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Abstract
This thesis concerns predicting the finite-length error-correcting performance
of spatially-coupled low-density parity-check (SC-LDPC) code ensembles over
the binary erasure channel. SC-LDPC codes are a very powerful class of codes;
their use in practical communication systems, however, requires the system
designer to specify a considerable number of code and decoder parameters, all
of which affect both the code’s error-correcting capability and the system’s
memory, energy, and latency requirements. Navigating the space of the as-
sociated trade-offs is challenging. The aim of the finite-length scaling laws
proposed in this thesis is to facilitate code and decoder parameter optimiza-
tion by providing a way to predict the code’s error-rate performance without
resorting to Monte-Carlo simulations for each combination of code/decoder
and channel parameters.
First, we tackle the problem of predicting the frame, bit, and block error

rate of SC-LDPC code ensembles over the binary erasure channel under both
belief propagation (BP) decoding and sliding window decoding when the max-
imum number of decoding iterations is unlimited. The scaling laws we develop
provide very accurate predictions of the error rates.

Second, we derive a scaling law to accurately predict the bit and block
error rate of SC-LDPC code ensembles with doping, a technique relevant for
streaming applications for limiting the inherent rate loss of SC-LDPC codes.
We then use the derived scaling law for code parameter optimization and show
that doping can offer a way to achieve better transmission rates for the same
target bit error rate than is possible without doping.

Last, we address the most challenging (and most practically relevant) case
where the maximum number of decoding iterations is limited, both for BP and
sliding window decoding. The resulting predictions are again very accurate.

Together, these contributions make finite-length SC-LDPC code and de-
coder parameter optimization via finite-length scaling laws feasible for the
design of practical communication systems.

Keywords: Belief propagation decoding, codes-on-graphs, finite-length code
performance, spatially-coupled LDPC codes, window decoding.
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CHAPTER 1

Background

S ince the early days of its commercialization in the 1990s, the Internet
has taken center stage as the dominant medium of information exchange
in the realms of business, governance, and culture. The extent of In-

ternet coverage is starting to be sufficient for the World Wide Web to deserve
its name—as of 2021, it is used by 63% of the world’s population, although
glaring geographic, economic, and demographic disparities in connectivity lev-
els remain [1]. The amount of data being transmitted is also increasing at a
rapid pace, forecast to have tripled in five years to around 400 Exabytes (i.e.,
400 million Terabytes) per year by the end of 2022 [2]. Scaling up the global
communications infrastructure to meet this growing demand requires inno-
vation at every level, from the design of optical transceivers to network-level
optimization.

One prominent area of advance is the development of powerful and energy-
efficient means of combating noise and associated errors arising during data
transmission. Resilience to noise is achieved by introducing redundancy to
the transmitted data and leveraging it to reconstruct the parts of the message
corrupted by noise. In 1948, in his seminal work that became the cornerstone
of Information Theory, Shannon showed that there exists a minimum amount
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Chapter 1 Background

of redundancy necessary to achieve reliable transmission as the size of the
messages grows large, and that this minimum depends on the nature of the
communication channel and the intensity of noise [3]. However, information
theory is not concerned with developing practical ways to achieve the theo-
retical limits—this is instead the domain of Coding Theory, which seeks good
trade-offs between error-correcting performance and practical constraints on,
e.g., transmission delay and computational feasibility. Specifically, the task
of the communication system designer is to propose a way to map a set of
information sequences onto a set of sequences to be transmitted—a code1—
together with a way to infer the transmitted (and, ultimately, the information)
sequence from the received one—a decoding algorithm—so as to maximize the
probability that the transmitted sequence is reconstructed correctly.
For decades, the northern star of Shannon’s theoretical limits shone from

afar, and the question of whether those limits could ever be approached in
practice remained open. (Shannon himself stayed hopeful [4].) Today, we can
confidently answer this question in the affirmative. The last three decades
have witnessed several major breakthroughs in coding theory, starting from
Berrou’s invention of turbo codes in 1993 [5]—their performance was so out-
standing at the time that the scientific community was initially reluctant to
accept the results at face value—and the rediscovery of low-density parity-
check (LDPC) codes by MacKay, Luby, and others [6]–[9], apparently inde-
pendently of their original introduction by Gallager in his Ph.D. thesis in
1963 [10]. Both LDPC and turbo codes leverage pseudo-randomness and it-
erative decoding algorithms to operate close to theoretical limits with feasible
complexity.
Moreover, several code constructions have been subsequently proven to be

capacity-achieving, such as polar codes [11], Reed-Muller codes [12], irregular
LDPC codes [13], as well as spatially-coupled LDPC codes [14] and spatially-
coupled turbo-like codes [15], [16]. This means that system designers are
now equipped with several concrete ways to construct error-correcting codes
that are guaranteed to achieve the fundamental limits of communication when
provided with unlimited time, energy, and memory budgets.
Unfortunately, not every system designer can afford to be so prodigal. In-

stead, the designers have to navigate a complicated space of trade-offs in order
1 The term ‘code’ is used in this context in the sense of ‘mapping,’ as in ‘Morse code.’

Coding theory, therefore, has nothing to do with ‘coding’ in the sense of ‘computer pro-
gramming,’ although in practice involves quite a lot of it.
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to choose the code and decoder parameters in the non-asymptotic (i.e., finite-
length) regime and under practical constraints. To that end, it is desirable
to be able to predict the code/decoder performance for a given set of pa-
rameters without having to resort to Monte-Carlo simulations for each such
combination, which may be prohibitively complex computationally.
This thesis aims to make such finite-length parameter optimization feasible

for spatially-coupled LDPC (SC-LDPC) code ensembles, one of the powerful
capacity-achieving code constructions, by providing ways to predict a code
ensemble’s finite-length error-correcting performance as a function of the code
and decoder parameters by means of so-called scaling laws. An exact formula
for decoding error probability suffers from a combinatorial explosion in the
number of terms as the length of the transmitted sequence grows; our goal
is instead to propose a mathematical model of the decoding process that is
simple enough to be analytically tractable but that nevertheless captures the
behavior of the decoder sufficiently well to yield accurate predictions of the
decoder error probability.
Papers A and C comprise key theoretical contributions of this thesis and can

be understood as a progression toward predicting error-correcting performance
in ever more practical system setups. Paper A begins by proposing a scaling
law that predicts the probability of decoding error more accurately than the
previously proposed law by Olmos and Urbanke [17] for full belief propagation
(BP) decoding with unlimited iterations. Crucially, Paper A also introduces a
new model to predict the performance of sliding window decoding, a decoding
algorithm that allows to decouple decoding latency from code length and that
is used in practice, albeit still in the case of unlimited decoding iterations.
Paper C takes a step further and tackles the analytically challenging case
where the number of decoding iterations is limited, as is inevitably the case in
practical scenarios. Paper B can be seen as a kind of interlude that considers
scaling laws for sliding window decoding of SC-LDPC codes with doping, a
technique particularly relevant in streaming applications.

