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1 Introduction

Extended geometry [1–4], containing exceptional geometry [5–28] and double geome-
try [29–43] as special examples, provides a means to promote “accidental” duality sym-
metries to integral ingredients in a fundamental formulation of models containing grav-
ity. Such symmetries include the Ehlers [44] and Geroch [45] symmetries, and even the
over-extended Belinskii-Khalatnikov-Lifshitz group [46] close to a space-like singularity, so
extended geometry carries a potential to reveal hidden information also about pure gravity.

It has become increasingly clear [4, 47, 48] that the proper framework for extended
geometry is the tensor hierarchy algebras [3, 47, 49, 50]. These Lie superalgebras give all
information about gauge transformations, fields, field strengths etc., all in the framework
of an L∞ algebra [2, 4]. The purpose of the present paper is to report on progress along
these lines. The field strengths naturally occurring in the L∞ algebra arise as (generalised)
torsion. Concepts like Riemann tensors have turned out generically not to be well defined
in extended geometry, and spin connections are not uniquely determined by demanding
covariant constancy of a vielbein. The natural and well defined complex to work with (and
predicted by the tensor hierarchy algebras) contains

· · · ← torsion BI’s ← torsion ← vielbein ← diffeomorphism parameters ← · · ·
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Equations of motion are to be found in the dual complex. This points towards a teleparallel
formulation being the most natural one, from the point of view of the algebraic foundations.
Nevertheless, the dynamics of extended geometry has traditionally been formulated as coset
dynamics on G/K, where local invariance under the compact subgroup K of the structure
group G is manifest, but (generalised) diffeomorphism invariance is not. We now propose
the opposite. Since torsion appears in the tensor hierarchy algebras, and is covariant under
diffeomorphisms, we instead search for a teleparallel formulation of the dynamics, where
diffeomorphisms invariance is manifest, but local K invariance is not. We will show, for
finite-dimensional structure groups, how it arises as what we choose to call “dual gauge
symmetry”, due to the presence of torsion Bianchi identities of a particular form. This may
become important and informative when we turn to infinite-dimensional structure groups,
and the peculiar “extra” elements extending the group G.

We begin by reviewing the standard teleparallel formulation of gravity [51, 52] in
section 2, with particular focus on how the torsion Bianchi identity guarantees local Lorentz
invariance. Section 3 identifies a certain Bianchi identity when G is finite-dimensional. A
concrete example is then given in section 4, where the complete construction of teleparallel
dynamics is given for E5 extended geometry. A (pseudo-)action for a large class of extended
geometries is the constructed in section 5. We conclude by summarising the results and
outlining future research in section 6.

2 Teleparallel gravity and dynamics on GL(d)/SO(d)

This section is a recapitulation of well known facts. Nevertheless, in order to clarify the
mechanism behind local Lorentz invariance, which will be essential for the generalisation
to extended geometry, we review the basics of teleparallel gravity.

We work in a d-dimensional space or space-time. The gravity field is locally defined
by a vielbein or frame 1-form ea = dxmem

a. Indices in coordinate basis (“curved indices”)
are labelled m,n, . . . while a, b, . . . are Lorentz or orthogonal (“flat”) indices. The metric
is gmn = em

aen
bηab, where η is the flat metric with appropriate signature.

An affine connection in the curved basis is denoted Γ = dxmΓm, taking values in gl(d),
i.e., having components Γmnp. A spin connection in the flat basis is ω = dxmωm, taking
values in so(d) (with some signature), with components ωmab. The compatibility relation
for the vielbein and connections is

Dmen
a ≡ ∂mena + Γmnpepa − ωmbaenb = 0 . (2.1)

If the torsion part of the affine connection, Θmn
p = 2Γ[mn]

p is fixed, the compatibility
equation determines the spin connection.

We will be particularly interested in the Weitzenböck connection, which is (minus)
the right-invariant Maurer-Cartan 1-form for the vielbein, seen as a group element in
GL(d). From now on, we denote this connection Γ, so Γ = −dee−1, or, in components,
Γmnp = −∂menaeap. This connection is flat — the vanishing of its curvature is expressed
as the Maurer-Cartan equations dΓ + Γ ∧ Γ = 0. Using the Weitzenböck connection
implies that the spin connection vanishes through eq. (2.1), which provides the basis of the
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teleparallel formalism. On the other hand, the Weitzenböck connection carries a non-zero
torsion Θmn

p = −2(∂[mee
−1)n]

p, also known as the anholonomy coefficients.
Starting from the Weitzenböck connection, there are two ways of formulating dynam-

ics giving an action which is quadratic in the derivative of the vielbein. The principle
employed is the invariance under both general coordinate transformations and local or-
thogonal rotations. Both can not be manifest at the same time (they are of course in the
Einstein-Hilbert action, which is not quadratic in first derivative entities).

If one chooses to manifest general coordinate invariance, one forms a Lagrangian from
the torsion Θ, which transforms as a tensor (and, of course, the metric gmn). Then,
local rotations are not manifest. When the vielbein transforms as δΛem

a = −embΛba with
Λ ∈ so(d), the Weizenböck connection transforms as δΛΓmnp = (e∂mΛe−1)np. Using the
covariant constancy of the vielbein (2.1), this can be written δΛΓmnp = DmΛnp, where
indices on Λ have been converted using the vielbein and its inverse. Thus,

δΛΘmn
p = 2D[mΛn]

p . (2.2)

As we will see below, demanding invariance under local rotations, modulo a total deriva-
tive, of a Lagrangian quadratic in torsion completely dictates its form. This leads to the
teleparallel formulation of gravitational dynamics.

If one, on the other hand, wants to manifest invariance under local rotations, one notes
that the transformation of the Weitzenböck connection Γm only affects its component Qm in
so(d) (as defined locally by the involution induced by the metric). Defining Γm = Pm+Qm,
where Pm is a symmetric matrix, i.e., Pmnp = Γm(np) and Qmnp = Γm[np], the coset part
Pmn

p is invariant under local rotations. On the other hand, it transforms inhomogeneously
under general coordinate transformations. If we define the inhomogeneous part of a trans-
formation with parameter ξ as ∆ξ = δξ −Lξ, we have ∆ξPmnp = ∂m∂(nξ

qgp)q. Demanding
that a Lagrangian quadratic in P is invariant under general coordinate transformations, up
to a total derivative, determines its form. We refer to this formulation as the “coset model”.
A generalisation of this formulation has traditionally been used in extended geometry.

