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Abstract
Distributed, software-intensive systems (e.g., in the automotive sector) must fulfill communication requirements under hard
real-time constraints. The requirements have to be documented and validated carefully using a systematic requirements
engineering (RE) approach, for example, by applying scenario-based requirements notations. The resources of the execution
platforms and their properties (e.g., CPU frequency or bus throughput) induce effects on the timing behavior, which may lead
to violations of the real-time requirements. Nowadays, the platform properties and their induced timing effects are verified
against the real-time requirements by means of timing analysis techniques mostly implemented in commercial-off-the-shelf
tools. However, such timing analyses are conducted in late development phases since they rely on artifacts produced during
these phases (e.g., the platform-specific code). In order to enable early timing analyses already during RE, we extend a
scenario-based requirements notation with allocation means to platform models and define operational semantics for the
purpose of simulation-based, platform-aware timing analyses. We illustrate and evaluate the approach with an automotive
software-intensive system.

Keywords Scenario-based requirements · Platform modeling · Real-time systems · Timing analysis

1 Introduction

Distributed, software-intensive systems are becoming more
and more complex. For instance, in the automotive domain,
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the growing number of functionalities has led to thousands
of software operations distributed across hundreds of elec-
tronic control units (ECUs) that communicate via multiple
bus systems [104].Cyber-physical systems additionally com-
municate among themselves via wireless ad hoc networks
(e.g., automotive vehicle-to-X communication) to provide
more advanced functionalities. More generally, these sys-
tems increasingly rely on message-based communications.
Additionally, the correctness of such systems does not only
rely on the functional correctness but also on the time at
which actions are performed: They are real-time systems.
Since a timing error can lead to human life threat, these sys-
tems have to fulfill hard real-time requirements.

For example, the so-called Emergency Braking&Evasion
Assistance System (EBEAS) [64, Chapter 4] is an automotive
vehicle-to-vehicle driver assistance system, which coordi-
nates with other vehicles (and other in-vehicle ECUs) to
autonomously perform actions like emergency braking or
evasion of obstacles. Performing emergency braking or eva-
sion only milliseconds too late can harm the life of the
passengers and other lives in the environment. Usually, such
functionality is subject to end-to-end real-time requirements
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(e.g., the EBEAS has to perform emergency braking within
50 time units after it detected an obstacle).

Violations of such real-time requirements can occur for
various reasons: The ECUs executing the software have
restricted resources (e.g., processing power, memory) that
increase execution times; the buses and wireless commu-
nication media have restricted resources (e.g., through-
put, latency) increasing transmission times; the preemption
induced by scheduling policies increase response times,
etc. More generally, the various properties of the particu-
lar resources of the execution platform (resource properties)
impact the timing behavior by inducing timing effects (i.e.,
delays) during the provision of the actual functionality.

Hence, safety standards for the development of software-
intensive systems like the automotive-specific ISO 26262
[67] require the estimation of execution times and needed
communication resources. Additionally, to make sure that
real-time requirements are fulfilled, timing analyses particu-
larly for the highly safety-critical parts of the system under
development shall be performed.

Most of the state-of-the-art approaches for timing analyses
taking into account the execution platform apply simulative
techniques typically implemented in commercial-off-the-
shelf tools (e.g., [102,113]). However, such approaches are
applied late in the development process, mostly because
they rely on the existence of the execution platform or the
compiled platform-specific code [29,90,91] (e.g., to com-
pute or measure a worst-case execution time [107]). The
detection and fixing of such problems in later engineer-
ing phases causes costly development iterations [13,103].
Consequently, there is a need to apply platform-aware tim-
ing analyses earlier in the development process, ideally in
the requirements engineering (RE) phase. Particularly, the
timing-relevant platform resource properties are typically
knownorwell estimated in such early engineering phases due
to the knowledge from prior development projects [60,91].

For enabling timing analyses already in the early RE
phase, related work provides means to specify and ana-
lyze timed behavioral models (typically relying on scenario-
or automata-based notations), thereby abstracting from the
final platform-specific artifacts. However, approaches ana-
lyzing timed scenario-based models require to pre-calculate
the timing effects induced by the resource properties and
to specify them as part of the time-constrained scenar-
ios [45,55,56,119] or as part of design models that are
verified against the scenarios [77,78,81,82].Approaches ana-
lyzing automata-based models likewise require specifying
the pre-calculated timing effects as part of the automata
[2,11,70,71,79,98], require detailed task models like the
state-of-the-art approaches mentioned above [4,5], or pro-
vide neither simulation nor visualization means to reveal the
causes of real-time requirement violations [40]. Summariz-
ing, most of the related work on analyzing timed models

requires reenacting, pre-calculating, and explicitly specify-
ing the timing effects induced by the resource properties
(e.g., CPU processing power, bus throughput) in a low-level
manner as part of the behavioral models. Thus, timing ana-
lysts cannot pragmatically (re-)use platform models with
specified resource properties stemming from other sources
in the development process (e.g., for documentation and
design review purposes) and verify them against the real-
time requirements, thereby hindering a broad acceptance of
such approaches.

In order to relieve the timing analysts from the burden to
pre-calculate and to specify the timing effects induced by the
platform resource properties as part of behavioral models,
we propose an approach to enable early and platform-aware
timing analyses already during the RE phase. Since the
targeted real-time software-intensive systems strongly rely
on message-based communication, we base the real-time
requirements on our timed and component-based dialect
[17,64,65] of the scenario-based notation ofModal Sequence
Diagrams (MSDs) [48]. Like the related work, the modeling
and analysis means provided by our dialect enable speci-
fying and validating real-time requirements but incorporate
platform-specific aspects only insufficiently. Thus, to provide
both an abstract specification of the execution platform with
its particular resource properties and the allocation of MSD
specifications to the execution platform, we furthermore
extend platformmodeling concepts of the real-timemodeling
UML profileMarte [93]. Based on the modeling languages
mentioned above, we mainly introduce a new operational
semantics for platform-aware MSDs dedicated to timing
analyses. This semantics encompasses an extended MSD
message event handling semantics as inspired by Tindell et
al. [115] and particularly encapsulates the computation of
the resource properties into platform-induced timing effects.
This enables verifying the timing effects w.r.t. the real-time
requirements specified by timed MSDs in timing analyses
through applying simulation and model checking in our tool
suite TimeSquare [28]. To operationalize the semantics, we
apply our Gemoc approach [22,80] for the specification of
executable modeling languages. We illustrate and evaluate
the approach with the automotive software-intensive system
EBEAS.

In terms of related work, our previous works, and article
contributions, we reformulate as follows:

• In contrast to related work, our approach enables that
the timing effects do not have to be pre-calculated and
explicitly specified as part of the behavioral models, so
that scenario- and component-based models with real-
time requirements and platform models with resource
properties can be independently conceived and (re-)used.
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• In terms of our previous works, we employ our timed
[17,64] and component-based [65] dialect of MSDs
[48] for the specification of time-constrained scenario
requirements and software architectures. Furthermore,
we apply different languages and the tooling of our
Gemoc approach [22,80] for the specification of our
platform-aware MSD semantics. Based on our seman-
tics and taking the platform models and the allocated
time-constrained scenario requirements and software
architectures as input, Gemoc generates timed models
based on our Clock Constraint Specification Language
[24]. These models are executable in our timing analysis
tool suite TimeSquare [28].

• As the main contribution, we introduce our new opera-
tional semantics for platform-aware MSDs through the
application of Gemoc, which computes and thereby sep-
arates the timing effects from their inducing platform
resource properties, and which extends the abstract MSD
message event handling semantics as inspired by Tindell
et al. [115]. Furthermore, we introduce a new modeling
language for enabling the specification of execution plat-
forms with their resource properties and the allocation of
MSD specifications to them through extending the plat-
form modeling concepts of the real-time modeling UML
profile MARTE [93].

In Sect. 2, we introduce the foundations that our approach
relies on. Section 3 outlines an overview of the approach.
Subsequently, we present it in more detail by first present-
ing our modeling language for execution platforms and the
allocation from requirement scenarios to them (cf. Sect. 4).
In Sect. 5, we provide conceptual extensions and definitions
for message event semantics and timing effects to be consid-
ered by timing analyses. Based on these ingredients, Sect. 6
presents our operational semantics for timing analyses. Sec-
tion 7 illustrates the results through an exemplary timing
analysis and model checking. We describe the evaluation in
Sect. 8 and related work in Sect. 9. Finally, we conclude and
sketch future work in Sect. 10.

2 Foundations

In the following, we present the foundations for the compre-
hension of the particular ingredients that our approach relies
on. Section 2.1 introduces general foundations on the kind
of timing analysis we focus on. In Sect. 2.2, we present the
basics of MSDs. Section 2.3 outlines theMarte profile, and
Sect. 2.4 introduces the basics of a language for the specifi-
cation of executable time models. Finally, Sect. 2.5 outlines
the Gemoc approach.

2.1 Timing analysis for hard real-time systems

We focus on hard real-time systems, for which the viola-
tion of a hard real-time requirement may cause catastrophic
consequences (e.g., people are harmed) [18]. Hard real-time
systems must be designed to tolerate worst-case conditions
[72]. Typically, a schedulability analysis (e.g., [18]) for hard
real-time systems investigates whether jobs with each an
activation time, a processing time, and a deadline w.r.t. the
activation time can be scheduled on resources so that always
all deadlines are met. As motivated in the introduction, such
schedulability analyses are demanded by standards for the
development of safety-critical systems.

Response time analysis [8,112] is a well-established a
priori analysis technique to check the timing properties
of hard real-time systems, which is implemented in many
commercial-off-the-shelf tools (e.g., [102,113]). It computes
upper bounds on the response times of all jobs and checks
whether all response times fulfill the corresponding timing
requirements. In simplified terms, the response time of a job
is defined as its activation time plus its processing time plus
the sum of potential preemption times by other jobs. A job
can be a task to be executed on a processing unit or a mes-
sage to be transmitted via a communication medium. In the
case of tasks, the job processing time is the execution time
that a processing unit needs to execute the task. The worst-
case execution times of the tasks are inputs to task response
time analyses [105], and their computation requires the final
platform-specific code or a very detailed model of the system
[107].’

In the case of messages, the job processing time is the
transmission time that the communication medium needs to
transmit the message. Its computation relies on the proper-
ties of the physical mediumwhich influence the transmission
time (e.g., technology or protocol). Additionally, the activa-
tion time also encompasses a queuing jitter that is inherited
from the worst-case response time of the sending task [117].
Thus, the results of message response time analyses also
depend on the final platform-specific code.

Beyond the timing properties of individual tasks and mes-
sages, determining theoverall timingproperties of distributed
real-time systems requires a more holistic view of the sys-
tem [75]. These timing properties are usually based on event
chains starting with an initial system stimulus; involving
multiple software components that may be deployed on dif-
ferent ECUs; until the production of an externally observable
response event. The timing behavior of event chains con-
verges from the occurrence of task start and completion
events, as well as of different events involved in the message
transmission. The most used event chain timing property is
the end-to-end response time, which is defined as the amount
of time elapsed between the arrival of an event at the first task
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and the production of the response by the last task in the chain
[90].

This is of specific importance in our approach, because
high-level real-time requirements are usually formulated
w.r.t. such end-to-end response times of the event chains. That
is, such requirements impose timing constraints between an
initial system stimulus and an externally observable response
of event chains.

To verify such high-level real-time requirements, existing
approaches for end-to-end response time analysis like [29,36,
88–90,116] still rely ultimately on the response times of the
individual jobs and consequently require the final platform-
specific implementation. Thus, they can be applied only in
late development phases, like the techniques and tools for the
analysis of the individual response times.

Here, we rely on the fact that coarse-grained informa-
tion about the timing-relevant resource properties is mostly
known in the early RE phase from prior projects or expert
knowledge [60,91]. Also, we propose to express the real-time
requirements based on Modal Sequence Diagrams intro-
duced in the next section.

2.2 Modal Sequence Diagrams (MSDs)

Scenario-based notations enable the intuitive specification
and comprehension of message-based interaction require-
ments, and UML Interactions [96, Clause 17] provide such a
notation as a visualmodeling language bymeans of sequence
diagrams.

To make UML Interactions more suitable regarding uni-
versal/existential properties, the Modal profile [48] syntac-
tically extends UML Interactions with modeling constructs
as known from Live Sequence Charts (LSCs) [23]. There-
fore, this profile introduces a UML-compliant form of
LSCs, calledModal SequenceDiagrams (MSDs). In previous
works, based on the Play-out algorithm [50], we extended
MSDs with modeling constructs and operational seman-
tics for component-based software architectures [65] and
for high-level real-time requirements [17,64]. The resulting
Real-time Play-out approach [17] defined the operational
semantics of such timed MSD requirements and thereby
enables their simulative validation.

In this paper, we focus on providing modeling constructs
and an operational semantics for the early consideration
of execution platform impacts on the timing requirements.
However, in order to ease the reading of the proposi-
tion, we introduce MSD constructs and semantics (and
later our approach) based on the EBEAS example (see
Fig. 1). The proposed excerpts of the EBEAS example in
Fig. 1 highlight a real-time requirement on the automatic
emergency braking maneuver in the case of an obstacle
detection.

Fig. 1 Example of a component-based MSD specification

Figure 1 represents a component-basedMSDspecification
(in the middle) together with involved types (in the top) and
one of the MSDs (in the bottom).

The next sections describe more in detail the structure of
component-based MSD specifications (Sect. 2.2.1) as well
as their basic and timed semantics (Sect. 2.2.2).

2.2.1 Structure of MSD specifications

A component-based MSD specification is structured by
means of MSD use cases. Each MSD use case encapsulates
for a specific functionality several interrelated scenarios,
which specify requirements on themessage-based interaction
behavior to be provided by the system under development.
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An MSD use case encompasses the participants involved
in providing the functionality, as well as a set of MSDs
describing the requirements on the interactions between these
participants. Such an MSD specification is subdivided into
three parts: Types, collaborations, and interaction behaviors,
explained in the following.

UML interfaces and components provide reusable types
for all MSD use cases of the specification. The interfaces
encompass operations that are used as message signatures
in the MSDs. For example, the class diagram for the UML
package ObstacleDetection::Interfaces in the top of Fig. 1
contains an interface Decisions, which contains an opera-
tion enableBraking. This interface is used as required and
provided interface in each one port of the components Situa-
tionAnalysis and VehicleControl, respectively (see package
ObstacleDetection::Types in Fig. 1). For any MSD use
case, the actual component-based software architecture is
defined by roles of the components. More precisely, we spec-
ify component roles and their interconnections by using an
UMLcollaboration (dashed ellipse symbol) [96,Clause11.7]
(ObstacleDetection in Fig. 1). We distinguish between sys-
tem component roles that are controlled by the system under
development (component symbols) and environment com-
ponent roles that are controlled by the environment (cloud
symbols).

For example, the system components sa: SituationAnaly-
sis and vc: VehicleControl communicate with each other via
the connector sa2vc. The interfaceDecisions typing the ports
of the corresponding component types determinewhichmes-
sages can be exchanged through this connector. Additionally,
both system component roles in turn interact with the envi-
ronment component role esc: ElectronicStabilityControl via
dedicated connectors.

The MSDs define the behavior of the collaboration
(cf. abstract syntax links ownedBehavior). We distinguish
MSDs into requirement MSDs (no stereotype applied) and
assumption MSDs (an MSD with the stereotype
«EnvironmentAssumption» applied). The former ones specify
requirements on the interaction behavior of the system under
development, whereas the latter ones specify assumptions
on the behavior of the environment. For example, the MSD
EmcyBraking in the bottom of Fig. 1 is a requirement MSD
specifying the emergency braking behavior of the EBEAS
in the case the adaptive cruise control detects an obstacle,
whereas an assumption MSD is only indicated.

An MSD itself encompasses MSD messages, which are
associated with a sending and a receiving lifeline, an opera-
tion signature, and a connector.

For example, the lifeline vc: VehicleControl (receiving
the enableBraking message) represents the equally named
role in the collaboration. Consequently, the enableBraking
message is associated with the operation signature from the

Decisions interface and is specified to be sent via the con-
nector sa2vc in the software architecture.

Based on the kind of the sender role, MSD messages are
further distinguished into environment messages and system
messages. The former ones aremessages sent by the environ-
ment to the system (e.g.,obstacle and standstill),whereas the
latter ones are messages sent by the system internally (e.g.,
enableBraking) or to the environment (e.g., emcyBraking).

After this short introduction about the structure of
component-based MSD specifications, we explain the basic
and timed MSD semantics in the following.

2.2.2 MSD semantics

An MSD progresses as message events corresponding to the
specifiedMSDmessages occur in the system at runtime (i.e.,
during Play-out or an actual system execution). Each MSD
message is of two different kinds, where both kinds deter-
mine for the corresponding message events their safety and
liveness properties, respectively. In this article, we focus on
MSD messages that allow no occurrences of message events
that the scenario specifies to occur earlier or later (safety)
and whose corresponding message events must occur even-
tually (liveness). Message events that do not correspond to
any MSD messages are ignored, that is, they do not influ-
ence the progress of the MSDs and the MSDs do not impose
requirements on them.