Together, the contributions of Papers A–C take a significant step toward
making SC-LDPC code and decoder parameter optimization via finite-length
scaling laws feasible and relevant for the design of practical communication
systems.

5



Chapter 1 Background

1.1 Thesis Outline
This thesis is organized as a collection of papers, appended in Part II, with
Part I serving as a brief introduction.
The remainder of Part I is organized as follows: Chapter 2 introduces the

concept of linear block codes and their representation in terms of Tanner
graphs. It also discusses LDPC codes and iterative BP decoding and intro-
duces the binary erasure channel, which is used as the channel model through-
out the thesis. Chapter 3 describes spatial coupling and SC-LDPC codes along
with the code and decoder parameters that need to be chosen (and therefore
optimized) for SC-LDPC codes in practice. Chapter 4 provides some intu-
ition behind the finite-length scaling laws proposed in the appended papers,
and Chapter 5 concludes the introductory part with a brief summary of the
contributions of each paper and some discussion of the potential directions of
further scientific inquiry.
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CHAPTER 2

Linear Block Codes and Iterative Decoding

T he most widely used way to introduce redundancy to transmitted
data is by employing linear block codes, of which SC-LDPC codes
studied in this thesis form a subclass. This chapter briefly introduces

the concept of binary linear block codes, LDPC codes and their representation
in terms of Tanner graphs, as well as the binary erasure channel and iterative
decoding of linear block codes over the binary erasure channel using their
Tanner graph representation.

2.1 Linear Block Codes
A binary (n, k) linear block code uses n bits to transmit k < n bits of infor-
mation. It can be defined as the set of binary (column) vectors x ∈ {0, 1}n
that satisfy

Hx = 0 (2.1)

with operations performed modulo 2. The binarym×nmatrixH is referred to
as the parity-check matrix;H must be of rank n−k. The parameter k is called
the dimension of the code—the set of codewords x that satisfy (2.1) forms a

7



Chapter 2 Linear Block Codes and Iterative Decoding

k-dimensional linear subspace of {0, 1}n over GF(2) that can be referred to
as the (right) nullspace of H. The code rate R = k/n quantifies the amount
of redundancy in the transmitted message in terms of the average number of
information (in bits) carried by each code bit.
For example, let us consider the classical (7, 4) Hamming code with parity-

check matrix

H =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

 . (2.2)

Each codeword x = [x1, x2, . . . , x7]T satisfies

1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1




x1
x2
x3
x4
x5
x6
x7


=

0
0
0

 . (2.3)

There are 24 such codewords; without coding, it would have taken k = 4 bits
to transmit this amount of information, but it would have been impossible
to recover from a single bit flip or erasure because any bit flip would result
in a valid sequence, and any erasure would result in an ambiguity over which
sequence was transmitted. Instead, n = 7 bits are used for transmission of
k = 4 bits of information, so the code rate of the (7, 4) Hamming code is
R = 4/7.

Each row of the parity-check matrix H defines a constraint on the possible
values of bits in x. Indeed, (2.3) can be rewritten as

x1 + x2 + x3 + x5 = 0
x2 + x3 + x4 + x6 = 0
x1 + x2 + x4 + x7 = 0

. (2.4)

Each row dictates that there should be an even number of ones among the
values of the corresponding bits of the codeword because the summation is
performed modulo 2 (hence the name of the parity-check matrix). The more
(linearly independent) rows inH, the more constraints are imposed on the bits

8



2.2 Tanner Graphs

x1 x2 x3 x4 x5 x6 x7

Figure 2.1: Tanner graph of the (7, 4) Hamming code.

of a codeword and the fewer codewords the code will contain. On the other
hand, it is the knowledge that the transmitted bits satisfy those constraints
that allows the decoder to infer their values and reconstruct the message in
the presence of noise.

2.2 Tanner Graphs
An alternative way to specify the parity-check matrix H and therefore the
code is via its Tanner graph [18]. A Tanner graph is a bipartite graph where
one set of vertices represents the code bits and the other code constraints. The
n vertices that represent the code bits are called variable nodes (VNs) and are
customarily denoted by circles; the m vertices that represent the constraints
are called check nodes (CNs) and are denoted by squares. An edge connects a
VN to a CN if the bit that corresponds to the VN enters the constraint that
corresponds to the CN or, in other words, if there is a one at the intersection
of the corresponding column (for the VN) and row (for the CN) of the parity-
check matrix H.
The Tanner graph that corresponds to the (7, 4) Hamming code with parity-

check matrixH from (2.2) and the set of constraints (2.4) is shown in Fig. 2.1.
The leftmost black square is the CN that corresponds to the first row of H
and the first equation in (2.4); it is thus connected to the VNs that correspond
to x1, x2, x3, and x5. The other two CNs are connected analogously.

2.3 Belief Propagation Decoding
The Tanner graph representation leads naturally to a powerful decoding algo-
rithm called belief propagation (BP) decoding, which consists of an iterative

9



Chapter 2 Linear Block Codes and Iterative Decoding

1− ε

ε
ε

1− ε

0

1

0

?

1

Figure 2.2: Schematic representation of the BEC with erasure probability ε.

exchange of messages along the edges of the graph.
Specifically, the Tanner graph representation ofH can be used to implement

the BP decoder in the following informally described way: Each node of the
graph acts as a local processor that estimates the likelihood of a given bit based
on the likelihoods communicated to it from the neighboring processors and,
in the case of VNs, the value received from the channel. The local processor
then relays its estimations along the edges of the graph to its neighbors, which
use the communicated values as input for the next iteration. Such iterative
exchange of messages continues until a given stopping criterion is met, e.g., a
codeword is found or a limit on the maximum number of iterations is reached.
The specific equations performed by local VN and CN processors during BP

decoding are omitted—in the case of the binary erasure channel, BP decoding
equations can be greatly simplified, and the general form of BP decoding is not
used in this thesis. A detailed introduction to and description of BP decoding
for general memoryless channels can be found in [19, Ch. 5.4].

2.4 Binary Erasure Channel
The binary erasure channel (BEC) is one of the simplest models for communi-
cation channels. It is schematically illustrated in Fig. 2.2. A bit transmitted
over the BEC is either erased (i.e., replaced by a symbol ?) with probability
ε or received correctly with probability 1 − ε. In other words, during trans-
mission over the BEC information may be erased completely but is never
altered—when a 0 or a 1 is received, the decoder can count on the fact that
this was indeed the transmitted value. The task of the decoder becomes there-
fore to infer the values of the erased bits based on the values on the non-erased
bits and on the knowledge of the constraints the bits must satisfy (e.g., the
constraints in (2.4) for the running example of the (7, 4) Hamming code).