Both the teleparallel formulation and the coset model are equivalent to the Einstein-
Hilbert action, and the actions differ from it and from each other by total derivatives.
The total derivative term relating the teleparallel and coset formulations will be invariant
neither under diffeomorphisms nor under local rotations. We will determine the total
derivative term below, and verify that the general form of the action in extended geometry
reduces to the one for gravity.

It is straightforward to verify that in order for a Θ2 action to be invariant under the
transformation (2.2), one is uniquely (up to an overall factor) led to the Lagrangian

L (Θ) = |e|
(

1
8ΘmnpΘmnp + 1

4ΘmnpΘmpn − 1
2Θmn

nΘm
p
p

)
. (2.3)

One then gets

δΛL (Θ) = |e|
(
− 1

2Θmn
pDpΛmn + Θmp

pDnΛmn
)

= −3
2 |e|Θ[mn

pDp]Λmn . (2.4)
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In order to show that this is a total derivative, one uses the Bianchi identity for Θ,

D[mΘnp]
q = −Θ[mn

rΘp]r
q , (2.5)

together with the observation that

∂m(|e|vm) = |e|
(
∂mv

m + (∂mee−1)nnvm
)

= |e|
(
∂mv

m − Γnmmvn
)

= |e|
(
∂mv

m − Γmnmvn −Θnm
mvn

)
= |e|

(
Dmv

m −Θmn
nvm

)
. (2.6)

The Θ2 terms from the Bianchi identity and the partial integration cancel, and we have
δΛL (Θ) = −3

2∂p
(
|e|Θmn

[pΛmn]). Using [Dm, Dn] = Θmn
pDp, this can be further rewrit-

ten as

δΛL (Θ) = −∂m
(
|e|DnΛmn

)
. (2.7)

Note that only the part of the Bianchi identity which is an antisymmetric tensor in lower
indices is needed. It reads

DpΘmn
p + 2D[mΘn]p

p = Θmn
pΘpq

q . (2.8)

Now, it is obvious that this transformation can be cancelled by adding the total
derivative term ∂m(|e|Qnmn) to the Lagrangian. This will however break the manifest
invariance under diffeomorphisms, since Q is not a tensor. The resulting Lagrangian,
L (P ) = L (Θ) + ∂m(|e|Qnmn), will be invariant under local so(d) rotations, but only in-
variant under diffeomorphisms modulo a total derivative. It is straightforward to evaluate
the derivative in the extra term using the Maurer-Cartan equations and check by explicit
calculation that L (P ) contains only P 2 terms, and that terms with PQ and Q2 vanish, as
expected. The concrete expression for L (P ) is

L (P ) = 1
2PmnpP

mnp − PmnpPnmp + Pmn
nPp

pm − 1
2Pmn

nPmp
p . (2.9)

2.1 The coset model

Before generalising this to extended geometry, we would like to check that L (P ) indeed
coincides with the extended geometry Lagrangian when specialised to gravity. The general
extended geometry Lagrangian, in models where ancillary transformations are absent, is
given by

L (Π) = 1
2G

MNηαβΠMαΠNβ −GPQtαPM tβQNΠNαΠMβ

− 2(G−1tα)MNΠMαπN −
(λ, λ)

(λ, λ)− 1
2
GMNπMπN (2.10)

Here, the generalised metric GMN is chosen to have the scaling weight −2((λ, λ)− 1
2) (in-

stead of −2((λ, λ)−1) which is appropriate for a tensor), which explains the absence of a de-
terminant factor. We also have −1

2(∂MGG−1)NP = ΠMαt
α
N
P +πMδPN . Indices α, β, . . . are

adjoint, and M,N, . . . are coordinate indices, corresponding to the highest/lowest weight
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module R(±λ). The matrices tαMN are representation matrices for R(λ), and they are
normalised so that 1

2ηαβt
αtβ = C2(R(λ))1 = 1

2(λ, λ+ 2%)1.
Gravity in d = n + 1 dimensions is extended geometry with gl(n + 1) ' An ⊕ R as

structure algebra and the fundamental as coordinate representation. The adjoint index α
can be replaces by a (traceless) pair mn The representation matrices are

tm
n
p
q = δqmδ

p
n −

1
n+ 1δ

n
mδ

q
p . (2.11)

We have (λ, λ) = n
n+1 . We rescale according to Gmn = |g|−

1
2 gmn. We can then relate Π and

π to P as Πmn
p = Pmn

p− 1
n+1δ

p
nPmq

q and πm = − n−1
2(n+1)Pmn

n. Inserting these relations in
L (Π) of eq. (2.10) results in an elimination of all n-dependence in the coefficients, and we
obtain exactly L (Π) = L (P ).

Forming the tensor ϕ [3], which always is a sum of projections on the “big” torsion
modules (torsion not in R(λ)). We have the identity

ϕαM,β
N = δαβ δ

N
M + fαβγt

γ
M
N − 1

(λ, λ)(tαtβ)MN + `Mβ
Nα . (2.12)

Here, ` = 0, and insertion of the structure constants above yields

ϕp
q
m,r

sn = 2
(
δnsmpδ

q
r + 2

n
δq[mδ

[n
p] δ

s]
r

)
, (2.13)

which obviously projects on the traceless torsion module. Denoting the traceless part of
torsion Θ̃mn

p, we have Θ̃mn
p = ϕn

p
m,r

sqΓqsr.

2.2 Local Lorentz symmetry as a dual gauge symmetry

The complex consisting of diffeomorphism parameters, (linearised) vielbein, torsion, tor-
sion Bianchi identities, etc., can be identified with elements in the (finite-dimensional)
Cartan-type superalgebra W (d) = W (Ad−1). The 1-bracket is depicted by the arrows in
figure 1. There are no ancillary elements, which makes the embedding into W (d+1) some-
what superfluous. If one wants to express the derivation as an algebraic operation it is
however needed.

The procedure of formulating gravitational dynamics in the teleparallel formalism can
be described as follows. First, the 1-bracket is derived for the full non-linear fields. This
gives the covariant field strengths, the torsion of the Weizenböck connection, in terms of the
vielbeins (not only its linear fluctuations around the unit matrix). Then, just as is done for
a p-form field strength, a map ? from the complex C to its dual C? is found. The equations
of motion are then obtained as d?Θ = 0, where Θ is the torsion. The map ? : C → C?

is however not unique. It maps all GL(d) modules to their duals. There is a “canonical”
choice, the local Chevalley involution, which uses the metric on all indices. This is however
not the choice implemented by the variation of the Lagrangian (2.3). Whenever there is
a combination of upper and lower indices (or, equivalently, some tensor product with the
adjoint), there is a choice of some linear combination of Vmn 7→ Vm

n and Vmn 7→ gmpg
nqVq

p.
For a specific choice of dualisation, the one implemented by the teleparallel Lagrangian,
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Bianchi id’s torsion fields diffeo-
morphisms

Figure 1. The W (d) complex of gravity.

the dual arrow from the dual of the antisymmetric Bianchi identity to the dual torsion
becomes a gauge symmetry, i.e., the corresponding variation of the dual torsion in C? is
expressible as a transformation of the vielbein. Note that going to the dual complex is
not associated to changing variables from the vielbein to some dual potential, but that the
dual of the antisymmetric Bianchi identity is in the same position in the dual complex as
a dual potential would be. We call this a dual gauge symmetry.