As message events occur that can be correlated by the
Play-out algorithmwithMSDmessages, theMSDs progress.
This progress is captured by the cut, which marks for every
lifeline the locations of the MSD messages that were corre-
lated with the message events.

For example, Fig. 1 shows for the depicted MSD in the
bottom its particular cuts c0–c4.

Timed MSDs allow defining real-time requirements by
referring to clock variables, which are adopted from Timed
Automata [2] and represent real-value variables that increase
synchronously and linearly with time. We distinguish clock
resets and time conditions. Clock resets are visualized as rect-
angles with an hour-glass icon, containing an expression of
the form c = 0 over a clock variable c. Time conditions are
visualized as hexagons with an hour-glass icon and define
assertions w.r.t. clock variables. To this end, each time con-
dition defines an expression of the form c �� value, with
a clock c, an operator ��∈ {<,≤,>,≥}, and an Integer
value value. We distinguish minimal delays (��∈ {>,≥})
and maximal delays (��∈ {<,≤, }).

For example, the MSD in Fig. 1 contains a clock reset
and a maximal delay defining that the message events corre-
sponding to all enclosedMSDmessagesmust occurwithin 50
time units after the message event occurrence corresponding
to the MSD message obstacle prior to the clock reset. Such
a combination of a clock reset and a time condition forms a
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real-time requirement.More complex real-time requirements
can be formed by specifying multipleMSDs with constraints
on overlapping message events (see also our MSD require-
ment pattern catalog [38] for details).

We opt for applying these existing timed MSD model-
ing constructs and semantics, instead of ignoring them and
adding real-time requirements to the scenarios by means of
theMarte profile (cf. next section). By doing so, we do not
introduce a further variant of the MSD language and thereby
can use the timed MSDs both in Real-time Play-out and in
the approach presented in this article.

2.3 Platformmodeling and allocation with MARTE

The UML profile Modeling and Analysis of Real-Time
Embedded Systems (Marte) [93,111] provides modeling
means for design and analysis aspects for the embedded soft-
ware part of software-intensive systems. Marte consists of
several subprofiles; and we have sought to reuse as much as
possible existing suitable concepts from these subprofiles.
In the following, we introduce the subprofiles we use and/or
extend: Non-functional properties; generic resource model-
ing; generic quantitative analysis; and allocations.

• From the Marte subprofile Non-functional Properties
Modeling (NFPs) [93, Chapter 7/Annex F.2] and its
model library Marte_Library [93, Annex D] we used
pre-defined measurement units. We mostly reused mea-
surement units for the time. We also reused intervals for
numeric data types, percentages, durations, data sizes,
and transmission rates.

• The Marte subprofile Generic Resource Modeling
(GRM) [93, Chapter 10/Annex F.4] provides modeling
means for the specification of generic resources of execu-
tion platforms. From this subprofile, we reuse modeling
concepts for memory resources, processing resources
(with a relative speed factor), communication media
(with a transmission rate and blocking time), schedulers
(with a scheduling policy), and resource usages (with
operation execution times and message sizes).

• The Marte subprofile Generic Quantitative Analysis
Modeling (GQAM) [93, Chapter 15/Annex F.10] pro-
videsmodelingmeans for the specification of generic and
quantitative aspects relevant to automatic analysis tech-
niques. From this subprofile,we reused so-calledanalysis
contexts, which encompass workload behaviors based on
the distribution of stimulus events.

• TheMarte subprofile Allocation Modeling (Alloc) [93,
Chapter 11/Annex F.5] provides modeling means for
the specification of allocations of logical elements (i.e.,
application software) to physical and technical elements
(i.e., execution platform). From this subprofile,we reused

the «allocate» stereotype, which enable the specification
of a directed allocation link between software and exe-
cution platform components, which are part of an MSD
specifications (cf. Sect. 2.2.1).

2.4 Clock Constraint Specification Language (CCSL)

Associated with theMarte profile, we proposed in previous
work [24,28] the Clock Constraint Specification Language
(CCSL) dedicated to timing specifications. This language is
formally defined and tooled to enable the analysis of resulting
specifications. CCSL is a formal declarative language for the
modeling and manipulation of time in real-time embedded
systems [7], initially and informally introduced in Marte
[93, Chapter 9/Annex C.3]. The formalism bases on the
notion of logical time [37,76], which was originally designed
for distributed and concurrent systems, but which was also
used in synchronous languages. CCSL generalizes different
descriptions of time, based on the notion of clocks, a clock
being an ordered set of instants (or ticks) namedI. The notion
provides a sound way to mix synchronous and asynchronous
constraints between clocks. Such amix enables the symbolic
specification of partial order sets on the instants of clocks,
which are well suited for the description of a large set of
model control flow (e.g., [41,42,73,85,101]).

Solving aCCSLmodel (i.e., doing a run) results in a sched-
ule. A schedule σ over a set of clocks C is a possibly infinite
sequence of steps, where a step is a set of ticking clocks
σ : N → 2C . For each step, one or several clock(s) can tick
depending on the constraints.

The operational semantics of CCSL models [6] specifies
how to construct the acceptable schedules step by step and
is given as a mapping to a Boolean expression on C , where
C is a set of Boolean variables in bijection with C . For any
c ∈ C , if c is valued to true, then the corresponding clock
ticks; if valued to false, then it does not tick. Note that if no
constraints are defined, each Boolean variable can be either
true or false and, consequently, there are 2n possible futures
for all steps, where n is the number of clocks.

Each time a constraint is added to the specification, it adds
Boolean constraints on C . The Boolean constraints depend
on the definition of the constraint and its internal state. When
several constraints are defined, their Boolean expressions are
put in conjunction so that each added constraint reduces the
set of acceptable schedules. (It is a trace refinement according
to [3].)

CCSL models are inputs to our tool suite TimeSquare
[28], which supports their simulation with the generation
of timing diagrams, the animation of UML models, etc.
It also supports the exhaustive simulation (when the state
space is bounded), enabling the model checking of CCSL
models. TimeSquare has been applied for the timing anal-
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ysis (cf. Sect. 2.1) of software-intensive systems (e.g.,
[20,41,42,84,85,101]).

For a CCSL model, the actual constraints can be specified
bymeans of twoways explained in the following sections.On
the one hand, CCSL provides pre-defined constraints on lan-
guage level (metamodel level M2) that the engineer can call
and pass arguments to at model level (metamodel level M1)
(cf. Sect. 2.4.1).On the other hand, aCCSLextension enables
the engineer to specify user-defined constraints that can be
used like the pre-defined ones afterward (cf. Sect. 2.4.2).
Finally, a CCSL model, either based on pre- or user-defined
constraints, can be used to perform an exhaustive state space
exploration (if the state space is finite) and model checking
(cf. Sect. 2.4.3).

2.4.1 Pre-defined CCSL constraints

CCSL defines the two constraint kinds clock expressions and
clock relations. André [6] formalizes a set of pre-defined
CCSL constraints, which TimeSquare provides as a model
library so that these constraints can be conveniently used dur-
ing the specification and the TimeSquare-based simulation
ofCCSLmodels. In the following,we explain the pre-defined
clock expressions and relations that we apply in this article.

Clock relations impose (synchronous or asynchronous)
orderings between the instants of participating clocks.

⊂ : SubClock (subClock: Clock, superClock: Clock )This
relation constrains all ticks of subClock to coincide with
a tick of superClock but not vice versa. That is, subClock
can only tick when superClock ticks, but it does not have
to.

I |	 a ⊂ b ⇔ ∀ia ∈ Ia, ∃ib ∈ Ib, ia ≡ ib (1)

where the coincidence relation ≡ is an equivalence rela-
tion (reflexive, symmetric and transitive). It reflects the
fact that two instants have the exactly same logical time.
= : Coincides (clock1: Clock, clock2: Clock )

This relation constrains all instants of clock1 and clock2
to coincide. That is, the events represented by clock1 and
clock2 must occur simultaneously.

I |	 a = b ⇔
∀i ∈ Ia, ∃ j ∈ Ib, i ≡ j
∧∀i ∈ Ib, ∃ j ∈ Ia, i ≡ j

(2)

≺ : Precedes (leftClock: Clock, rightClock: Clock )

This relation constrains the kth instant of leftClock to
precede the kth instant of rightClock ∀k ∈ N. That is,

Fig. 2 ExemplaryTimeSquare simulation run of the CCSL clock rela-
tion Precedes

the event represented by leftClock always occurs before
rightClock.

I |	 a ≺ b ⇔
∃h : Ib → Ia,

(∀i ∈ Ib, (h(i) ≺ ia)
∧ ∀i, j ∈ I, (i ≺ j) ⇒ (h(i) ≺ h( j))

) (3)

where the precedence relation ≺ is a strict order rela-
tion (irreflexive, asymmetric, and transitive) between two
instants.

Figure 2 depicts an exemplary TimeSquare simulation
run of this clock relation. In this example, the relation
enforces that clock1 always ticks before clock2 ticks.
� : NonStrictPrecedes (leftClock: Clock, rightClock:
Clock) This non-strict version of the Precedes relation
constrains the kth instant of leftClock to coincide with or
precede the kth instant of rightClock ∀k ∈ N. That is, the
events can also occur simultaneously.

I |	 a � b ⇔
∃h : Ib → Ia,

(∀i ∈ Ib, (h(i) � ia)
∧ ∀i, j ∈ I, (i � j) ⇒ (h(i) � h( j))

) (4)

where the non-strict precedence relation � is defined by
≺ ∨ ≡.

Clock expressions define a new clock based on other clocks
and possibly extra parameters. In the following, we describe
the expressions used in this article.

+:Union ( clocks: Set(Clock) )The clock specified by this
expression ticks whenever one of the clocks in its param-
eter set clocks ticks. Consequently, the instant set of the
resulting clock (named c here) is such that:

Ic |	 c := a + b ⇔
∀ia ∈ Ia, ∃i ∈ Ic, (i ≡ ia))

∧ ∀ib ∈ Ib, ∃i ∈ Ic, (i ≡ ib))
∧ ∀i ∈ Ic, (∃ia ∈ Ia, (i ≡ ia))

∨ (∃ib ∈ Ib, (i ≡ ib))

(5)

where ≡ means coincides with.
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Fig. 3 Exemplary TimeSquare simulation run of the CCSL clock
expression Union

Intuitively, for all instants of the clocks a and b, there
exists an instant of the clock c and there is no instant of c
that does not coincide with an instant of a, or b, or both.

Figure 3 depicts an exemplary TimeSquare simulation
run of this clock expression. In this example, a new clock
unionOfCl1Cl2 is specified that ticks whenever one or
both of the argument clocks clock1 and clock2 tick.
$: DelayFor (clockForCounting: Clock, clockToDelay:
Clock, delay: Integer) This expression delays any tick of
the clock clockToDelay by delay ticks w.r.t. a reference
clock clockForCounting. Note that we apply in this arti-
cle an always ticking clock globalTime as argument for
the reference clock parameter clockForCounting, so that
the clock defined by this expression simply ticks delay
instants after clockToDelay (named a below).

I |	 c := a$delay w.r .t . b ⇔
∃h : Ic → Ib, ∀i ∈ Ic, (i ≡ h(i))

∧ ∀ia ∈ Ia, ∃ic ∈ Ic, ∃X ⊆ Ib,(
(|X |=delay)∧∀ib ∈Ib, (ib ∈ X ⇔ ia ≺ ib � ic)

)
(6)

meaning that it exists X instants of b between instants of
a and the delayed instant of c, and instants of c coincide
with some instants of b.
every...on: PeriodicOffsetP (baseClock: Clock, period:
Integer) The clock specified by this expression ticks any
periodth tick of the baseClock. Note that we apply in this
article an always ticking clock globalTime as argument
for baseClock so that the clock defined by this expression
simply ticks any periodth tick.

I |	 c := everyperiodonbc ⇔
∀i ∈ Ic, ∃ibc ∈ Ibc, (i ≡ ibc) ∧ (idx(ibc)%period = 0)

(7)

where idx(ibc) is the index of the ibc instant in Ibc.
∨: Sup ( clocks: Set(Clock) ) The clock specified by this
expression ticks with a clock in the parameter set that
does not precede the other clocks; that is, it specifies the
supremum of the particular instant sets.

I |	 c := a ∨ b ⇔
I |	 a � c ∧ I |	 b � c

∧ /∈ d, Id |	 a � d ∧ Id |	 b � d ∧ d ≺ c
(8)

meaning that there is no clock d being slower than a or
b or being faster than c.

We provide the whole formal semantics definition in
[24]. These clock constraints are integrated in our tool
suite TimeSquare. Additionally, to ease the application of
constraints to specific domains, it is possible to specify user-
defined constraints, as introduced in the next subsection.

2.4.2 User-defined constraints

To ease the specification of domain-specific CCSL con-
straints, we extended CCSL in prior work with the Model
of Concurrency and Communication Modeling Language
(MoCCML) [25,26].MoCCMLis a specific formof automata
that integrates seamlessly with the semantics of CCSL. The
automata are a way to specify clock relations, which can be
simulated in TimeSquare and stored in user-defined model
libraries.

For example, Fig. 4 depicts the MoCCML relation
MyUser-definedRelation, which has three clock parameters
and a local Integer variable counter initialized with zero.
Figure 5 depicts a corresponding exemplary TimeSquare
simulation run that initializes three clocks and applies the
clock relation myRelation typed by the MoCCML relation
on them. The automaton specifies two states A and B with a

Fig. 4 Exemplary MoCCML relation

Fig. 5 Exemplary TimeSquare simulation run of the MoCCML rela-
tion depicted in Fig. 4

123



Early timing analysis based on scenario requirements and platformmodels

transition from one state to the other for each of the states.
Such transitions specify possibly coincident parameter clock
triggers, guards, and effects. For example, the transition from
A to B fires when both the clock parameters cl1 and cl2 (i.e.,
the clock arguments clock1 and clock2 in the simulation run)
tick simultaneously and additionally the guard [counter< 1]
holds. When the transition fires, its effect counter++ incre-
ments the counter. The transition from state B to A fires on
the tick of the clock parameter cl3 (i.e., the clock clock3 in
the simulation run) and sets the counter to zero.

The triggers of a transition that leave a state specify which
clocks are allowed to tick in this state. For example, the clock
parameter cl3 is not allowed to tick in state A, and the clock
parameters cl1 and cl2 are not allowed to tick in state B.
Furthermore,when in stateA, the clocks cl1 and cl2 are forced
to tick simultaneously to fire the transition. We provide all
the details on the formal semantics in [25].

2.4.3 Model checking CCSL models

TimeSquare is a direct implementation of the formal oper-
ational semantics as specified in our previous work [25]. As
such, the state of each constraint during the simulation is
clearly defined, so that it is also for a CCSL model. Conse-
quently, it is possible based on a CCSLmodel to exhaustively
explore its acceptable simulations. Each time a new state is
reached, it is compared to already visited states. If it does
not exist, it is added to the visited states, otherwise, a new
transition to an existing visited state is created, and it creates
a loop representing an acceptable periodic behavior of the
CCSL model. In case the set of possible simulations is com-
puted completely, it means that the whole state space is also
computed completely and can be serialized. In TimeSquare,
such state spaces are typically serialized in the dot language
[30] as well as in theAldebaran format [1]. The resulting files
(and consequently the CCSL model) can be verified against
properties written in the Model Checking Language [86].

2.5 Specifying operational semantics with GEMOC

According to Harel and Rumpe [51], a modeling language
consists of an abstract syntax specifying the language con-
cepts and their relations, a semantic domain describing the
language meaning, and a semantic mapping relating the
language concepts to the semantic domain elements. Our
Gemoc approach [22,80] enables to flexibly specify oper-
ational semantics for a modeling language following these
definitions.

Specifically, the semantic domain is specified by means
of a Model of Concurrency and Communication (MoCC).
This MoCC is defined by semantic constraints in the form of
pre-definedCCSL constraints (cf. Sect. 2.4.1) aswell as user-
defined MoCCML constraints (cf. Sect. 2.4.2). The MoCC

defines the concurrency, the synchronizations, and the possi-
bly timed way the elements of a program interact during an
execution. The semantic mapping is specified by the declara-
tion of Domain-Specific Events (DSEs), which associate the
abstract syntax and the MoCC. The DSEs are specified by
means of our declarative Event Constraint Language (ECL)
[27]. ECL is an extension of the Object Constraint Language
[94], augmented with the notions of DSEs as well as behav-
ioral invariants, which use CCSL andMoCCML constraints.