10



2.5 Belief Propagation Decoding for the Binary Erasure Channel

This thesis considers transmission over the BEC. Despite its simplicity, the
BEC proves to be a very useful model in several ways: First, the insights
and tools developed for the BEC often carry over to more elaborated chan-
nels [20]. Second, the results obtained for the BEC can sometimes serve as
bounds for other channels [20]. Third, the BEC can be directly used to opti-
mize the parameters of the code and the decoder in the hope that a code that
performs well over the BEC will also perform well for other channels—this
hope is particularly justified for SC-LDPC codes, as is discussed in Chap-
ter 3. Finally, the BEC has gained prominence as a “real-world” channel in
applications related to packet transmission over the Internet; the underlying
TCP/IP protocol ensures that data packets are either transmitted correctly
or lost (i.e., “erased”) altogether [20].

2.5 Belief Propagation Decoding for the
Binary Erasure Channel

As discussed in Section 2.3, BP decoding consists of an iterative exchange of
messages (typically in the form of log-likelihood ratios) that represent beliefs
about transmitted code bits between the VNs and the CNs along the edges
of the Tanner graph. In the case of the BEC, since the channel does not
introduce any errors, the decoder can either be absolutely certain about the
value of a bit or remain in complete ignorance. Consequently, it is possible
to represent the operation of the BP decoder directly in terms of the inferred
values of the code bits instead of in terms of their likelihoods. This alternative
representation of BP decoding is described below.
BP decoding over the BEC operates much like one would approach solv-

ing a system of linear equations before having been taught about Gaussian
elimination or row operations. It first substitutes the values of non-erased
code bits in the system of parity-check equations that corresponds toH, then
infers the value of every code bit that happens to remain the only unknown in
one of the equations, and then substitutes those newly learned code bit values
in all other equations where those code bits participate. This may in turn
result in new equations with a single unknown. The decoder proceeds in this
fashion until it either resolves the values of all code bits or runs out of trivial
single-unknown equations.
Let us illustrate this process using our running example of the (7, 4) Ham-
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Chapter 2 Linear Block Codes and Iterative Decoding

ming code with the parity-check matrixH in (2.2). Assume that the codeword
x = [0, 0, 1, 1, 1, 0, 1]T is transmitted. It can be verified that this codeword
satisfies the parity-check constraints (2.3)–(2.4). (Summation is performed
modulo 2.) Assume further that after transmission over the BEC the se-
quence [?, 0, 1, 1, 1, ?, ?]T is received—i.e., the values of x1, x6, and x7 were
erased and are unknown, whereas the values of x2, x3, x4, and x5 are known
with certainty. How could one use this knowledge (and the knowledge of the
parity-check constraints) to reconstruct the values of the erased bits?
First, the BP decoder substitutes the values of the known bits into the

system (2.4), which yields 
x1 + 0 + 1 + 1 = 0
0 + 1 + 1 + x6 = 0
x1 + 0 + 1 + x7 = 0

. (2.5)

It then moves all knowns to the right-hand side and adds them modulo 2,
resulting in 

x1 = 0
x6 = 0

x1 + x7 = 1
. (2.6)

The first two equations now contain a single unknown; their values can be
filled in whenever they occur. In this case, the value of x1 can be substituted
into the third equation and moved to its right-hand side, which gives

x1 = 0
x6 = 0
x7 = 1

(2.7)

and allows the decoder to successfully reconstruct the transmitted codeword.
The BP decoder’s reliance on trivial constraints with a single unknown

makes tracking the availability of such constraints crucial for the analysis
of the decoder’s error-correcting performance, as discussed in more detail in
Chapter 4.
Reliance on trivial constraints also makes the BP decoder suboptimal. In-

deed, in some cases the system of parity-check equations has a unique solution
even when there are no trivial constraints available. Optimal decoding could
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2.5 Belief Propagation Decoding for the Binary Erasure Channel

reconstruct the codeword in those situations, whereas BP decoding would fail.
For example, the system 

x1 + x2 + x3 = 0
x2 + x3 = 1
x1 + x2 = 0

(2.8)

could be successfully solved by, e.g., substituting the value for x2 + x3 from
the second equation into the first, yielding

x1 + x2 + x3 = 0
x2 + x3 = 1
x1 + x2 = 0

−→


x1 + 1 = 0
x2 + x3 = 1
x1 + x2 = 0

−→


x1 = 1

x2 + x3 = 1
1 + x2 = 0

−→

−→


x1 = 1

1 + x3 = 1
x2 = 1

−→


x1 = 1
x2 = 1
x3 = 0

,

(2.9)

but such manipulations are beyond the capabilities of the BP decoder.

Parallel Peeling Decoding
BP decoding can be alternatively represented in terms of a sequence of graphs,
starting from the original Tanner graph. This representation, known as par-
allel peeling decoding, is fully equivalent to BP decoding over the BEC in the
sense that parallel peeling decoding recovers the same bits as does BP decod-
ing at every corresponding iteration [21]. The initial step of parallel peeling
decoding consists of removing all edges adjacent to VNs that correspond to
known code bits from the graph and changing the parity checks accordingly.
At every subsequent iteration, the value of every VN connected to a degree-one
CN is reconstructed, the edges adjacent to those VNs are removed from the
graph, and the affected parity checks are modified if necessary. This may in
turn create new degree-one CNs, which correspond to parity-check equations
with a single unknown. Parallel peeling decoding proceeds until all edges are
thus peeled off from the graph, or until there are no more degree-one CNs to
be found. Each iteration of parallel peeling decoding produces a new graph,
called a residual graph. Degree-zero VNs and CNs are also removed from the
residual graph; they are kept in the following figures for clarity.
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Chapter 2 Linear Block Codes and Iterative Decoding

Let us turn back to our running example. The sequence of residual graphs
that corresponds to (2.5)–(2.7) is shown in Fig. 2.3. The initial stage of parallel
peeling decoding, which corresponds to (2.5), can be represented in terms of
the Tanner graph as shown in Fig. 2.3a. The subscripts to the CNs denote the
values of the corresponding parity checks. The parallel peeling decoder then
removes all edges connected to the VNs associated with the known code bits
x2, . . . , x5 and accounts for their values in the subscripts to the CNs, with
the resulting residual graph shown in Fig. 2.3b (equivalent to (2.6), where
all known values are collected at the right-hand side). The resulting residual
graph now contains two degree-one CNs (shown in red). The next iteration
of parallel peeling decoding results in the graph shown in Fig. 2.3c, where
the values of the VNs x1 and x6 adjacent to the two degree-one CNs from
Fig. 2.3b are deduced (shown in blue) and the connected edges are removed.
This creates another degree-one CN (shown in red in Fig. 2.3c), which is used
at the last iteration of parallel peeling decoding to reconstruct x7 (blue) as
in (2.7) and produce the empty graph in Fig. 2.3d.
The BP decoder’s reliance on trivial constraints translates into the parallel

peeling decoder’s reliance on degree-one CNs. Correspondingly, focusing on
the number of degree-one CNs available to parallel peeling decoder over de-
coding iterations is a crucial step in the analysis of the decoder’s performance,
as discussed in Chapter 4.
An example residual graph that corresponds to the system (2.8), unsolvable

by the BP decoder, is shown in Fig. 2.4. Such graph structures are known as
stopping sets. A stopping set is a set of VNs to which every adjacent CN is
connected at least twice. Stopping sets play a crucial role in the analysis of
BP decoding over the BEC because BP decoding fails whenever a stopping set
is present in the corresponding residual graph, so the probability of decoding
failure is essentially the probability that a stopping set is present. However,
analyzing the error-correcting performance directly by enumerating all possi-
ble stopping sets is limited to very short codes since the number of stopping
sets explodes combinatorially with increasing n.

