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We introduce a simple approach to how an electromagnetic environment can be efficiently embedded
into state-of-the-art electronic structure methods, taking the form of radiation-reaction forces. We
demonstrate that this self-consistently provides access to radiative emission, natural linewidth, Lamb
shifts, strong coupling, electromagnetically induced transparency, Purcell-enhanced and superradiant
emission. As an example, we illustrate its seamless integration into time-dependent density-functional
theory with virtually no additional cost, presenting a convenient shortcut to light-matter interactions.
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The theoretical description of light interacting with
realistic materials becomes increasingly interdisciplinary
due to the recent developments in nonequilibrium phase
transitions [1–3], Floquet engineering [4–6], high-harmonic
generation [7,8], strong light-matter coupling and induced
modifications of energy transfer [9–18], polaritonic chem-
istry [19–25], plasmonic strong coupling [26–33], ab initio
QED [34–39], and quantum-electrodynamical density-
functional theory (QEDFT) [39–42]. It is apparent that all
light-matter interactions arise from the interplay of matter
with a electromagnetic environment. The involved material
is routinely described using ab initio electronic structure
theory. A notable representative is time-dependent density-
functional theory (TDDFT) [43,44] due to its good accuracy
and comparably low computational cost. While it is common
to consider the electromagnetic field as input to the system,
i.e., a laser driving the system, the interaction should be
treated self-consistently within the ab initio calculation
according to Maxwell’s equations. This avoids negative side
effects such as artificial heating but as we will show here,
also naturally introduces a plethora of phenomena such as
natural linewidth, Lamb shift, Purcell enhancement [45],
superradiance [46,47], strong light-matter coupling and
electromagnetically induced transparency [48]. These are
common objectives for quantum optics [49] and open
quantum-system dynamics but are rarely even considered
in state-of-the-art ab initio calculations. Existing open-
system extensions of density-functional theory [50] are thus
far limited in their applicability due to physically less

motivated [51] or much more involved constructions
[41,52,53]. The TDDFT codes Salmon [54] and Octopus
[53,55] allow the self-consistent propagation ofMaxwell and
Kohn-Sham equations but the complexity of the implemen-
tation and its computational cost limit their widespread use.
Only recent developments along the lines of mixed quantum-
classical techniques [56], dissipative equations of motion
[57], and Casida QEDFT [58] started to address natural
lifetimes from first principles. We demonstrate in the
following a computationally and conceptually simpler
way to extend ab initio electronic structure approaches with
electromagnetic emission, taking the form of radiation-
reaction forces. By embedding Maxwell’s equation of
motion into the ordinary TDDFT routine via a simple local
potential, we obtain access to open quantum-system dynam-
ics from first principles with virtually no additional effort.
Its precise strength is that it allows the description of the
aforementioned physical effects without the need to change
the existing libraries.
Embedding the electromagnetic environment.— The

nonrelativistic dynamic of matter subject to a classical
electromagnetic environment is governed by the minimally
coupled Coulomb Hamiltonian Ĥ ¼ P

i½1=ð2miÞ�½−iℏ∇i−
qiAðritÞ=c�2 þ Ĥk þ ε0=2

R
dr½E⊥ðrtÞ2 þ c2BðrtÞ2� with

fixed Coulomb gauge ∇ ·A ¼ 0. The electromagnetic
fields obey Maxwell’s equation of motion and couple
self-consistently with the Schrödinger equation. The inter-
nal structure of the latter, consisting out of electrons and
nuclei, is determined by the longitudinal Coulombic
interactions Ĥk ¼ 1=ð8πε0Þ

PNeþNn
i;j qiqj=jri − rjj, here

given in free-space. The transverse electric E⊥ðrtÞ ¼
−1=c∂tAðrtÞ and magnetic fields BðrtÞ ¼ 1=c∇ ×AðrtÞ
are in contrast not bound to the material but can propagate
into free-space. Even with the restriction to classical
electromagnetic fields we will obtain access to the various
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highlighted quantum optical effects, while, for instance, the
photon blockade [59] will demand quantized fields. If the
wavelength of those propagating fields is substantially larger
than the matter system, the spatial dependence of the
transverse fields is commonly neglected (dipole approxima-
tion). Even in this strongly simplified limit, the remaining
task of solving the Schrödinger equation is extraordinarily
challenging. We will fix the nuclei in the following for
brevity but would like to emphasize that their contribution
can be easily reinstated by using the total (electronic plus
nuclear) dipole. Nuclear motion itself is evidently often a
relevant feature to recover experimental spectra.
After performing the Power-Zienau-Wooley transforma-

tion [60,61] (see Supplemental Material I [62]), the classical
transverse light-matter coupling acting on the electronic
structure takes the bilinear form V̂ðtÞ ¼ −R̂ ·E⊥ðtÞwith the
electronic dipole R̂ ¼ −e