3 Teleparallel extended geometry

We would like to generalise teleparallel formulation of gravity to extended geometry with
structure group G. This will involve the identification of a specific antisymmetric Bianchi
identity, responsible for the invariance under local rotations in the compact subgroup K ⊂
G. In the teleparallel formulation, all physical entities will transform covariantly under
generalised diffeomorphisms, as described in section 3.2.

3.1 Modules of Bianchi identities in the tensor hierarchy algebra

The superalgebra used in the identification of local symmetries, fields, field strengths etc.
in extended geometry with structure algebra g is the tensor hierarchy algebra S(g+) [3, 4].
This superalgebra is obtained as a double extension of g: first by a bosonic node, resulting
in the Kac-Moody algebra g+. The Dynkin diagram of g+ is obtained by connecting the
extending node to the Dynkin diagram of g by lines corresponding to the Dynkin labels
of λ, where the coordinate module is the lowest weight module R(−λ). Then, the Dynkin
diagram is further extended by attaching a fermionic (“grey”) node to the first node. One
obtains the first diagram in figure 2. The second diagram describes the same algebra, after
a “fermionic Weyl reflection”. The same diagrams, and the same Cartan matrices, apply to
W (g+) and the contragredient Borcherds superalgebra B(g+). For the full construction,
we refer to refs. [3, 49].

We will sometimes refer to the double grading of S(g+) with respect to its two leftmost
nodes (in any of the two diagrams), see table 1. Let us use a numbering where these two
nodes are number 0 and 1, and the remaining ones 2, . . . , r, with r − 1 = rank g. (This
numbering is the same as in [49], but different from the one in [3, 50].) We then denote the
degree with respect to nodes 0 and 1 in the right diagram by −q and p. Equivalently, the
gradings with respect to nodes 0 and 1 in the left diagram are p− q and p. Non-ancillary
elements in the L∞ algebra of extended geometry reside at q = 0, while ancillary ones are
found at q = 1. Their ghost numbers are p+ q.

– 6 –



J
H
E
P
0
4
(
2
0
2
2
)
1
6
4

Figure 2. Two equivalent Dynkin diagrams for B(g+), W (g+) and S(g+). Removing the “grey”
node in the first diagram yields the Dynkin diagram of g+.

p = −2 p = −1 p = 0 p = 1

q = 2 L]αM

q = 1 . . . Φ]
α
M T ]α E]M LαM

q = 0 AMN SMN S′MN Φα
M FM k̃ Tα EM

q = −1 . . . F [M e0

q = −2 . . .

Table 1. Basis elements for S(g+), for finite-dimensional g, at p = −2,−1, 0, 1. At p = −2, the
list is incomplete — only the modules used in this paper are given.

For finite-dimensional g, ancillary terms only appear at positive ghost numbers. In
order to examine the content of torsion, which is a field strength, i.e., ghost number −1, the
subalgebra at q = 0 suffices. This is W (g), described by the right diagram in figure 2 with
the leftmost node removed. Its Chevalley generators contain the standard ones ha, ea, fa,
for a = 0, . . . , r (generating the subalgebra B(g)), but also fermionic generators f0i for
i = 2, . . . , r. They satisfy [e0, f0i] = hi, why it is natural to set f00 = f0. Furthermore,
[e1, f0i] = 0, but [ei, f0j ] 6= 0 if the nodes i and j are connected. We refer to refs. [3, 49]
for a complete list of the defining identities.

We will now show that the leading antisymmetric and the subleading symmetric mod-
ules are present at level −2 inW (g). The proof relies on the identity [e1, [ei, f0j ]] = 0, which
is obvious if the nodes i and j are disconnected, and otherwise by noting that [e1, [ei, f0j ]] is
proportional to 2[e1, [ei, f0i]] = [e1, [ei, [ei, [fi, f0i]]]], which vanishes by the Serre relations.

Let f0λ be the linear combination of f0i generators, where the coefficients are the
same as when λ is expressed as a linear combination of the corresponding simple roots αi.
Consider the element [f0λ, [f1, f00]] in W (g). The adjoint action on it of ei (i = 2, . . . , r)
gives

[ei, [f0λ, [f1, f00]]] = [[ei, f0λ], [f1, f00]] + [f0λ, [ei, [f1, f00]]] (3.1)
= [[[ei, f0λ], f1], f00] + [f1, [[ei, f0λ], f00]] ,
= −[[ei, [f1, f0λ]], f00] + [f1, [ei, [f0λ, f00]]]− [f1, [f0λ, [ei, f00]]] ,

which is zero since [ei, [f1, f0λ]] = [f0λ, f00] = [ei, f00] = 0. In the first step we have also
used that [ei, [f1, f00]]] = 0. The fact that [ei, [f1, f0λ]] = 0 follows directly if (αi, λ) = 0,
and otherwise using [f1, [f1, [e1, [ei, f0λ]]]] = 0, which in turn follows from [e1, [ei, f0λ]] = 0.

– 7 –
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Acting with e1 on [f0λ, [f1, f00]], we get

[e1, [f0λ, [f1, f00]]] = [f0λ, [e1, [f1, f00]]] = [f0λ, [h1, f00]] = [f0λ, f00] = 0 . (3.2)

Finally, acting with e0 on [f0λ, [f1, f00]], we get

[e0, [f0λ, [f1, f00]]] = [hλ, [f1, f00]]− [f0λ, [e0, [f1, f00]]]
= (λ, λ)[f1, f00] + [f0λ, f1] , (3.3)

which is obviously nonzero. Thus [f0λ, [f1, f00]] is a nonzero element that is annihilated by
e1, e2, . . . , er, and it has the correct g-weight. A covariant construction of the highest weight
module that it generates is given by the leading antisymmetric module in tαP [M [FP ,Φα

N ]],
where F and Φ are elements at level −1 in W (g), forming a basis for the torsion module
(for a precise characterisation of this module, see the following subsection). Also the sub-
leading antisymmetric modules will be present. In a similar fashion, subleading symmetric
generators are formed as [FM , FN ] and as tαP (M [FP ,Φα

N)]. The subleading property of
the latter is due to the properties of the “big” torsion module (spanned by Φ), i.e., of the
tensor ϕ in the following subsection.