The approach is implemented in our modeling language
workbench Gemoc Studio [16] for building and compos-
ing executable modeling languages. Gemoc Studio takes a
language metamodel, an ECL mapping specification, and
semantic constraints specified through aMoCC as inputs and
automatically derives a modeling workbench with simula-
tion and debugging facilities. Specifically, it automatically
derives a dedicated QVTo model transformation [95]. This
derived model transformation takes an instance of the lan-
guage metamodel as input and generates a CCSL model that
parameterizes an execution engine based on TimeSquare.
The model transformation maps the associated DSEs to
CCSL clocks based on the ECL mapping specification and
applies the semantic constraints from the behavioral invari-
ants on these clocks.

3 Approach overview

Asoutlined in the introduction, our approach encompasses
three main ingredients:

1. We propose a Marte-based (cf. Sect. 2.3) UML profile
to augment the timed and component-based version of
the scenario notation Modal Sequence Diagrams (MSDs)
(cf. Sect. 2.2) with platform aspects. This encompasses
specification means for a) an execution platform model
together with timing-relevant resource properties, b) the
allocation of MSD specifications onto these platform
models, and c) analysis contexts to be considered dur-
ing the timing analyses. We call the resulting models
platform-specific MSD specifications and describe them
in Sect. 4.

2. We conceptually extend the message event semantics for
scenario notations in general and MSDs in particular by
introducing additional event kinds that occur during the
execution of the software on its target platforms. This
enables time to elapse between such events during our
end-to-end response time analyses, and consequently to
introduce platform-specific delays (cf. Sect. 2.1). We also
provide means to compute these different delays based on
the resource properties defined in platform-specific MSD
specifications, which we describe in Sect. 5.
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Fig. 6 Specifying MSD semantics for timing analyses with Gemoc

3. The main contribution is the specification of platform-
aware MSD operational semantics dedicated to timing
analyses. We apply the Gemoc approach (cf. Sect. 2.5)
to declaratively specify these operational semantics,
which formalizes and spawns the platform-induced tim-
ing behavior of MSD specifications. Based on the seman-
tics specification, Gemoc automatically derives CCSL
models that are input to the timing simulation and model
checking tool TimeSquare (cf. Sect. 2.4). We present
the semantics specification in Sect. 6 and an illustrating
timing analysis in Sect. 7.

Figure 6 gives an overview of our application of the
Gemoc approach. The Abstract Syntax of conventional (i.e.,
component-based and timed) MSD specifications is defined
at the language level (metamodel levelM2) by several parts of
theUMLmetamodel and theModal profile (cf. Sect. 2.2).We
extended this Abstract Syntax by introducing platform and
timing analysis aspects through ourMarte-based TAMpro-
file. The Mapping Specification declares Domain-Specific
Events (DSEs) in the context of Abstract Syntax concepts
and constrains their behavior through Semantic Constraints
applied by using the Event Constraint Language (ECL)
(cf. Sect. 2.5). The set of Semantic Constraints defines
the Model of Concurrency and Communication (MoCC) by
means of Pre-defined CCSL Constraints (cf. Sect. 2.4.1) as
well as User-definedMoCCML Constraints (cf. Sect. 2.4.2).

At the model level (metamodel level M1), we provide a
Preprocessing QVTo [95] model transformation that takes
a Platform-specific MSD Specification as input and com-
putes derived properties. That is, based on the resource
properties, this transformation computes delays, which we
conceptually present in Sect. 5. The output is a Platform-
specific MSD Specification with Computed Static Delays,
which is input to another QVTo model transformation

MSD-to-CCSL Transformation. Thismodel transformation is
automatically derived by Gemoc Studio from our declared
DSEs and their MoCC. It encodes the functional and real-
time requirements as well as the pre-computed delays and
further timing-relevant resource properties into constrained
timing effects as part of a CCSL Model. At runtime level
(M0), a timing analyst can simulate such CCSL models in
TimeSquare to reveal potential real-time requirement vio-
lations.

4 The TAM profile for platform-specific
interactions

Conventional component-based and timed MSD specifica-
tions as introduced in Sect. 2.2 define platform-independent
requirement specificationswith real-time constraints; i.e., the
software architecture and the MSD specifications have no
correlation to any concrete target execution platform. In this
paper, we propose to consider the timing behavior emerging
from the allocation of component-based MSD specifications
to concrete target execution platforms, which we together
call platform-specific MSD specifications.

In order to support themodeling of platform-specificMSD
specifications, we present in this section the most important
concepts of our Timing Analysis Modeling (TAM) UML pro-
file: Execution platforms including the specification of the
resource properties that have to be considered in the timing
analysis (and consequently in the proposed platform-specific
MSD semantics), allocations of logical software components
to the platformelements, and analysis contexts.All these con-
cepts extend existing concepts from theMarteUML profile
[93] (cf. Sect. 2.3). The overall profile (as fully presented in
[61, Section 4.6.1]) encompasses 5 subprofiles containing 29
stereotypes with 54 tagged values (including tagged values
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Fig. 7 Platform-specific MSD specification excerpt for the EBEAS

inherited from Marte) and stems from a literature review
on resource properties that impact the timing behavior [12,
Chapter 3]. We do not present the full TAM profile here but
illustrate its use through a platform-specific MSD specifica-
tion for the EBEAS example, which will also be used as basis
to explain the extension of the MSD semantics amenable to
timing analysis (cf. Sect. 6).

In the following, we explain the most important stereo-
types by illustrating their application to an EBEAS execution
platform model depicted in Fig. 7. Therefore, we add
platform-specific information to the platform-independent
MSD specification introduced in Fig. 1. In Sect. 4.1, we
explain how we specify execution platforms with our TAM
profile. Subsequently, we explain the allocation of the soft-
ware components to the resulting execution platform ele-
ments in Sect. 4.2. Finally, we present the specification of
application software timing properties in Sect. 4.3 and the
definition of analysis contexts in Sect. 4.4.

4.1 Specifying execution platforms

We provide three subprofiles for the specification of con-
crete execution platforms together with the properties that
impact the timing behavior of the system. For instance, the
bottom of Fig. 7 (PlatformModel package) illustrates the use
of the subprofiles to define the EBEAS execution platform
model. In the following subsections, we use this package to

illustrate the application of the three subprofiles: The hard-
ware execution platform (Sect. 4.1.1), the real-time operating
system (Sect. 4.1.2), and the communication infrastructure
(Sect. 4.1.3).

4.1.1 Specifying the hardware processing

In this section, we illustrate means for the specification
of hardware elements and processing units. The TamECU
is an extension of the Marte stereotype GRM::Resource,
which serves as a container for other elements of the
hardware platform (e.g., the memory units, the commu-
nication media, the peripherals, the processing units or
the operating system). The stereotype TamProcessingUnit,
contained by the TamECU, extends the Marte stereotype
GRM::ProcessingResource. It describes the properties of the
processing unit of an ECU or of a microcontroller. Among
further properties, it inherits the tagged value speedFactor,
which describes the relative speed w.r.t. to the normalized
speed of a reference processing unit [93, Section 10.3.2.10].
Furthermore, it adds the taggedvaluenumCores,which spec-
ifies the amount of cores that the processing unit provides and
consequently the number of tasks that can be handled con-
currently.

For example, the EBEAS execution platform (Platform
Model package of Fig. 7) contains two microcontrollers
(«TamECU») :μC1 and :μC2. Both of them specify each 1 pro-
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cessing unit («TamProcessingUnit»), respectively :PUμC1 and
:PUμC2; and both of them are single-core. However, accord-
ing to their speed factor value, the :PUμC2 processing unit is
two times faster than :PUμC1.

4.1.2 Specifying the real-time operating system

In this section, we illustrate means to specify timing-related
properties of real-time operating systems, which run on
ECUs or microcontrollers and provide services for the
application software. The stereotype TamRTOS describes
properties of such real-time operating systems. Among oth-
ers, it enables the specification of shared resources, operating
system services, and communication channels on operat-
ing system level for ECU-internal communication. In the
following, we focus on the specification of the operating
system’s scheduler since the scheduling strategy strongly
impacts the timing behavior of the system. For this purpose,
we provide the stereotype TamScheduler, which extends
the Marte stereotype GRM::Scheduler. Besides specifica-
tions means of properties like the overhead introduced by
the scheduler, it inherits two tagged values: the scheduling
policy (schedPolicy, e.g., fixed priority or round-robin), and
the preemption capability (isPreemptible).

For example, in the execution platform of the EBEAS,
the schedulers of both :PUμC1 and :PUμC2 processing units
depicted in Fig. 7 implement the most prominent [92,112]
real-time operating system scheduling policy FixedPriority
and are specified to be non-preemptible. In this policy, all
tasks have fixed priorities so that the scheduler dispatches the
highest priority task among the ready tasks again and again
after the task that is executing has finished. This scheduling
strategy is supported by the widespread real-time operating
systems of AUTOSAR [9] and OSEK/VDX [66], for exam-
ple.

4.1.3 Specifying the communication infrastructure

In this section, we illustrate means for the specifica-
tion of the infrastructure for the communication between
distributed components. We provide the stereotype Tam-
ComConnection, which extends the Marte stereotype
GRM::CommunicationMedia. It provides additional proper-
ties compared to the communication media stereotype, but
we focus here on the most important ones that are inherited
from Marte. The first important property of a communi-
cation medium is its latency, which is specified through the
inherited blockT tagged value. The second important prop-
erty of a communication medium is its throughput, specified
through the inherited capacity tagged value.

Furthermore, the network interfaces between a TamECU
and a TamComConnection need time to encode messages
from the software representation to a representation suit-

able for the transport via a communication medium and vice
versa. Such properties are captured as part of the TamCom-
Interface stereotype for ports of TamECUs, inter alia. The
TamComInterface stereotype extends the Marte stereo-
type GQAM::GaExecHost and inherits two tagged values
representing the overhead duration implied by the encod-
ing/decoding of the information to and from a communica-
tion media: commTxOvh and commRcvOvh.

For example, in the execution platform of the EBEAS,
one bus (CanBus) is used to communicate between the two
ECUs. The throughput of the «TamComConnection» CanBus
connector is set to 100kbit/s and its latency is set to 1ms.
Additionally, the communication interface of :μC1’s port
(«TamComInterface») specifies a message encoding overhead
of 1ms (commTxOvh=1ms), and the communication inter-
face of :μC2’s port specifies a message decoding overhead
of 1ms (commRcvOvh=1ms).

4.2 Specifying allocations

TheMarte subprofile Alloc provides means to allocate soft-
ware elements to resources of execution platforms (cf. Sec-
tion 2.3). We reuse the Alloc::Allocate stereotype to specify
allocations of MSD application elements onto TAM execu-
tion platform elements. This stereotype defines a link that
can be used to allocate software components onto process-
ing units, as well as logical connectors onto communication
media.

For instance, in the platform-specific EBEAS example,
the software components sa: SituationAnalysis and vc: Ve-
hicleControl are, respectively, allocated to the :μC1 and
:μC2 microcontrollers. This is illustrated in Fig. 7 by the
«allocate» links from the logical software components as part
of the collaboration to the «TamECU» microcontrollers as
part of the execution platform. Analogously, logical connec-
tors between the software components in the collaboration
are allocated to «TamComConnection» links in the Platform
Model. For instance, the logical connector sa2vc between
sa: SituationAnalysis and vc: VehicleControl is allocated to
the CanBus connecting :μC1 and :μC2.

4.3 Defining the software timing properties

In this section, we illustrate means to specify information
about the estimated resource consumption of the application
software. Its most important element is the TamOperation
stereotype, which inherits tagged values from the Marte
stereotype GRM::ResourceUsage [93, Section 10.3.2.13]. It
is used to specify the platform-specific timing-related aspects
of the operations used as MSD message signatures. We
consider here only the two most important tagged values:
execTime and msgSize. The tagged value execTime speci-
fies the best-/worst-case execution time of an operation with

123



Early timing analysis based on scenario requirements and platformmodels

respect to a processing unit with a speed factor of 1. The
msgSize specifies the size of the message associated with
the operation.

For instance, in the EBEAS example, both the
«TamOperation»sobstacle and trajectoryBeaconon the right-
hand side of Fig. 7 have a worst-case execution time of 5ms
(i.e., the worst-case execution time is specified through one
value). In contrast, the operation enableBraking has, speci-
fied by the interval value, a best-case execution time of 6ms
and a worst-case execution time of 9ms. Note that since
the enableBraking operation is part of the vc: VehicleCon-
trol, which is allocated to the :μC2 processing unit; and that
:μC2 has a speed factor of 2, then the actual best-/worst-
case execution time of enableBraking spans an interval of
[3 .. 4.5]ms. Additionally, the enableBraking operation is
associatedwith amessagewhose size is 500bit , and its actual
message transmission time has to be calculated based on this
size w.r.t. the throughput of the CanBus. These are concrete
examples of timing effects (i.e., concrete delay times in an
execution context) that are induced by the specified resource
properties.

4.4 Specifying analysis contexts

In this section, we illustrate means to specify the tim-
ing behavior of the system environment. More precisely, it
defines a set of timed scenarios that make explicit the hypoth-
esis underwhich the timingbehavior of the system is realized.
Such simulation scenarios are called analysis contexts [111,
Chapter 9] (cf. Section 2.3).

The main stereotype of the corresponding TAM subpro-
file is the TamAnalysisContext, which extends the Marte
stereotype GQAM::GaAnalysisContext. This stereotype ref-
erences the platform under analysis and the concrete work-
load that defines the timed scenarios. The workload is
specified through the TamWorkloadBehavior stereotype,
which extends the GQAM::GaWorkloadBehavior stereotype.
From the extension, it inherits the tagged values demand
and behavior that, respectively, define the analysis (timing)
assumptions on the environment on the one hand and the
system expected (timing) requirements on the other hand.
In our context, the behaviors are the requirement MSDs as
presented earlier while the demands are assumption MSDs
(cf. Section 2.2) triggering the system behavior, where the
timing of the environment message is constrained by an
arrival pattern. For this purpose, we provide the TAM stereo-
type TamAssumptionMSD that refines the Modal stereo-
type EnvironmentAssumption and references an arrival
pattern.

We support periodic and sporadic arrival patterns. A
periodic arrival pattern, specified by the stereotype TamPe-
riodicPattern, constrains the environment message to occur
periodically every period time units. We currently do not

Fig. 8 Analysis context example

support explicit jitter deviations from the periodical occur-
rences, as this timing information would be very detailed in
the early RE phase. However, if a jitter is known and as large
that a requirements engineer wants to specify it, sporadic
arrival patterns can be applied. These are specified by the
stereotype TamSporadicPattern and constrain an environ-
ment message to occur with a uniform distribution between
a minArrivalRate and/or a maxArrivalRate.

For example, Fig. 8 depicts an analysis context for
the EBEAS. The entry point is the «TamAnalysisContext»
EbeasAnalysisContext. It references the EbeasPlatform
container depicted in the bottom of Fig. 7 as well
as the «TamWorkloadBehavior» EbeasWorkload. The
EbeasWorkload references the behaviorMSDs depicted or
indicated in Fig. 1. Furthermore, the workload references
demand assumption MSDs. These specify that the trajecto-
ryBeacon message occurs periodically every 25ms and that
the obstaclemessage occurs sporadically with a rate ranging
from 50ms to 55ms, respectively.

5 Definition of interaction events and delays
required for timing analyses

The existing operational semantics for platform-independent
MSD specifications as defined by Real-time Play-out [17]
only considers synchronous messages, where the events of
sending and receiving a message at runtime coincides and
no notion of tasks exists. This abstraction is well suited to
analyze idealized systems but is not adequate for platform-
aware analyses. Such analyses require considering different
delays introduced by the actual execution on a platform. In
order to define these delays, we introduce in this section
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Fig. 9 Additional lifeline location kinds for MSD messages

additional message event kinds, in between which the delays
are defined. We associate each message event kind with an
equally named lifeline location for MSD messages. To ease
readability, we refer to the event kinds and the associated
lifeline locations in an undifferentiated way.

According to Tindell et al. [115], four kinds of delays
are required for the analysis of distributed real-time sys-
tems: the message dispatch delay, the message transmission
delay, the message consumption delay and the task execu-
tion delay (see Fig. 9). These delays are based on locations
allowing amore fine-grain cut progression. In case the execu-
tion platform does not introduce some of the delays, then the
associated events occur immediately one after the other (i.e.,
at the next instant). In the other case, these delays usually
contain two parts, a so-called static part, which can be com-
puted statically according to the properties of the system;
and a so-called dynamic part which dynamically emerges
from certain workload situation at runtime due to mutual
resource exclusion. The static part of the delays and their
computation are defined in the remainder of the section and
technically implemented as part of the preprocessing trans-
formation mentioned in Sect. 3, whereas the handling of the
dynamic part is presented in Sect. 6.2.2.

Figure 9 illustrates the location kinds, the fine-grained
cuts, and the delays for the enableBraking and emcyBraking
MSD messages.

In the definitions of the delays, instead of considering only
the worst case (execution/transmission) delays, we also con-
sider their best cases, which are likewise of high interest since
they potentially modify the access orders to mutually exclu-
sive resources [10,19,100]. Thus, we compute both lower
and upper bounds for all delays and define them as intervals

(cf. the specification of best-/worst-case execution times in
Sect. 4.3). For space reasons, we only show hereafter the for-
mulas for each upper bound, where the corresponding lower
bounds are computed analogously.