PNe
i ri. The electric field can be

separated into driving fields Edrive;⊥ of external origin and
radiated fields Er;⊥ that are generated by the material itself.
Naturally, driving the system externally will lead to absorp-
tion, excitation, and heat. In principle, we could solve the
Schrödinger and Maxwell equations now side by side in
order to obtain access to the radiated fields and with it to the
self-consistent evolution of light and matter. Given that
electrons and fields move at different speeds and scales, this
introduces, however, an unnecessary complexity that can be
circumvented by the following shortcut.
Each current induces an electromagnetic field for which

its precise spatial and polarization structure depends on
the electromagnetic environment—oscillating charges emit
light. The generated field can be expressed with the help of
the dyadic Green’s tensor G,

Erðr;ωÞ ¼ iμ0ω
Z
V
dr0Gðr; r0;ωÞ · ½−ejðr0;ωÞ�;

which is the formal solution of Helmholtz’s equation [63],

�
∇ ×

1

μrðrωÞ
∇ × −ω2μ0ε0εrðrωÞ

�
Gðr; r0;ωÞ ¼ δðr; r0Þ;

and characterizes the electromagnetic environment. The
latter comprises foremost the boundary conditions of the
field but can furthermore account for linear media εr, μr.
This provides the flexibility to describe parts of the entire
matter system in a simplified fashion while we focus our
computational effort on the electronic structure considered
via the paramagnetic current density j. Such a separation
becomes particularly interesting in multicomponent sys-
tems that extend over various length scales, e.g., molecule
(described microscopically via j) and solvent (described
macroscopically via εr). This approach and its application
to QED chemistry is detailed in Ref. [64]. As long as we
treat the full system explicitly via the microscopic currents
j (as exemplified in the following), no limitation to the field

strength applies. The introduction of linear media on the
other hand limits the evaluation to the linear response
regime. The via G embedded environment is obtained
either analytically or numerically, a standard task for
Maxwell solvers, and provides the realistic mode structure
to which the electronic structure calculations couple. The
energy associated with the radiated field should be taken
correctly from the electronic system. Hence, the system of
oscillating charges should feel a recoil force that accounts
for any emitted energy—the radiation reaction, ensuring
Newton’s third law. Consistent with the above bilinear
coupling, the (dipolar) radiation-reaction potential V̂rrðtÞ ¼
−R̂ · Er;⊥ðtÞ ¼ −R̂ · fF−1

t ½iμ0ωG⊥ðωÞ� �
R
dr½−ejðrtÞ�g,

accounts now for the self-consistent interaction and
the loss of energy due to photonic emission ΔErrðtÞ ¼R
t
t0
dt0 _Rðt0Þ ·Er;⊥ðt0Þ. We notice that V̂rrðtÞ ∝ R̂ ·G⊥ · j,

i.e., the transverse projection of the paramagnetic current
induces a (memory dependent) recoil acting back on the
electronic system. In the case of free space, the radiation-
reaction potential takes the form V̂rrðtÞ ¼ ½−1=ð6πε0c3Þ�×
∂3
tRðtÞ · R̂, which is consistent with the classical Abraham-