Peeling Decoding
At every iteration, parallel peeling decoding removes all degree-one CNs from
the residual graph. This renders the direct analysis of parallel peeling decoding
and, therefore, of BP decoding complicated. Instead, (sequential) peeling
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Figure 2.3: Example sequence of residual graphs during parallel peeling decoding.

x1 x2 x3 x4 x5 x6 x7

? ? ? 1 0 0 1

0 1 0

Figure 2.4: Example stopping set.

decoding, first proposed in [22] and later used for the finite-length analysis of
LDPC codes in [23] and of SC-LDPC codes in [17], removes a single randomly
chosen degree-one CN at every iteration, which is equivalent to resolving a
single trivial constraint at a time, randomly chosen among all available trivial
constraints.
When the number of decoding iterations is not limited, the parallel and

sequential versions of peeling decoding are equivalent because they get stuck
at the same stopping sets. However, the sequential version is easier to analyze,
primarily because each iteration always recovers a single VN.
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An example sequence of graphs produced by sequential peeling decoding
that corresponds to the running example from Fig. 2.3 is shown in Fig. 2.5.
The initialization steps of both parallel and sequential peeling decoding are
identical and result in Fig. 2.3b and Fig. 2.5b, respectively. Then, instead
of resolving both CNs in Fig. 2.3b to yield Fig. 2.3c, the sequential decoder
flips a coin and resolves only the CN connected to x6, going from Fig. 2.5b
to Fig. 2.5c, and then resolves the other degree-one CN in the next iteration,
going from Fig. 2.5c to Fig. 2.5d. The final iteration of sequential peeling
decoding reconstructs x7 and results in the empty graph in Fig. 2.5e.

2.6 LDPC Codes

BP decoding can be applied to any linear block code. However, its perfor-
mance will be disappointing if the parity-check matrix H contains a large
fraction of ones because this results in a large number of edges in the asso-
ciated Tanner graph, which, on the one hand, incurs a high computational
cost, and, on the other hand, creates a large number of stopping sets. The
Tanner graph representation and BP decoding are particularly powerful in the
context of LDPC codes, which are specifically designed to perform well under
iterative BP decoding.
The “low-density” in LDPC codes stands for a low density of ones in the

parity-check matrix H and therefore a low density of edges in the associated
Tanner graph. The term is deliberately vague: in practice, the density of 0.01
can be considered low [19], although the main objective remains to enable
effective and computationally efficient iterative decoding [20].
The simplest example of an LDPC code is a code where each bit participates

in a fixed number of parity-check equations, dv, and each parity-check equation
comprises dc code bits. In terms of the parity-check matrix H, this means
that every column of H contains dv ones, and each row of H contains dc
ones; in terms of the associated Tanner graph, this means that every VN has
degree dv and every CN has degree dc. Such an LDPC code is referred to as
a (dv, dc)-regular LDPC code.
The values of dv and dc define the minimum rate of the code: Suppose the

code has n VNs. Then there must be dv · n edges in the Tanner graph, and
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Figure 2.5: Example sequence of residual graphs during peeling decoding.

each CN is connected to dc of them. This implies that there should be

n− k = dv
dc
· n (2.10)

CNs, and the minimum code rate R = k/n must be

R = n− dv/dc · n
n

= 1− dv
dc
. (2.11)

If the parity-check matrix H that corresponds to the Tanner graph contains
linearly dependent rows, the code rate will be higher.
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Instead of analyzing the performance of a specific LDPC code, which is
infeasible for long codes, the analysis often involves considering an ensemble
of LDPC codes that share certain characteristics, such as the block length n
and the degrees of VNs and CNs. For example, the (dv, dc)-regular LDPC code
ensemble of length n is defined as the set of all codes of length n associated
with Tanner graphs with VNs of degree dv and CNs of degree dc.
The asymptotic error-correcting performance of LDPC code ensembles un-

der BP decoding can be analyzed using density evolution. Generally, density
evolution tracks the probability density functions of the messages passed along
the edges of the Tanner graph across BP iterations. It relies on the fact that
asymptotically, i.e., as n→∞, the messages incoming to a VN or a CN at a
given iteration become independent [20]. (For this to hold, the VN and CN
degrees dv and dc need to be fixed and finite, which is where the “low-density”
assumption plays out.) As with BP decoding itself, in the case of the BEC
density evolution can be simplified; instead of tracking the full probability
distributions of the log-likelihood ratios, density evolution can simply track
the probability that the message sent corresponds to an erasure.
Density evolution shows that the probability of a code bit to remain erased

vanishes over BP iterations if the BEC erasure probability ε is smaller than
a certain value, which is called the BP threshold and is denoted in this thesis
by ε∗. For ε > ε∗, on the other hand, the VN erasure probability remains
bounded away from zero. This means that as n → ∞, the decoder error
probability as a function of ε converges to a step function with a step from
zero for ε ≤ ε∗ to one for ε > ε∗. A similar behavior is observed for other
channels and other code ensembles.
The parameters of LDPC code ensembles can be optimized in terms of their

impact on the asymptotic performance via density evolution thresholds. The
validity of this approach rests on the concentration of the performance curves
for individual LDPC codes around their corresponding ensemble averages [20].
Density evolution analysis reveals that for a fixed code rate the asymptotic

performance of (dv, dc)-regular LDPC codes under BP decoding degrades with
increasing VN degree dv. At the same time, it is known that the minimum
distance (i.e., the minimum number of bits in which any two codewords of a
code differ) of such codes grows with dv (and grows linearly with n). In other
words, even though the codes themselves become stronger, their performance
under suboptimal BP decoding worsens.
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Figure 2.6: Waterfall and error floor regions.