The delay definitions presented in the following encom-
pass derived properties (prefixed with a / as in UML).
These derived properties are calculated based on a variety of
detailed property values as part of the TAMplatformmodels.
Furthermore, we encapsulate behind the derived properties
the distinct delay computations regarding message exchange
between software components allocated to different ECUs
(i.e., distributed communication) or to the same ECU (i.e.,
ECU-internal communication). We only outline the particu-
lar ingredients of the derived properties in the following and
present the full computations behind them in detail in [61,
Section 4.6.1.2].

5.1 Message transmission delays

The use of communication media and communication pro-
tocols (e.g., the properties of the connector CanBus in
Fig. 7) causes a message transmission delay, which must
be taken into account by a timing analysis [115]. In order
to consider this delay, we encompass the concept of syn-
chronous and asynchronous messages introduced by Harel’s
original Play-out semantics [50] for Live Sequence Charts
(LSCs) [23]. In other words, we distinguish between mes-
sage send events and message reception events. In case the
platform is not defined, such events coincide and corre-
spond to synchronous messages as in Real-time Play-out
[17]. However, once the platform is defined, these events
are not synchronously correlated with a whole MSD mes-
sage. In contrast, a causality is defined between the message
send and themessage reception location of the corresponding
MSD message, respectively. See, for instance, the enable-
Braking message in Fig. 9, where the cut c1.2 marks that
the message is sent but not yet received, whereas the cut
c1.3 marks that the message is received but not yet con-
sumed.

The message transmission delays encompass the overall
propagation latency (i.e., net latency plus potential over-
heads) of the communication channel as well as the time
to transmit the message. This transmission time depends on
the overall message size (i.e., net message size plus con-
trol overheads like check sums) in relation to the overall
throughput (i.e., media throughput minus potential over-
head deductions) of the communication channel. In case of a
distributed communication, this overall throughput encom-
passes its net throughput minus the percentage transmission
overhead of the applied transmission protocol and of the
applied middleware communication services. Thus, we com-
pute the upper bound of the message transmission delay for
an MSD message m as
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m.transmissionDelaymax =
m.connector .supplier ./overallLatencymax

+
m.signature./overallMsgSizemax

m.connector .supplier ./overallT hroughputmin

(9)

where m.connector is a UML::Connector associated with
m, m.connector .supplier is a TamComConnection (dis-
tributed communication) or a TamOSComChannel (ECU-
internal communication) that the connector is allocated to,
and m.signature is a TamOperation associated with m.

5.2 Message dispatch and consumption delays

The notion of message reception in scenario-based for-
malisms is ambiguous, because it is not clear whether a
message reception is the instant when the message arrives
at the receiver communication interface or the instant when
the receiver application software consumes themessage [59].
The distinction between message reception and message
consumption is necessary in order to take the message con-
sumption delays into account [115]. Such delays occur due to
the decoding of networkmessages from a representation suit-
able for the transport via a network to a logical representation
suitable to be processed by the application software. Simi-
larly, there is a message dispatch delay between the instant
when a message is created by the sending software com-
ponent and the instant when it is actually dispatched to the
network by its network interface [115]. Such delays occur
due to the encoding of a logical representation into a rep-
resentation suitable for the transport via a communication
medium.

To distinguish between message creation and message
sending as well as between message reception and message
consumption, we introduced two additional message event
kinds message creation event and message consumption
event. These event kinds capture the instant when a message
is created by the sending software component and consumed
by the receiving software component, respectively. Figure 9
illustrates these event kinds and locations.We define themes-
sage creation location to be positioned on the sending lifeline
directly before the message sending location (cf. cut c1.1).
Similarly, the message consumption location is positioned
on the receiving lifeline directly after the message reception
location (cf. cut c1.4).

The message dispatch delays encompass the overhead
to gain write access to a communication channel (in case
of distributed communication, an arbitration time for gain-
ing access to the overall communication system is added)
as well as the time to encode a message from its logical
representation to a format suitable for the transfer via the
communication channel. This encoding time depends on the
overall message size (i.e., net size plus potential overheads)

in relation to the encoding rate of the communication chan-
nel. In case of distributed communication, this encoding rate
further depends on the encoding rate of the applied transmis-
sion protocol and of the applied middleware communication
services. Thus,we compute the uppermessage dispatch delay
for an MSD message m as

m.dispatchDelaymax =
m.connector .supplier ./dispatchOverheadmax

+
m.signature./overallMsgSizemax

m.connector .supplier ./overallEncodeRatemin

(10)

where m.connector is a UML::Connector associated with
m, m.connector .supplier is a TamComConnection (dis-
tributed communication) or a TamOSComChannel (ECU-
internal communication) that the connector is allocated to,
and m.signature is a TamOperation associated with m.

Analogously to message dispatch delays, message con-
sumption delays encompass the time to gain read access to
a communication channel as well as the time to decode a
message from the communication channel format to its logi-
cal representation. The decoding time depends on the overall
message size in relation to the decoding rate of the commu-
nication channel. Thus, we compute the upper bound of the
message consumption delay for an MSD message m as

m.consumptionDelaymax =
m.connector .supplier ./consumptionOverheadmax

+
m.signature./overallMsgSizemax

m.connector .supplier ./overallDecodeRatemin

(11)

where m.connector is a UML::Connector associated with
m, m.connector .supplier is a TamComConnection (dis-
tributed communication) or a TamOSComChannel (ECU-
internal communication) that the connector is allocated to,
and m.signature is a TamOperation associated with m.

5.3 Task execution delays

The semantics for platform-independent MSD specifications
focuses on the message exchange between software compo-
nents. However, it neglects internal procedures (i.e., tasks)
that are executed by the software components to process con-
sumed messages and to create the messages to be sent. This
message processing by tasks leads to task execution delays
that affect the timingbehavior of the system [115] (cf. the exe-
cution times of the particular software operations in Fig. 7).

In order to consider such effects, we do not specify explicit
task models but rather define that each message is associated
with exactly one task that is executed upon the consump-
tion of the message by the receiving software component.
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That is, we introduce the two new event kinds task start
event and task completion event, which, respectively, rep-
resent the start and the end of a task execution. Figure 9
illustrates the new event and location for the enableBraking
MSD message. We define the task start to be positioned on
the receiving lifeline directly after the message consumption
(cf. cut c1.5). Similarly, the task completion is positioned on
the receiving lifeline directly after the task start, representing
also the cut for the next MSD message (cf. cut c2). The next
location is the message creation location (cf. cut 2.1), and
so on.

Task execution delays encompass the normalized overall
execution time (i.e., net execution time plus potential over-
heads) required to process amessage in relation to the relative
speed factor of the executing processing unit (cf. Sect. 4.1)
as well as the overall times for accessing memory and
resources (i.e., net access times plus overheads). Omitting the
access times for comprehensibility reasons, we hence com-
pute the upper task execution delay for an MSD message
m as
m.executionDelaymax =

m.signature./normali zedOverallExecT imemax

m.connector [receiver ].supplier .procUnit .speedFactor
+

m./overallMemoryAccessT imemax

+
m./overall ResourceAccessT imemax

(12)

where m.signature is a TamOperation associated with m,
m.connector [receiver ] is the receiving software compo-
nent, m.connector [receiver ].supplier is a TamECU that
the receiving software component is allocated to, and
m.con[receiver ].supplier .procUnit is the TamProcessin-
gUnit of the ECU.

We define a task to start immediately (i.e., at the next
instant) after it has consumed its corresponding message if
the scheduler can dispatch it (cf. cuts c1.4 and c1.5 in Fig. 9).
If the scheduler cannot dispatch it immediately, a dynamic
delay occurs (cf. Sect. 6.2.2). When a software component
completed a task, it creates a potential subsequent message
at the next instant afterward (cf. c2 and c2.1 in Fig. 9).

6 Specifying operational semantics for the
timing analysis of platform-specific
interactionmodels

In Sect. 4, we introduced the TAM profile to enable the mod-
eling of platform-specific MSD specifications. Furthermore,
we introduced additional message event kinds to support
platform-specific timing analyses as well as the compu-
tations for the static delays in between these events (see
Sect. 5). In this section, we overview the proposed platform-

specific MSD operational semantics dedicated to timing
analyses.

This section consequently details the semantics-related
parts of Fig. 6 from the approach overview section (Sect. 3).
The section elaborates on the EBEAS model to illustrate the
most important concepts of the semantics, and the reader
can refer to [61, Appendix B] for the illustrations of further
concepts as well as the complete operational semantics of
the TAM profile. Furthermore, our supplementary material
[63] and our companion webpage [62] provide the actual
technical artifacts as well as additional information.

For each of the following subsections, we start by
describing the semantic mapping between the element of
the abstract syntax and the CCSL constraints, realized at
the language level (metamodel level M2). At this level,
Domain-Specific Events (DSEs) are specified with the Event
Constraint Language (ECL) in the context of concepts from
the abstract syntax, and constrained by behavioral invari-
ants (cf. Section 2.5). This generates a transformation of
TAM models into CCSL specifications. Then, we illustrate
the CCSL models generated for some TAM models (meta-
model level M1). Finally, at the runtime level (metamodel
level M0) we describe the corresponding CCSL simulation
runs.Section 6.1 describes our encoding of the extendedmes-
sage event handling semantics for MSDs in terms of CCSL.
Section 6.2 describes how we encode timing effects induced
by the resource properties, and Sect. 6.3 describes our encod-
ing of real-time requirements on these effects and of timing
analysis contexts.

6.1 Encoding ofmessage event kinds and their order

In order to enable simulative timing analyses of platform-
specific MSD requirements, we encoded the semantics of
MSDs in terms of CCSL. This encompasses the general
occurrences ofmessage events corresponding to the specified
MSD messages (cf. Section 2.2.2) as well as the additional
message event kinds introduced in Sect. 5.

Language level At the language level, we explicitly define
DSEs and constraints that define the acceptable orders
between the occurrences (at runtime) of theDSE instances (at
the model level). The order of the occurrences represents the
fine-grained cut progression w.r.t. the MSD message loca-
tions (cf. Fig. 9).

The upper part of Fig. 10 depicts an excerpt from
the semantics specification of MSD message event occur-
rences. It depicts part of the Abstract Syntax, of the Map-
ping Specification, andof the applied Semantic Constraints.

Applying ECL, the Mapping Specification in the middle
upper part of Fig. 10 defines the DSEs identified in Sect. 5
in the context of a TamModalMessage, like msgCreateEvt
(1) andmsgSendEvt (2). Each instance of a TamModalMes-
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Fig. 10 Excerpt from the semantics specification of the message event kinds order and some illustrating models

sage will then be equipped with an instance of each DSE.
TheMapping Specification also specifies an invariant even-
tOrder in the context of a TamModalMessage. Each instance
of the DSEs will then be constrained according to this
invariant, which specifies the allowed order of the message
event occurrences. This order is specified by the user-defined
MoCCML relation EventOrderRelation, whose parameters
are DSEs.

Consequently, the DSE definition together with the invari-
ants define the mapping between the concepts from the
abstract syntax and the semantic constraints.

Looking at the constraint EventOrderRelation, it is speci-
fied by a constraint automaton, which defines the allowed
order of the DSE parameters. Here, it specifies that the
events shall only occur in the following order msgCre-
ateEvt, msgSendEvt, msgReceiveEvt, msgConsumeEvt,
taskStartEvt, and taskCompleteEvt; possibly infinitely. Note
that there is no notion of time in this constraint, meaning that
an arbitrary time can elapse between two occurrences.

From this specification, a transformation is automatically
generated, to be used at the model level.

Model level At the model level, a timing analyst creates
a platform-specific MSD specification and uses the previ-
ously generated transformation to generate a CCSL model,

which acts as a symbolic representation of all acceptable
schedules of theMSD specification; as defined by the seman-
tics specification. The lower part of Fig. 10 depicts an
excerpt from the Platform-specificMSD Specification and
the corresponding CCSLModel, generated through theMSD-
to-CCSL Transformation.

The MSD in the left lower part specifies the enableBrak-
ing MSD message and its event kinds (1–6) as part of the
EmcyBrakingMSD (cf. Section 5).

As indicated in the generated CCSLModel in the right
lower part of Fig. 10, the derived transformation translates
any MSD message to six clocks.

For instance, the enableBraking MSD message is trans-
lated to the six clocks (1–6) of the CCSL model of Fig. 10.

Furthermore, for any MSD message, the transformation
generates a clock relation typed by the MoCCML relation
associated by the ECL invariant (defined at the language
level).

For example, for the enableBraking MSD message, the
transformation generates the enableBraking_eventOrder
clock relation typed by the MoCCML relation EventOrder-
Relation. This relation gets the argument enableBrak-
ing_msgCreateEvt for the parameter msgCreateEvt, the
argument enableBraking_msgSendEvt for the parameter
msgSendEvt, etc.
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Fig. 11 Example: Simulated order of message event occur-
rences, enforced by the CCSL model clock relation enableBrak-
ing_eventOrder (cf. CCSL Model in the lower right of Fig. 10)

Runtime level TheCCSLmodels generated at themodel level
are simulated in TimeSquare at the runtime level. Figure 11
depicts a CCSL run resulting from the CCSLmodel depicted
in the right lower part of Fig. 10. This CCSL run represents
the occurrence order of the particular message event kinds
for the MSD message enableBraking.

The rows depict ticks of the clocks, which themselves
represent the particular message event occurrences. They are
ordered from the top to the bottom, where the topmost row
represents the occurrence of a message creation event and
the bottommost row represents the occurrence of a task com-
pletion event. The ticks correspond to the transitions in the
MoCCML relation EventOrderRelation. We assume that at
instant 0 the MoCCML relation is in state 1, so that due to
the tick of the clock enableBrakingmsgCreateEvt at instant 1
the state is changed to 2. After the subsequent tick of the
clock representing the message send event occurrence at the
instant 2, the relation is in state 3 for the next 3 instants, and
so on. The arrows visualize the causal dependencies between
the clock ticks.

6.2 Encoding of platform-induced timing effects

In this section, we present how we encoded the semantics of
the timing effects that are induced by the properties of the
execution platform.We support two general classes of timing
behavior effects. The first class encompasses the different
kinds of static delays between the particular message event

kinds as discussed in Sect. 5. The second class encompasses
delays that dynamically emerge from mutual exclusion of
resources when different software components try to access
the same resource (e.g., the processor for the task execution,
peripheral hardware, or an operating system service) at the
same time.

6.2.1 Static delays betweenmessage event kinds

As discussed in Sect. 5, message-based communication and
task processing involves multiple events during the actual
execution on a target platform, and static delays occur
between such events. In this section, we present how we
encoded these static delays, based on the example of task
execution time. Besides the different static delay kinds pre-
sented in Sect. 5, the complete semantics also distinguishes
between distributed and ECU-internal communication.

As outlined in Sect. 3, we apply a preprocessing step
for the computation of the static delays. The lower part
of Fig. 12 exemplifies this Preprocessing transformation
at model level by illustrating how some delays are com-
puted based on the information in the MSD model. The
computed lower and upper bound values are then stored in
derived properties specified by tagged values defined as part
of the TamModalMessage stereotype at the language level.
In the following, we present howwe specified the operational
semantics based on these pre-computed static delays.

Language level In order to consider timing behaviors, we
have to keep track of the global time progress. For this
purpose, we introduced the globalTime DSE defined in the
context of a Model (see Mapping Specification in the mid-
dle upper part of Fig. 12). The occurrence of the globalTime
instance represents the discretization of the time. This dis-
cretization is usually set to the greatest common divisor of
all timing requirements; however, to simplify, here it is set to
1ms in the remainder of this paper.

Consequently, we used the globalTimeDSEas a reference
for counting time, that is, to determine the occurrence of the
different delayed DSE instances that are introduced in the
following.

Besides the two taskStartEvt (1) and taskCompleteEvt
(2) DSEs defined in the context of a TamModalMessage
(cf. Sect. 6.1), theMapping Specification defines two invari-
ants to encode the task execution delay interval. TheminEx-
ecutionDelay invariant defines the timing behavior for the
lower bound of this interval.

To this end, a new DSE taskStartAfterMinExecDelay (3)
is defined through the CCSL expression DelayFor (cf. Equa-
tion 6). According to the provided parameter arguments
(i.e., globalTime, taskStartEvt, minTaskExecutionDelay),
this clock expression delays the DSE taskStartEvt by the
minimum task execution delay. Then, we specified that
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Fig. 12 Excerpt from the semantics specification of the task execution delays and some illustrating models

the DSE taskCompleteEvt must not occur earlier than this
delayed event through the CCSL relationNonStrictPrecedes
(cf. Equation 4). Analogously, the invariant maxExecution-
Delay defines the timing behavior for the upper bound of task
execution delay intervals and restricts the DSE taskComple-
teEvt to occur not later than the maximum execution delay
(4).