Lorentz model [65,66] (more details in Supplemental
Material II. D [62]). Calculating G up front, the self-
consistency is embedded solely via the current. This avoids
the need to treat electronic structure and electromagnetic
fields at the same time. The simplicity of the radiation-
reaction potential represents the major strength of this
approach, providing a swift and intuitive usage in a variety
of electronic structure libraries.
Clearly, G and any emerging parameters depend on the

electromagnetic environment of our choice. Let us illustrate
this conception in more detail for a strongly idealized one-
dimensional waveguide (εr ¼ μr ¼ 1, with periodic boun-
daries in emission direction). The solution to the Helmholtz
equation is then G⊥ðx; x0; ωÞ ¼ P

kf½SkðxÞSkðx0Þ�=
½k2 − ðω=cÞ2�gϵcϵTc with the eigemodes SkðrÞ¼

ffiffiffiffiffiffiffiffiffi
1=V

p
×

½cosðkxÞþsinðkxÞ�; k¼2πnx=Lx;nx∈Z and ϵc⊥k. In
combination with the inverse Fourier transformation
and performing the long-wavelength approximation
(x ¼ x0 ¼ 0, details in Supplemental Material II. A [62]),
the radiation-reaction potential takes the form V̂rrðtÞ¼
R̂·ϵc

P
k½1=ðVε0Þ�

R
t
−∞dt0cos½ckðt−t0Þ�RVdr0ϵc ·½−ejðr0t0Þ�.

When the number of photonic modes is increased
(Lx → ∞), the dense mode structure will start to represent
a photonic bath. Performing the explicit integration and
employing the continuity equation for the integrated
current

R
dr½−ejðrtÞ� ¼ ∂tRðtÞ, we obtain the radiation-

reaction potential accounting for the recoil forces
of emitting into the simplified waveguide V̂1D

rr ðtÞ ¼
½ð4πℏαÞ=e2�A−1ϵc · _RðtÞϵc · R̂. The coupling between
the photonic continuum (representing the perfect
wide-band limit) and the electronic system is provided
by the fine-structure constant α divided by the
cross-sectional area of the waveguide A ¼ V=Lx.
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The integrated emitted energy takes the form
ΔErrðtÞ ¼ ½ð4πℏαÞ=e2�A−1 R t

t0
dt0jϵc · _Rðt0Þj2.

While ångström thickness waveguides are possible [67],
the majority of interesting systems (such as typical
Fabry-Perot-type cavities) will feature comparably large
quantization volumes, leading to a small influence of the
radiation-reaction on the dynamics. Plasmonic systems
represent here an exception due to their large currents
and high mode-density at nanometer scales [68–70] which
substantially enhances the emission of nearby molecular
systems (Purcell-enhancement) as discussed later. An
extended discussion and first generalizations to free-
space and emission near mirrors can be found in the
Supplemental Material, Secs. II. C and II. D [62]; we will
remain here with our illustrative example.
TDDFT as example and self-consistent emission.—

Time-dependent density-functional theory evolves around
the concept that effective single-particle Kohn-Sham equa-
tions exist that are able to uniquely mimic all physical
observables which are inherited by the original Coulomb
Hamiltonian [43,44,71]. Our goal is now to provide a
local potential that is as simple as possible to describe
light-matter coupling and radiative emission consistent
in the ordinary time-dependent Kohn-Sham equations
iℏ∂tϕiðrtÞ ¼ f−½ℏ2=ð2meÞ�∇2 þ vsðrtÞgϕiðrtÞ. The local
Kohn-Sham potential vs ¼ vext þ vHxc þ vrr consists of the
external potential vext (usually the nuclear binding poten-
tial), the electronic Hartree-exchange-correlation potential
vHxc mimicking electronic many-body interactions, and the
radiation-reaction potential vrr accounts for the coupling to
light. For each single-particle equation, the dipole-operator
separates into single-coordinate contributions such that the
radiation-reaction potential takes the trivial form

v1Drr ðrtÞ ¼
4πℏα
e2

A−1ϵc · _RðtÞϵc · ð−erÞ: ð1Þ

The potential can be added with virtually no effort to any
TDDFT routine and accounts now consistently for excita-
tion and radiative deexcitation according to Maxwell’s
equation of motion (see Supplemental Material II. B [62]
for an alternative derivation from QEDFT). Figure 1
exemplifies the quick radiative decay of hydrogen driven
by an external pulse (a) and the process of stimulated
emission (b). Also strong-field effects such as high-
harmonic generation can be described with the radiation-
reaction potential (see Supplemental Material III [62]).
External perturbations δvappl induce a response of the

system which results in electronic motion and thus
emission according to the radiation-reaction forces.
In linear order, the response of the electronic density is
given by δρðrtÞ ¼ R

dr0dt0χsðr; r0; t − t0Þ½δvapplðr0t0Þ þR
dr00dt00fðr0; r00; t0 − t00Þδρðr00t00Þ�. Here fðr0; r00; t0 − t00Þ ¼