In general, there will be many more irreducible modules for torsion Bianchi identities
at level −2 in W (g) (see e.g. figure 3 for the E5 model). They will not be relevant to the
discussion of local symmetries.

3.2 Vielbein, torsion and Bianchi identities

The coset G/K × R is parametrised by a generalised vielbein EM
A. For convenience, it

can be assigned a (non-zero) scaling weight w. The tensorial value of w for a covector
is 1 − (λ, λ) [1]. The Weizenböck connection is defined as the right-invariant Maurer-
Cartan form

ΓM = −∂MEE−1 , (3.4)

and it is decomposed as

ΓMN
P = tαN

PΓMα + wδPNγM . (3.5)

The vielbein is covariantly constant, DMEN
A = ∂MEN

A + ΓMN
PEP

A = 0, without any
spin connection. Using the covariant transformation of E under generalised diffeomor-
phisms [1],

δξEM
A = ξN∂NEM

A + tαM
QtαN

P∂P ξ
NEQ

A + w∂Nξ
NEM

A , (3.6)

the inhomogeneous parts of the transformations of the connection components follow:

∆ξΓMα = −tαNP∂M∂P ξN ,

∆ξγM = −∂M∂NξN . (3.7)

Note that, unlike other connections, the Weizenböck connection satisfies a section con-
straint on its first index.
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In ref. [3], invariant tensors ϕ and ` were introduced, that occur in the structure con-
stants of the relevant tensor hierarchy algebra S(g+). The tensor ϕ projects (with some
non-zero weights) on the modules occurring in the “big” torsion module, consisting of the
irreducible modules with highest weights λ+γ, where γ belongs to the set of highest g roots
with (λ, γ) = 0,−2,−3, . . . ,−(λ, θ). The tensor `, which is associated with the presence
of ancillary transformation, projects on the subset of these with (λ, γ) ≤ −2. Recall that
ancillary transformations are restricted local g transformations that appear in the com-
mutator of two generalised diffeomorphisms. We refer to ref. [3] for the connection to the
presence of certain modules in the tensor hierarchy algebras. When ancillary transforma-
tions are not present, ` = 0 and the highest weights appearing in the big torsion module
are only λ+ γ with (λ, γ) = 0. Much of the considerations below, in particular the action
of section 5 will concern this situation, and also, for simplicity, cases where the big torsion
module is irreducible, i.e., when there is a single highest root with (λ, γ) = 0.

We then immediately find the “big” and “small” torsion as the projections

ΘM
α = ϕαM,β

NΓNβ ,
θM = tαM

NΓNα − (λ, λ)γM (3.8)

of the Weizenböck connection. This holds for finite-dimensional g.
We denote projection on the leading symmetric module R(2λ) by 〈MN〉, and on the

leading antisymmetric module(s) R(2λ− αi) by {MN}.
The tensors ϕ and ` turn out to respect a “remarkable identity” [3], appearing as a

Jacobi identity in the tensor hierarchy algebra S(g+):

ϕβM,α
N − `αMβN = δβαδ

N
M − fαβγtγMN − 1

(λ, λ)(tβtα)MN , (3.9)

or, in a notation with fundamental indices suppressed:

ϕβα − `αβ = δβα − fαβγtγ −
1

(λ, λ) t
βtα . (3.10)

One defining relation for the tensor ϕ is that it respects the level 2 Serre relations,
which means that

(ϕαβ ⊗ tβ)MN
〈PQ〉 = 0 . (3.11)

Since ` projects on a subset of the same modules, also (`αβ ⊗ tβ)MN
〈PQ〉 = 0. In addition

we have (`αβ ⊗ tβ)MN
{PQ} = 0. Inserting these identities in the remarkable identity (3.10)

and using the section constraint then gives

(tβ ⊗ ϕβα)MN
〈PQ〉 =

(
− (1− 1

(λ, λ))fαβγtβ ⊗ tγ + tα ⊗ 1− 1⊗ tα
)
MN

〈PQ〉 ,

(tβ ⊗ `βα)MN
〈PQ〉 =

(
− fαβγtβ ⊗ tγ − tα ⊗ 1 + 1⊗ tα

)
MN

〈PQ〉 , (3.12)

(tβ ⊗ ϕβα)MN
{PQ} =

(
− (1− 1

(λ, λ))fαβγtβ ⊗ tγ + tα ⊗ 1 + 2− (λ, λ)
(λ, λ) 1⊗ tα

)
MN

{PQ} ,
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(The second of these equations governs the appearance of ancillary transformations in the
commutator of two generalised diffeomorphisms.) Define ψαβ = ϕαβ−(1− 1

(λ,λ))`αβ . Then,
combining the first two relations in eq. (3.12) gives

(tβ ⊗ ψβα)MN
〈PQ〉 =

(
2− 1

(λ, λ)

)
(tα ⊗ 1− 1⊗ tα)MN

〈PQ〉 . (3.13)

Taking the antisymmetric part of the third relations gives

(tβ ⊗ ϕβα)[MN ]
{PQ} = 1

(λ, λ)(tα ⊗ 1 + 1⊗ tα)[MN ]
{PQ} . (3.14)

These last equations will be useful for finding the relevant Bianchi identity. There is
always a torsion Bianchi identity in an antisymmetric module. This can be seen as follows.
Define the big torsion as a different linear combination of irreducible modules than the one
above:

ΨM
α =

(
ϕαM,β

N −
(

1− 1
(λ, λ)

)
`αM,β

N

)
ΓNβ = ψαM,β

NΓNβ . (3.15)

This is still a linear combination of projections of the Weizenböck connection on the same
modules as Φ, but with different coefficients, chosen to suit our construction of the Bianchi
identity below. We then form

BMN = tα[M
PD|P |ΨN ]

α + 2
(

2− 1
(λ, λ)

)
D[MθN ] , (3.16)

i.e.,

B = 1− σ
2 (tα ⊗ 1)D ⊗Ψα + 2

(
2− 1

(λ, λ)

)
D ∧ θ , (3.17)

(Here, σ is the permutation operator; 1−σ
2 projects on the antisymmetric part of a tensor

product.) Thanks to eq. (3.13), the part without the connection terms is

1− σ
2 (tα ⊗ 1)∂ ⊗Ψα + 2

(
2− 1

(λ, λ)

)
∂ ∧ θ

= 1− σ
2 (tα ⊗ ψαβ)∂ ∧ Γβ +

(
2− 1

(λ, λ)

)
(tα ⊗ 1 + 1⊗ tα)∂ ∧ Γα . (3.18)

We express the right hand side using the Maurer-Cartan equation for Γ and reinsert the
connection terms in the covariant derivatives. The result is tensorial, and therefore ex-
pressible in terms of torsion.

