearly, the first integral in (2.7) is Jk(k+1)/2,k(2X). Moreover, from (2.3), (2.1) and (2.6),
it follows via an integer change of variables on α together with the periodicity of the
exponential sums that∫

Tk
|gk(α; X)|2σ dα =

∫
Tk−�
| fk−�(γ; X)|2σ dγ = Jσ,k−�(X).

Consequently, upon inserting the bound (1.2) from [2, Theorem 1.1], we conclude that

Hs,k(X; a) � (Jk(k+1)/2,k(2X))2s/k(k+1)(Jσ,k−�(X))1/(2σ)

� Xε(Xk(k+1)/2)2s/k(k+1)(Xσ + X2σ−(k−�)(k−�+1)/2)1/(2σ)

� Xs+ε(X1/2 + X1−(k−�)(k−�+1)/(4σ)).

The proof of Theorem 1.1 is now complete upon recalling Lemma 2.1 and inserting
the value of σ from (2.8).

3. Further discussion: Generalisations and limitations

It is natural to ask in what ways the proof of Theorem 1.1 may be generalised.
As mentioned in the introduction, a close reading of our methods reveals that the
translation-invariant structure of the system does indeed play a crucial role in our
arguments. Consequently, there is little hope to extend our results to incomplete
Vinogradov systems such as those considered in [3] without fundamentally different
ideas.

However, the idea underpinning the proof of Theorem 1.1 is quite general, and
can be used to bound the number of solutions of the inhomogeneous analogues of
other translation-invariant systems, including multidimensional ones such as those
considered in [6]. Indeed, beyond a sharp mean value estimate for such systems in
the subcritical range, we only need a nontrivial bound for a derived mean value
over a family of ‘shifting polynomials’ analogous to the polynomials pj occurring in
Lemma 2.1. Owing to its genesis via shifting the variables, this derived mean value
can be seen to be of the same general shape as the original one (but with lower
degree), and therefore a similar mean value estimate can usually be applied, leading to
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6 J. Brandes and K. Hughes [6]

a nontrivial bound as soon as at least one of the shifting polynomials is nonconstant.
Alternatively, one could also use square-root cancellation at the second moment
(Plancherel’s theorem) and interpolate with trivial bounds at L∞ to obtain cancellation
at all moments greater than 2. In this manner, our method shows that the numbers
of solutions of most inhomogeneous translation-invariant systems of equations are
measurably smaller than the corresponding bounds for their homogeneous analogues
for all even moments in the subcritical range.

A different direction for generalisations is that in which the variables xi, yi are
restricted to some subset X ⊆ [−X, X] ∩ Z. Fixing such a set X as well as a set
of shifting variables H ⊂ [−X, X] ∩ Z, put Js,k(X; a) for the number of x, y ∈ Xs

satisfying (1.4), and write Hs,k(X,H ; a) for the number of x, y ∈ (X +H)s and h ∈ H
solving the system (2.2). Then an inspection of the proof of Lemma 2.1 shows that

Js,k(X; a) � |H|−1Hs,k(X,H ; a).

Since it follows from [2, Theorem 1.2] and [11, Theorem 1.1] that

Js,k(X; 0) � Xε(|X|s + |X|2s−k(k+1)/2),

the same argument as above leads mutatis mutandis to the following conclusion.

THEOREM 3.1. Suppose that k � 2 and a ∈ Zk \ {0}. Let � ∈ {1, . . . , k} be the smallest
integer for which a� � 0. Moreover, fix a set X ⊆ [−X, X] ∩ Z. Then for any integer
s < 1

2 k(k + 1), any setH ⊆ [−X, X] ∩ Z and any ε > 0,

Js,k(X; a) � Xε|X +H|s(|H|−1/2 + |H|−ηs,k(�)),

where ηs,k(�) is as in Theorem 1.1.

From the point of view of harmonic analysis, it would be of interest to have an
analogue of Theorem 1.1 involving systems of the type (1.4) in which each solution
is counted by a complex weight. Such situations arise habitually in the context of
restriction and extension operators. For a given complex-valued sequence (cn)n∈Z, one
defines the truncated extension operator along the moment curve (t, t2, . . . , tk) ⊂ Rk via

EXc(α) =
∑
|x|�X

cxe(α1x + · · · + αkxk),

so that fk(α; X) = EX1(α). In this notation, the conclusion of [2, Theorem 1.2] and [11,
Theorem 1.1] reads

‖EXc‖L2s(Tk) � Xε(1 + X1/2−k(k+1)/(4s))‖c‖�2([−X,X]).

Consider the Fourier transform of |EXc(α)|2s, which is given by

Φ(n) =
∫
Tk
|EXc(α)|2se(−α · n) dα,

so that in particular ‖EXc‖2s
L2s(Tk) = Φ(0). Of course, it follows directly via the triangle

inequality that |Φ(n)| � Φ(0) for all n ∈ Zk, but it would be desirable to have a stronger
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[7] The inhomogeneous Vinogradov system 7

inequality and ideally one that exhibits a power saving over the trivial bound. In the
special case when c is the indicator function on a set X ⊆ Z ∩ [−X, X], the results of
Theorems 1.1 and 3.1 achieve such a power saving for a large selection of n and for all
s ∈ N below the critical point. In fact, it seems plausible that a careful modification
of our arguments should apply also to a setting where the sequence (cx)x∈Z takes
nonnegative real values. However, it is less obvious how the proof of Lemma 2.1 would
carry over to the general situation in which the weights c may take complex values.

Finally, we remark that the saving of X1/2 in Theorem 1.1 is optimal within the
methods. This can be seen by noting that the shifting and averaging operation creates
one dummy variable, on which we can expect no more than square-root cancellation.
The analytically inclined reader may also be interested to note that the results of [2,
11] require the underlying curve to have torsion and this is what enables the strong
bounds on mean values of the exponential sum fk(α; X). The curve underlying the
exponential sum gk(α; X), given by (p1(t), . . . , pk(t)), does not have torsion over Rk,
but it can be restricted to a (k − �)-dimensional subspace in which it has torsion. This
gives a geometric explanation for why our results are weaker as � increases, and fail to
give any improvement at all when � is equal to k.
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