δvsðr0t0Þ=δρðr00t00Þ is the kernel which accounts for the
linear response of the Kohn-Sham potential (which depends

self-consistently on the density) when the electronic density
is perturbed. The contribution of the radiation-reaction
forces f1Drr ðr0; r00;ωÞ ¼ i4πℏαA−1ωϵc · r0ϵc · r00 is explicitly
memory dependent and thus frequency dependent, which
allows it to provide a broadened resonance in contrast to
the widely used frequency-independent adiabatic kernels
that demand ad hoc broadening by hand. Assuming
a single occupied (g) and a single unoccupied (e) Kohn-
Sham orbital with bare excitation energy Ωeg ¼ ℏωeg ¼
εe − εg, the linear-response Casida equation can be
solved analytically. We obtain the excitation poles

Ωn¼�Ωeg½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð4παA−1=e2Þ2jϵc ·Regj4

q
þið4παA−1=e2Þ×

jϵc ·Regj2� and the polarizability tensor, defined by
RinducedðωÞ ¼ αðωÞ ·EperturbationðωÞ [72], as

ℑαμνðωÞ ¼
X∞
n¼1

2RðμÞ
gn R

ðνÞ
ng

ℑΩn

ðℏω −ℜΩnÞ2 þ ðℑΩnÞ2

¼ 2RðμÞ
ge R

ðνÞ
eg

ℏΓrr

ðℏω −ℜΩnÞ2 þ ℏ2Γ2
rr

with photoabsorption cross section and linewidth

σðωÞ ¼ 4πω

c
ℑαðωÞ; Γrr ¼

4παωeg

e2
A−1jϵc ·Regj2:

A system has therefore no longer discrete excitations as
common in TDDFT but features a physical linewidth Γrr.

(a)

(b)

FIG. 1. Dipole RðtÞ (black solid), relative electronic energy
ΔEe (blue dashed) and accumulated emitted radiation-reaction
energy ΔErr (red dashed-dotted) for one-dimensional soft-
coulomb hydrogen vextðxÞ ¼ e2=ð4πε0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ emitting into a

waveguide assuming a strongly Purcell-enhanced emission
with A−1 ¼ 1=a20 for illustrative reasons. Notice that Purcell-
enhancement factors of order Γ=Γ0 ¼ Oð105Þ are not unusual.
(a) An external laser-pulse EextðtÞ (yellow, solid, amplified by a
factor 10) drives the system out of its ground state. Energy
deposited in the electronic system by the pulse is quickly radiated
into the photonic bath. (b) Stimulated emission from the first
excited electronic state under external driving. Details in the
Supplemental Material IV [62].
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In the perturbative limit, the latter is identical to theWigner-
Weisskopf solution Γ1D

WW ¼ ωegjϵc ·Regj2A−1=ℏε0c ¼ Γrr

(see also Supplemental Material IV. A [62]).
The radiative-reaction leads to a slight shift of the

resonance as a consequence of the electromagnetic recoil
∝ 1 − ð4παA−1=e2jϵc ·Regj2Þ2=2. This Lamb-shift effect
indicates that the mass of the particle is changed, resulting
in an adjusted physical mass of the electron. For Purcell-
enhanced emission in a waveguide, the Lamb shift can take
non-negligible values, especially when collective effects
lead to collective Lamb-shift effects [73]. We obtain here
for hydrogen ≈7 meV with A−1 ¼ 1=a20. However, for the
vast majority of applications this shift is negligible and
aspects such as the quality of the exchange-correlation
potential in TDDFT are far more influential.
Let us point out that clearly also ab initio QED and