A lengthy calculation, making use of eqs. (3.13) and (3.14) shows that

B = −(tα ⊗ 1)θ ⊗Ψα

−
(

1− 1
(λ, λ)

)(
(tα ⊗ 1 + 1⊗ tα)tδ ⊗ `δβ −

1
2fαβ

γtδ ⊗ `δγ
)

Γα ∧ Γβ (3.19)

+
(

2− 1
(λ, λ)

)(
1− 1

(λ, λ)

)
(λ, λ)(tβ ⊗ `βα) γ ∧ Γα ,
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Figure 3. The complex of E5 extended geometry.

where projection from the left on the antisymmetric part by 1−σ
2 is understood. The first

term, which is expressed in terms of torsion, is precisely the desired one. The remainder,
still expressed in terms of connection, should be expressible in terms of torsion. We have
not found a straightforward way of doing this in general. However, these terms do not
contribute to the leading antisymmetric module, thanks to (tβ ⊗ `βα){MN}

PQ = 0. The
Bianchi identity in the leading antisymmetric module therefore is

(DP + θP )XMN
P , (3.20)

where

XMN
P = tα{M

PΘN}
α + 2

(
2− 1

(λ, λ)

)
δP{MθN} . (3.21)

(Restricting to the leading module also implies that the terms with ` in eq. (3.15) drop
out, tα{MPΨN}

α = tα{M
PΘN}

α.)
The form of eq. (3.20) is precisely the one needed in order to implement local invariance.

The covariant divergence of a vector with weight (λ, λ) is

DMv
M = (∂M − θM )vM , (3.22)

so the Bianchi identity can be written ∂P (KMNXMN
P ) = 0, where K is covariantly con-

stant and carries weight 2(λ, λ)− 1.
If the antisymmetric module is irreducible, i.e., consists only of its leading part, this

Bianchi identity is enough. If not, it is desirable to find subleading Bianchi identities
with the same property. We have not been able to produce a general derivation of such
identities. It is however reassuring that they are present e.g. when the coordinate module
is the adjoint (see section 6).

4 An example: E5 geometry

As a preparation, and a proof of concept, we consider a finite-dimensional case with irre-
ducible Θ. We choose E5 ' D5, where the coordinate module is a chiral spinor.

4.1 E5 decomposition of S(E6)

The fields at all ghost numbers are obtained as certain elements in an E5-covariant bi-
grading of the tensor hierarchy algebra S(E6), as described in ref. [4]. The non-ancillary
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ones fill out the subalgebraW (E5), the lower line in figure 3. Their ghost numbers coincide
with the level of the grading of W (E5) with respect to its fermionic node. Ancillary ghosts,
starting from ghost number 4, are found in the upper line, and will not be considered here.
Importantly, among the torsion Bianchi identities at level −2, we find a 3-form, i.e., an
antisymmetric bispinor.

4.2 G = Spin(5, 5) and K = Spin(5)× Spin(5)

We use different conventions for indices in this section compared to the rest of the paper.
Spinor indices are α, β, . . .. Vector indices are a, b, . . .. An adjoint index is [ab]. In order
to have conventions that easily translate to the general framework (e.g., in terms of nor-
malisation of generators, the Killing metric etc.) we choose representation matrices in the
vector and spinor representations:

(tab)cd = 2ηc[aδdb] ,

(tab)αβ = 1
2(γab)αβ . (4.1)

We also use the Killing metric (A = [ab], B = [cd])

ηAB = −1
2η

[c[aηb]d] . (4.2)

If we use the vector metric to raise and lower indices, this implies a factor −1
2 in any

contraction of adjoint indices. (This can be avoided, but at the price of having factors of√
2 in the representation matrices.)

We can check the conventions in the section constraint, which only has a symmetric
part, (ηABtA ⊗ tB − (λ, λ))(∂ ⊗ ∂) = 0. We then get (〈αβ〉 denoting projection on S{

2, the
5-form)

(tA ⊗ tA)αβ〈γδ〉 = −1
8(γab)α〈γ(γab)βδ〉 = −1

8(γaγb)α〈γ((γaγb)βδ〉 − ηabδ
δ〉
β )

= 5
4δ
〈γ
α δ

δ〉
β , (4.3)

and (λ, λ)= 5
4 is the length squared of a spinor highest weight. The structure constants are

fab,cd
ef = 8η[c[aδ

[e
b]δ

f ]
d] . (4.4)

The group G is broken to K by the introduction of a generalised metric Gαβ . Since it
is the 5-form module that contains the K singlet, we can write Gαβ = 1

2·5!(γ
abcde)αβGabcde.

This simply means that the involution defined by the metric is in the same G-orbit as
the Chevalley involution, the Cartan involution corresponding to the split real form. Also,
(G−1)αβ = 1

2·5!(γabcde)
αβ(G−1)abcde. We have 1

4!Gacdef (G−1)bcdef = δba. A metric on the
vector module (different from the Spin(5, 5)-invariant one ηab) is Hab = 1

4!Ga
cdefGbcdef . It

lies in (20000), i.e., ηabHab = 0. Identities include Ha
f (G−1)fbcde = Gabcde. Such relations

can generically be found by excluding any module, in this case (10000) ⊗ (00011), not
containing a K singlet.
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4.3 Vielbeins, connection and torsion

We parametrise the coset (Spin(5, 5) × R)/(Spin(5) × Spin(5)) by a generalised vielbein
Eα

α̃, where α is a Spin(5, 5) chiral spinor index, and α̃ a “flat” Spin(5)× Spin(5) bispinor
index. Let E transform under generalised diffeomorphisms with a weight w, the value of
which we for now keep open. By the weight of a field X in some Spin(5, 5) module we
mean the coefficient wX in

δξX = ξα∂αX + (tA)αβ∂βξαtA ·X + wX∂αξ
αX . (4.5)

The (tensorial) value of w for a covector is w = 1− (λ, λ) = −1
4 .