Model level The excerpt from the MSD in the left lower
part shows the MSD message enableBraking with the focus
on its Task Start (1) and Task Completion (2) events. The
MSDmessage references the equally named «TamOperation»
with a minimum execution time of 6ms and a maximum
execution time of 9ms. The lifeline vc: VehicleControl rep-
resents the equally named component role allocated to the
«TamECU» :μC2. This ECU contains a «TamProcessingUnit»
with the speed factor 2.

Our Preprocessing model transformation takes these
resource properties as input and computes the static delay
intervals from it as defined in Sect. 5, resulting in the
Platform-specificMSD Specificationwith Computed Static
Delays. The transformation stores the computed lower

and upper bounds in the corresponding tagged values of
«TamModalMessage».

For example, the minimum and maximum task execution
delay values of theMSDmessage are stored in the tagged val-
ues minTaskExecutionDelay and maxTaskExecutionDelay

with the values tra jectoryBeacon.minExecT ime
PUμC2.speedFactor = 6ms

2 = 3ms

and tra jectoryBeacon.maxExecT ime
PUμC2.speedFactor = 9ms

2 ≈ 5ms, respec-
tively (cf. Equation 12).

As indicated by the excerpt from the generated CCSL
Model in the right lower part of Fig. 12, the automatically
derived transformation generates a globalTime clock for
any MSD specification. Besides the clocks representing the
particular message event kinds (1/2, cf. Sect. 6.1), the trans-
formation also generates, for any MSD message, two clock
expressions delaying the task start clock by the minimum
and maximum execution time, respectively. For instance,
the MSD message enableBraking is translated into two
CCSL clock expressionsDelayFor, defining the new enable-
Braking_taskStartAfterMinExecDelay (3) and enableBrak-
ing_taskStartAfterMaxExecDelay (4) clocks, respectively.
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Fig. 13 CCSL run simulating a task execution delay

These expressions delay the task start event clock enable-
Braking_taskStartEvt by the corresponding minimum and
maximum task execution delays w.r.t. the globalTime clock.

Finally, the transformation generates two clock relations,
which restrict the task completion event clock to tick in
between the minimum task execution delay clock and the
maximum task execution delay clock. For instance, the
transformation generates the CCSL relations enableBrak-
ing_minExecutionDelay and enableBraking_ maxExecu-
tionDelay typed by the CCSL relation NonStrictPrecedes.
Both relations enforce the enableBraking_taskCompleteEvt
clock to tick in between the occurrences of the clocks
enableBraking_taskStartAfterMinExecDelay and enable-
Braking_taskStartAfterMaxExecDelay.

Runtime level Figure 13 depicts a CCSL run resulting from
the CCSL model depicted in the right lower part of Fig. 12.
This CCSL run represents the task execution time interval of
the MSD message enableBraking.

The topmost row depicts the ticks of the globalTime
reference clock (which always ticks in this run). The
row below depicts the tick of the enableBrakingtaskStartEvt
clock at instant 1. This clock tick is delayed by 3
and 5 ticks of the globalTime clock and results
in the enableBrakingtaskStartAfterMinExecDelay and
enableBrakingtaskStartAfterMaxExecDelay clocks, respectively.
The twoNonStrictPrecedes clock relations enforce the clock
enableBrakingtaskCompleteEvt to tick at some instant between
4 and 6, and it actually ticks at instant 5 in this run.

6.2.2 Dynamic delays due to mutual resource exclusion

Target execution platforms of software-intensive systems
have restricted resources, which may not be simultaneously
used by different parts of the application.

Middleware and operating system services manage the
access of the competing software parts to these restricted
resources. Typically, such services provide mechanisms

ensuring that the resources are accessed in a mutually exclu-
sive manner.

Thus, our proposed operational semantics supports delays
that dynamically emerge from the mutual exclusion of pro-
cessing unit cores, communication media, peripherals, and
operating system resources. In the following, we illustrate
this with the scheduling of two tasks (each associated with a
message processing) that belong to different software com-
ponents allocated to a same ECU.

Language level The Mapping Specification in the middle
upper part of Fig. 14 defines the taskStartEvt and taskCom-
pleteEvt DSEs in the context of a TamModalMessage
as defined in Sect. 6.2.1. Additionally, the DSE dispatch
defined in the context of a TamScheduler represents the
instants when the scheduler selects a task for the execution
on a processing unit (i.e., the scheduler dispatches the task).

Furthermore, we define two behavioral invariants. The
first one, named claimCoreOnTaskStart, is defined in the
context of a TamModalMessage. It expresses the relation
between the taskStartEvt and the DSE dispatch of the
corresponding scheduler (determined via the simplifying
pseudocode function “getRelevantScheduler()”) by using the
CCSL relation SubClock (cf. Equation1). The relation allows
the subClock argument taskStartEvt to tick only when the
superClock argument dispatch ticks. We specified whether
the dispatch clock can tick through the invariant occupy-
CoreOnTaskStart defined in the context of a TamScheduler,
which we explain below. By doing so, we prevent a scheduler
from dispatching a task when the corresponding processing
unit is busy with the execution of another task.

To this end, we first determine all MSD messages that
can be sent to one of the software components allocated
to the TamECU containing the TamScheduler. From these
messages, we define two DSEs through the CCSL expres-
sion Union (cf. Equation 5): The DSEs anyTaskStart (1) and
anyTaskComplete (2), which represent the union of all task
start and task completion events, respectively. These DSEs
determine whether any task is started or any task gets com-
pleted.

The actual behavior of the occupyCoreOnTaskStart
invariant is specified by using the MoCCML relation Non-
PreemptiveTaskExecution. Its arguments are the DSE dis-
patch for the parameter clock occupy, the clocks repre-
senting the union of all relevant taskStartEvt and taskCom-
pleteEvt DSEs for the newTask and the taskFinish clock,
respectively, and the amount of cores of the corresponding
processing unit for the Integer parameter numCores. Fur-
thermore, we define a local Integer variable runningTasks
that captures the amount of tasks currently running on the
processing unit.

The initial state of the MoCCML relation is Cores Avail-
able, which defines that the scheduler is able to dispatch new
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Fig. 14 Excerpt from the semantics specification of the task scheduling, and some illustrating models

tasks because the processing unit is not busy with process-
ing other tasks. When a new task is ready to be dispatched
in this state and hence the occupy parameter clock as well
as the newTask parameter clock tick simultaneously, the
variable runningTasks is incremented if the guard [running-
Tasks + 1< numCores] holds. Analogously, when any task
running on the processing unit is finished in this state and
hence the parameter clock taskFinish ticks, the variable run-
ningTasks is decremented. If the amount of currently running
tasks equals the amount of cores in this state, the transition
to the state All Cores Busy is fired. In this state, dispatch-
ing new tasks is not allowed. When any task running on the
processing unit gets completed in this state and hence the
parameter clock taskFinish ticks, the variable runningTasks
is decremented and the transition to the initial state is fired.

Our semantics supports multiple software components
allocated to one processing unit, multiple cores per process-
ing unit, and different task priorities, which we do not further
discuss here.

Model level The MSD specification excerpt in the left lower
part of Fig. 14 shows the MSD message obstacle focus-
ing on its Task Start (1) and Task Completion (2) events.
The lifeline represents the software component sa: Situa-

tionAnalysis, which is allocated to the «TamECU» :µC1. This
ECU contains a «TamProcessingUnit» :PUµC1 with one core
as well as a «TamRTOS» with a «TamScheduler» :OSEK/VDX-
Scheduler.

The right lower part of Fig. 14 depicts an excerpt from the
generated CCSL Model. Besides the clocks representing the
particular MSDmessage events (cf. Section 6.1), the derived
transformation generates for any «TamScheduler» each a
scheduler dispatch clock. For example, the transformation
generates the clock variableOSEK/VDX-Scheduler_dispatch
for the :OSEK/VDX-Scheduler.

Furthermore, the transformation creates for any MSD
message each a SubClock clock relation that restricts the
related task start clock to tick only when the scheduler’s
dispatch clock can tick simultaneously. For instance, the
transformation generates for the MSD message obstacle
the clock relation obstacle_claimCoreOnTaskStart using the
SubClock relation.

For any «TamScheduler», the transformation generates
two clocks defined by Union clock expressions that deter-
mine the union of ticks of all task start and completion
clocks. For example, the scheduler :OSEK/VDX-Scheduler is
translated to the clocksOSEK/VDX-Scheduler_anyTaskStart
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Fig. 15 CCSL run simulating task scheduling

(1) and OSEK/VDX-Scheduler_anyTaskComplete (2). The
clock expressions get the obstacle_taskStartEvt and obsta-
cle_taskCompleteEvt clocks as a set argument, along with
other task start and completion clocks.

Finally, the transformation generates for any
«TamScheduler» a clock relation that uses the user-defined
MoCCML relation NonPreemptiveTaskExecution. For
example, the transformation translates the scheduler
:OSEK/VDX-Scheduler into the clock relation OSEK/VDX-
Scheduler_occupyCoreOnTaskStart. This relation gets the
argument OSEK/VDX-Scheduler_dispatch for the parame-
ter occupy, OSEK/VDX-Scheduler_anyTaskStart for new-
Task,OSEK/VDX-Scheduler_anyTaskComplete for taskFin-
ish, and 1 for numCores. Runtime level Figure 15 depicts a
CCSL run resulting from the CCSL model in the right lower
part of Fig. 14. This CCSL run represents a situation inwhich
two different messages request to be processed concurrently
by the «TamECU» :μC1.

More precisely, let us assume that the MSD BeaconAc-
knowledgement indicated in Fig. 1 specifies that sa: Situa-
tionAnalysis is responsible for processing information about
the trajectories of other vehicles via a message trajectory-
Beacon, additionally to processing the obstacle messages
as specified by the MSD EmcyBraking. The three topmost
rows in Fig. 15 depict the ticks of the clocks represent-
ing the consumption, task start, and task completion of the
trajectoryBeacon message. The processing unit of :μC1 is
not busy with another task at instant 1 when the trajectory-
Beaconmessage is consumed. Consequently, the MoCCML
relation NonPreemptiveTaskExecution that types the CCSL
relation OSEK/VDX-Scheduler_occupyCoreOnTaskStart is

in the state Cores Available (cf. Fig. 14). Thus, the clock
OSEK/VDX-Schedulerdispatch is allowed to tick, meaning that
the scheduler of :μC1 is able to dispatch the correspond-
ing task. Hence, the clock trajectoryBeacontaskStartEvent ticks
simultaneously with the clock OSEK/VDX-Schedulerdispatch
at instant 2. Consequently, the clock OSEK/
VDX-ScheduleranyTaskStart ticks at this instant as defined
by the clock expression Union. Analogously, the clock
OSEK/VDX-ScheduleranyTaskComplete ticks at instant 5 due to
the tick of trajectoryBeacontaskStartComplete.

The obstacle message is consumed at instant 2, result-
ing in the tick of the clock obstaclemsgConsumeEvt at this
instant. Due to the fact that :PUμC1 has only one core and
due to the dispatching of the trajectoryBeacon processing
task at the same instant, the MoCCML relation NonPre-
emptiveTaskExecution is in the state All Cores Busy from
instant 2 to instant 4. Thus, :PUμC1 is blocked from instant
2 to 4 so that the task processing of the obstacle mes-
sage can be dispatched not earlier than instant 6, at which
the obstacletaskStartEvt clock actually ticks. This causes a
dynamic delay of 3 time units between the consumption and
the actual processing of the message obstacle.

6.3 Encoding of real-time requirements and timing
analysis contexts

In this section, we present the crucial aspects of the semantics
encoding for both the timing analysis results and the timing
analysis setup. In Sect. 6.3.1, we explain how we encode
the MSD clock resets and time conditions (i.e., the real-
time requirements) in CCSL, which the timing analysis in
TimeSquare determines as fulfilled or violated by the tim-
ing behavior of the system. In Sect. 6.3.2, we explain how
we encode analysis contexts defined by timing analysts to
investigate the simulation scenarios that interest them.

6.3.1 Clock resets and time conditions

The combination of a clock reset and a time condition in an
MSD represents a real-time requirement (cf. Sect. 2.2.2). A
violation of such real-time requirements can lead to hazards
in the case of safety-critical systems, and our timing analysis
approach aims at revealing such violations in the early RE
phase.

In this section, we present how our proposed semantics
encodes combinations of clock resets and time conditions.
We illustrate the semantics for delays with a strict upper
bound, representing amaximummessage treatment response
time. In the complete semantics specification, we also sup-
port minimal delays and non-strict bounds.

Language level The Mapping Specification in the middle
upper part of Fig. 16 shows the invariant rtReqStrictUp-
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Fig. 16 Excerpt from the semantics specification of the clock resets and time conditions, and some illustrating models

perBound defined in the context of the Modal stereotype
ClockReset. The invariant initially determines the time con-
dition associated with the clock reset. If the operator of the
time condition defines a strict upper bound (i.e., the oper-
ator equals “<”), the implication becomes true so that the
invariant is relevant to the context clock reset.

Remember that we do not extend the MSD modeling
language but refine its semantics for the purpose of timing
analysis. For example, we conceptually introduce more fine-
grained event kinds in Sect. 5 and describe their realization
in the Gemoc mapping specification in Sect. 6.1. That also
implies that we have to define in the following for the seman-
tics of real-time requirements which of the new fine-grained
event kinds they constrain, as the clock resets and time con-
ditions can only be specified between messages.

Thus, for strict upper bound maximal delays, we define
that the real-time requirement constrains the time elapsed
between the message reception (prior to the clock reset)
and the task completion (prior to the maximal delay). For
this purpose, we first determine the last message recep-
tion DSE precedingMessageReceptionEvent (1) directly
preceding the clock reset. We illustrate this in a simplify-
ing manner with a pseudocode function, which applies the
clock expression Sup (reference not depicted in the figure,
cf. Equation 8). Analogously, we determine the last task com-
pletion DSE constrainedTaskCompletionEvent (2), that is,
the completion DSE of the task that precedes the associated

time condition. Then, we define a new clock upperBoundE-
vent (3) representing the upper bound of the time condition
by using the clock expression DelayFor, which delays pre-
cedingMessageReceptionEvent by the upper bound value.
Finally, we constrain the ticks of constrainedTaskComple-
tionEvent to occur before the ticks of upperBoundEvent by
using the clock relation Precedes (cf. Equation 3).

Model level The left lower part of the figure shows an excerpt
from the MSD EmcyBraking, which encompasses the MSD
message obstacle prior to the clock reset clockReset1 and
the MSD message standstill prior to the time condition
c < tbrake, parameterized by the tbrake variable. The focus
is on the message reception event for obstacle (1), the task
completion event for standstill (2), and the time condition
defining an upper bound w.r.t. the clock reset (3).

The derived transformation generates the CCSLModel
whose excerpt is represented in the right lower part of Fig. 16.
It contains the globalTime clock keeping track of the over-
all time progress, as well as the clocks for the occurrences
of the message reception and task completion events for
both the obstacle and standstillMSDmessages, respectively
(cf. Sect. 6.1).

Furthermore, the transformation generates for any clock
reset each three CCSL expressions. The first expression
defines a new clock clockReset1_precedingMessage
ReceptionEvent (1) that represents the slowest occurrence
of the message reception event among the MSD messages
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Fig. 17 CCSL run simulating both a real-time requirement fulfillment
and violation

that precede the clock reset. In the specific case of the MSD
EmcyBraking, this clock captures the ticks of the clock obsta-
cle_msgReceiveEvt.

The second Sup expression defines a new clock clockRe-
set1_constrainedTaskCompletionEvent (2) that represents
the occurrence of the task completion event of the last MSD
message prior to the time condition, that is, the clock stand-
still_taskCompleteEvt. Third, the transformation generates
a clock expression DelayFor defining the clock clockRe-
set1_upperBoundEvent (3). This expression delays the
message reception event clock stemming from the last MSD
message prior to the clock reset by the value of the time
condition. In the case of the MSD model in Fig. 16, it
delays clockReset1_precedingMessageReceptionEvent by
t_brake time units w.r.t. globalTime.

Finally, the transformation generates for any clock reset
each a CCSL relation Precedes, which enforces the task
completion event clock stemming from the last MSD mes-
sage prior to the time condition to tick before the delayed
clock representing the upper bound value of the time condi-
tion. In our example, the relation clockReset1_rtReqStrict
UpperBound applies the clock clockReset1_constrained
TaskCompletionEvent as argument for leftClock and the
clock clockReset1_upperBoundEvent as argument for right-
Clock.

Runtime level Figure 17 depicts a CCSL run resulting from
the CCSL model depicted in the right lower part of Fig. 16.
ThisCCSL run represents a fictional situation,where the time
condition value placeholder tbrake has two distinct concrete
values, leading one time to the fulfillment and another time
to the violation of the real-time requirement.