A typical performance curve of an LDPC code (and of other codes-on-graphs
under iterative decoding) is sketched in Fig. 2.6. Initially, as ε decreases, the
decoding error probability falls steeply; this region is informally referred to as
the waterfall. Then the performance curve flattens out, in the region known
as the error floor. The error floor region is dominated by small stopping sets
(i.e., whose size is sub-linear in n), whereas the waterfall region is dominated
by large stopping sets (i.e., linearly-sized with n) [20]. A similar behavior is
observed for other channels.
In a series of papers that brought about a revolution in the understanding of

BP decoding and LDPC codes, Luby, Mitzenmacher, Shokrollahi, Spielman,
and Stemann showed that irregular LDPC code ensembles, where the degrees
of VNs and CNs are randomized according to a so-called degree distribution,
can asymptotically perform arbitrarily close to capacity if the degree distri-
bution is appropriately optimized [13], [22], [24], [25]. Irregular LDPC codes
can therefore have excellent performance in the waterfall region.
There are a number of disadvantages associated with the use of irregular

LDPC codes with degree distributions optimized via density evolution: First,
irregular LDPC codes have high error floors, which limits their usability in
applications where extremely low error rates are required. Generally, in the
case of LDPC codes, better decoding thresholds (and hence better waterfall
performance) are associated with higher error probabilities in the error floor
region. Second, irregular LDPC codes are not universal, in the sense that a
degree distribution optimized for a particular channel will generally not be
optimal for another channel, so the optimization must be done anew. Third,
their minimum distance does not grow linearly with n. Finally, the presence
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Chapter 2 Linear Block Codes and Iterative Decoding

of the VNs of different degrees complicates hardware implementation.
For a long time, those downsides—especially the trade-off between the wa-

terfall and error-floor performance—were considered inescapable. Then the
discovery of convolutional LDPC codes [26], [27], later re-branded as SC-
LDPC codes, shook those assumptions and brought about another break-
through in modern coding theory.
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CHAPTER 3

Spatially-Coupled LDPC Codes

S patial coupling was initially introduced as a coding technique un-
der the name of convolutional LDPC codes [26]. As with classical
(non-LDPC) convolutional codes, the encoding process of convolutional

LDPC codes may be implemented by introducing memory to the encoder,
which in turn translates into a band-like parity-check matrix reminiscent of the
parity-check matrices of classical convolutional codes [26]. Later, it became
apparent that constructing and analyzing the performance of convolutional
LDPC codes is more natural in terms of their Tanner graph representation,
where the convolutional aspect manifests itself in the form of coupling between
the sub-graphs of component LDPC codes. This resulted in a re-branding of
convolutional LDPC codes under the name of spatially-coupled LDPC (SC-
LDPC) codes.
SC-LDPC codes yield outstanding performance under suboptimal BP de-

coding: First, it was observed numerically that the BP thresholds of SC-
LDPC codes ensembles obtained via density evolution (see Section 2.6) are
close to the optimal maximum a posteriori (MAP) thresholds of the underly-
ing uncoupled LDPC code ensembles [27]. This phenomenon, dubbed thresh-
old saturation, unleashes the potential of strong (dv, dc)-regular LDPC codes
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(Section 2.6) under iterative BP decoding. It was later proved that thresh-
old saturation allows SC-LDPC codes to achieve capacity, first shown for the
BEC [28] and later for the broader class of binary-input memoryless symmet-
ric channels [14]. Moreover, unlike irregular LDPC codes, SC-LDPC codes
are universal—i.e., a sequence of LDPC codes that achieves capacity for one
binary-input memoryless symmetric channel also provably achieves capacity
for another such channel [14]. This allows the code designer to use the same
code construction for different channels without having to re-optimize code
parameters, as would be necessary for irregular LDPC codes. Finally, it was
shown that spatial coupling preserves the minimum distance growth proper-
ties of regular LDPC code ensembles, whose distance grows linearly with the
block length [29]; moreover, such linear growth with block length also holds
for the smallest stopping set [30] (Section 2.5). Taken together, these remark-
able properties mean that SC-LDPC codes can have both good BP thresholds
and potentially low error floors, escaping the trade-off between the waterfall
and error-floor performance that was hitherto considered unavoidable.
The benefits of spatial coupling proved to apply beyond the realm of LDPC

codes in other codes-on-graphs and graph-based systems. Spatial coupling has
been used in the context of, e.g., turbo-like codes [15], product-like codes [31],
lossy compression [32], and compressed sensing [33].

3.1 SC-LDPC Code Constructions
To construct the Tanner graph of an SC-LDPC code, one must first take a
number of Tanner graphs of the underlying uncoupled LDPC codes, each with
the same number of VNs, N , and arrange them into a spatial sequence. An
example of such a sequence of length L = 8 is shown in Fig 3.1a, where the
spatial positions are indexed by u. The blocks marked by π denote permuta-
tion blocks that shuffle the edges connected to them—a specific permutation
results in a specific Tanner graph and thus in a specific code. One could imag-
ine the Tanner graph of the not-so-low-density parity-check (7, 4) Hamming
code in Fig. 2.1 in place of the component Tanner graphs in the sequence
in Fig. 3.1a. Having arranged the component Tanner graphs in a “spatial”
sequence as in Fig. 3.1a, one should interconnect (or “couple”) the component
Tanner graphs by rearranging their edges according to a predefined pattern,
as shown in Fig. 3.1b. There are many different ways to perform the inter-
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Figure 3.1: Spatial coupling.

connecting, which result in different types of SC-LDPC codes; the rule used
in Fig. 3.1b as an example is that every VN of degree dv (with dv = 3 in the
figure) is connected to dv consecutive positions.

Termination
Spatial coupling naturally results in potentially infinite sequences of connected
Tanner graphs and thus in potentially infinitely long codes. Such semi-infinite
codes are referred to in Papers A–C as unterminated SC-LDPC codes. Unter-
minated codes are a natural fit for streaming applications; they are also used
in Paper A in the analysis of sliding window decoding, which is discussed in
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Section 3.2.
In practice, the spatially-coupled chain cannot be truly infinite. There

are several ways to end the chain after a certain length L. One way is to
simply cut it along with the overhanging edges. The resulting code is called
truncated SC-LDPC code (see Fig. 3.2a). Alternatively, one may connect
the overhanging edges to additionally appended positions that contain CNs
only; the resulting SC-LDPC code chain is referred to as terminated (see
Fig. 3.2b). Note that terminating the chain as shown in Fig. 3.2b creates a
certain symmetry between the beginning and the end of the chain, in the sense
that the first and the last CN positions are connected to the same number of
edges.
Termination is key to the outstanding error-correcting performance of SC-

LDPC codes. The CNs at the boundaries of the terminated spatially-coupled
chain have lower average degrees, which means that during BP decoding (see
Section 2.5) those CNs will more likely correspond to trivially-resolvable con-
straints (i.e., be of degree one), so the adjacent VNs at the boundaries of
the chain are more likely to be recovered than the VNs in the middle. Sub-
sequently, reliable information propagates from the boundaries of the chain
inward in a wave-like fashion. It is this wave-like decoding effect that gives
rise to SC-LDPC codes’ improved performance. However, it does not come at
no cost: adding CNs at the terminated end of the chain entails a loss in code
rate—one may think of adding CNs as subtracting degrees of freedom and thus
reducing k in R = k/n. The longer the chain, the smaller the loss in code
rate; on the other hand, the longer the chain, the more likely it is that wave-
like decoding will stall. This trade-off between rate loss and error-correcting
performance makes practical SC-LDPC code design nontrivial.
Remarkably, it is sometimes possible to reap the benefits of spatial coupling

without termination, e.g., by optimizing bit mappings in the context of the
parallel erasure channel [34] and coded modulation [35], or in the form of en-
ergy shaping in the context of the binary input additive white Gaussian noise
channel [36]. These techniques aim to trigger the same wave-like decoding
that is present in terminated chains but by alternative means.