Define the Weizenböck connection and its Spin(5, 5) and scaling components as

Γαβγ = −(∂αEE−1)βγ = −1
4(γab)βγΓαab + wδγβγα . (4.6)

The Maurer-Cartan equations for Γ read

∂[αΓβ]
ab = −Γ[α

c[aΓβ]c
b] ,

∂[αγβ] = 0 . (4.7)

Torsion is defined as the tensorial part of the connection. The inhomogeneous part of
the transformation of the connection components under generalised diffeomorphisms is

∆ξΓαab = −1
2(γab)βγ∂α∂γξβ ,

∆ξγα = −∂α∂βξβ . (4.8)

It is then straightforward to verify that the torsion is given as

Θa
α = (γbΓab)α −

1
10(γaγbcΓbc)α ,

θα = −1
4(γabΓab)α −

5
4γα , (4.9)

where Θ is an irreducible vector-spinor.
The (generalised) torsion will obey Bianchi identities. The modules appearing can be

read from level −2 of the tensor hierarchy algebra W (E5). We are in particular interested
in the antisymmetric module, which will be the key to an action which is invariant under
local rotations. The Bianchi identities will be satisfied by the use of the Maurer-Cartan
equation as well as the section constraint, which immediately states that (∂γaΓbc) = 0,
(∂γaγ) = 0. Looking for a Bianchi identity in (00100), one easily observes that the γ(5)

terms cancel in the combination

(∂γ[abΘc])−
2
5(∂γabcθ) = (∂γ[ab

dΓc]d) + 1
2(∂γabcγ) . (4.10)

To make this into a covariant Bianchi identity, we need to add connection terms to the
derivatives on the left hand side (with the representation matrices of eq. (4.1) and weight
−1

4), and use the Maurer-Cartan equation in the terms on the right hand side. Then all
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terms should collect into (torsion)2. A direct but rather lengthy calculation leads to the
result

(Dγ[abΘc])−
2
5(Dγabcθ) = −(θγ[abΘc]) . (4.11)

Note that there is no Θ2 term. Since ∨2(10010) does not contain (00100), such terms are
impossible. The Bianchi identity can be written, with Xabc

α = (γ[abΘc] − 2
5γabcθ)

α, as

(Dα + θα)Xabc
α = 0 . (4.12)

Let vα be a vector density of weight (λ, λ) = 5
4 . Then, Dαv

α = (∂α − θα)vα. The
naked divergence is covariant. This means that if we (for purely formal reasons) introduce
a covariantly constant tensor density Kabc of weight 2(λ, λ) − 1 = 3

2 , the Bianchi identity
may further be rewritten as

∂α(KabcXabc
α) = 0 . (4.13)

This kind of behaviour should be a generic phenomenon for the antisymmetric Bianchi
identity. It will be useful for finding an action. The precise coefficient in the right hand
side of eq. (4.11) is crucial.

4.4 Teleparallel dynamics

Since torsion transforms covariantly under generalised diffeomorphisms, we only need to
demand invariance under local Spin(5)×Spin(5) transformations. Consider an infinitesimal
so(5) ⊕ so(5) transformation of the vielbein, with parameter Λ, δΛE = −EΛ, leading to
δΛΓα = E∂αΛE−1. Converting the flat indices to coordinate basis with E, so that we write

Λαβ = (EΛE−1)αβ , (4.14)

we get, since the vielbein is covariantly constant, δΛΓαβγ = DαΛβγ . The characterisation
of Λ with coordinate indices is that it belongs to the locally defined compact subalgebra,
it has eigenvalue 1 under the involution defined by the metric, which is equivalently stated
as G−1Λ being antisymmetric. We hope to find this antisymmetric parameter multiplying
the Bianchi identity above after partial integration of the variation of the action.

In order to have a Lagrangian which is a scalar density of weight 1, we let E have
weight 1

2 − (λ, λ) = −3
4 . We search a Lagrangian L which upon local K transformations

yields the Bianchi identity as

δΛL ∼ DαΛabcXabc
α = ∂α(ΛabcXabc

α) , (4.15)

where Λ has been converted to a 3-form with K-invariant tensors.
It may seem that in order to find the object which is linear in connections and that

varies as DΛ, we need the full connection, and that the project would fail for the same
reason that the spin connection is not fully determined by the torsion. On the other hand,
DΛ does not enter in arbitrary combinations, but contracts only torsion, so the modules
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corresponding to the undefined spin connection will not appear. Therefore, this is likely to
succeed.

Let us try to write down a general Ansatz, and begin by counting possible terms.
Under the subgroup Spin(5)× Spin(5) ⊂ Spin(5, 5), the torsion modules decompose as

(10010) = 144→ (16,4)⊕ (4,16)⊕ (4,4) ,
(00001) = 16→ (4,4) . (4.16)

Therefore, there are three K-invariant terms Θ2, and one each of θΘ and θ2. Their G-
covariant forms are found by examining which modules in the symmetric products of torsion
modules contain a K singlet. They are

∨2(10010) ⊃ (00002)⊕ (00020)⊕ (20020) ,
(10010)⊗ (00001) ⊃ (00020) , (4.17)

∨2(00001) ⊃ (00002) .

A (00002) can be contracted by (G−1)abcde to form an invariant. A (00020) is contracted
with Gabcde, and a (20020) by (H−1)abGcdefg (which of course also picks up (00002)).
Curiously, the terms with G−1 and H−1G give the same weight, while the ones with G

gives another one (unless the weight of G is 0), and it is difficult to see how they can
communicate in an action. The three terms turn out to provide the full answer.

Consider the three terms in an Ansatz for the Lagrangian:

A = Gabcde(H−1)fg(ΘfγabcdeΘg) ,
B = (G−1)abcde(ΘaγbcdΘe) , (4.18)
C = (G−1)abcde(θγabcdeθ) .

In order for the Lagrangian to have the right weight, the weight of the vielbein E should
be 1

2−(λ, λ) = −3
4 . The local transformation is parametrised by an (antisymmetric) tensor

Λab. It lies in k, and this is implemented by the condition that H(a
cΛb)c = 0. With suitable

normalisation, the connection transforms as δΛΓαab = DαΛab (and, of course, δΛγα = 0),
leading to

δΛΘa
α = (γbD)αΛab −

1
10(γaγbcD)αΛbc ,

δΛθα = −1
4(γabD)αΛab . (4.19)

We now calculate the variation of each of the three terms.