The ticks of the clocks obstaclemsgReceiveEvt and
standstilltaskCompleteEvt (row 2 and 7) represent the occur-
rences of the message reception and task completion events
of the MSD messages obstacle and standstill, respectively.

For both, the clock expression Sup is used to define the
new clocks clockReset1precedingMessageReceptionEvent (row 3)
and clockReset1constrainedTaskCompletionEvent (row 6). Fur-
thermore, the CCSL expression DelayFor delays the clock
clockReset1precedingMessageReceptionEvent by tbrake time units,
defining the new clock clockReset1upperBoundEvent. This
clock is depicted in both the rows 4 and 5 for the two dis-
tinct concrete values of tbrake. The relation Precedes enforces
the tick of clockReset1constrainedTaskCompletionEvent to occur
before the tick of clockReset1upperBoundEvent.

In the example situation,
clockReset1constrainedTaskCompletionEvent ticks at the instant 7.
This clock tick fulfills the Precedes relation if the value tbrake
is 8 so that clockReset1upperBoundEvent ticks at the instant 9
(row 4). This means that the software execution on the spec-
ified platform fulfills the real-time requirement for the given
analysis context.

However, if the value of tbrake is 4 (row 5), the tick
of clockReset1constrainedTaskCompletionEvent does not fulfill
the Precedes relation because the real-time requirement
is too tight. More precisely, TimeSquare cannot solve
the underlying Boolean expression (cf. Sect. 2.4), and the
simulation stops with a deadlock in case tbrake = 4.
This situation represents a real-time requirement viola-
tion. Note that instead of classically defining the clockRe-
set1_rtReqStrictUpperBound as a relation, it is possible to
define it as an assertion in which case TimeSquare stipu-
lates where the assertion is violated instead of producing a
deadlock.

6.3.2 Timing analysis contexts

To conduct a particular timing analysis, the engineers have
to specify the concrete simulation scenario that they want to
investigate. Such an analysis scenario is known as an analysis
context [93,111].

The analysis context defines how often and at which
instants the environment events triggering the system behav-
ior can occur. Like in Marte, we refer to them as arrival
patterns.

We support periodic as well as sporadic arrival patterns in
our semantics (cf. Sect. 4.4). Whereas periodic arrival pat-
terns specify the triggering of environment events that occur
repeatedlywith a fix period andwithout jitter, sporadic arrival
patterns specify the triggering of environment events that
occur sporadically with certain restrictions. These restric-
tions encompass a minimum arrival rate before an event may
occur, a maximum arrival rate until an event has to occur, and
combinations of both that can also be applied to represent
jitters. In this section, we exemplify the semantics of anal-
ysis context scenarios with a periodic arrival rate, whereas
we define the semantics of sporadic arrival patterns by com-
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Fig. 18 Excerpt from the specification of the periodic arrival patterns semantics, including example models

bining the semantics of periodic ones and of delay intervals
(cf. Sect. 6.2.1).

Language level The Mapping Specification in the middle
upper part of Fig. 18 shows the invariant periodicPattern
defined in the TamAssumptionMSD context. This invariant
enforces MSD message creation events defined as part of a
«TamAssumptionMSD» with a periodic arrival pattern to occur
periodically.

In the invariant periodicPattern, we first determine
whether the associated arrival pattern of the context TamAs-
sumptionMSD is a periodic one. If this implication holds,
we define a new DSE periodicActivation (1) that ticks every
period ticks due to the CCSL expression PeriodicOffsetP
(cf. Equation 7). Its arguments are the globalTime DSE
and the tagged value period of the TamPeriodicPattern.
Subsequently, we determine the initial MSD message of
the TamAssumptionMSD. Finally, we enforce the msgCre-
ateEvt DSE of this MSD message to tick simultaneously
with the periodicActivation DSE by using the CCSL rela-
tion Coincides (cf. Equation 2).

Model level The excerpt from the MSD in the left lower
part shows the «TamAssumptionMSD» BeaconFrequency. It
specifies the trajectoryBeacon environment message to be
sent from the environment role v2x: V2XCommunication to
the sa: SituationAnalysis. The «TamPeriodicPattern» associ-
ated with the «TamAssumptionMSD» defines that the creation

event of this environment message occurs periodically every
3ms (1).

As indicated in the excerpt from thegeneratedCCSLModel
in the right lower part of Fig. 18, the derived transforma-
tion generates for any «TamAssumptionMSD» with a peri-
odic pattern each a CCSL expression PeriodicOffsetP. This
CCSL expression gets the globalTime as argument for the
baseClock parameter and the tagged value period of the
«TamPeriodicPattern» as argument for the equally named clock
parameter. In our example, the transformation generates
the PeriodicOffsetP expression with the value 3 applied as
argument for period, defining the new clock trajectoryBea-
con_periodicActivation (1).

Finally, the transformation generates for any
«TamAssumptionMSD» with a periodic pattern each a CCSL
relation Coincides. This clock relation gets two clocks as
arguments: The clock representing the message creation
event of the initial MSD message, and the newly defined
clock representing the periodic activation. In our exam-
ple, the transformation generates the Coincides relation
trajectoryBeacon_periodicPattern with the clocks trajec-
toryBeacon_msgCreateEvt and trajectoryBeacon_periodic
Activation as arguments. This relation forces the clock tra-
jectoryBeacon_msgCreateEvt to tick every 3 ticks of the
globalTime, meaning that the message creation event of the
initial MSD message trajectoryBeacon occurs every 3ms.
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Fig. 19 CCSL run simulating a periodic arrival pattern

Runtime level Figure 19 depicts a CCSL run resulting from
the CCSL model depicted in the right lower part of Fig. 18.
This CCSL run represents the periodic occurrence of the
message creation event of the initial MSDmessage trajecto-
ryBeacon defined in the MSD BeaconAcknowledgement.

The topmost row depicts the ticks of the globalTime
reference clock. The middle row depicts the ticks of the
trajectoryBeaconperiodicActivation clock, which ticks every 3

rd

tick of the globalTime clock. The bottommost row depicts
the ticks of the trajectoryBeaconmsgCreateEvt clock,where the
Coincides relation enforces this clock to tick simultaneously
with the trajectoryBeaconperiodicActivation clock.

7 Timing analysis example

In this section, we illustrate how the different aspects of
the semantics presented in Sect. 6 work together. For this
purpose, we first explain a simulation of a CCSL model gen-
erated from the whole platform-specific MSD specification
example presented in Sect. 4. Afterward, we illustrate the
possibility to perform model checking on the CCSL model.

7.1 Simulation of a platform-specific MSDmodel

As a recapitulation, Fig. 20 depicts the MSD specification
parts that are the most relevant for the timing analysis exam-
ple illustrated in this section. Let us consider the MSD
BeaconAcknowlegement, which was in Sect. 2.2 only indi-
cated as part of the MSD specification introduced in Fig. 1.
This MSD specifies the exchange of trajectory information
between a vehicle and the other vehicles in its environment
(through trajectory beacons). More precisely, it specifies the
v2x: V2XCommunication to send a trajectoryBeacon mes-
sage to the sa: SituationAnalysis, which shall acknowledge
the reception by sending back an ack message. These inter-
actions have to be executed on the target platform in addition
to the MSD EmcyBraking.

In our context, an end-to-end response time analysis has
to determine whether such platform-specific MSD specifica-
tions fulfill their high-level real-time requirements (cf. Sec-

Fig. 20 Relevant excerpt from the MSD model used for the timing
analysis

tion 2.1).One key question of such timing analyses iswhether
the resources provided by the platform have a sufficient per-
formance to execute the application software consuming the
resources. For example, it can reveal that the processing
resource executing the software component sa: Situation-
Analysis is not fast enough to process some operations in
time; or that the latency of the communication media is too
high to deliver somemessages in time. Answering such ques-
tions is even more important when, at some points in time,
the system workload is high. For example, several messages
like obstacle and trajectoryBeacon can arrive at sa: Situa-
tionAnalysis within a small timeframe so that the receiving
software component has to process them concurrently. The
very same situation occurs when several messages have to
be delivered via a single communication medium at the same
time.
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Fig. 21 Excerpt from the simulation run of the CCSL model automatically generated from the platform-specific MSD specification described in
Sect. 4 (only part of the clocks are depicted)

In the following, we illustrate the detection of a real-
time requirement violation by means of a simulation in
TimeSquare. The violation occurs due to a situation, in
which the workload triggered by the environment is too high
so that the target platform is not able to fulfill the real-time
requirement. Figure 21 depicts an excerpt of the CCSL sim-
ulation run, which results from the platform-specific MSD
specification excerpt in Fig. 20.

Row 1 depicts the tick of the clock
trajectoryBeaconmsgCreateEvt at instant 50. This tick
stems from the environment message trajectoryBea-
con defined in the assumption MSD BeaconFrequency,
where its arrival pattern specifies this message event
to occur periodically every 25ms. As explained in
Sect. 6.3.2, our semantics enforces the message creation
events to occur exactly at these periodic instants. Thus,
trajectoryBeaconmsgCreateEvt occurs any 25ms, and the
simulation excerpt depicts its second tick in the overall
run.

Row 2 depicts the trajectoryBeacontaskStartEvt clock tick at
instant 54, which emerges due to two aspects. First,
we assume that the (not depicted) clocks represent-
ing the preceding trajectoryBeacon send, reception, and
consumption events occur with small static delays at
the instants 51, 52, and 53. Second, the corresponding
task can only start when its scheduler can dispatch it.
As described in Sect. 6.2.2, trajectoryBeacontaskStartEvt

depends on its superclock OSEK/VDX-Scheduler-
µC1dispatch (row 4), which is able to tick at this instant
as explained in the description for row 4.

Row 3 depicts the subsequent tick of the trajectory
BeacontaskCompleteEvt clock at instant 60. This instant
results from a task execution delay, which is computed as
described inSects. 5.3 and 6.2.1 as follows. The operation
signature of trajectoryBeacon is a «TamOperation» hav-
ing an execTime with the value 5ms. The corresponding
receiving component role sa: SituationAnalysis is allo-
cated to the «TamECU» :μC1, whose «TamProcessingUnit»
:PUμC1 has a speedFactor with the value 1. Thus, the
task executing the operation needs 5ms

1 = 5ms for the
processing.

Row 4 depicts the ticks of the OSEK/VDX-Scheduler-
µC1dispatch clock. As described in Sect. 6.2.2, this clock
can only tick if the corresponding processing unit for
the execution of a requested task dispatching has a
free core. This is the case at instant 54, where the
trajectoryBeacon is ready to be processed by its cor-
responding task. Thus, the trajectoryBeacontaskStartEvt
clock depicted in row 2 is allowed to tick simultaneously.
However, OSEK/VDX-Scheduler-µC1dispatch cannot tick
during the 6 following instants because the task for pro-
cessing trajectoryBeacon is not completed until then and
the processing unit has only one and thereby no further
free core.
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Row 5 depicts the tick of the obstaclemsgCreateEvt clock.
This tick stems from the obstacle environment message
defined in the ObstacleArrivalRate assumption MSD.
The arrival pattern of thismessage specifies that the corre-
sponding environment event occurs sporadically between
any50 and55ms.Our semantics enforces the correspond-
ing message creation event to occur at instants inside this
interval. In the proposed run, obstaclemsgCreateEvt occurs
within this instant interval, at instant 51.

Row 6 depicts the tick of the clock
clockReset1precedingMessageReceptionEvent at instant 53.
This clock stems from the clock reset (assuming that
it has the identifier clockReset1) defined in the Emcy-
Braking MSD, which is specified directly below the
obstacle environment message. As explained in
Sect. 6.3.1, the corresponding semantics enforces
clockReset1precedingMessageReceptionEvent to tick on the
last message reception event occurrence before the
clock reset. Thus, this clock ticks on the tick of
obstaclemsgReceiveEvt depicted in row 7.

Row 7 depicts the tick of obstaclemsgReceiveEvt clock at
instant 53. Here, we assume that it ticks immedi-
ately after the preceding (not depicted) message send
clock, which itself ticks immediately after the tick of
obstaclemsgCreateEvt (row 5).

Row 8 depicts the subsequent obstaclemsgConsumeEvt clock
tick at instant 54 without a substantial delay.

Row 9 depicts the tick of the obstacletaskStartEvt clock at
instant 61. This tick emerges from the fact that its super-
clock OSEK/VDX-Scheduler-µC1dispatch (row 4) cannot
tick earlier than this instant, because the trajectoryBea-
con processing task is completed only one instant before.
Thus, a dynamic delay occurs until the scheduler can dis-
patch the obstacle task.

Row 10 depicts the obstacletaskCompleteEvt clock tick at
instant 67 after theobstacleprocessing task is completed.
The task execution delay of 5ms is computed analogously
as described above for trajectoryBeacon in row 3.

We skip the detailed explanation of the computation and
determination of the further static and dynamic delays and
focus in the remainder on the clocks generated from the ele-
ments specified at the end of the MSD EmcyBraking.

Row 15 depicts the tick of the clockReset1upperBoundEvent
clock. As explained in Sect. 6.3.1, our semantics uses
this clock to represent the maximal delay c<50 w.r.t.
the preceding clock reset in the EmcyBraking MSD.
As explained in the description for row 6, this
clock reset is represented by the clock
clockReset1precedingMessageReceptionEvent. To represent the
maximal delay value 50 and span the corresponding
real-time requirement, clockReset1upperBoundEvent ticks

at instant 103, that is, 50 instants after the tick of
clockReset1precedingMessageReceptionEvent at instant 53.

Row 16 depicts the standstilltaskCompleteEvt clock tick,which
represents the final task completion event for the mes-
sage standstill at instant 105 due to the delays between
the event occurrences before.

Row 17 depicts the tick of the clock
clockReset1constrainedTaskCompletionEvent. As explained in
Sect. 6.3.1, our semantics enforces this clock to tick at the
same instant as the last task completion event clockbefore
a clock reset (cf. row 16). Furthermore, this clock tick
has to precede the tick of the clockReset1upperBoundEvent
clock at instant 103 (row 15) to fulfill the real-time
requirement. However, the clock ticks at instant 105
due to the platform-induced timing effects. Thus,
TimeSquare cannot solve the underlying Boolean
expression (cf. Sect. 2.4), and the simulation stops with a
deadlock (or an assertion is notified, see Sect. 6.3.1) This
represents a real-time requirement violation for the anal-
ysis context in which the trajectoryBeacon and obstacle
messages are almost simultaneously received by the soft-
ware component sa: SituationAnalysis.

The detection of such a real-time requirement violation
typically opens up a variety of potential countermeasures
to fix the defect. One possible countermeasure would be
to speed up the «TamECU» :μC1 to which the sa: Situation-
Analysis software component is allocated to: A speedFactor
of 2 would allow to process trajectoryBeacon and obsta-
cle within each 3 instants. This would reduce the end-to-end
response time until the task completion of standstill by alto-
gether 4 instants, thereby fulfilling the real-time requirement.
Other countermeasures are the addition of a further core to
:μC1 enabling the concurrent processing of the twomessages,
an exchange of the communication medium between the two
TamECUs improving the message transmission times, the
relaxation of the real-time requirement in communication
with all stakeholders, etc.

7.2 Model checking of a platform-specific MSD
model

Aspresented inSect. 2.4.3,TimeSquare allows constructing
the state space representing the set of all possible simulations.
The fact that there are different simulations possible from a
single CCSL model results from different sources of non-
determinism. For example, the clock obstaclemsgCreateEvt in
the proposed model is subject to a sporadic arrival pattern so
that it can tick between any 50 and 55ms. It is important to
verify the status of the requirements for any of these values.
This is also true for all the interval delays defined in Sect. 5.

We ran the state space construction on themodel generated
from theMSDspecification inFig. 20. It contains 9,775 states
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and 14,865 transitions. More interestingly, it contains a peri-
odic behavior that fulfills the requirements [62]. This happens
when the obstaclemsgCreateEvt ticks at time 55, reducing the
dynamic delay of the associated task and allowing the stand-
still task to complete before the deadline.

This shows the known fact that simulation and formal
verification complement each other [43]. Typically, there are
traces in specification state spaces that fulfill the require-
ments, whereas other traces violate them. This can be
dangerous, because timing analysts who are not aware of
the fact that the simulations cover only a subset of the over-
all state space could be easily satisfied with some conducted
simulations yielding only positive results. This can happen
despite the debugging environment provided byGemoc Stu-
dio, which allows for a step-by-step investigation of specific
executions by discovering the state space dynamically, help-
ing the timing analysts to investigate different simulations
[16].

While we prove the possibility to use the generic exhaus-
tive simulation feature to model check a platform-specific
MSD specification, it remains very costly. We are currently
investigating if it is possible to make it more affordable; even
if not totally exhaustive, typically by running parallel simu-
lations as inspired by Monte Carlo techniques.

8 Evaluation: Example application EBEAS

We evaluate our timing analysis approach by means of an
example application [121] and organize its description in
this section according to the guidelines by Kitchenham et
al. [74] and by Runeson et al. [108]. In our example applica-
tion, we investigate the efficacy of our approach with the
running EBEAS example, serving as a representative for
software-intensive distributed real-time systems. To answer
the evaluation questions, we apply different variants of the
platform-specific MSD specification introduced in Sect. 4.