Doping
Some applications cannot afford the loss in code rate associated with frequent
termination of spatially-coupled chains to trigger wave-like decoding. Long
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Figure 3.2: Truncation vs termination.

chains, however, suffer from decoding error propagation, where the decoding
wave gets stuck and a very long stream of errors occurs. To limit the rate loss
but at the same time prevent decoding errors from propagating indefinitely,
a technique called doping involves modifying the chain in such a way so as
to trigger the wave without incurring the same loss in rate that is associated
with full termination. In a way, doping can be understood as offering a range
of solutions in-between full termination and an unobstructed chain.
Doping can be performed in several ways: CN doping consists of occasion-

ally inserting spatial positions that contain reduced-degree CNs [37]. Alterna-
tively, VN doping involves fixing all VNs at some spatial positions [38]. More
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generally, instead of fixing all VNs at a doped position, only a fraction of them
may be fixed instead [39], which may be referred to as soft VN doping.
Fig. 3.3a illustrates a SC-LDPC code chain with full termination in the

middle. Notably, the chain effectively splits in two unconnected sub-chains
that can be decoded independently. In contrast, Fig. 3.3b shows the same
chain with VN doping, where VNs in a single position (position 5) are fixed.
The resulting chain is still fully connected: the VNs at position 4 are still
connected to the CNs at position 6, so the sub-chains’ performance must be
analyzed jointly. Clearly, termination can also be viewed as the result of
excessive doping, as the comparison between Fig. 3.3a and Fig. 3.3b reveals—
applying VN doping to position 4 as well as to position 5 in Fig. 3.3b would
create a chain that is analogous to the chain in Fig. 3.3a with full termination
in the middle.
Modeling the effects of doping and quantifying the ensuing trade-offs be-

tween rate loss and error-correcting performance are the subject of Paper B.
It shows that, in some cases, doping allows to achieve higher code rates for a
given target error rate than is possible with fully terminated chains only.

3.2 Sliding Window Decoding
Aside from decoding error propagation, employing long spatially-coupled chains
incurs a cost in terms of high decoding latency—when BP decoding is applied
to the whole chain (a scheme sometimes referred to as full BP decoding), the
receiver must wait for the arrival of all bits in the chain before starting decod-
ing. To limit decoding latency, an alternative decoding method called sliding
window decoding is used in practice, where BP decoding is limited to a window
of several spatial positions, as shown in Fig. 3.4a. After a specified number of
iterations, the decoder decides on the bits in the leftmost position within the
window and slides by one position to the right (Fig. 3.4b). By deciding on
the values of the bits and fixing them as the window slides (the fixed bits are
shown in Fig. 3.4 in red), sliding window decoding limits decoding latency to
the size of the window.
Sliding window decoding was originally proposed in [40]. Later, it was

shown that performing BP decoding in a non-uniform fashion within the win-
dow can further reduce decoding complexity [41], [42].
Practical constraints on decoding latency and energy efficiency imply that
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Figure 3.3: Termination vs doping.

both full BP and sliding window decoding must be limited in terms of the
maximum number of BP iterations. This can be done with either a hard-set
deadline or a conditional rule; devising such heuristic rules (called stopping
criteria) in the context of the binary-input additive white Gaussian noise
channel has attracted considerable research attention [43]–[47]. However, even
if a stopping criterion is used, the hard deadline must also be present.

The main downside of using sliding window decoding is that it effectively
limits wave-like decoding to a single wave that propagates from the left bound-
ary of the chain since the right boundary is not included in the window. Fur-
thermore, sliding window decoding must be done in a careful way not to lose
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sight of the left wave as well, which may happen when the maximum number
of iterations is limited (the setup we analyze in Paper C).

3.3 Parameter Optimization
Error-correcting performance of SC-LDPC codes can be measured in three
ways: the bit error rate (BER) refers to the probability that a randomly chosen
bit remains erased after decoding is finished; the block error rate (BLER) refers
to the probability that a randomly chosen spatial position contains at least one
erased bit; and the frame error rate (FER) refers to the probability that the
whole chain contains at least one erased bit. These metrics may be specified
as targets for code/decoder parameter optimization.
Whereas the asymptotic (i.e., when N → ∞) performance of SC-LDPC

codes is well understood in terms of their iterative decoding thresholds ob-
tained via density evolution analysis, much less is known about their behavior
in the finite-length (i.e., finite-N) regime. The code designer is faced with a
choice of code and decoder parameters along many dimensions, including:

1. the parameters of the underlying LDPC code, such as

a) the code length N ,

b) the VN degree dv and CN degree dc (in the case of (dv, dc)-regular
LDPC codes);

2. the specific coupling pattern;

3. the length of the coupled chain L;

4. the size of the sliding window;

5. possible locations, types, and amounts of doping;

6. the maximum number of decoding iterations;

7. the stopping criterion to use (if any).

All these parameters have an impact on the error-correcting performance,
but also on the code rate and on energy, memory, and latency requirements.
Navigating this parameter space to choose an optimal combination for a given
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Figure 3.4: Sliding window decoding.

set of requirements is nontrivial—it would be helpful to have a tool that could
predict the code’s error rate as a function of code and decoder parameters.
Finite-length scaling laws aim to do just that.
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CHAPTER 4

Finite-Length Scaling Laws

F inite-length scaling laws originated in statistical physics, where they
arise when studying systems that exhibit phase-transition phenom-
ena [48], including some of the simplest such models studied by per-

colation theory [49]. Indeed, the BP threshold for LDPC code ensembles (see
Section 2.6) can also be regarded as a point of phase transition—from a state
where successful decoding is possible to a state where it is not.
The connection between statistical physics and coding theory is in fact even

deeper. Sourlas observed in 1989 that error-correcting codes can be expressed
in terms of magnetically disordered materials (also known as spin glasses)
and therefore analyzed using the methods of statistical mechanincs [50]. The
specific codes he studied had excellent asymptotic performance but very high
error floors (Section 2.6); he concluded that such codes are not very useful
and abandoned this line of research [20]. However, we can now assert that
the connection between coding and spin-glass theory holds beyond the specific
class of codes considered by Sourlas.
Montanari applied the tools of spin-glass theory to LDPC codes and intro-