δΛA = 2Gabcde(H−1)fg(DΛfhγhγabcdeΘg) + 1
5G

abcde(H−1)fg(DΛhiγhiγfγabcdeΘg)

= 20Gabcde(H−1)fg(DΛfaγbcdeΘg) + 2Gabcde(H−1)ag(DΛhiγhiγbcdeΘg)
= −20(G−1)abcde(DΛafγbcdeΘf ) + 2(G−1)abcde(DΛfgγfgγabcdΘe) (4.20)
= −20(G−1)abcde(DΛafγbcdeΘf ) .
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In the first step, a γ matrix is taken through γ(5) to give contractions and a term that
vanishes due to the wrong chirality, Gabcde(γabcdeγfΘg)α = 0 (any such representation-
theoretic identity can of course be proven concretely by double dualisation of the metric
and the γ matrices). In the second step, GH−1 is turned into G−1 due to a contraction
of indices, in the first term after using the antisymmetry of (H−1Λ). Finally, the second
term in the third line vanishes thanks to

(G−1)abcde(γabcdΘe)α = 1
10(G−1)abcde(γfγabcdeΘf )α = 0 . (4.21)

The remaining terms vary as

δΛB = 2(G−1)abcde(DΛafγfγbcdΘe) + 1
5(G−1)abcde(DΛfgγfgγabcdΘe)

= 2(G−1)abcde(DΛafγfbcdΘe) + 6(G−1)abcde(DΛabγcdΘe) , (4.22)

and

δΛC = 1
2(G−1)abcde(DΛfgγfgγabcdeθ)

= −5(G−1)abcde(DΛafγfγbcdeθ)
= −5(G−1)abcde(DΛafγfbcdeθ)− 20(G−1)abcde(DΛabγcdeθ) (4.23)
= −20(G−1)abcde(DΛabγcdeθ) .

The first term in the third line can be shown to vanish by inserting H and H−1 by
Λ = −(H−1ΛH)t, turning HG−1 into G and using G[a

bcde(γf ]bcdeθ)α = 0, since the product
(00020)⊗ (00020) does not contain (01000).

If we now choose (up to an overall factor)

L = − 1
240A+ 1

6B + 1
50C , (4.24)

the variation adds up to

δΛL = 1
12(G−1)abcde(DΛafγfbcdΘe) + 1

3(G−1)abcde(DΛafγbcdeΘf )

+ (G−1)abcde(DΛabγcdΘe)−
2
5(G−1)abcde(DΛabγcdeθ) . (4.25)

The terms in the first row cancel, since

(G−1)abcde(γ[bcdeΘf ])α = 1
10(G−1)abcde(γgγbcdefΘg)α , (4.26)

which is symmetric in (af). Thus, the variation becomes a total derivative thanks to the
Bianchi identity, and

δΛL = ∂α((G−1)abcdeΛabXcde
α) . (4.27)

It is straightforward to show that the Lagrangian is unique, i.e., that the inclusion
of the two discarded terms does not lead any ambiguity. We have not explicitly checked
the equivalence to the usual (“coset”) formulation of E5 exceptional field theory, since it
obviously follows from the uniqueness of the respective Lagrangians. If the generalised
vielbein is parametrised in terms of ordinary vielbein and 3-form potential, the Lagrangian
will give the teleparallel version of gravity together with the dynamics of the 3-form.
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4.5 Local symmetry and irreducibility as dual gauge symmetries

All fields, fields strengths, torsion components etc. come in modules of the structure algebra
E5. Nevertheless, we have seen that a specific Bianchi identity is responsible for the
invariance under the local subalgebra. The reason is that, with an appropriate definition
of the dualisation map of the field strengths (torsion) from the complex C of figure 3 to
the dual complex C?, the Bianchi identity maps to a local symmetry for the dual field
strength. We call this a dual gauge symmetry. Note that this does not involve a change
of local degrees of freedom (the generalised vielbein) to some dual variables, but relies on
the transformation being realisable as a local transformation of them.

The critical property of the anti-symmetric Bianchi identity is that it takes the precise
form

(D + θ)MXA
M = 0 , (4.28)

where A is an index for the module of the Bianchi identity. Then, a variation of an action
yielding DMΛAXA

M gives a total derivative. (Recall that the index A labels a leading
antisymmetric module, and that Λ, initially transforming under the compact subgroup,
can be converted to an antisymmetric tensor as in eq. (4.14).)

The leading antisymmetric module in the Bianchi identity is always accompanied by
a subleading symmetric module. There are in fact two such Bianchi identities, one which
vanishes on lowering (the adjoint action of e−1) an one that vanishes on raising (the opposite
operation), like the antisymmetric one. We are not clear on the precise significance of this
property. In the situations where the tensor hierarchy algebra possesses a non-degenerate
quadratic form, it implies that these modules do not appear in the (would-be) dual position
in W (g).

Does the subleading symmetric module have the same property (4.28), so that it may
correspond to a total derivative in an action? We have checked this for g = E5. With the
definitions given above of the torsion components, one may derive the Bianchi identities in
the subleading symmetric module, the so(10) vector 10. They become

(DΘa) = − 1
10(ΘbγaΘb)− 31

25(θΘa) + 36
125(θγaθ) ,

(Dγaθ) = −1
4(ΘbγaΘb)− 3

5(θΘa) + 7
25(θγaθ) . (4.29)

One linear combination of these identities, the one without Θ2, is

(D + θ)
(

Θa −
2
5γaθ

)
= 0 , (4.30)

Suppose that the vielbein is subject to a variation δΣE = −EΣ, where Σ is an element
in the “coset directions” g	 k such that (G−1tα)[MN ]Σα = (G−1tα)〈MN〉Σα = 0. Then, the
transformation with parameter Σ would serve to remove the subleading symmetric part of
the metric. In the analysis above, we have already assumed that the metric is in the leading
symmetric module. The present observation indicates that the metric could be taken as a
general symmetric matrix, and that the unphysical subleading parts can be gauged away
using such a symmetry. Note that this phenomenon is absent in ordinary gravity.
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5 Dynamics for the general situation with irreducible torsion

Inspired by the Spin(5, 5) formulation of teleparallel dynamics, we will now give a general
form of the action, for simplicity in the situation when the big torsion module is irreducible,
i.e., when ϕ projects on a single irreducible module. Note that this implies that ` = 0 —
equivalently, λ is dual to a simple root α with Coxeter label 1 [1] — but also that α is an
“outer” root, so that the Dynkin diagram with the node λ connects to removed is connected.
This includes essentially all models of interest without ancillary transformations.