In the example application, we evaluate a software proto-
type based on the Eclipse Modeling Framework (EMF) [33].
For the modeling language aspects, we rely on the EMF-
based UML modeling tool Papyrus [34]. Beyond editors for
conventionalUMLmodels, Papyrus enables the specification
of UML profiles and provides the Marte profile. Further-
more, the Papyrus-based tool suite ScenarioToolsMSD [109]
provides the Modal profile and corresponding editor and
analysis functionality.We extended both profiles by our TAM
profile as sketched on the left upper side of Fig. 6 in Sect. 3.
For the semantics specification (right upper side of Fig. 6),
we rely on the tool suite Gemoc Studio [32]. It provides the
timing analysis tool TimeSquare [114] as well as the lan-
guages ECL, CCSL (including libraries for the pre-defined
constraints), andMoCCML,with their textual editors relying
on the EMF-based language development framework Xtext

[120]. Finally, it applies the EMF-based QVTo implemen-
tation [35] for the model transformations. We provide the
application and an evaluation dataset in our supplementary
material [63].

8.1 Context

The objective of our example application is to evaluate
whether our approach is useful for timing analysts. For
this purpose, we examine the following evaluation questions
(EQ):

EQ1: Does our timing analysis approach generate syntacti-
cally and semantically correct CCSL models?

EQ2: Does our timing analysis approach reduce the engi-
neering effort for specifying CCSL models?

Based on the aforementioned example application objec-
tive and evaluation questions, we define three evaluation
hypotheses H1–H3. Their detailed evaluation is described
in Sects. 8.3 to 8.5.

8.2 Subject Specifications

Besides the first author, we employ two differentmaster-level
students, student-1 and student-2 to support the evalua-
tion. Student-1 has approximately four-year experience in
modeling and simulatingMSD specifications, as well as one-
year experience with Marte platform modeling and timing
analysis in TimeSquare during the evaluation conduct. Fur-
thermore, he conceived and implemented a very early version
of our timing analysis approach [12]. Student-2 has approxi-
mately one-year experiencewithmodelingMSD andMarte
specifications, as well as with TimeSquare during the eval-
uation conduct.

8.3 Hypothesis H1

We define evaluation hypothesis H1 as follows:
OurMSD semantics for timing analyses correctly encodes

the timing effects that are induced by the resource properties
provided as modeling means by our TAM profile (cf. evalu-
ation question EQ1).

For evaluating H1, two different students prepare four
different platform-specific MSD specifications that jointly
cover all resource properties that are provided as modeling
means by our TAM profile. Afterward, they generate CCSL
models from them and investigate whether any of the plat-
form properties induces each the expected timing effect with
the expected delay duration.

We consider H1 fulfilled if the students observe each a
timing effect as we expect to be induced by all resource prop-
erties specifiable with our TAM profile.
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8.3.1 Data collection preparation

As a basis for evaluating H1, the students prepare a set
of platform-specific MSD specifications that jointly cover
all resource properties that are supported by our seman-
tics. A large part of these resource properties is covered by
a platform-specific MSD specification that is presented in
[12, Section 7.2] as a proof of concept by student-1, which
we call MSD-spec-1. In this proof of concept, typical use
cases in the course of a timing analysis are constructed. This
encompasses the determination of several real-time require-
ment violations through the timing analysis and the repeated
adaptation of the specification until the real-time require-
ments are fulfilled.

For any of the remaining resource properties that are not
covered by MSD-spec-1, student-2 specifies each a dedi-
cated model (altogether 17 further models) that covers the
respective resource property to reproduce the corresponding
induced timing effect.

8.3.2 Data collection procedure

For evaluating hypothesis H1 with MSD-spec-1, student-1
conducts the following specification and timing analysis pro-
cess:

1. He specifies a platform-independent MSD specification
as explained in Sect. 2.2.1.

2. He specifies a platformmodel based on information about
real-world platforms, as explained in Sect. 4.

3. He specifies an allocation from the MSD specification
to the platform model and annotates software component
resource consumption properties.

4. He specifies analysis contexts and iteratively conducts the
timing analysis in TimeSquare. In the course of the tim-
ing analysis, he iteratively encounters platform-induced
real-time requirement violations, determines their respec-
tive causes, and adapts the resource properties until
all real-time requirements are fulfilled. This procedure
enables him to reenact every timing effect induced by a
resource property that is both considered by our semantics
and specified in the proof of concept model. Particu-
larly, he simulatively determineswhether for any specified
resource property each the expected timing effect occurs.

To evaluate hypothesis H1 for the remaining resource
properties that are not covered by MSD-spec-1, student-2
proceeds for any dedicatedmodel specific to a resource prop-
erty as follows:

1. He specifies the resource property with one value each so
that the expected induced timing effect in one case ful-

fills a real-time requirement and in the other case violates
the same real-time requirement. For this purpose, he reen-
acts the semantics for the corresponding resource property
to conceive a property value such that the induced tim-
ing effect leads to each the fulfillment and the violation
of a real-time requirement according to his expectations.
In the case of static delays, he reenacts the respective
delay computation formula (cf. Sect. 5). One example of
dynamic delays is the construction of a runtime situation
in which two software components concurrently access
one resource.

2. He conducts the timing analysis in TimeSquare. For the
static delays, he already determines in the preprocessed
model (cf. Sect. 6.2.1) whether the corresponding delay
changes according to his expectations. For both dynamic
and static delays, he simulatively determines whether
the corresponding timing effect as well as the real-time
requirement fulfillment or violation for the resource prop-
erty under investigation occurs as expected.

We documented the test results for all resource properties
that induce timing effects, as covered by our MSD semantics
for timing analyses. This includes how a particular resource
property induces a respective timing effect and how this tim-
ing effect sums up to which kind of delay. Furthermore, the
documentation includes which platform-specific MSD spec-
ification covers the resource property andwhether the student
observed the delay as expected. We omitted this documenta-
tion in this paper for space reasons; their details can be found
in [61,63].

8.3.3 Interpreting the results

Our documented test results show that our semantics encodes
the timing effects induced by the resource properties as
expected. Furthermore, all modeling means as provided by
our TAM profile are considered by the semantics. Thus, we
consider our hypothesis H1 fulfilled.

8.4 Hypothesis H2

We define evaluation hypothesis H2 as follows:
Manually specifying a platform-specific MSD specifi-

cation from scratch and automatically generating a CCSL
model from it is more efficient than specifying the corre-
sponding CCSLmodel manually from scratch (cf. evaluation
question EQ2).

For evaluating H2, the first author counts the number of
model elements for the four platform-specific MSD specifi-
cations as well as the CCSL models. He categorizes each
model element w.r.t. atomic model operation kinds and
measures the durations for conducting each operation kind.
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Furthermore, one student measures the transformation exe-
cution times for generating CCSL models from the four
platform-specific MSD specifications.

Finally, on the one hand, the averagedmeasurement values
for each operation kind are multiplied by the corresponding
number of model elements in the four MSD specifications
and summed. The transformation execution times are also
for each model added to the aforementioned sum, yielding
variableH2.1. On the other hand, the averaged measurement
values for each operation kind are multiplied by the corre-
sponding model elements in the generated CCSL models,
yielding variable H2.2.

At the end, the results for the MSD specification and the
CCSLmodels are compared.We considerH2 fulfilled ifH2.1
< H2.2.

8.4.1 Data collection preparation

Model preparations As a basis for evaluating H2, student-2
copiesMSD-spec-1, extends the platformmodel to five Tam-
ComConnections connecting five TamECUs, and allocates
the software architecture to it.We present the resultingmodel
in Fig. 7 and call it MSD-spec-2. Furthermore, student-1
specifies another variant of a platform-independent MSD
specification for the EBEAS, which encompasses 24 MSDs
and hence is more complex in terms of interaction require-
ments. He allocates it to the simple platform model of
MSD-spec-1, which we call MSD-spec-3. Finally, student-2
copies the variant of the platform-independent MSD specifi-
cation encompassing 24 MSDs, extends the platform model
ofMSD-spec-2, and adds the allocation specification.We call
the resulting modelMSD-spec-4, which is the most complex
of all considered MSD specifications in terms of interaction
requirements as well as the platform model.

Technical measurement preparations To technically prepare
the durationmeasuring of the differentmodel operation kinds
as part of the evaluation ofH2,we apply and adapt theEclipse
plugin ModRec [87,106]. ModRec aims at designing and
executing empirical studies on modeling in a Papyrus and
EMF context. As a prerequisite for this purpose, it provides
a Papyrus model listener to record atomic model operations,
which we consider in H2.

For measuring atomic model operation kinds in the
Papyrus-based ScenarioTools MSD, we slightly adapt Mod-
Rec to simply log timestamps for each of the model oper-
ations. In addition, we implement a custom listener for the
Xtext-based CCSL editor, because Xtext renders the under-
lying EMF model on every keystroke in a new model copy.
Furthermore, we prepare a dedicatedmeasurementmodel for
both the platform-specificMSD specifications and the CCSL
models. We provide the measurement tool suite and models
in our supplementary material [63].

Empirical measurement preparations Regarding the design
of the evaluation of H2, the first author automatically counts
the differentmodel elements forMSD-spec-1 toMSD-spec-4
as well as the different model elements of the corresponding
generated CCSL models CCSL-model-1 to CCSL-model-4.
Afterward, we categorize the model elements w.r.t. to dif-
ferent atomic model operation kinds that are required to
specify each of these model elements. This includes, for
example, the initial creation of a model element, specifying
its name attribute, specifying further values, or referencing
other model elements. This procedure yielded the following
amounts of different model operation kinds:

• 34 conventional UML model operation kinds that are
required for the platform-independent part of MSD spec-
ifications, spanning several kinds of individual UML
editors (e.g., class diagrams for component types and
interfaces, composite structure diagrams for architec-
tures, sequence diagrameditors for interactions, and form
editors to set the detailed properties of all elements).
The conventional UML model operation kinds strongly
depend on the editor capabilities provided by Papyrus for
the particular type of the considered UML partial model.
Consequently, we measure each of them individually in
the data collection (cf. Sect. 8.4.2). For example, MSD-
spec-1 contains 5 component types, and for each of them
the requirements engineer has to 1) create the compo-
nent type and 2) specify its name attribute, resulting in 2
atomic model operation kinds for this model element.

• 7 generic stereotype model operation kinds, as the edi-
tor capabilities for stereotypes in Papyrus are all the
same. That is, we generalized the 69 different operation
kinds for specifying the platform-specific information via
our TAM profile to these 7 generic stereotype operation
kinds. These encompass, for example, 1) creating a UML
base model element, 2) applying a stereotype, and 3)
specifying a numeric tagged value. In the data collection
(cf.Sect. 8.4.2), we use the measurement values of these
generic stereotype operation kinds in a representative
manner for each of the 69TAMstereotype operations. For
example, MSD-spec-1 contains 2 TamProcessingUnits,
and each of them requires creating the UML base ele-
ment (generic stereotype operation kind 1), applying the
stereotype (operation kind 2), and specifying the numeri-
cal tagged values numCores and speedFactor (each time
operation kind 3).

• 19 CCSL editor operation kinds, which directly emerge
from the different kinds of model elements used in our
transformation and thereby CCSL models. These CCSL
editor operation kinds encompass the declaration of Inte-
ger and clock variables, as well as the specification of
the clock expressions and clock relations as introduced
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in Sect. 2.4 and as used by our operational semantics
overview in Sect. 6.

8.4.2 Data collection procedure

For any of the 34 UML model operation kinds, the 7 generic
stereotype model operation kinds (representative for the 69
TAM stereotype model operations), and the 19 CCSL editor
operation kinds (cf. Sect. 8.4.1), the first author measures
each 10 times the duration for conducting the operation
as fast as possible in the dedicated measurement models.
That is, we measure the raw, time-wise effort for conduct-
ing the particular operations in the corresponding editors,
which also includes typical duration deviations due to wrong
mouse clicks or correcting typing errors.We provide all mea-
surement points as well as minimum/maximum times and
standard deviations in our dataset [63].

We then multiply the average values of the measurements
for the operation kinds with the number of the correspond-
ing modeling elements in MSD-spec-1 to MSD-spec-4 and
CCSL-model-1 to CCSL-model-4. The second column of
both the left- and right-hand side of Table 1 shows the aggre-
gated amounts of model elements for theMSD specifications
and CCSLmodels, respectively. For both theMSD specifica-
tions and CCSL models, the table also includes a breakdown
into the particularmodel element kinds. First, it details for the
MSD specifications the amounts of types, architectural ele-
ments, and interaction elements for the platform-independent
part (cf. Sect. 2.2.1) as well as the amounts of the different
element kinds of the platform-specific part (cf. Sect. 4). Sec-
ond, it details for CCSLmodels the amounts of the particular
model element kinds like variable declarations, clock expres-
sions, and the different clock relation kinds (cf. Sect. 2.4).
Then, the third column of both the left- and right-hand side
of Table 1 shows the aggregated sums of the average mea-
surement values multiplied by the number of corresponding
model elements, where we again provide the detailed multi-
plication scheme and values in our dataset [63].

To yield H2.1, we add the averaged transformation exe-
cution times for deriving the corresponding CCSL model
(fourth column on the left-hand side of Table 1) to the sum
of the multiplied mean average measurement values for the
effort on specifying the platform-specificMSD specification.
For measuring the particular times, student-2 instruments
the particular QVTo transformations in such a way that
timestamps are generated and performs several times the
transformation from any platform-specific MSD specifica-
tion to each the correspondingCCSLmodel. Thefifth column
on the left-hand side of Table 1 lists the summarized times of
specifying the platform-specific MSD specifications and of
executing the transformation, representing the variable H2.1.

The third columnon the right-hand side ofTable 1yieldsH2.2
directly.

8.4.3 Interpreting the results

Relating the variables H2.2 and H2.1, we observe that the
raw effort on manually specifying CCSL-model-1 (H2.2)
is ≈353% of the summarized effort on specifying MSD-
spec-1 and on generatingCCSL-model-1 (H2.1),≈297% for
MSD-spec-/CCSL-model-2,≈827% forMSD-spec-/CCSL-
model-3, and≈847% forMSD-spec-/CCSL-model-4. Thus,
we consider H2 fulfilled as H2.1 < H2.2 always holds.

8.5 Hypothesis H3

We define evaluation hypothesis H3 as follows:
The generated CCSL models are syntactically correct

(cf. evaluation question EQ1).
For evaluating H3, all generated CCSL models used for

the evaluation of H1 and H2 are opened in the CCSL editor
and simulated in TimeSquare.

We consider H3 fulfilled if all CCSL models generated
during the evaluation of H1 and H2 can be opened in the
CCSL editor and can be simulated in TimeSquare without
the occurrence of any error.

8.5.1 Data collection preparation

The model preparations described in Sects. 8.3.2 and 8.4.1
form also the basis for evaluating H3.

8.5.2 Data collection procedure

During the evaluation of H1 and H2, the students open every
generated CCSL models in the CCSL model editor and
simulate them in TimeSquare. These models encompass
CCSL-model-1, CCSL-model-2, CCSL-model-3, CCSL-
model-4, and the 17 further CCSL models dedicated to
certain resource properties. The students were able to open
and simulate all models without the occurrence of any error.

8.5.3 Interpreting the results

We consider hypothesis H3 fulfilled because 100% of the
21 CCSL models generated during the evaluation of H1 and
H2 were opened in the CCSL model editor and simulated in
TimeSquare without the occurrence of any error.

8.6 Summarizing the results

The fulfilled hypotheses indicate a positive answer to our
evaluation questions. That is, our timing analysis approach
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Table 1 Hypothesis H2: Comparison of measured efforts for manually specifying platform-specific MSD specifications and automatically gener-
ating CCSL models (H2.1) vs. specifying CCSL models manually (H2.2)

generates syntactically and semantically correct CCSLmod-
els and reduces the engineering effort for specifying them.
The effort is even less if we assume that the platform-
specific aspects are added to an already existing platform-
independent MSD specification as presented in Sect. 2.2.1.
Summarizing, the fulfilled hypotheses give rise to the
assumption that our timing analysis approach is indeed useful
for a timing analyst.

8.7 Threats to validity

The threats to validity in our example application according
to the taxonomy of Runeson et al. [108] are:
Construct validity

• During the evaluation conduct, both students had little
knowledge on timing analysis and on the Marte plat-
form modeling, and they had a lot and little knowledge
onmodelingMSDs, respectively (cf. Sect. 8.2). Thus, the
students’ knowledge is not comparable to the knowledge
of timing analysis experts, who are versed in applying
conventional timing analysis tools for later development
phases or TimeSquare. Such expertsmight tend to apply
the commercial-off-the-shelf-tools that they are used to,
or might argue that timing analyses are too imprecise
in an early development phase with only coarse-grained
information.