duced the idea of finite-length scaling laws to coding theory [51]. The basic
aim of finite-length scaling is to characterize the error-correcting performance
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of a code ensemble in the waterfall region (Section 2.6) as a function of the
finite block length, when operating over channel noise levels close to the iter-
ative BP threshold (i.e., close to the point of phase transition). An example
family of waterfall curves is shown in Fig. 4.1 (solid) along with the corre-
sponding predictions by a scaling law (dashed). This line of research led to a
finite-length scaling law for LDPC code ensembles that can accurately predict
an ensemble’s performance over the BEC [23]. Explicit expressions for cal-
culating the scaling parameters for irregular LDPC code ensembles were also
developed and used for LDPC code parameter optimization [52]. In [53], the
scaling law from [23] was proved to be correct for left-regular right-Poisson
LDPC code ensembles and put in a broader perspective of k-core problems for
random hypergraphs with applications to error correction and solving large
random linear systems. The law was further developed to apply to more gen-
eral channels in [54], [55]. It has also been used in the realm of uncoordinated
multiple access for the analysis of irregular repetition slotted ALOHA [56].
The finite-length scaling framework was used to derive a law to predict the

FER of SC-LDPC code ensembles over the BEC in [17], [57]. This law has
been applied to protograph-based ensembles [58] in [59] and to generalized
SC-LDPC codes in [60], where the component codes are not simple parity-
check codes but more elaborated codes such as Reed-Solomon codes (see [61]
for an overview).
The scaling law in [17] captures the slope of the FER curve well but shows a

significant gap to the simulated curve; closing this gap is the initial challenge
that this thesis addresses (Paper A).

4.1 Finite-Length Scaling in a Nutshell
Let us briefly summarize the basic concepts of finite-length scaling of LDPC
and SC-LDPC code ensembles over the BEC.
The first crucial step is to realize the importance of degree-one CNs (which

represent trivially resolvable parity-check constraints) for the operation of BP
decoding and its Tanner graph-based counterparts (i.e., parallel and sequential
peeling decoding), as is discussed in Chapter 2. When the number of BP
iterations is not limited, the scaling laws focus on sequential peeling decoding
because it is easier to analyze—a single iteration of sequential peeling decoding
always recovers a single VN (code bit), so the number of iterations performed
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Figure 4.1: Example family of finite-length scaling curves.

by peeling decoding specifies the number of decoded bits.
Peeling decoding halts when it runs out of degree-one CNs. It is therefore

natural to focus on the number of degree-one CNs over decoding iterations.
Each ensemble, channel, and peeling decoding realization yields a specific
sequence of these numbers, referred to as a decoding trajectory. Whenever
a decoding trajectory hits zero before the codeword is recovered, a decoding
error occurs.
The second step is to give up any hope to calculate the probability of that

event exactly and to focus instead on statistical properties of decoding tra-
jectories. Specifically, for any given iteration, the distribution of the number
of degree-one CNs is shown to converge to a Gaussian whose mean and vari-
ance can be calculated by solving numerically a system of coupled differential
equations dubbed mean and covariance evolution [23]. For uncoupled LDPC
codes, mean evolution shows that peeling decoding has a critical point where
the number of degree-one CNs is at its minimum [23]. For SC-LDPC codes,
there is instead a similar critical phase where the number of degree-one CNs
remains at its minimum steady-state level—this steady state corresponds to
the two decoding waves that propagate from the boundaries of the spatially-
coupled chain [17] (Chapter 3).
The third step is to let go of the underlying graph-based process that defines

decoding trajectories and propose an alternative, simpler stochastic model
with matching statistical properties. For both uncoupled LDPC and SC-
LDPC codes, the general approach is to make a transition to continuous-
time diffusion processes, originally developed for studying particle movements
subject to random fluctuations [62].
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The final step is to use the simple model to predict the probability that
a decoding trajectory hits zero during either the critical point (in the case
of uncoupled LDPC codes) or the critical phase (in the case of SC-LDPC
codes). For uncoupled LDPC codes, the error probability is estimated as
the probability that a Gaussian random variable with positive mean that
represents the number of degree-one CNs at the critical point (with mean and
variance obtained via mean and covariance evolution) is negative, yielding a
Q-function [23].1
For SC-LDPC codes, the critical steady-state phase of the decoding is mod-

eled in [17] as an Ornstein-Uhlenbeck process [63], and the probability of
decoding error is estimated using some known approximations to the first-
passage time of that process [64], [65].
An Ornstein-Uhlenbeck process hovers around a certain average (that in

the case of SC-LDPC codes represents the average number of degree-one CNs
during the critical phase) but experiences fluctuations around it. One could
imagine a drunkard doing his best to keep the general direction to the intended
destination but experiencing certain difficulties in staying on track (Fig. 4.2).
The Ornstein-Uhlenbeck process was first proposed as a model for a particle
that experiences a constant drift but also fluctuates as a result of colliding
with other particles [63]. It has subsequently been used to model stochastic
phenomena in a great variety of applications from finance to neurobiology—
and coding theory is yet another one on the list.

Figure 4.2: (right) A mural at Oosterkade, Utrecht, the Netherlands, by the Dutch
painters’ collective De Strakke Hand (Translation of their name: The
Tight Hand.) of Leonard Ornstein writing at a desk. Above Ornstein
in the mural, a drunkard is walking down the street, a bottle and a
cane in his hand. The stochastic differential equation for the Ornstein-
Uhlenbeck process [63] is given. Texts: top left “Prof. Ornstein in-
vestigates random movement, 1930”, in the middle left the formula
“dxt = −θxtdt+ σdWt”. Source: Wikimedia Commons.2

1The model that accounts for the possibility of the trajectory to hit zero in a close
neighborhood of the critical point—i.e., not only at the critical point itself—results in
better predictions. This refined model can also be expressed as a Q-function [23].
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2Image credit: Hansmuller / Hans Muller (https://commons.wikimedia.org/
wiki/File:Leonard_Ornstein_mural,_Oosterkade,_Utrecht,_2021_-_1.jpg), https://
creativecommons.org/licenses/by-sa/4.0/legalcode
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CHAPTER 5

Summary

T his chapter briefly summarizes the contributions of the appended
papers, highlights some of the conclusions that can be drawn from the
obtained results, and outlines the directions of possible future research

in the area of finite-length scaling laws for SC-LDPC codes.