QEDFT benefit from the radiation-reaction approach.
Typically, only a few cavity modes play a substantial role
in the strong coupling and the manifold of weakly
interacting modes describe the emission profile, i.e., the
loss channels, of the cavity. Using a radiation-reaction
potential which represents a bath of free-space modes,
cavity losses into free-space can be efficiently modeled as
we will see in the following. Such a separation is of
imminent importance for the future development of ab initio
QED as it allows us to utilize higher level descriptions for a
few most relevant cavity modes which explicitly account
for the quantum features of light (see, e.g., [39]) while
retaining the full manifold of modes that account on a
simplified level for emission, linewidth, and loss. In this
sense, the illustrated potential acts as a highly efficient
realization of a bath, comparable to open-system strategies
in quantum optics.
Electromagnetically induced transparency.—One excel-

lent example of the strength of such a photonic-bath
treatment is the description of electromagnetically induced
transparency (EIT) [48,74]. Let us couple a single loss-free
cavity mode, representing, for instance, a whispering-
gallery mode, strongly to the hydrogen system. In addition,
the matter system can emit light into a waveguide, i.e., a
bath of photonic modes according to Eq. (1). Figure 2
presents how the absorption-profile of hydrogen changes
with increasing strength of the bath and the coupling
strength to the single mode. The interplay between the
high-quality cavity mode and the lossy electromagnetic
bath induces a window of transparency for strong radiative
emission, i.e., the natural linewidth (black, dashed) obtains
a sharp window of transparency (yellow, solid) at which the
system can no longer absorb light. For increasing g=ℏωc,
hydrogen and single mode begin to hybridize, resulting in
the polaritonic states that characterize strong light-matter
coupling. EIT has a plethora of technological applications,
including effectively stopping or storing light [75,76],
which become now for the first time available to
TDDFT and QEDFT in a simple and intuitive way.

While it is common practice to describe superradiant
effects with quantum optical models [46] and the Purcell
enhancement of spontaneous emission as perturbative
correction to Wigner-Weisskopf theory [69], we show here
that the radiation-reaction potential equips ab initio frame-
works with the necessary tools to address those aspects
self-consistently. In order to describe realistic systems, we
implemented the radiative-reaction potential introduced
in Eq. (1) in the TDDFT code GPAW [77] and use the
computationally efficient LCAO basis [78] (see Ref. [79]
for a tutorial).
Superradiant linewidth.—The synchronized evolution

among a set of atoms or molecules amplifies their inter-
action with the photonic environment. Superradiance
describes the effect that the synchronized emission is
quicker than the individual emission [46]. For the single-
photon absorption spectrum this takes the form of a linearly
increasing linewidth with the size of the ensemble
(Γ ≈ NNa2ΓNa2) and is illustrated in Fig. 3 for a set of
sodium dimers. The decisive strength of the ab initio
implementation is the consistent treatment of radiative
emission and matter, i.e., any form of Coulomb mediated
interaction or charge migration is treated self-consistently.
Figure 3 illustrates for instance a blueshift that originates
from the Coulomb-mediated dipolar coupling between
the individual dimers as observed in H aggregates [80].
Arranging the dimers in a head-to-tail orientation produces
a redshift as typical for J aggregates (see Supplemental
Material IV. C [62]). The radiation-reaction potential pro-
vides therefore consistently access to typical quantum
optical and quantum chemical observables.
Plasmonic Purcell enhancement.—Plasmonic particles

contribute in two ways to the quick decay of nearby
molecules. First, strong dipolar oscillations of localized

FIG. 2. Photoabsorption cross section σðωÞ of one-dimensional
hydrogen coupled to a single cavity mode (strength g ¼
ea0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωc=2ε0V

p
) in resonance to Ωeg ¼ 10.746 eV. With in-

creasing strength of the photon bath A−1, i.e., decreasing quality
of the hydrogenic oscillator, the system moves from slightly
broadened polaritonic resonances into the regime of electro-
magnetically induced transparency. Numerical details in the
Supplemental Material IV [62].