However, with their limited knowledge, the students
managed to specify the particular models, to inject and
understand real-time requirement violations, and to reen-
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act the computation of timing effects based on resource
properties through our operational semantics. This indi-
cates that the approach is indeed applicable and efficient,
especially for timing analysis novices.

• Student-1 conceived the initial timing analysis approach
as well as MSD-spec-1 in the context of [12], and the
other platform-specific MSD specifications are variants
of MSD-spec-1. Thus, he knew the functional principle
of the approach and could have been biased toward it.

However, in addition we employed student-2 for con-
ceiving the other platform-specific MSD specifications
as well as evaluating the hypotheses, and the first author
had comprehensive discussions with both students.

• Regarding the evaluation of H1, the resource properties
provided as modeling means by our TAM profile might
not be extensive enough,might not be useful, ormight not
be applicable during the early development phase of RE.

However, we argue that the considered resource proper-
ties represent typical timing-relevant ones at an adequate
abstraction level due to their systematic determination by
means of a literature review [12, Chapter 3]. This liter-
ature review considered scientific as well as industrial-
grade publications and investigated which resource prop-
erties influence the timing behavior of software-intensive
systems and which concrete effects on the timing behav-
ior they induce. Furthermore, it ensured the applicability
during RE by excluding publications describing resource
properties that have a too detailed abstraction level for a
timing analysis during this early development phase.

• Regarding the evaluation of H2, conducting a user study
on specifying complete particular models might provide
more information on the subjective efforts. In contrast,
we measure the raw, time-wise efforts on conducting the
particular model operation kinds in dedicated measure-
ment models.

Nevertheless, Durisic et al. [31] report that such simple
and atomic metrics based onmodel operations are a good
and objective indicator for predicting the overall effort,
though having certain threats to validity as every met-
ric. Particularly, we do not measure and thereby depend
on any cognitive effort that is very subjective and dif-
ficult to measure: Conceiving the models on paper or
whiteboards beforemodeling in the tool, discussionswith
peers, design and complexity issues of the respective
modeling languages, diagram layouting or text indent-
ing, error search and debugging,model evolution, general
cognitive abilities or current cognitive state of the engi-
neer, language expertise, etc.

Internal validity Regarding the evaluation of H2, we mul-
tiply the amount of model elements of the four complete
MSD specifications and CCSL models with the measured
raw, time-wise efforts of corresponding atomic model oper-
ation kinds, where the measurements stem from dedicated
measurement models. Under consideration of the transfor-
mation execution times, we then conclude that the effort on
specifying platform-specific MSD specifications and gen-
erating CCSL models is less than the effort on manually
specifying the corresponding CCSL models. These relations
might be incorrect. However, comparing the sheer amounts
of model elements for both model kinds, it is obvious that
manually specifying a CCSL model cannot outperform an
automatic CCSLmodel generation, even under consideration
that platform-specific MSD specifications have to be created
beforehand.

External validity We only considered one example appli-
cation, and the platform-specific MSD specifications are
variants of the same system. Furthermore, example appli-
cations in general cannot ensure external validity. Thus, we
cannot generalize the conclusions to all possible platform-
independent MSD specifications, other types of software-
intensive systems, or software-intensive systems in other
industry sectors. Nevertheless, the example application is
typical for software-intensive systems, so that we do not
expect large deviations for other types of systems.

Reliability

• Regarding the evaluation of H1, the students could have
judged incorrectly whether the platform-induced tim-
ing effects occur as expected. However, we mitigate
this threat by employing two different students, whose
judgments complement each other and are critically scru-
tinized by the first author. Furthermore, we provide the
evaluation data on H1 and the example application in our
supplementary material [63] for the sake of replicability.

• Regarding the evaluation of H2, a different person could
have a different modeling scheme or a different setup
of hardware and operating system, so that this other
person’s measurements would yield different duration
values. However, we believe that we applied the most
efficient modeling scheme for each of the operation kinds
and that the hardware and operating system setup can
be neglected on modern systems in a human interaction
context. Furthermore, we provide all the data, the mea-
surement software, and the measurement models in our
supplementary material [63], so that interested people
can replicate the measurements in other settings.
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9 Related work

The approaches described in this section analyze timedmod-
els. Typically, they specify behavioral models and analyze
them for safety and liveness properties in a timed setting.
The expressiveness of the underlying notations and the par-
ticularmodel contents influence the purposes and capabilities
of the analysis techniques, as explained in the following two
paragraphs.

Approaches that only specify application behavior or the
requirements on it can only verify that the timed behavior
fulfills the checked properties and can be implemented at all.
However, such approaches are not platform-aware: They are
not intended to verify that an execution platform is sufficient
to fulfill the real-time requirements (cf. Sect. 2.1). This is
due to the fact that the timing effects induced by the resource
properties are not in the scope of the analysis techniques or
the analyzedmodels. Thus, such approaches canbe compared
to our Real-time Play-out approach [17], which simulatively
validates timed MSDs to reveal unintended behavior and is
the basis for verifying MSDs for safety/liveness properties
[44].

If the models additionally specify the timing effects
induced by the execution platform, the analysis techniques
can also include (end-to-end) response time analyses as out-
lined in Sect. 2.1 and addressed by the approach presented
in this article. However, this causes much effort, because
these low-level timing effects (e.g., ECU, bus, and schedul-
ing behavior) have to be pre-calculated based on the platform
resource properties and explicitly specified for this purpose
(e.g., through delays in the particular timed notations)—
additionally to the (requirements on the) timed application
behavior. Furthermore, such models dedicated only to the
purpose of timing analyses are typically difficult to reuse
for or base on existing models for other purposes in the
designprocess (e.g., discussing the requirementsmodelswith
stakeholders or conducting design reviews of the platform
models).

In contrast, our approach enables to reuse existing timed
scenario-based requirements as well as platformmodels. The
application of de facto standard, UML-based modeling lan-
guages that are understandable for many stakeholders, and,
particularly, the straightforward specification of resource
properties instead of their induced timing effects facilitates
to (re-)use models also for/from other design process pur-
poses. Our semantics encapsulates the computation of the
timing effects induced by the particular resource properties
and enables to simulatively verify them against real-time
requirements as part of the timed MSDs.

The related approaches can be distinguished into appro-
aches for analyzing timed scenario-based models (Sect. 9.1)
and for analyzing timed automata-based models (Sect. 9.2).

9.1 Analysis of timed scenario-basedmodels

Beyond the explanations regarding the analysis of timed
models in general above, most approaches described in this
section annotate scenario-based requirements formalisms
with real-time requirements as well as timing effects induced
by the platform resources (cf. [58] for an overview on timed
scenario notations). Furthermore, these approaches provide
different non-simulative techniques for their respective tim-
ing analyses. However, the outputs of these timing analysis
techniques are plain yes/no results and partly logged infor-
mation about the processing times. In contrast, our timing
analysis of the generated CCSL timemodels in TimeSquare
enables to comprehensively detect real-time requirement vio-
lations straightaway by means of interactive simulation.

Live Sequence Charts (LSCs) [23] extend Message
Sequence Charts [68] with modeling constructs and seman-
tics for specifying and analyzing safety and liveness prop-
erties. Harel and Maoz [48] transferred these modeling
constructs to a UML profile to enable the specification
and analysis of LSC models in the widespread UML tools.
Extended with time conditions and their semantics [47,49],
they form our timed MSD variant with its operational
semantics given by Real-time Play-out [17] (cf. Sect. 2.2).
Thus and as explained above, approaches based on timed
LSCs/MSDs typically specify and analyze the (requirements
on the) general application behavior constrained by real-
time requirements but do not consider response time analysis
based on platform models.

In contrast, Larsen et al. [77,78,82] present an approach to
formally verify real-time design behavior specified through
Timed Automata (TA) [2] against scenario-based functional
and real-time requirements specified by means of time-
enriched LSCs. For this purpose, the LSC requirements are
translated to observer TA that are composed with the design
behavior TA that encompass pre-calculated timing effects
induced by the platform. The resulting TA network is veri-
fied against reachability properties on the observer TA in a
model checking tool. However, the need for detailed intra-
component design models encompassing platform timing
effects impedes the application of the approach in the early
RE phase.

Similarly, Lettrari and Klose [81] simulatively verify real-
time design models against scenario-based functional and
real-time requirements that are specified by means of time-
constrained UML 1.3 Sequence Diagrams augmented with
concepts from LSCs. For this purpose, they generate instru-
mented code from the design models so that timestamps are
recorded in the simulative code execution. These timestamps
are used to checkwhether the implementation fulfills the real-
time requirements specified in the scenarios. However, the
need for executable software code generated from detailed
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design models again impedes the application of the approach
in early RE.

Hassine [55,56] annotates the scenario notation of Timed
Use CaseMaps (TUCM) [57] and its underlying architecture
with timing-relevant effects. The annotated TUCMmodel is
transformed into an Abstract State Machine model [14] that
is simulated in an external tool, similarly to our approach.
However, the simulation tool is not capable of interpreting
the annotations. Instead, it is instrumented so that execution
traces are generated and persisted in a text file. These execu-
tion traces potentially contain log messages about real-time
requirement violations and have to be inspected manually
to reveal the violated requirement and the violating timing
effect. In contrast, we generate CCSL specifications that
we directly simulate in TimeSquare, enabling to detect
and comprehend potential real-time requirement violations
straightaway. Furthermore, the approach only allows to spec-
ify delays (i.e., timing effects) induced by the platform, but
not the causes of these effects (i.e., the resource properties).

Wang and Tsai [119] apply Message Sequence Charts
[68] to specify functional requirements and the Specification
and Description Language [69] to specify the underly-
ing architecture. They annotate these models with a task
model including real-time requirements and with timing-
relevant effects, respectively. They use algorithms to first
compute an allocation of tasks to processing resources and
subsequently perform a schedulability analysis to verify
the effects against real-time requirements, yielding a plain
yes/no result. In contrast, we explicitly specify the alloca-
tion of software components to processing resources in our
platform-specificMSDspecifications and simulate the result-
ing CCSL specifications, where the simulation facilitates
to comprehend potential real-time requirement violations.
Again, the approach does not distinguish between resource
properties and the timing effects that they induce.

Han and Youn [45] apply Interval Timed Colored Petri
Nets [15] to specify delays for the execution of event
sequences and annotate these models with real-time require-
ments. They present algorithms for the computation of event
sequence processing delays and for the verification of the
delays w.r.t. the real-time requirements. Similarly to the
approachesmentioned above, the outputs of these algorithms
are plain yes/no results aswell as the loggedprocessing times.
Thus, our simulative approach again enables a better com-
prehension of real-time requirement violations. Furthermore,
the approach only allows to specify static delays in terms of
timing effects.

9.2 Analysis of timed automata-basedmodels

Automata-based notations are in terms of expressiveness
similar to scenario-based notations.However, scenario-based
models are quicker to understand than automata-based ones

[83,99]. Due to the focus on the inter- instead of the intra-
component behavior, we further argue that a scenario-based
notation is the natural choice for the requirements on the
message-based interactions of distributed software-intensive
systems,whichwe address in this article. Apart from that, our
approach is different frommost of the approaches mentioned
in this section as explained in the beginning of Sect. 9. That
is, it does not require specifying the low-level timed platform
behavior with timing effects pre-calculated from the resource
properties, but rather enables using the resource properties
as part of dedicated platform models in a straightforward
manner.

Gerber and Lee [40] present the automata-like process
algebra Calculus for Communicating Shared Resources and
an accompanying proof system for schedulability analyses.
Beyond timing effects and constraints for the behavioral part,
it allows the allocation to shared and prioritizable resources
like CPUs or communication links. The underlying computa-
tionalmodel captures the fact that a resource can only process
one action at an instant. Thus, from the approaches described
in this section, it comes closest to our approach of allocat-
ing behavioral to platform models and encapsulating timing
effects in the operational semantics. However, the resources
are part of the behavioral model, so that behavioral and plat-
form aspects cannot be conceived independently. From an
analysis point of view, the approach is not capable of inter-
actively simulating and visualizing the timed behavior for
revealing the causes of real-time requirement violations.

Jahanian et al. [70,71] introduce the graphical specifi-
cation language Modechart, which is inspired by Harel’s
Statecharts [46] and allows to annotate real-time require-
ments (i.e., deadlines) and timing effects (i.e., delays) to
automata-based behavioral models. Modechart comes with
a tool set [21] for the specification, formal verification,
and simulation of the corresponding models. Unlike in our
approach, neither dedicated platform models specifying the
resource properties nor their translation into the induced tim-
ing effects are in the scope of Modechart. Thus, the detailed
scheduling behavior of the whole system has to be speci-
fied and annotated with all possible timing effects to verify
it against the real-time requirements.

Ostroff [98] introduces time-augmented automata called
Timed Transition Models and an automatic verification
approach for this language. The timing behavior is specified
by means of lower and upper time bounds for the transitions,
and the real-time requirements are specified through proper-
ties in real-time temporal logic [97]. Twodifferent algorithms
compute reachability graphs from the timed transitions mod-
els and analyze them for different temporal properties.Again,
every possible timing effect induced by the execution plat-
form has to be calculated and explicitly specified by means
of time bounds for the transitions to consider it in the analy-
sis.
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Timed Automata (TA) [2] (cf. Sect. 9.1 for an approach
applying TA in combination with LSCs) provide model-
ing means for adding delays and timed conditions to the
states and transitions of automata. Particularly, their effi-
cient implementation by means of a simplified TA variant
in the model checking tool UPPAAL [11,79] led to a
wide range of approaches using TA as basis for the for-
mal verification of timed behavior (see, e.g., [118] for a
list of UPPAAL case studies). As the approaches mentioned
before, specifying and analyzing TA either only consider
the timed application behavior or requires to know and
specify additionally the behavior of the platform and its
timing effects. Thus, for applying TA for the purpose of
schedulability analysis, the UPPAAL variant TIMES [4,5]
enables to specify and analyze task models based on TA.
However, this approach requires as much detailed knowl-
edge of the final implementation or models of it that it
can be applied only in later engineering phases, like con-
ventional commercial-off-the-shelf-tools for response time
analysis.

10 Conclusion and future work

In this paper, we presented an approach that enables end-
to-end response time analyses based on MSD specifica-
tions encompassing real-time requirements in the early
RE phase of the development process. For this purpose,
we introduced the Marte-based TAM profile that pro-
vides modeling means for platforms, their timing-relevant
resource properties, and the allocation of MSD specifica-
tions to the platform models. Furthermore, we conceptually
extend the event handling semantics of MSDs by intro-
ducing event kinds for the consideration of static and
dynamic delays that occur during the software execution
on a target platform. Finally, as the main contribution,
we specified the operational semantics of platform-specific
MSD specifications with extended event handling for the
purpose of timing analyses. To this end, we applied the
Gemoc approach enabling the automatic derivation of
CCSL models from platform-specific MSD specifications
based on our semantics specification. These CCSL mod-
els are executable in the simulative timing analysis tool
TimeSquare, which also provides model checking features.
Using an example application, we evaluated the approach
with the automotive EBEAS example and outline the tim-
ing problems that we are able to identify on this abstraction
level.

Our timing analysis approach enables to identify platform-
induced real-time requirement violations in MSD require-
ments specifications that could otherwise be revealed only
in late engineering phases through conventional timing anal-
ysis techniques. The TAM profile provides comprehensive

modeling means to add timing-relevant platform-specific
aspects to MSD specifications at an abstraction level suit-
able for RE. The extended event handling semantics for
MSDs enables a more realistic consideration of the par-
ticular event occurrences and the delays in between. The
specification of the MSD semantics for timing analyses
encodes, in terms of CCSL and MoCCML, a subset of
the conventional MSD semantics, the extended MSD event
handling, and the platform resource properties’ effects on
the timing behavior. Particularly, the automatic computa-
tion and separation of the timing effects from their inducing
resource properties enables the straightforward usage of
platform models. Furthermore, the declarative semantics
specification with Gemoc allows the flexible encoding of
additional resource properties’ timing effects or the adap-
tion to other scenario-based notations. The model trans-
formation generation feature of Gemoc Studio takes this
specification as input and thereby reduces the effort of mov-
ing from MSDs to the CCSL formalism. The evaluation
of the example application indicates the efficacy of the
approach.

A promising starting point for future work is the size of
the solution space, which arises out of the detection of a
real-time requirement (cf. the discussion on the variety of
potential fixes to a violation in the end of Sect. 7.1). Such
challenges, where a large solution space exists and several
constraints have to be considered, are subject to optimiza-
tion questions and can be boiled down to a search problem
in the solution space. Search-based software engineering
[52–54] is a well-established software engineering field that
applies meta-heuristic algorithms [39] to automatically solve
such search problems. Similar to our previous work on auto-
matically completing underspecified scenario models [110],
the problem of finding real-time-feasible platform-specific
MSD specifications could be encoded as input to a meta-
heuristic algorithm that has to incorporate the timing analysis
results.
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