5.1 Contributions

Paper A
The first contribution of Paper A is a scaling law to estimate the finite-length
FER performance of SC-LDPC code ensembles under full BP decoding with
an unlimited number of decoding iterations over the BEC that provides a more
accurate estimation than was previously available, closing the gap between the
simulated and predicted FER that is observed in [17]. We changed the model
used in [17] to predict the FER—instead of treating the steady-state phase of
peeling decoding as a single Ornstein-Uhlenbeck process (see Chapter 4), we
model it as a combination of two independent Ornstein-Uhlenbeck processes,
with each process corresponding to a single decoding wave that propagates

37



Chapter 5 Summary

through the spatially-coupled chain (see Chapter 3). This requires estimating
the parameters of each Ornstein-Uhlenbeck process from the truncated en-
semble (instead of from the terminated ensemble) to isolate a single decoding
wave. This effectively closes the gap between predicted and simulated FER
curves that was present in [17].
Encouraged by the model’s ability to accurately predict the FER, we ex-

tended it to also predict the other two figures of merit, namely the BLER
and the BER. This was possible because the model for the FER already pre-
dicts the distribution in the number of peeling decoding iterations before the
failure, from which the fraction of the bits and the distance traveled by the
decoding waves can be inferred. The resulting BLER and BER predictions
are also accurate.
The model is then powerful enough to capture the behavior of the decoding

process relevant for error rate prediction under full BP decoding. Can it be
extended to predict the performance of terminated SC-LDPC code ensembles
under the more practical sliding window decoding? Paper A answers this
question in the affirmative. We noted that during sliding window decoding,
the window of size W does not allow the wave from the right termination
boundary to propagate by further thanW spatial positions. We then modeled
sliding window decoding as a two-phase process: During the first phase, which
corresponds to the first L−W spatial positions (where L is the length of the
chain), only a single wave propagating from the left boundary of the wave is
present. During the second phase, which corresponds to the last W positions,
there may be two waves. With each wave modeled as an independent Ornstein-
Uhlenbeck process, we manage to accurately predict the FER, BLER, and
BER under sliding window decoding. Since sliding window decoding limits
decoding latency and is used in practice (see Chapter 3), the scaling law for
sliding window decoding is an important step toward practically relevant code
and decoder parameter optimization. The drawback of the model (as well as
the models in [23] and [17]) is that it still assumes an unlimited number of
decoding iterations—a limitation we overcome in Paper C.

Paper B
Paper B studies SC-LDPC code ensembles with doping (see Section 3.1).
Doping is an interesting technique for limiting the rate loss in long spatially-
coupled chains relevant for streaming applications. Equipped with the scaling
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law for sliding window decoding that we developed in Paper A, we decided to
tackle the problem of predicting the BER and BLER of SC-LDPC code en-
sembles with doping. We derived mean evolution equations for doping points
and observed that these too exhibit a critical point, as do uncoupled LDPC
codes (Section 4.1). Further, we observed that the doping points either pro-
duce two decoding waves or none at all. We followed the approach used in
the case of uncoupled LDPC ensembles [23] and estimated the probability of
the doping point to survive the critical point with a Q-function. The scaling
law that we derived for periodically applied doping yields accurate BER and
BLER predictions (predicting the FER is not relevant for infinite chains since
the FER in this case is always one).
We used the scaling law for code parameter optimization and showed that

SC-LDPC codes with doping can achieve better code rates for a given target
error rate than can SC-LDPC codes with full termination only, making doping
an interesting extra dimension to be considered.

Paper C
Paper C addresses the challenging case where the number of decoding iter-
ations is limited, both for full BP and for sliding window decoding, which
is the most practically relevant setup. All scaling laws proposed for LDPC
and SC-LDPC code ensembles, including those we ourselves proposed in Pa-
pers A and B, consider decoding with unlimited number of iterations. In that
case, the performance of BP decoding (or parallel peeling decoding, its Tanner
graph-based counterpart) and sequential peeling decoding (Section 2.5) is the
same. When a limit on the maximum number of BP iterations is imposed,
that equivalence no longer holds.

For full BP decoding with limited iterations, we developed several scaling
laws that offer different trade-offs between prediction accuracy and computa-
tional complexity. The main idea is to establish a per-iteration equivalence
between BP and (sequential) peeling decoding: How many peeling decoding
iterations does a single BP iteration correspond to? We first assumed that a
single BP iteration always corresponds to a fixed number of peeling decoding
iterations, which we obtained from the average number of degree-one CNs
during the steady state of peeling decoding. This resulted in a surprisingly
good prediction given the simplicity of that assumption. Our next scaling laws
also assume a certain equivalence between BP and peeling decoding iterations
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but model that correspondence as a random variable instead. We obtained
accurate FER predictions.
Finally, we proposed a scaling law for sliding window decoding with a limited

number of iterations. Here, there is a certain competition between the sliding
window and the position of the left decoding wave; in addition to the potential
sources of decoding failure that we considered in Paper A, there is a chance
that the window overtakes the wave and decoding fails for that reason. We
modeled the position of the left decoding wave by an integrated Ornstein-
Uhlenbeck process with some additional variance and the left boundary of
the window by an absorbing barrier. We then derived the partial differential
equation that describes the evolution of the probability density function of
the location of the wave in the presence of the absorbing barrier (known as
the Fokker-Planck equation) and solved it numerically. This allowed us to
obtain an estimate of the probability that the wave is overtaken by the sliding
window. We used this estimation to obtain an overall probability of decoding
error. The resulting FER predictions are also astonishingly accurate.

5.2 Future Work
Several directions of future research are possible. First, it would be interesting
to make sure that the improvement in prediction accuracy of the law we
proposed in Paper A compared with the law in [17] carries over to other
set-ups where the law in [17] was applied, namely for protograph-based SC-
LDPC [59] and generalized [60] SC-LDPC code ensembles. We expect the
analysis to carry over and to result in similar improvements of prediction
accuracy.
Second, it is of obvious practical interest to extend the scaling laws proposed

in Papers A–C to other channels, notably to the binary-input additive white
Gaussian noise channel, perhaps by following the steps outlined in [54], [55]
for uncoupled LDPC code ensembles.
Third, it would help the case for the use of finite-length scaling laws if it

could be shown that concentration holds in this context, too. In other words,
can we expect the performance of a specific code from an SC-LDPC code
ensemble to be close to that of the ensemble average, especially in the context
of sliding window decoding and/or limited number of iterations?
Fourth, some of the scaling parameters used in the laws in Papers A–C are
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obtained via numerical simulation. (The rationale there is that the amount
of simulation required to estimate these parameters is significantly smaller
than needed to estimate the error rates; furthermore, these parameters need
to only be estimated once and do not need to be re-simulated for every combi-
nation of code, decoder, and channel setups.) Is it possible to calculate them
analytically instead?
Finally, the contributions of this thesis made SC-LDPC codes better stud-

ied, in some sense, than are uncoupled LDPC codes, which is quite surprising.
In particular, no work has attempted to estimate the finite-length performance
of uncoupled LDPC code ensembles in the presence of a limit on the number
of BP iterations, whereas Paper C provides a way to do just that for their
spatially-coupled counterparts. Could it be possible to derive a similar scaling
law for uncoupled LDPC code ensembles as well?

5.3 Conclusion
The contributions of Papers A–C lay the groundwork for finite-length code and
decoder parameter optimization of SC-LDPC codes. The tools and insights
of these papers have already been used for such optimization [66], [67]; our
hope is to see this work continuing in the years to come.
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