PHYSICAL REVIEW LETTERS 128, 156402 (2022)

156402-4



surface plasmons result in quick radiative decay. Second and
often dominant, they feature very quick internal dephasing
on the fs timescale due to Landau damping and electron-
electron scatterings. In combination with charge migration

and hot-electron transfer between nanoparticle and molecule,
this results in a complex dynamic which is theoretically
challenging to capture. Full-fledged ab initio approaches
provide here valuable results and following the radiation
reaction, we can now easily and consistently account for
radiative features that enrich quantum optical and electronic
structure perspectives by a linking framework. Figure 4
illustrates the dipolar spectrum of benzene next to Al201 [18],
including and excluding the radiative emission. The strong
longitudinal fields around the plasmon lead to a hybridiza-
tion of the bare plasmonic and π − π� benzene excitation, a
purely Coulombic feature. For small cross-sectional surfaces
A ¼ 102 Å2, the radiative contributions increase in rel-
evance and strong plasmonic currents provide the previously
slow radiating benzene excitation with an efficient emission
channel—Purcell enhancement. The larger A the stronger
internal dephasings compete with radiation, up to the point
(A−1 < 10−3 Å−2) where the Purcell enhancement for the
emission of benzene is dominated by those internal losses.
The competition between radiative and nonradiative decay
channels is often tilted in favor of internal losses while
nanoantenna design can invert this characteristic [81,82].
Conclusion.—Utilizing the dyadic Green’s tensor and

deriving a subsequent local radiation-reaction potential, we
illustrated how the electromagnetic fields can be easily
embedded into electronic structure theory. This simple and
computationally efficient ansatz allows to describe self-
consistent light-matter interaction from first principles and
is equivalent to solving Maxwell and Schrödinger equation
hand in hand. The introduced radiation-reaction forces
represent the recoil that ensures energy conservation during
the emission of light. We demonstrated this ansatz for a
simplified one-dimensional waveguide at the example of
TDDFT, providing radiative emission, natural linewidths,
strong coupling, electromagnetically induced transparency,
Purcell enhancement and superradiant emission with vir-
tually no additional computational effort. While we avoid
the need to keep track of the electromagnetic fields, they
are determined at any point in time by the dyadic Green’s
tensor and the electronic currents, allowing a precise
description of the experimentally measurable fields. Our
ansatz is of generic use for any time-dependent electronic
structure theory and can be extended to the nuclear
degrees of freedom. In addition, we present generalizations
to more complex electromagnetic environments in the
Supplemental Material [62]. Implementing the radiation-
reaction potential into the large-scale TDDFT code GPAW
illustrates the high accessibility and seamless integration
of our approach into existing ab initio libraries, paving the
way for a stronger integration of light-matter and open-
system features into the popular electronic structure
approaches. A separation into microscopic j and macro-
scopic components εr and the subsequent embedding of
those macroscopic contributions into V̂rr paves a way to
conveniently describe collective strong coupling at the

FIG. 3. Photoabsorption cross section σzzðωÞ (zz component)
for chains with variable length of far separated Na2. The dimer
axis is oriented along z with a bond distance of 1.104 Å, the chain
along x has separations of 8 Å (H-aggregate configuration). We
used Eq. (1) with a quantization area of 35.05 Å2 and polarization
along z. The emission rate or linewidth of the excitation around
3.5 eV increases linearly Γ ≈ NNa2ΓNa2 with the length of the
chain (see inset, FWHM ¼ 2Γ highlighted) as expected for
the single-photon superradiant emission. The H-aggregate con-
figuration is schematically illustrated. Numerical details in
Supplemental Material IV. C [62].

FIG. 4. Absorption spectrum in the x direction for isolated
benzene (blue, magenta) and benzene strongly coupled to Al201
(black, red, yellow—upper and lower hybrid state P� indicated).
Dashed(-dotted) lines include emission via the radiation-reaction
potential with polarization ϵc ¼ ex. The sharp excitation of
benzene is only marginally broadened when including emission
(magenta, dashed-dotted), i.e., atoms and molecules have compa-
rably long lifetimes. Notice that the spectrum is slightly artificially
broadened (details in Supplemental Material IV. D [62]). The sharp
linewidth of benzene manifests in the fact that decreasing the cross-
sectional area A leads to a minor broadening. The localized surface
plasmon of the Al201 cluster radiates on the other hand substan-
tially stronger (green, dashed). Coupled benzene inherits the short
lifetime of the plasmon (red and yellow dashed-dotted)—any
excitation is quickly transferred into the plasmon and either
internally dephased or subsequently radiated into free-space.
Numerical details in the Supplemental Material IV. D [62].
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microscopic level. Collective strong coupling obtained
recent interest in QED chemistry [83] and its application
is detailed in Ref. [64].
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