The idea is that the big torsion module will enter through two types of terms in the
action, ηαβGMNΘM

αΘN
β and GαβGMNΘM

αΘN
β . Here, Gαβ is the metric on the adjoint

module, and can (with one index raised, which we always do with η) be thought of as
(minus) the actual involution on the algebra. The defining relation is

GαβGMPG
NQtβQ

P = tαM
N . (5.1)

Note that this metric is its own inverse, GαγGγβ = δβα, and that it carries weight 0,
independently of the weight of GMN . The purpose of the two terms is to form singlets
together with the square of Θ in the modules R(2λ) and R(2(λ + γ)) ⊂ R(2λ) ⊗ R(2θ)
(here, γ is the unique highest root of g such that (λ, γ) = 0), which will both contain
singlets under the compact subgroup K.

In the absence of ancillary transformations, ` = 0, and the invariant tensor ϕ takes
the form

ϕαβ = δαβ + fαβ
γtγ −

1
(λ, λ) t

αtβ

= δαβ − tβtα +
(

1− 1
(λ, λ)

)
tαtβ . (5.2)

Note that the last term (in both lines) vanishes when acting on Θβ , since tαΘα = 0.
Another important property is GαβtαΘβ = 0. This identity is derived by using eq. (5.1)
and using the fact that GMN is in the leading module R(−2λ). Then, the indices on G−1

contract lower indices on t and Θ. This vanishes due to the conjugate of eq. (3.11). The
eigenvalue of ϕ acting on Θ in the (single) module R(λ+ γ), γ being the highest root with
(λ, γ) = 0, was calculated in ref. [3]; it is N = g∨ − 1− (γ, %).

The variation of the connection under a local k transformation is δΛΓMα = DMΛα,
leading to δΛΘM

α = ϕαM,β
NDNΛβ . The fact that Λ ∈ k is expressed by GαβΛβ = −Λα,

or equivalently GP (M tαP
N)Λα = 0. We write ΛMN = GMP tαP

NΛα.
We can now check the transformations of the two proposed terms. A short calculation,

using the explicit form of ϕ together with Λ ∈ k and eq. (5.1), leads to (in notation with
fundamental indices suppressed)

δΛ

(
1
2G
−1ηαβΘα ⊗Θβ

)
= G−1(ϕβα ⊗ 1)DΛα ⊗Θβ

= G−1ηαβDΛα ⊗Θβ +G−1(tβ ⊗ tα)DΛα ⊗Θβ ,

– 18 –



J
H
E
P
0
4
(
2
0
2
2
)
1
6
4

δΛ

(
1
2G
−1GαβΘα ⊗Θβ

)
= G−1Gαβ(ϕαγ ⊗ 1)DΛγ ⊗Θβ (5.3)

= −G−1(1⊗ ϕαβ)DΛα ⊗Θβ

= −NG−1ηαβDΛα ⊗Θβ .

The correct term with Θ in the Bianchi identity is obtained by partially integrating

δΛ

(
1
2G
−1
(
ηαβ + 1

N
Gαβ

)
Θα ⊗Θβ

)
= G−1(tβ ⊗ tα)DΛα ⊗Θβ . (5.4)

To this is added the transformation of G−1θ ⊗ θ,

δΛ

(
1
2G
−1θ ⊗ θ

)
= G−1(tα ⊗ 1)DΛα ⊗ θ . (5.5)

Using the Bianchi identity (3.20), we obtain

δΛ

(
1
2G
−1
(
ηαβ + 1

N
Gαβ

)
Θα ⊗Θβ +

(
2− 1

(λ, λ)

)
G−1θ ⊗ θ

)
= ∂P

(
ΛMN (tαMPΘN

α + 2
(

2− 1
(λ, λ)

)
δPMθN )

)
. (5.6)

This holds provided that ΛMN does not contain any subleading antisymmetric module.
For g = E7, R(λ) = 56, there is a subleading antisymmetric module, the singlet, but it is
of course not contained in R(−2λ)⊗ adj (the factors representing G−1 and Λ). Therefore,
ΛMN does not contain the singlet, εMNΛMN = 0, and the above result holds.

6 Conclusions and outlook

We have demonstrated how to give a teleparallel formulation of extended geometry. The
crucial observation is the generic existence of an antisymmetric torsion Bianchi identity,
and that the precise non-linear form of this Bianchi identity is such that it matches the form
of a covariant divergence. This ensures the symmetry of an action under local rotations
in the compact subgroup. We have also found indications, not further elaborated on, that
any subleading symmetric part of a metric can be gauged away in a similar fashion. It is
striking that these Bianchi identities, the ones with the potential to remove local degrees
of freedom from the generalised vielbein, are found precisely as the parts of S(g+) at level
(p, q) = (−2, 0) which can be lowered to (p, q) = (−2,−1). This is probably significant,
and there may be a reason to expect the possibility of a general proof of the forms of these
Bianchi identities in terms of the brackets of the tensor hierarchy algebra.

The formalism obtained is ideally suited to the view that extended geometry is con-
structed from a tensor hierarchy algebra. A natural continuation of this work is to extend
it to infinite-dimensional structure groups, in particular over-extended ones. On the way
there, one passes the cases of adjoint and affine structure groups. We have partial en-
couraging results for these. In the adjoint (Ehlers) situation, the “big” torsion module is
always reducible, since it contains a singlet (in some cases, it is further reducible). Also,
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the antisymmetric module is reducible. We have verified that also the subleading antisym-
metric module, the adjoint, contains a Bianchi identity of the required form. In the affine
(Geroch) case, we have observed that the tensor hierarchy algebra predicts the existence of
an ancillary field, in agreement with ref. [25], and that there is an antisymmetric Bianchi
identity of the correct form. This will be reported in a forthcoming paper.

One natural application of the formalism would be gauged supergravity and generalised
Scherk-Schwarz reductions. The embedding tensor is obtained by giving an expectation
value to the generalised torsion.

For infinite-dimensional structure groups, the present formalism should make it pos-
sible to view the field strengths (torsion) as arising from a group element, which is the
exponentiation G of an algebra element at (p, q) = (0, 0). Generically, this group is larger
than the exponentiation of g, due to the presence of “extra” elements [50], starting with
the Virasoro generator L1 for affine g. Unlike the assignment of e.g. refs. [27, 28, 53], where
linearised fields are assigned to the coadjoint module of G, they are in the adjoint mod-
ule. It may well be the case that the two assignments are related by a duality, related to
the “symmetry” of the tensor hierarchy algebras, which typically possess a non-degenerate
bilinear form. The advantage of the present formulation would be the possibility to view
dynamical fields as group elements. We hope that this will allow for exposure of the full
local symmetries of the theories, including ones corresponding to the extra generators.
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